4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
58 #include <linux/kmod.h>
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int register_binfmt(struct linux_binfmt * fmt)
79 write_lock(&binfmt_lock);
80 list_add(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 asmlinkage long sys_uselib(const char __user * library)
111 char *tmp = getname(library);
112 int error = PTR_ERR(tmp);
115 error = path_lookup_open(AT_FDCWD, tmp,
117 FMODE_READ|FMODE_EXEC);
124 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
128 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
131 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 error = PTR_ERR(file);
142 struct linux_binfmt * fmt;
144 read_lock(&binfmt_lock);
145 list_for_each_entry(fmt, &formats, lh) {
146 if (!fmt->load_shlib)
148 if (!try_module_get(fmt->module))
150 read_unlock(&binfmt_lock);
151 error = fmt->load_shlib(file);
152 read_lock(&binfmt_lock);
154 if (error != -ENOEXEC)
157 read_unlock(&binfmt_lock);
163 release_open_intent(&nd);
170 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
176 #ifdef CONFIG_STACK_GROWSUP
178 ret = expand_stack_downwards(bprm->vma, pos);
183 ret = get_user_pages(current, bprm->mm, pos,
184 1, write, 1, &page, NULL);
189 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
193 * We've historically supported up to 32 pages (ARG_MAX)
194 * of argument strings even with small stacks
200 * Limit to 1/4-th the stack size for the argv+env strings.
202 * - the remaining binfmt code will not run out of stack space,
203 * - the program will have a reasonable amount of stack left
206 rlim = current->signal->rlim;
207 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
216 static void put_arg_page(struct page *page)
221 static void free_arg_page(struct linux_binprm *bprm, int i)
225 static void free_arg_pages(struct linux_binprm *bprm)
229 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
232 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
235 static int __bprm_mm_init(struct linux_binprm *bprm)
238 struct vm_area_struct *vma = NULL;
239 struct mm_struct *mm = bprm->mm;
241 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
245 down_write(&mm->mmap_sem);
249 * Place the stack at the largest stack address the architecture
250 * supports. Later, we'll move this to an appropriate place. We don't
251 * use STACK_TOP because that can depend on attributes which aren't
254 vma->vm_end = STACK_TOP_MAX;
255 vma->vm_start = vma->vm_end - PAGE_SIZE;
257 vma->vm_flags = VM_STACK_FLAGS;
258 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
259 err = insert_vm_struct(mm, vma);
261 up_write(&mm->mmap_sem);
265 mm->stack_vm = mm->total_vm = 1;
266 up_write(&mm->mmap_sem);
268 bprm->p = vma->vm_end - sizeof(void *);
275 kmem_cache_free(vm_area_cachep, vma);
281 static bool valid_arg_len(struct linux_binprm *bprm, long len)
283 return len <= MAX_ARG_STRLEN;
288 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
293 page = bprm->page[pos / PAGE_SIZE];
294 if (!page && write) {
295 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
298 bprm->page[pos / PAGE_SIZE] = page;
304 static void put_arg_page(struct page *page)
308 static void free_arg_page(struct linux_binprm *bprm, int i)
311 __free_page(bprm->page[i]);
312 bprm->page[i] = NULL;
316 static void free_arg_pages(struct linux_binprm *bprm)
320 for (i = 0; i < MAX_ARG_PAGES; i++)
321 free_arg_page(bprm, i);
324 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
329 static int __bprm_mm_init(struct linux_binprm *bprm)
331 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
335 static bool valid_arg_len(struct linux_binprm *bprm, long len)
337 return len <= bprm->p;
340 #endif /* CONFIG_MMU */
343 * Create a new mm_struct and populate it with a temporary stack
344 * vm_area_struct. We don't have enough context at this point to set the stack
345 * flags, permissions, and offset, so we use temporary values. We'll update
346 * them later in setup_arg_pages().
348 int bprm_mm_init(struct linux_binprm *bprm)
351 struct mm_struct *mm = NULL;
353 bprm->mm = mm = mm_alloc();
358 err = init_new_context(current, mm);
362 err = __bprm_mm_init(bprm);
378 * count() counts the number of strings in array ARGV.
380 static int count(char __user * __user * argv, int max)
388 if (get_user(p, argv))
402 * 'copy_strings()' copies argument/environment strings from the old
403 * processes's memory to the new process's stack. The call to get_user_pages()
404 * ensures the destination page is created and not swapped out.
406 static int copy_strings(int argc, char __user * __user * argv,
407 struct linux_binprm *bprm)
409 struct page *kmapped_page = NULL;
411 unsigned long kpos = 0;
419 if (get_user(str, argv+argc) ||
420 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
425 if (!valid_arg_len(bprm, len)) {
430 /* We're going to work our way backwords. */
436 int offset, bytes_to_copy;
438 offset = pos % PAGE_SIZE;
442 bytes_to_copy = offset;
443 if (bytes_to_copy > len)
446 offset -= bytes_to_copy;
447 pos -= bytes_to_copy;
448 str -= bytes_to_copy;
449 len -= bytes_to_copy;
451 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
454 page = get_arg_page(bprm, pos, 1);
461 flush_kernel_dcache_page(kmapped_page);
462 kunmap(kmapped_page);
463 put_arg_page(kmapped_page);
466 kaddr = kmap(kmapped_page);
467 kpos = pos & PAGE_MASK;
468 flush_arg_page(bprm, kpos, kmapped_page);
470 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
479 flush_kernel_dcache_page(kmapped_page);
480 kunmap(kmapped_page);
481 put_arg_page(kmapped_page);
487 * Like copy_strings, but get argv and its values from kernel memory.
489 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
492 mm_segment_t oldfs = get_fs();
494 r = copy_strings(argc, (char __user * __user *)argv, bprm);
498 EXPORT_SYMBOL(copy_strings_kernel);
503 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
504 * the binfmt code determines where the new stack should reside, we shift it to
505 * its final location. The process proceeds as follows:
507 * 1) Use shift to calculate the new vma endpoints.
508 * 2) Extend vma to cover both the old and new ranges. This ensures the
509 * arguments passed to subsequent functions are consistent.
510 * 3) Move vma's page tables to the new range.
511 * 4) Free up any cleared pgd range.
512 * 5) Shrink the vma to cover only the new range.
514 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
516 struct mm_struct *mm = vma->vm_mm;
517 unsigned long old_start = vma->vm_start;
518 unsigned long old_end = vma->vm_end;
519 unsigned long length = old_end - old_start;
520 unsigned long new_start = old_start - shift;
521 unsigned long new_end = old_end - shift;
522 struct mmu_gather *tlb;
524 BUG_ON(new_start > new_end);
527 * ensure there are no vmas between where we want to go
530 if (vma != find_vma(mm, new_start))
534 * cover the whole range: [new_start, old_end)
536 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
539 * move the page tables downwards, on failure we rely on
540 * process cleanup to remove whatever mess we made.
542 if (length != move_page_tables(vma, old_start,
543 vma, new_start, length))
547 tlb = tlb_gather_mmu(mm, 0);
548 if (new_end > old_start) {
550 * when the old and new regions overlap clear from new_end.
552 free_pgd_range(tlb, new_end, old_end, new_end,
553 vma->vm_next ? vma->vm_next->vm_start : 0);
556 * otherwise, clean from old_start; this is done to not touch
557 * the address space in [new_end, old_start) some architectures
558 * have constraints on va-space that make this illegal (IA64) -
559 * for the others its just a little faster.
561 free_pgd_range(tlb, old_start, old_end, new_end,
562 vma->vm_next ? vma->vm_next->vm_start : 0);
564 tlb_finish_mmu(tlb, new_end, old_end);
567 * shrink the vma to just the new range.
569 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
574 #define EXTRA_STACK_VM_PAGES 20 /* random */
577 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
578 * the stack is optionally relocated, and some extra space is added.
580 int setup_arg_pages(struct linux_binprm *bprm,
581 unsigned long stack_top,
582 int executable_stack)
585 unsigned long stack_shift;
586 struct mm_struct *mm = current->mm;
587 struct vm_area_struct *vma = bprm->vma;
588 struct vm_area_struct *prev = NULL;
589 unsigned long vm_flags;
590 unsigned long stack_base;
592 #ifdef CONFIG_STACK_GROWSUP
593 /* Limit stack size to 1GB */
594 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
595 if (stack_base > (1 << 30))
596 stack_base = 1 << 30;
598 /* Make sure we didn't let the argument array grow too large. */
599 if (vma->vm_end - vma->vm_start > stack_base)
602 stack_base = PAGE_ALIGN(stack_top - stack_base);
604 stack_shift = vma->vm_start - stack_base;
605 mm->arg_start = bprm->p - stack_shift;
606 bprm->p = vma->vm_end - stack_shift;
608 stack_top = arch_align_stack(stack_top);
609 stack_top = PAGE_ALIGN(stack_top);
610 stack_shift = vma->vm_end - stack_top;
612 bprm->p -= stack_shift;
613 mm->arg_start = bprm->p;
617 bprm->loader -= stack_shift;
618 bprm->exec -= stack_shift;
620 down_write(&mm->mmap_sem);
621 vm_flags = VM_STACK_FLAGS;
624 * Adjust stack execute permissions; explicitly enable for
625 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
626 * (arch default) otherwise.
628 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
630 else if (executable_stack == EXSTACK_DISABLE_X)
631 vm_flags &= ~VM_EXEC;
632 vm_flags |= mm->def_flags;
634 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
640 /* Move stack pages down in memory. */
642 ret = shift_arg_pages(vma, stack_shift);
644 up_write(&mm->mmap_sem);
649 #ifdef CONFIG_STACK_GROWSUP
650 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
652 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
654 ret = expand_stack(vma, stack_base);
659 up_write(&mm->mmap_sem);
662 EXPORT_SYMBOL(setup_arg_pages);
664 #endif /* CONFIG_MMU */
666 struct file *open_exec(const char *name)
672 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
673 FMODE_READ|FMODE_EXEC);
678 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
681 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
684 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
688 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
692 err = deny_write_access(file);
701 release_open_intent(&nd);
706 EXPORT_SYMBOL(open_exec);
708 int kernel_read(struct file *file, unsigned long offset,
709 char *addr, unsigned long count)
717 /* The cast to a user pointer is valid due to the set_fs() */
718 result = vfs_read(file, (void __user *)addr, count, &pos);
723 EXPORT_SYMBOL(kernel_read);
725 static int exec_mmap(struct mm_struct *mm)
727 struct task_struct *tsk;
728 struct mm_struct * old_mm, *active_mm;
730 /* Notify parent that we're no longer interested in the old VM */
732 old_mm = current->mm;
733 mm_release(tsk, old_mm);
737 * Make sure that if there is a core dump in progress
738 * for the old mm, we get out and die instead of going
739 * through with the exec. We must hold mmap_sem around
740 * checking core_state and changing tsk->mm.
742 down_read(&old_mm->mmap_sem);
743 if (unlikely(old_mm->core_state)) {
744 up_read(&old_mm->mmap_sem);
749 active_mm = tsk->active_mm;
752 activate_mm(active_mm, mm);
754 mm_update_next_owner(old_mm);
755 arch_pick_mmap_layout(mm);
757 up_read(&old_mm->mmap_sem);
758 BUG_ON(active_mm != old_mm);
767 * This function makes sure the current process has its own signal table,
768 * so that flush_signal_handlers can later reset the handlers without
769 * disturbing other processes. (Other processes might share the signal
770 * table via the CLONE_SIGHAND option to clone().)
772 static int de_thread(struct task_struct *tsk)
774 struct signal_struct *sig = tsk->signal;
775 struct sighand_struct *oldsighand = tsk->sighand;
776 spinlock_t *lock = &oldsighand->siglock;
777 struct task_struct *leader = NULL;
780 if (thread_group_empty(tsk))
781 goto no_thread_group;
784 * Kill all other threads in the thread group.
787 if (signal_group_exit(sig)) {
789 * Another group action in progress, just
790 * return so that the signal is processed.
792 spin_unlock_irq(lock);
795 sig->group_exit_task = tsk;
796 zap_other_threads(tsk);
798 /* Account for the thread group leader hanging around: */
799 count = thread_group_leader(tsk) ? 1 : 2;
800 sig->notify_count = count;
801 while (atomic_read(&sig->count) > count) {
802 __set_current_state(TASK_UNINTERRUPTIBLE);
803 spin_unlock_irq(lock);
807 spin_unlock_irq(lock);
810 * At this point all other threads have exited, all we have to
811 * do is to wait for the thread group leader to become inactive,
812 * and to assume its PID:
814 if (!thread_group_leader(tsk)) {
815 leader = tsk->group_leader;
817 sig->notify_count = -1; /* for exit_notify() */
819 write_lock_irq(&tasklist_lock);
820 if (likely(leader->exit_state))
822 __set_current_state(TASK_UNINTERRUPTIBLE);
823 write_unlock_irq(&tasklist_lock);
827 if (unlikely(task_child_reaper(tsk) == leader))
828 task_active_pid_ns(tsk)->child_reaper = tsk;
830 * The only record we have of the real-time age of a
831 * process, regardless of execs it's done, is start_time.
832 * All the past CPU time is accumulated in signal_struct
833 * from sister threads now dead. But in this non-leader
834 * exec, nothing survives from the original leader thread,
835 * whose birth marks the true age of this process now.
836 * When we take on its identity by switching to its PID, we
837 * also take its birthdate (always earlier than our own).
839 tsk->start_time = leader->start_time;
841 BUG_ON(!same_thread_group(leader, tsk));
842 BUG_ON(has_group_leader_pid(tsk));
844 * An exec() starts a new thread group with the
845 * TGID of the previous thread group. Rehash the
846 * two threads with a switched PID, and release
847 * the former thread group leader:
850 /* Become a process group leader with the old leader's pid.
851 * The old leader becomes a thread of the this thread group.
852 * Note: The old leader also uses this pid until release_task
853 * is called. Odd but simple and correct.
855 detach_pid(tsk, PIDTYPE_PID);
856 tsk->pid = leader->pid;
857 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
858 transfer_pid(leader, tsk, PIDTYPE_PGID);
859 transfer_pid(leader, tsk, PIDTYPE_SID);
860 list_replace_rcu(&leader->tasks, &tsk->tasks);
862 tsk->group_leader = tsk;
863 leader->group_leader = tsk;
865 tsk->exit_signal = SIGCHLD;
867 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
868 leader->exit_state = EXIT_DEAD;
870 write_unlock_irq(&tasklist_lock);
873 sig->group_exit_task = NULL;
874 sig->notify_count = 0;
878 flush_itimer_signals();
880 release_task(leader);
882 if (atomic_read(&oldsighand->count) != 1) {
883 struct sighand_struct *newsighand;
885 * This ->sighand is shared with the CLONE_SIGHAND
886 * but not CLONE_THREAD task, switch to the new one.
888 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
892 atomic_set(&newsighand->count, 1);
893 memcpy(newsighand->action, oldsighand->action,
894 sizeof(newsighand->action));
896 write_lock_irq(&tasklist_lock);
897 spin_lock(&oldsighand->siglock);
898 rcu_assign_pointer(tsk->sighand, newsighand);
899 spin_unlock(&oldsighand->siglock);
900 write_unlock_irq(&tasklist_lock);
902 __cleanup_sighand(oldsighand);
905 BUG_ON(!thread_group_leader(tsk));
910 * These functions flushes out all traces of the currently running executable
911 * so that a new one can be started
913 static void flush_old_files(struct files_struct * files)
918 spin_lock(&files->file_lock);
920 unsigned long set, i;
924 fdt = files_fdtable(files);
925 if (i >= fdt->max_fds)
927 set = fdt->close_on_exec->fds_bits[j];
930 fdt->close_on_exec->fds_bits[j] = 0;
931 spin_unlock(&files->file_lock);
932 for ( ; set ; i++,set >>= 1) {
937 spin_lock(&files->file_lock);
940 spin_unlock(&files->file_lock);
943 char *get_task_comm(char *buf, struct task_struct *tsk)
945 /* buf must be at least sizeof(tsk->comm) in size */
947 strncpy(buf, tsk->comm, sizeof(tsk->comm));
952 void set_task_comm(struct task_struct *tsk, char *buf)
955 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
959 int flush_old_exec(struct linux_binprm * bprm)
963 char tcomm[sizeof(current->comm)];
966 * Make sure we have a private signal table and that
967 * we are unassociated from the previous thread group.
969 retval = de_thread(current);
973 set_mm_exe_file(bprm->mm, bprm->file);
976 * Release all of the old mmap stuff
978 retval = exec_mmap(bprm->mm);
982 bprm->mm = NULL; /* We're using it now */
984 /* This is the point of no return */
985 current->sas_ss_sp = current->sas_ss_size = 0;
987 if (current->euid == current->uid && current->egid == current->gid)
988 set_dumpable(current->mm, 1);
990 set_dumpable(current->mm, suid_dumpable);
992 name = bprm->filename;
994 /* Copies the binary name from after last slash */
995 for (i=0; (ch = *(name++)) != '\0';) {
997 i = 0; /* overwrite what we wrote */
999 if (i < (sizeof(tcomm) - 1))
1003 set_task_comm(current, tcomm);
1005 current->flags &= ~PF_RANDOMIZE;
1008 /* Set the new mm task size. We have to do that late because it may
1009 * depend on TIF_32BIT which is only updated in flush_thread() on
1010 * some architectures like powerpc
1012 current->mm->task_size = TASK_SIZE;
1014 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1016 set_dumpable(current->mm, suid_dumpable);
1017 current->pdeath_signal = 0;
1018 } else if (file_permission(bprm->file, MAY_READ) ||
1019 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1021 set_dumpable(current->mm, suid_dumpable);
1024 /* An exec changes our domain. We are no longer part of the thread
1027 current->self_exec_id++;
1029 flush_signal_handlers(current, 0);
1030 flush_old_files(current->files);
1038 EXPORT_SYMBOL(flush_old_exec);
1041 * Fill the binprm structure from the inode.
1042 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1044 int prepare_binprm(struct linux_binprm *bprm)
1047 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1050 mode = inode->i_mode;
1051 if (bprm->file->f_op == NULL)
1054 bprm->e_uid = current->euid;
1055 bprm->e_gid = current->egid;
1057 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1059 if (mode & S_ISUID) {
1060 current->personality &= ~PER_CLEAR_ON_SETID;
1061 bprm->e_uid = inode->i_uid;
1066 * If setgid is set but no group execute bit then this
1067 * is a candidate for mandatory locking, not a setgid
1070 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1071 current->personality &= ~PER_CLEAR_ON_SETID;
1072 bprm->e_gid = inode->i_gid;
1076 /* fill in binprm security blob */
1077 retval = security_bprm_set(bprm);
1081 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1082 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1085 EXPORT_SYMBOL(prepare_binprm);
1087 static int unsafe_exec(struct task_struct *p)
1089 int unsafe = tracehook_unsafe_exec(p);
1091 if (atomic_read(&p->fs->count) > 1 ||
1092 atomic_read(&p->files->count) > 1 ||
1093 atomic_read(&p->sighand->count) > 1)
1094 unsafe |= LSM_UNSAFE_SHARE;
1099 void compute_creds(struct linux_binprm *bprm)
1103 if (bprm->e_uid != current->uid) {
1105 current->pdeath_signal = 0;
1110 unsafe = unsafe_exec(current);
1111 security_bprm_apply_creds(bprm, unsafe);
1112 task_unlock(current);
1113 security_bprm_post_apply_creds(bprm);
1115 EXPORT_SYMBOL(compute_creds);
1118 * Arguments are '\0' separated strings found at the location bprm->p
1119 * points to; chop off the first by relocating brpm->p to right after
1120 * the first '\0' encountered.
1122 int remove_arg_zero(struct linux_binprm *bprm)
1125 unsigned long offset;
1133 offset = bprm->p & ~PAGE_MASK;
1134 page = get_arg_page(bprm, bprm->p, 0);
1139 kaddr = kmap_atomic(page, KM_USER0);
1141 for (; offset < PAGE_SIZE && kaddr[offset];
1142 offset++, bprm->p++)
1145 kunmap_atomic(kaddr, KM_USER0);
1148 if (offset == PAGE_SIZE)
1149 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1150 } while (offset == PAGE_SIZE);
1159 EXPORT_SYMBOL(remove_arg_zero);
1162 * cycle the list of binary formats handler, until one recognizes the image
1164 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1167 struct linux_binfmt *fmt;
1169 /* handle /sbin/loader.. */
1171 struct exec * eh = (struct exec *) bprm->buf;
1173 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1174 (eh->fh.f_flags & 0x3000) == 0x3000)
1177 unsigned long loader;
1179 allow_write_access(bprm->file);
1183 loader = bprm->vma->vm_end - sizeof(void *);
1185 file = open_exec("/sbin/loader");
1186 retval = PTR_ERR(file);
1190 /* Remember if the application is TASO. */
1191 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1194 bprm->loader = loader;
1195 retval = prepare_binprm(bprm);
1198 /* should call search_binary_handler recursively here,
1199 but it does not matter */
1203 retval = security_bprm_check(bprm);
1207 /* kernel module loader fixup */
1208 /* so we don't try to load run modprobe in kernel space. */
1211 retval = audit_bprm(bprm);
1216 for (try=0; try<2; try++) {
1217 read_lock(&binfmt_lock);
1218 list_for_each_entry(fmt, &formats, lh) {
1219 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1222 if (!try_module_get(fmt->module))
1224 read_unlock(&binfmt_lock);
1225 retval = fn(bprm, regs);
1227 tracehook_report_exec(fmt, bprm, regs);
1229 allow_write_access(bprm->file);
1233 current->did_exec = 1;
1234 proc_exec_connector(current);
1237 read_lock(&binfmt_lock);
1239 if (retval != -ENOEXEC || bprm->mm == NULL)
1242 read_unlock(&binfmt_lock);
1246 read_unlock(&binfmt_lock);
1247 if (retval != -ENOEXEC || bprm->mm == NULL) {
1251 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1252 if (printable(bprm->buf[0]) &&
1253 printable(bprm->buf[1]) &&
1254 printable(bprm->buf[2]) &&
1255 printable(bprm->buf[3]))
1256 break; /* -ENOEXEC */
1257 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1264 EXPORT_SYMBOL(search_binary_handler);
1266 void free_bprm(struct linux_binprm *bprm)
1268 free_arg_pages(bprm);
1273 * sys_execve() executes a new program.
1275 int do_execve(char * filename,
1276 char __user *__user *argv,
1277 char __user *__user *envp,
1278 struct pt_regs * regs)
1280 struct linux_binprm *bprm;
1282 struct files_struct *displaced;
1285 retval = unshare_files(&displaced);
1290 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1294 file = open_exec(filename);
1295 retval = PTR_ERR(file);
1302 bprm->filename = filename;
1303 bprm->interp = filename;
1305 retval = bprm_mm_init(bprm);
1309 bprm->argc = count(argv, MAX_ARG_STRINGS);
1310 if ((retval = bprm->argc) < 0)
1313 bprm->envc = count(envp, MAX_ARG_STRINGS);
1314 if ((retval = bprm->envc) < 0)
1317 retval = security_bprm_alloc(bprm);
1321 retval = prepare_binprm(bprm);
1325 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1329 bprm->exec = bprm->p;
1330 retval = copy_strings(bprm->envc, envp, bprm);
1334 retval = copy_strings(bprm->argc, argv, bprm);
1338 current->flags &= ~PF_KTHREAD;
1339 retval = search_binary_handler(bprm,regs);
1341 /* execve success */
1342 security_bprm_free(bprm);
1343 acct_update_integrals(current);
1346 put_files_struct(displaced);
1352 security_bprm_free(bprm);
1360 allow_write_access(bprm->file);
1368 reset_files_struct(displaced);
1373 int set_binfmt(struct linux_binfmt *new)
1375 struct linux_binfmt *old = current->binfmt;
1378 if (!try_module_get(new->module))
1381 current->binfmt = new;
1383 module_put(old->module);
1387 EXPORT_SYMBOL(set_binfmt);
1389 /* format_corename will inspect the pattern parameter, and output a
1390 * name into corename, which must have space for at least
1391 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1393 static int format_corename(char *corename, int nr_threads, long signr)
1395 const char *pat_ptr = core_pattern;
1396 int ispipe = (*pat_ptr == '|');
1397 char *out_ptr = corename;
1398 char *const out_end = corename + CORENAME_MAX_SIZE;
1400 int pid_in_pattern = 0;
1402 /* Repeat as long as we have more pattern to process and more output
1405 if (*pat_ptr != '%') {
1406 if (out_ptr == out_end)
1408 *out_ptr++ = *pat_ptr++;
1410 switch (*++pat_ptr) {
1413 /* Double percent, output one percent */
1415 if (out_ptr == out_end)
1422 rc = snprintf(out_ptr, out_end - out_ptr,
1423 "%d", task_tgid_vnr(current));
1424 if (rc > out_end - out_ptr)
1430 rc = snprintf(out_ptr, out_end - out_ptr,
1431 "%d", current->uid);
1432 if (rc > out_end - out_ptr)
1438 rc = snprintf(out_ptr, out_end - out_ptr,
1439 "%d", current->gid);
1440 if (rc > out_end - out_ptr)
1444 /* signal that caused the coredump */
1446 rc = snprintf(out_ptr, out_end - out_ptr,
1448 if (rc > out_end - out_ptr)
1452 /* UNIX time of coredump */
1455 do_gettimeofday(&tv);
1456 rc = snprintf(out_ptr, out_end - out_ptr,
1458 if (rc > out_end - out_ptr)
1465 down_read(&uts_sem);
1466 rc = snprintf(out_ptr, out_end - out_ptr,
1467 "%s", utsname()->nodename);
1469 if (rc > out_end - out_ptr)
1475 rc = snprintf(out_ptr, out_end - out_ptr,
1476 "%s", current->comm);
1477 if (rc > out_end - out_ptr)
1481 /* core limit size */
1483 rc = snprintf(out_ptr, out_end - out_ptr,
1484 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1485 if (rc > out_end - out_ptr)
1495 /* Backward compatibility with core_uses_pid:
1497 * If core_pattern does not include a %p (as is the default)
1498 * and core_uses_pid is set, then .%pid will be appended to
1499 * the filename. Do not do this for piped commands. */
1500 if (!ispipe && !pid_in_pattern
1501 && (core_uses_pid || nr_threads)) {
1502 rc = snprintf(out_ptr, out_end - out_ptr,
1503 ".%d", task_tgid_vnr(current));
1504 if (rc > out_end - out_ptr)
1513 static int zap_process(struct task_struct *start)
1515 struct task_struct *t;
1518 start->signal->flags = SIGNAL_GROUP_EXIT;
1519 start->signal->group_stop_count = 0;
1523 if (t != current && t->mm) {
1524 sigaddset(&t->pending.signal, SIGKILL);
1525 signal_wake_up(t, 1);
1528 } while_each_thread(start, t);
1533 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1534 struct core_state *core_state, int exit_code)
1536 struct task_struct *g, *p;
1537 unsigned long flags;
1540 spin_lock_irq(&tsk->sighand->siglock);
1541 if (!signal_group_exit(tsk->signal)) {
1542 mm->core_state = core_state;
1543 tsk->signal->group_exit_code = exit_code;
1544 nr = zap_process(tsk);
1546 spin_unlock_irq(&tsk->sighand->siglock);
1547 if (unlikely(nr < 0))
1550 if (atomic_read(&mm->mm_users) == nr + 1)
1553 * We should find and kill all tasks which use this mm, and we should
1554 * count them correctly into ->nr_threads. We don't take tasklist
1555 * lock, but this is safe wrt:
1558 * None of sub-threads can fork after zap_process(leader). All
1559 * processes which were created before this point should be
1560 * visible to zap_threads() because copy_process() adds the new
1561 * process to the tail of init_task.tasks list, and lock/unlock
1562 * of ->siglock provides a memory barrier.
1565 * The caller holds mm->mmap_sem. This means that the task which
1566 * uses this mm can't pass exit_mm(), so it can't exit or clear
1570 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1571 * we must see either old or new leader, this does not matter.
1572 * However, it can change p->sighand, so lock_task_sighand(p)
1573 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1576 * Note also that "g" can be the old leader with ->mm == NULL
1577 * and already unhashed and thus removed from ->thread_group.
1578 * This is OK, __unhash_process()->list_del_rcu() does not
1579 * clear the ->next pointer, we will find the new leader via
1583 for_each_process(g) {
1584 if (g == tsk->group_leader)
1586 if (g->flags & PF_KTHREAD)
1591 if (unlikely(p->mm == mm)) {
1592 lock_task_sighand(p, &flags);
1593 nr += zap_process(p);
1594 unlock_task_sighand(p, &flags);
1598 } while_each_thread(g, p);
1602 atomic_set(&core_state->nr_threads, nr);
1606 static int coredump_wait(int exit_code, struct core_state *core_state)
1608 struct task_struct *tsk = current;
1609 struct mm_struct *mm = tsk->mm;
1610 struct completion *vfork_done;
1613 init_completion(&core_state->startup);
1614 core_state->dumper.task = tsk;
1615 core_state->dumper.next = NULL;
1616 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1617 up_write(&mm->mmap_sem);
1619 if (unlikely(core_waiters < 0))
1623 * Make sure nobody is waiting for us to release the VM,
1624 * otherwise we can deadlock when we wait on each other
1626 vfork_done = tsk->vfork_done;
1628 tsk->vfork_done = NULL;
1629 complete(vfork_done);
1633 wait_for_completion(&core_state->startup);
1635 return core_waiters;
1638 static void coredump_finish(struct mm_struct *mm)
1640 struct core_thread *curr, *next;
1641 struct task_struct *task;
1643 next = mm->core_state->dumper.next;
1644 while ((curr = next) != NULL) {
1648 * see exit_mm(), curr->task must not see
1649 * ->task == NULL before we read ->next.
1653 wake_up_process(task);
1656 mm->core_state = NULL;
1660 * set_dumpable converts traditional three-value dumpable to two flags and
1661 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1662 * these bits are not changed atomically. So get_dumpable can observe the
1663 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1664 * return either old dumpable or new one by paying attention to the order of
1665 * modifying the bits.
1667 * dumpable | mm->flags (binary)
1668 * old new | initial interim final
1669 * ---------+-----------------------
1677 * (*) get_dumpable regards interim value of 10 as 11.
1679 void set_dumpable(struct mm_struct *mm, int value)
1683 clear_bit(MMF_DUMPABLE, &mm->flags);
1685 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1688 set_bit(MMF_DUMPABLE, &mm->flags);
1690 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1693 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1695 set_bit(MMF_DUMPABLE, &mm->flags);
1700 int get_dumpable(struct mm_struct *mm)
1704 ret = mm->flags & 0x3;
1705 return (ret >= 2) ? 2 : ret;
1708 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1710 struct core_state core_state;
1711 char corename[CORENAME_MAX_SIZE + 1];
1712 struct mm_struct *mm = current->mm;
1713 struct linux_binfmt * binfmt;
1714 struct inode * inode;
1717 int fsuid = current->fsuid;
1720 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1721 char **helper_argv = NULL;
1722 int helper_argc = 0;
1725 audit_core_dumps(signr);
1727 binfmt = current->binfmt;
1728 if (!binfmt || !binfmt->core_dump)
1730 down_write(&mm->mmap_sem);
1732 * If another thread got here first, or we are not dumpable, bail out.
1734 if (mm->core_state || !get_dumpable(mm)) {
1735 up_write(&mm->mmap_sem);
1740 * We cannot trust fsuid as being the "true" uid of the
1741 * process nor do we know its entire history. We only know it
1742 * was tainted so we dump it as root in mode 2.
1744 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1745 flag = O_EXCL; /* Stop rewrite attacks */
1746 current->fsuid = 0; /* Dump root private */
1749 retval = coredump_wait(exit_code, &core_state);
1754 * Clear any false indication of pending signals that might
1755 * be seen by the filesystem code called to write the core file.
1757 clear_thread_flag(TIF_SIGPENDING);
1760 * lock_kernel() because format_corename() is controlled by sysctl, which
1761 * uses lock_kernel()
1764 ispipe = format_corename(corename, retval, signr);
1767 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1768 * to a pipe. Since we're not writing directly to the filesystem
1769 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1770 * created unless the pipe reader choses to write out the core file
1771 * at which point file size limits and permissions will be imposed
1772 * as it does with any other process
1774 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1778 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1779 /* Terminate the string before the first option */
1780 delimit = strchr(corename, ' ');
1783 delimit = strrchr(helper_argv[0], '/');
1787 delimit = helper_argv[0];
1788 if (!strcmp(delimit, current->comm)) {
1789 printk(KERN_NOTICE "Recursive core dump detected, "
1794 core_limit = RLIM_INFINITY;
1796 /* SIGPIPE can happen, but it's just never processed */
1797 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1799 printk(KERN_INFO "Core dump to %s pipe failed\n",
1804 file = filp_open(corename,
1805 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1809 inode = file->f_path.dentry->d_inode;
1810 if (inode->i_nlink > 1)
1811 goto close_fail; /* multiple links - don't dump */
1812 if (!ispipe && d_unhashed(file->f_path.dentry))
1815 /* AK: actually i see no reason to not allow this for named pipes etc.,
1816 but keep the previous behaviour for now. */
1817 if (!ispipe && !S_ISREG(inode->i_mode))
1820 * Dont allow local users get cute and trick others to coredump
1821 * into their pre-created files:
1823 if (inode->i_uid != current->fsuid)
1827 if (!file->f_op->write)
1829 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1832 retval = binfmt->core_dump(signr, regs, file, core_limit);
1835 current->signal->group_exit_code |= 0x80;
1837 filp_close(file, NULL);
1840 argv_free(helper_argv);
1842 current->fsuid = fsuid;
1843 coredump_finish(mm);