2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 [N_CPU] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
183 unsigned long pfn = page_to_pfn(page);
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 else if (pfn < zone->zone_start_pfn)
191 } while (zone_span_seqretry(zone, seq));
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
200 if (zone != page_zone(page))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
212 if (!page_is_consistent(zone, page))
218 static inline int bad_range(struct zone *zone, struct page *page)
224 static void bad_page(struct page *page)
226 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
227 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
228 current->comm, page, (int)(2*sizeof(unsigned long)),
229 (unsigned long)page->flags, page->mapping,
230 page_mapcount(page), page_count(page));
232 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
233 KERN_EMERG "Backtrace:\n");
235 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
236 set_page_count(page, 0);
237 reset_page_mapcount(page);
238 page->mapping = NULL;
239 add_taint(TAINT_BAD_PAGE);
243 * Higher-order pages are called "compound pages". They are structured thusly:
245 * The first PAGE_SIZE page is called the "head page".
247 * The remaining PAGE_SIZE pages are called "tail pages".
249 * All pages have PG_compound set. All pages have their ->private pointing at
250 * the head page (even the head page has this).
252 * The first tail page's ->lru.next holds the address of the compound page's
253 * put_page() function. Its ->lru.prev holds the order of allocation.
254 * This usage means that zero-order pages may not be compound.
257 static void free_compound_page(struct page *page)
259 __free_pages_ok(page, compound_order(page));
262 void prep_compound_page(struct page *page, unsigned long order)
265 int nr_pages = 1 << order;
266 struct page *p = page + 1;
268 set_compound_page_dtor(page, free_compound_page);
269 set_compound_order(page, order);
271 for (i = 1; i < nr_pages; i++, p++) {
272 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
273 p = pfn_to_page(page_to_pfn(page) + i);
275 p->first_page = page;
279 static void destroy_compound_page(struct page *page, unsigned long order)
282 int nr_pages = 1 << order;
283 struct page *p = page + 1;
285 if (unlikely(compound_order(page) != order))
288 if (unlikely(!PageHead(page)))
290 __ClearPageHead(page);
291 for (i = 1; i < nr_pages; i++, p++) {
292 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
293 p = pfn_to_page(page_to_pfn(page) + i);
295 if (unlikely(!PageTail(p) |
296 (p->first_page != page)))
302 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
307 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
308 * and __GFP_HIGHMEM from hard or soft interrupt context.
310 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
311 for (i = 0; i < (1 << order); i++)
312 clear_highpage(page + i);
315 static inline void set_page_order(struct page *page, int order)
317 set_page_private(page, order);
318 __SetPageBuddy(page);
321 static inline void rmv_page_order(struct page *page)
323 __ClearPageBuddy(page);
324 set_page_private(page, 0);
328 * Locate the struct page for both the matching buddy in our
329 * pair (buddy1) and the combined O(n+1) page they form (page).
331 * 1) Any buddy B1 will have an order O twin B2 which satisfies
332 * the following equation:
334 * For example, if the starting buddy (buddy2) is #8 its order
336 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
338 * 2) Any buddy B will have an order O+1 parent P which
339 * satisfies the following equation:
342 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
344 static inline struct page *
345 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
347 unsigned long buddy_idx = page_idx ^ (1 << order);
349 return page + (buddy_idx - page_idx);
352 static inline unsigned long
353 __find_combined_index(unsigned long page_idx, unsigned int order)
355 return (page_idx & ~(1 << order));
359 * This function checks whether a page is free && is the buddy
360 * we can do coalesce a page and its buddy if
361 * (a) the buddy is not in a hole &&
362 * (b) the buddy is in the buddy system &&
363 * (c) a page and its buddy have the same order &&
364 * (d) a page and its buddy are in the same zone.
366 * For recording whether a page is in the buddy system, we use PG_buddy.
367 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
369 * For recording page's order, we use page_private(page).
371 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 if (!pfn_valid_within(page_to_pfn(buddy)))
377 if (page_zone_id(page) != page_zone_id(buddy))
380 if (PageBuddy(buddy) && page_order(buddy) == order) {
381 BUG_ON(page_count(buddy) != 0);
388 * Freeing function for a buddy system allocator.
390 * The concept of a buddy system is to maintain direct-mapped table
391 * (containing bit values) for memory blocks of various "orders".
392 * The bottom level table contains the map for the smallest allocatable
393 * units of memory (here, pages), and each level above it describes
394 * pairs of units from the levels below, hence, "buddies".
395 * At a high level, all that happens here is marking the table entry
396 * at the bottom level available, and propagating the changes upward
397 * as necessary, plus some accounting needed to play nicely with other
398 * parts of the VM system.
399 * At each level, we keep a list of pages, which are heads of continuous
400 * free pages of length of (1 << order) and marked with PG_buddy. Page's
401 * order is recorded in page_private(page) field.
402 * So when we are allocating or freeing one, we can derive the state of the
403 * other. That is, if we allocate a small block, and both were
404 * free, the remainder of the region must be split into blocks.
405 * If a block is freed, and its buddy is also free, then this
406 * triggers coalescing into a block of larger size.
411 static inline void __free_one_page(struct page *page,
412 struct zone *zone, unsigned int order)
414 unsigned long page_idx;
415 int order_size = 1 << order;
416 int migratetype = get_pageblock_migratetype(page);
418 if (unlikely(PageCompound(page)))
419 destroy_compound_page(page, order);
421 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
423 VM_BUG_ON(page_idx & (order_size - 1));
424 VM_BUG_ON(bad_range(zone, page));
426 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
427 while (order < MAX_ORDER-1) {
428 unsigned long combined_idx;
431 buddy = __page_find_buddy(page, page_idx, order);
432 if (!page_is_buddy(page, buddy, order))
435 /* Our buddy is free, merge with it and move up one order. */
436 list_del(&buddy->lru);
437 zone->free_area[order].nr_free--;
438 rmv_page_order(buddy);
439 combined_idx = __find_combined_index(page_idx, order);
440 page = page + (combined_idx - page_idx);
441 page_idx = combined_idx;
444 set_page_order(page, order);
446 &zone->free_area[order].free_list[migratetype]);
447 zone->free_area[order].nr_free++;
450 static inline int free_pages_check(struct page *page)
452 free_page_mlock(page);
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_count(page) != 0) |
456 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459 __ClearPageDirty(page);
460 if (PageSwapBacked(page))
461 __ClearPageSwapBacked(page);
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
467 return PageReserved(page);
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
481 static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
484 spin_lock(&zone->lock);
485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 zone->pages_scanned = 0;
490 VM_BUG_ON(list_empty(list));
491 page = list_entry(list->prev, struct page, lru);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page->lru);
494 __free_one_page(page, zone, order);
496 spin_unlock(&zone->lock);
499 static void free_one_page(struct zone *zone, struct page *page, int order)
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 __free_one_page(page, zone, order);
505 spin_unlock(&zone->lock);
508 static void __free_pages_ok(struct page *page, unsigned int order)
514 for (i = 0 ; i < (1 << order) ; ++i)
515 reserved += free_pages_check(page + i);
519 if (!PageHighMem(page)) {
520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 debug_check_no_obj_freed(page_address(page),
524 arch_free_page(page, order);
525 kernel_map_pages(page, 1 << order, 0);
527 local_irq_save(flags);
528 __count_vm_events(PGFREE, 1 << order);
529 free_one_page(page_zone(page), page, order);
530 local_irq_restore(flags);
534 * permit the bootmem allocator to evade page validation on high-order frees
536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
541 set_page_refcounted(page);
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
550 if (loop + 1 < BITS_PER_LONG)
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
556 set_page_refcounted(page);
557 __free_pages(page, order);
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
576 static inline void expand(struct zone *zone, struct page *page,
577 int low, int high, struct free_area *area,
580 unsigned long size = 1 << high;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list[migratetype]);
589 set_page_order(&page[size], high);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_count(page) != 0) |
601 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
605 * For now, we report if PG_reserved was found set, but do not
606 * clear it, and do not allocate the page: as a safety net.
608 if (PageReserved(page))
611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
612 1 << PG_referenced | 1 << PG_arch_1 |
613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
614 #ifdef CONFIG_UNEVICTABLE_LRU
618 set_page_private(page, 0);
619 set_page_refcounted(page);
621 arch_alloc_page(page, order);
622 kernel_map_pages(page, 1 << order, 1);
624 if (gfp_flags & __GFP_ZERO)
625 prep_zero_page(page, order, gfp_flags);
627 if (order && (gfp_flags & __GFP_COMP))
628 prep_compound_page(page, order);
634 * Go through the free lists for the given migratetype and remove
635 * the smallest available page from the freelists
637 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
640 unsigned int current_order;
641 struct free_area * area;
644 /* Find a page of the appropriate size in the preferred list */
645 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
646 area = &(zone->free_area[current_order]);
647 if (list_empty(&area->free_list[migratetype]))
650 page = list_entry(area->free_list[migratetype].next,
652 list_del(&page->lru);
653 rmv_page_order(page);
655 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
656 expand(zone, page, order, current_order, area, migratetype);
665 * This array describes the order lists are fallen back to when
666 * the free lists for the desirable migrate type are depleted
668 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
669 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
670 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
671 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
672 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
676 * Move the free pages in a range to the free lists of the requested type.
677 * Note that start_page and end_pages are not aligned on a pageblock
678 * boundary. If alignment is required, use move_freepages_block()
680 static int move_freepages(struct zone *zone,
681 struct page *start_page, struct page *end_page,
688 #ifndef CONFIG_HOLES_IN_ZONE
690 * page_zone is not safe to call in this context when
691 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
692 * anyway as we check zone boundaries in move_freepages_block().
693 * Remove at a later date when no bug reports exist related to
694 * grouping pages by mobility
696 BUG_ON(page_zone(start_page) != page_zone(end_page));
699 for (page = start_page; page <= end_page;) {
700 /* Make sure we are not inadvertently changing nodes */
701 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
703 if (!pfn_valid_within(page_to_pfn(page))) {
708 if (!PageBuddy(page)) {
713 order = page_order(page);
714 list_del(&page->lru);
716 &zone->free_area[order].free_list[migratetype]);
718 pages_moved += 1 << order;
724 static int move_freepages_block(struct zone *zone, struct page *page,
727 unsigned long start_pfn, end_pfn;
728 struct page *start_page, *end_page;
730 start_pfn = page_to_pfn(page);
731 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
732 start_page = pfn_to_page(start_pfn);
733 end_page = start_page + pageblock_nr_pages - 1;
734 end_pfn = start_pfn + pageblock_nr_pages - 1;
736 /* Do not cross zone boundaries */
737 if (start_pfn < zone->zone_start_pfn)
739 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
742 return move_freepages(zone, start_page, end_page, migratetype);
745 /* Remove an element from the buddy allocator from the fallback list */
746 static struct page *__rmqueue_fallback(struct zone *zone, int order,
747 int start_migratetype)
749 struct free_area * area;
754 /* Find the largest possible block of pages in the other list */
755 for (current_order = MAX_ORDER-1; current_order >= order;
757 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
758 migratetype = fallbacks[start_migratetype][i];
760 /* MIGRATE_RESERVE handled later if necessary */
761 if (migratetype == MIGRATE_RESERVE)
764 area = &(zone->free_area[current_order]);
765 if (list_empty(&area->free_list[migratetype]))
768 page = list_entry(area->free_list[migratetype].next,
773 * If breaking a large block of pages, move all free
774 * pages to the preferred allocation list. If falling
775 * back for a reclaimable kernel allocation, be more
776 * agressive about taking ownership of free pages
778 if (unlikely(current_order >= (pageblock_order >> 1)) ||
779 start_migratetype == MIGRATE_RECLAIMABLE) {
781 pages = move_freepages_block(zone, page,
784 /* Claim the whole block if over half of it is free */
785 if (pages >= (1 << (pageblock_order-1)))
786 set_pageblock_migratetype(page,
789 migratetype = start_migratetype;
792 /* Remove the page from the freelists */
793 list_del(&page->lru);
794 rmv_page_order(page);
795 __mod_zone_page_state(zone, NR_FREE_PAGES,
798 if (current_order == pageblock_order)
799 set_pageblock_migratetype(page,
802 expand(zone, page, order, current_order, area, migratetype);
807 /* Use MIGRATE_RESERVE rather than fail an allocation */
808 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
812 * Do the hard work of removing an element from the buddy allocator.
813 * Call me with the zone->lock already held.
815 static struct page *__rmqueue(struct zone *zone, unsigned int order,
820 page = __rmqueue_smallest(zone, order, migratetype);
823 page = __rmqueue_fallback(zone, order, migratetype);
829 * Obtain a specified number of elements from the buddy allocator, all under
830 * a single hold of the lock, for efficiency. Add them to the supplied list.
831 * Returns the number of new pages which were placed at *list.
833 static int rmqueue_bulk(struct zone *zone, unsigned int order,
834 unsigned long count, struct list_head *list,
839 spin_lock(&zone->lock);
840 for (i = 0; i < count; ++i) {
841 struct page *page = __rmqueue(zone, order, migratetype);
842 if (unlikely(page == NULL))
846 * Split buddy pages returned by expand() are received here
847 * in physical page order. The page is added to the callers and
848 * list and the list head then moves forward. From the callers
849 * perspective, the linked list is ordered by page number in
850 * some conditions. This is useful for IO devices that can
851 * merge IO requests if the physical pages are ordered
854 list_add(&page->lru, list);
855 set_page_private(page, migratetype);
858 spin_unlock(&zone->lock);
864 * Called from the vmstat counter updater to drain pagesets of this
865 * currently executing processor on remote nodes after they have
868 * Note that this function must be called with the thread pinned to
869 * a single processor.
871 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
876 local_irq_save(flags);
877 if (pcp->count >= pcp->batch)
878 to_drain = pcp->batch;
880 to_drain = pcp->count;
881 free_pages_bulk(zone, to_drain, &pcp->list, 0);
882 pcp->count -= to_drain;
883 local_irq_restore(flags);
888 * Drain pages of the indicated processor.
890 * The processor must either be the current processor and the
891 * thread pinned to the current processor or a processor that
894 static void drain_pages(unsigned int cpu)
899 for_each_zone(zone) {
900 struct per_cpu_pageset *pset;
901 struct per_cpu_pages *pcp;
903 if (!populated_zone(zone))
906 pset = zone_pcp(zone, cpu);
909 local_irq_save(flags);
910 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
912 local_irq_restore(flags);
917 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
919 void drain_local_pages(void *arg)
921 drain_pages(smp_processor_id());
925 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
927 void drain_all_pages(void)
929 on_each_cpu(drain_local_pages, NULL, 1);
932 #ifdef CONFIG_HIBERNATION
934 void mark_free_pages(struct zone *zone)
936 unsigned long pfn, max_zone_pfn;
939 struct list_head *curr;
941 if (!zone->spanned_pages)
944 spin_lock_irqsave(&zone->lock, flags);
946 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
947 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
948 if (pfn_valid(pfn)) {
949 struct page *page = pfn_to_page(pfn);
951 if (!swsusp_page_is_forbidden(page))
952 swsusp_unset_page_free(page);
955 for_each_migratetype_order(order, t) {
956 list_for_each(curr, &zone->free_area[order].free_list[t]) {
959 pfn = page_to_pfn(list_entry(curr, struct page, lru));
960 for (i = 0; i < (1UL << order); i++)
961 swsusp_set_page_free(pfn_to_page(pfn + i));
964 spin_unlock_irqrestore(&zone->lock, flags);
966 #endif /* CONFIG_PM */
969 * Free a 0-order page
971 static void free_hot_cold_page(struct page *page, int cold)
973 struct zone *zone = page_zone(page);
974 struct per_cpu_pages *pcp;
978 page->mapping = NULL;
979 if (free_pages_check(page))
982 if (!PageHighMem(page)) {
983 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
984 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
986 arch_free_page(page, 0);
987 kernel_map_pages(page, 1, 0);
989 pcp = &zone_pcp(zone, get_cpu())->pcp;
990 local_irq_save(flags);
991 __count_vm_event(PGFREE);
993 list_add_tail(&page->lru, &pcp->list);
995 list_add(&page->lru, &pcp->list);
996 set_page_private(page, get_pageblock_migratetype(page));
998 if (pcp->count >= pcp->high) {
999 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1000 pcp->count -= pcp->batch;
1002 local_irq_restore(flags);
1006 void free_hot_page(struct page *page)
1008 free_hot_cold_page(page, 0);
1011 void free_cold_page(struct page *page)
1013 free_hot_cold_page(page, 1);
1017 * split_page takes a non-compound higher-order page, and splits it into
1018 * n (1<<order) sub-pages: page[0..n]
1019 * Each sub-page must be freed individually.
1021 * Note: this is probably too low level an operation for use in drivers.
1022 * Please consult with lkml before using this in your driver.
1024 void split_page(struct page *page, unsigned int order)
1028 VM_BUG_ON(PageCompound(page));
1029 VM_BUG_ON(!page_count(page));
1030 for (i = 1; i < (1 << order); i++)
1031 set_page_refcounted(page + i);
1035 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1036 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1039 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1040 struct zone *zone, int order, gfp_t gfp_flags)
1042 unsigned long flags;
1044 int cold = !!(gfp_flags & __GFP_COLD);
1046 int migratetype = allocflags_to_migratetype(gfp_flags);
1050 if (likely(order == 0)) {
1051 struct per_cpu_pages *pcp;
1053 pcp = &zone_pcp(zone, cpu)->pcp;
1054 local_irq_save(flags);
1056 pcp->count = rmqueue_bulk(zone, 0,
1057 pcp->batch, &pcp->list, migratetype);
1058 if (unlikely(!pcp->count))
1062 /* Find a page of the appropriate migrate type */
1064 list_for_each_entry_reverse(page, &pcp->list, lru)
1065 if (page_private(page) == migratetype)
1068 list_for_each_entry(page, &pcp->list, lru)
1069 if (page_private(page) == migratetype)
1073 /* Allocate more to the pcp list if necessary */
1074 if (unlikely(&page->lru == &pcp->list)) {
1075 pcp->count += rmqueue_bulk(zone, 0,
1076 pcp->batch, &pcp->list, migratetype);
1077 page = list_entry(pcp->list.next, struct page, lru);
1080 list_del(&page->lru);
1083 spin_lock_irqsave(&zone->lock, flags);
1084 page = __rmqueue(zone, order, migratetype);
1085 spin_unlock(&zone->lock);
1090 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1091 zone_statistics(preferred_zone, zone);
1092 local_irq_restore(flags);
1095 VM_BUG_ON(bad_range(zone, page));
1096 if (prep_new_page(page, order, gfp_flags))
1101 local_irq_restore(flags);
1106 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1107 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1108 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1109 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1110 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1111 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1112 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1114 #ifdef CONFIG_FAIL_PAGE_ALLOC
1116 static struct fail_page_alloc_attr {
1117 struct fault_attr attr;
1119 u32 ignore_gfp_highmem;
1120 u32 ignore_gfp_wait;
1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1125 struct dentry *ignore_gfp_highmem_file;
1126 struct dentry *ignore_gfp_wait_file;
1127 struct dentry *min_order_file;
1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1131 } fail_page_alloc = {
1132 .attr = FAULT_ATTR_INITIALIZER,
1133 .ignore_gfp_wait = 1,
1134 .ignore_gfp_highmem = 1,
1138 static int __init setup_fail_page_alloc(char *str)
1140 return setup_fault_attr(&fail_page_alloc.attr, str);
1142 __setup("fail_page_alloc=", setup_fail_page_alloc);
1144 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1146 if (order < fail_page_alloc.min_order)
1148 if (gfp_mask & __GFP_NOFAIL)
1150 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1152 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1155 return should_fail(&fail_page_alloc.attr, 1 << order);
1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1160 static int __init fail_page_alloc_debugfs(void)
1162 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1166 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1170 dir = fail_page_alloc.attr.dentries.dir;
1172 fail_page_alloc.ignore_gfp_wait_file =
1173 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1174 &fail_page_alloc.ignore_gfp_wait);
1176 fail_page_alloc.ignore_gfp_highmem_file =
1177 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1178 &fail_page_alloc.ignore_gfp_highmem);
1179 fail_page_alloc.min_order_file =
1180 debugfs_create_u32("min-order", mode, dir,
1181 &fail_page_alloc.min_order);
1183 if (!fail_page_alloc.ignore_gfp_wait_file ||
1184 !fail_page_alloc.ignore_gfp_highmem_file ||
1185 !fail_page_alloc.min_order_file) {
1187 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1188 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1189 debugfs_remove(fail_page_alloc.min_order_file);
1190 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1196 late_initcall(fail_page_alloc_debugfs);
1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1200 #else /* CONFIG_FAIL_PAGE_ALLOC */
1202 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1210 * Return 1 if free pages are above 'mark'. This takes into account the order
1211 * of the allocation.
1213 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1214 int classzone_idx, int alloc_flags)
1216 /* free_pages my go negative - that's OK */
1218 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1221 if (alloc_flags & ALLOC_HIGH)
1223 if (alloc_flags & ALLOC_HARDER)
1226 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1228 for (o = 0; o < order; o++) {
1229 /* At the next order, this order's pages become unavailable */
1230 free_pages -= z->free_area[o].nr_free << o;
1232 /* Require fewer higher order pages to be free */
1235 if (free_pages <= min)
1243 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1244 * skip over zones that are not allowed by the cpuset, or that have
1245 * been recently (in last second) found to be nearly full. See further
1246 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1247 * that have to skip over a lot of full or unallowed zones.
1249 * If the zonelist cache is present in the passed in zonelist, then
1250 * returns a pointer to the allowed node mask (either the current
1251 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1253 * If the zonelist cache is not available for this zonelist, does
1254 * nothing and returns NULL.
1256 * If the fullzones BITMAP in the zonelist cache is stale (more than
1257 * a second since last zap'd) then we zap it out (clear its bits.)
1259 * We hold off even calling zlc_setup, until after we've checked the
1260 * first zone in the zonelist, on the theory that most allocations will
1261 * be satisfied from that first zone, so best to examine that zone as
1262 * quickly as we can.
1264 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1266 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1267 nodemask_t *allowednodes; /* zonelist_cache approximation */
1269 zlc = zonelist->zlcache_ptr;
1273 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1274 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1275 zlc->last_full_zap = jiffies;
1278 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1279 &cpuset_current_mems_allowed :
1280 &node_states[N_HIGH_MEMORY];
1281 return allowednodes;
1285 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1286 * if it is worth looking at further for free memory:
1287 * 1) Check that the zone isn't thought to be full (doesn't have its
1288 * bit set in the zonelist_cache fullzones BITMAP).
1289 * 2) Check that the zones node (obtained from the zonelist_cache
1290 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1291 * Return true (non-zero) if zone is worth looking at further, or
1292 * else return false (zero) if it is not.
1294 * This check -ignores- the distinction between various watermarks,
1295 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1296 * found to be full for any variation of these watermarks, it will
1297 * be considered full for up to one second by all requests, unless
1298 * we are so low on memory on all allowed nodes that we are forced
1299 * into the second scan of the zonelist.
1301 * In the second scan we ignore this zonelist cache and exactly
1302 * apply the watermarks to all zones, even it is slower to do so.
1303 * We are low on memory in the second scan, and should leave no stone
1304 * unturned looking for a free page.
1306 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1307 nodemask_t *allowednodes)
1309 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1310 int i; /* index of *z in zonelist zones */
1311 int n; /* node that zone *z is on */
1313 zlc = zonelist->zlcache_ptr;
1317 i = z - zonelist->_zonerefs;
1320 /* This zone is worth trying if it is allowed but not full */
1321 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1325 * Given 'z' scanning a zonelist, set the corresponding bit in
1326 * zlc->fullzones, so that subsequent attempts to allocate a page
1327 * from that zone don't waste time re-examining it.
1329 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1331 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1332 int i; /* index of *z in zonelist zones */
1334 zlc = zonelist->zlcache_ptr;
1338 i = z - zonelist->_zonerefs;
1340 set_bit(i, zlc->fullzones);
1343 #else /* CONFIG_NUMA */
1345 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1350 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1351 nodemask_t *allowednodes)
1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1359 #endif /* CONFIG_NUMA */
1362 * get_page_from_freelist goes through the zonelist trying to allocate
1365 static struct page *
1366 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1367 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1370 struct page *page = NULL;
1372 struct zone *zone, *preferred_zone;
1373 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1374 int zlc_active = 0; /* set if using zonelist_cache */
1375 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1377 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1379 if (!preferred_zone)
1382 classzone_idx = zone_idx(preferred_zone);
1386 * Scan zonelist, looking for a zone with enough free.
1387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1389 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1390 high_zoneidx, nodemask) {
1391 if (NUMA_BUILD && zlc_active &&
1392 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1394 if ((alloc_flags & ALLOC_CPUSET) &&
1395 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1398 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1400 if (alloc_flags & ALLOC_WMARK_MIN)
1401 mark = zone->pages_min;
1402 else if (alloc_flags & ALLOC_WMARK_LOW)
1403 mark = zone->pages_low;
1405 mark = zone->pages_high;
1406 if (!zone_watermark_ok(zone, order, mark,
1407 classzone_idx, alloc_flags)) {
1408 if (!zone_reclaim_mode ||
1409 !zone_reclaim(zone, gfp_mask, order))
1410 goto this_zone_full;
1414 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1419 zlc_mark_zone_full(zonelist, z);
1421 if (NUMA_BUILD && !did_zlc_setup) {
1422 /* we do zlc_setup after the first zone is tried */
1423 allowednodes = zlc_setup(zonelist, alloc_flags);
1429 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1430 /* Disable zlc cache for second zonelist scan */
1438 * This is the 'heart' of the zoned buddy allocator.
1441 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1442 struct zonelist *zonelist, nodemask_t *nodemask)
1444 const gfp_t wait = gfp_mask & __GFP_WAIT;
1445 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1449 struct reclaim_state reclaim_state;
1450 struct task_struct *p = current;
1453 unsigned long did_some_progress;
1454 unsigned long pages_reclaimed = 0;
1456 might_sleep_if(wait);
1458 if (should_fail_alloc_page(gfp_mask, order))
1462 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1464 if (unlikely(!z->zone)) {
1466 * Happens if we have an empty zonelist as a result of
1467 * GFP_THISNODE being used on a memoryless node
1472 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1473 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1478 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1479 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1480 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1481 * using a larger set of nodes after it has established that the
1482 * allowed per node queues are empty and that nodes are
1485 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1488 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1489 wakeup_kswapd(zone, order);
1492 * OK, we're below the kswapd watermark and have kicked background
1493 * reclaim. Now things get more complex, so set up alloc_flags according
1494 * to how we want to proceed.
1496 * The caller may dip into page reserves a bit more if the caller
1497 * cannot run direct reclaim, or if the caller has realtime scheduling
1498 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1499 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1501 alloc_flags = ALLOC_WMARK_MIN;
1502 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1503 alloc_flags |= ALLOC_HARDER;
1504 if (gfp_mask & __GFP_HIGH)
1505 alloc_flags |= ALLOC_HIGH;
1507 alloc_flags |= ALLOC_CPUSET;
1510 * Go through the zonelist again. Let __GFP_HIGH and allocations
1511 * coming from realtime tasks go deeper into reserves.
1513 * This is the last chance, in general, before the goto nopage.
1514 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1515 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1517 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1518 high_zoneidx, alloc_flags);
1522 /* This allocation should allow future memory freeing. */
1525 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1526 && !in_interrupt()) {
1527 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1529 /* go through the zonelist yet again, ignoring mins */
1530 page = get_page_from_freelist(gfp_mask, nodemask, order,
1531 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1534 if (gfp_mask & __GFP_NOFAIL) {
1535 congestion_wait(WRITE, HZ/50);
1542 /* Atomic allocations - we can't balance anything */
1548 /* We now go into synchronous reclaim */
1549 cpuset_memory_pressure_bump();
1550 p->flags |= PF_MEMALLOC;
1551 reclaim_state.reclaimed_slab = 0;
1552 p->reclaim_state = &reclaim_state;
1554 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1556 p->reclaim_state = NULL;
1557 p->flags &= ~PF_MEMALLOC;
1564 if (likely(did_some_progress)) {
1565 page = get_page_from_freelist(gfp_mask, nodemask, order,
1566 zonelist, high_zoneidx, alloc_flags);
1569 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1570 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1571 schedule_timeout_uninterruptible(1);
1576 * Go through the zonelist yet one more time, keep
1577 * very high watermark here, this is only to catch
1578 * a parallel oom killing, we must fail if we're still
1579 * under heavy pressure.
1581 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1582 order, zonelist, high_zoneidx,
1583 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1585 clear_zonelist_oom(zonelist, gfp_mask);
1589 /* The OOM killer will not help higher order allocs so fail */
1590 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1591 clear_zonelist_oom(zonelist, gfp_mask);
1595 out_of_memory(zonelist, gfp_mask, order);
1596 clear_zonelist_oom(zonelist, gfp_mask);
1601 * Don't let big-order allocations loop unless the caller explicitly
1602 * requests that. Wait for some write requests to complete then retry.
1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 * means __GFP_NOFAIL, but that may not be true in other
1608 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1609 * specified, then we retry until we no longer reclaim any pages
1610 * (above), or we've reclaimed an order of pages at least as
1611 * large as the allocation's order. In both cases, if the
1612 * allocation still fails, we stop retrying.
1614 pages_reclaimed += did_some_progress;
1616 if (!(gfp_mask & __GFP_NORETRY)) {
1617 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1620 if (gfp_mask & __GFP_REPEAT &&
1621 pages_reclaimed < (1 << order))
1624 if (gfp_mask & __GFP_NOFAIL)
1628 congestion_wait(WRITE, HZ/50);
1633 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1634 printk(KERN_WARNING "%s: page allocation failure."
1635 " order:%d, mode:0x%x\n",
1636 p->comm, order, gfp_mask);
1643 EXPORT_SYMBOL(__alloc_pages_internal);
1646 * Common helper functions.
1648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1651 page = alloc_pages(gfp_mask, order);
1654 return (unsigned long) page_address(page);
1657 EXPORT_SYMBOL(__get_free_pages);
1659 unsigned long get_zeroed_page(gfp_t gfp_mask)
1664 * get_zeroed_page() returns a 32-bit address, which cannot represent
1667 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1669 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1671 return (unsigned long) page_address(page);
1675 EXPORT_SYMBOL(get_zeroed_page);
1677 void __pagevec_free(struct pagevec *pvec)
1679 int i = pagevec_count(pvec);
1682 free_hot_cold_page(pvec->pages[i], pvec->cold);
1685 void __free_pages(struct page *page, unsigned int order)
1687 if (put_page_testzero(page)) {
1689 free_hot_page(page);
1691 __free_pages_ok(page, order);
1695 EXPORT_SYMBOL(__free_pages);
1697 void free_pages(unsigned long addr, unsigned int order)
1700 VM_BUG_ON(!virt_addr_valid((void *)addr));
1701 __free_pages(virt_to_page((void *)addr), order);
1705 EXPORT_SYMBOL(free_pages);
1708 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1709 * @size: the number of bytes to allocate
1710 * @gfp_mask: GFP flags for the allocation
1712 * This function is similar to alloc_pages(), except that it allocates the
1713 * minimum number of pages to satisfy the request. alloc_pages() can only
1714 * allocate memory in power-of-two pages.
1716 * This function is also limited by MAX_ORDER.
1718 * Memory allocated by this function must be released by free_pages_exact().
1720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1722 unsigned int order = get_order(size);
1725 addr = __get_free_pages(gfp_mask, order);
1727 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1728 unsigned long used = addr + PAGE_ALIGN(size);
1730 split_page(virt_to_page(addr), order);
1731 while (used < alloc_end) {
1737 return (void *)addr;
1739 EXPORT_SYMBOL(alloc_pages_exact);
1742 * free_pages_exact - release memory allocated via alloc_pages_exact()
1743 * @virt: the value returned by alloc_pages_exact.
1744 * @size: size of allocation, same value as passed to alloc_pages_exact().
1746 * Release the memory allocated by a previous call to alloc_pages_exact.
1748 void free_pages_exact(void *virt, size_t size)
1750 unsigned long addr = (unsigned long)virt;
1751 unsigned long end = addr + PAGE_ALIGN(size);
1753 while (addr < end) {
1758 EXPORT_SYMBOL(free_pages_exact);
1760 static unsigned int nr_free_zone_pages(int offset)
1765 /* Just pick one node, since fallback list is circular */
1766 unsigned int sum = 0;
1768 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1770 for_each_zone_zonelist(zone, z, zonelist, offset) {
1771 unsigned long size = zone->present_pages;
1772 unsigned long high = zone->pages_high;
1781 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1783 unsigned int nr_free_buffer_pages(void)
1785 return nr_free_zone_pages(gfp_zone(GFP_USER));
1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1790 * Amount of free RAM allocatable within all zones
1792 unsigned int nr_free_pagecache_pages(void)
1794 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1797 static inline void show_node(struct zone *zone)
1800 printk("Node %d ", zone_to_nid(zone));
1803 void si_meminfo(struct sysinfo *val)
1805 val->totalram = totalram_pages;
1807 val->freeram = global_page_state(NR_FREE_PAGES);
1808 val->bufferram = nr_blockdev_pages();
1809 val->totalhigh = totalhigh_pages;
1810 val->freehigh = nr_free_highpages();
1811 val->mem_unit = PAGE_SIZE;
1814 EXPORT_SYMBOL(si_meminfo);
1817 void si_meminfo_node(struct sysinfo *val, int nid)
1819 pg_data_t *pgdat = NODE_DATA(nid);
1821 val->totalram = pgdat->node_present_pages;
1822 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1823 #ifdef CONFIG_HIGHMEM
1824 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1825 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1831 val->mem_unit = PAGE_SIZE;
1835 #define K(x) ((x) << (PAGE_SHIFT-10))
1838 * Show free area list (used inside shift_scroll-lock stuff)
1839 * We also calculate the percentage fragmentation. We do this by counting the
1840 * memory on each free list with the exception of the first item on the list.
1842 void show_free_areas(void)
1847 for_each_zone(zone) {
1848 if (!populated_zone(zone))
1852 printk("%s per-cpu:\n", zone->name);
1854 for_each_online_cpu(cpu) {
1855 struct per_cpu_pageset *pageset;
1857 pageset = zone_pcp(zone, cpu);
1859 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1860 cpu, pageset->pcp.high,
1861 pageset->pcp.batch, pageset->pcp.count);
1865 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1866 " inactive_file:%lu"
1867 //TODO: check/adjust line lengths
1868 #ifdef CONFIG_UNEVICTABLE_LRU
1871 " dirty:%lu writeback:%lu unstable:%lu\n"
1872 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1873 global_page_state(NR_ACTIVE_ANON),
1874 global_page_state(NR_ACTIVE_FILE),
1875 global_page_state(NR_INACTIVE_ANON),
1876 global_page_state(NR_INACTIVE_FILE),
1877 #ifdef CONFIG_UNEVICTABLE_LRU
1878 global_page_state(NR_UNEVICTABLE),
1880 global_page_state(NR_FILE_DIRTY),
1881 global_page_state(NR_WRITEBACK),
1882 global_page_state(NR_UNSTABLE_NFS),
1883 global_page_state(NR_FREE_PAGES),
1884 global_page_state(NR_SLAB_RECLAIMABLE) +
1885 global_page_state(NR_SLAB_UNRECLAIMABLE),
1886 global_page_state(NR_FILE_MAPPED),
1887 global_page_state(NR_PAGETABLE),
1888 global_page_state(NR_BOUNCE));
1890 for_each_zone(zone) {
1893 if (!populated_zone(zone))
1902 " active_anon:%lukB"
1903 " inactive_anon:%lukB"
1904 " active_file:%lukB"
1905 " inactive_file:%lukB"
1906 #ifdef CONFIG_UNEVICTABLE_LRU
1907 " unevictable:%lukB"
1910 " pages_scanned:%lu"
1911 " all_unreclaimable? %s"
1914 K(zone_page_state(zone, NR_FREE_PAGES)),
1917 K(zone->pages_high),
1918 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1919 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1920 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1921 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1922 #ifdef CONFIG_UNEVICTABLE_LRU
1923 K(zone_page_state(zone, NR_UNEVICTABLE)),
1925 K(zone->present_pages),
1926 zone->pages_scanned,
1927 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1929 printk("lowmem_reserve[]:");
1930 for (i = 0; i < MAX_NR_ZONES; i++)
1931 printk(" %lu", zone->lowmem_reserve[i]);
1935 for_each_zone(zone) {
1936 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1938 if (!populated_zone(zone))
1942 printk("%s: ", zone->name);
1944 spin_lock_irqsave(&zone->lock, flags);
1945 for (order = 0; order < MAX_ORDER; order++) {
1946 nr[order] = zone->free_area[order].nr_free;
1947 total += nr[order] << order;
1949 spin_unlock_irqrestore(&zone->lock, flags);
1950 for (order = 0; order < MAX_ORDER; order++)
1951 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1952 printk("= %lukB\n", K(total));
1955 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1957 show_swap_cache_info();
1960 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1962 zoneref->zone = zone;
1963 zoneref->zone_idx = zone_idx(zone);
1967 * Builds allocation fallback zone lists.
1969 * Add all populated zones of a node to the zonelist.
1971 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1972 int nr_zones, enum zone_type zone_type)
1976 BUG_ON(zone_type >= MAX_NR_ZONES);
1981 zone = pgdat->node_zones + zone_type;
1982 if (populated_zone(zone)) {
1983 zoneref_set_zone(zone,
1984 &zonelist->_zonerefs[nr_zones++]);
1985 check_highest_zone(zone_type);
1988 } while (zone_type);
1995 * 0 = automatic detection of better ordering.
1996 * 1 = order by ([node] distance, -zonetype)
1997 * 2 = order by (-zonetype, [node] distance)
1999 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2000 * the same zonelist. So only NUMA can configure this param.
2002 #define ZONELIST_ORDER_DEFAULT 0
2003 #define ZONELIST_ORDER_NODE 1
2004 #define ZONELIST_ORDER_ZONE 2
2006 /* zonelist order in the kernel.
2007 * set_zonelist_order() will set this to NODE or ZONE.
2009 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2010 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2014 /* The value user specified ....changed by config */
2015 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2016 /* string for sysctl */
2017 #define NUMA_ZONELIST_ORDER_LEN 16
2018 char numa_zonelist_order[16] = "default";
2021 * interface for configure zonelist ordering.
2022 * command line option "numa_zonelist_order"
2023 * = "[dD]efault - default, automatic configuration.
2024 * = "[nN]ode - order by node locality, then by zone within node
2025 * = "[zZ]one - order by zone, then by locality within zone
2028 static int __parse_numa_zonelist_order(char *s)
2030 if (*s == 'd' || *s == 'D') {
2031 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2032 } else if (*s == 'n' || *s == 'N') {
2033 user_zonelist_order = ZONELIST_ORDER_NODE;
2034 } else if (*s == 'z' || *s == 'Z') {
2035 user_zonelist_order = ZONELIST_ORDER_ZONE;
2038 "Ignoring invalid numa_zonelist_order value: "
2045 static __init int setup_numa_zonelist_order(char *s)
2048 return __parse_numa_zonelist_order(s);
2051 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2054 * sysctl handler for numa_zonelist_order
2056 int numa_zonelist_order_handler(ctl_table *table, int write,
2057 struct file *file, void __user *buffer, size_t *length,
2060 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2064 strncpy(saved_string, (char*)table->data,
2065 NUMA_ZONELIST_ORDER_LEN);
2066 ret = proc_dostring(table, write, file, buffer, length, ppos);
2070 int oldval = user_zonelist_order;
2071 if (__parse_numa_zonelist_order((char*)table->data)) {
2073 * bogus value. restore saved string
2075 strncpy((char*)table->data, saved_string,
2076 NUMA_ZONELIST_ORDER_LEN);
2077 user_zonelist_order = oldval;
2078 } else if (oldval != user_zonelist_order)
2079 build_all_zonelists();
2085 #define MAX_NODE_LOAD (num_online_nodes())
2086 static int node_load[MAX_NUMNODES];
2089 * find_next_best_node - find the next node that should appear in a given node's fallback list
2090 * @node: node whose fallback list we're appending
2091 * @used_node_mask: nodemask_t of already used nodes
2093 * We use a number of factors to determine which is the next node that should
2094 * appear on a given node's fallback list. The node should not have appeared
2095 * already in @node's fallback list, and it should be the next closest node
2096 * according to the distance array (which contains arbitrary distance values
2097 * from each node to each node in the system), and should also prefer nodes
2098 * with no CPUs, since presumably they'll have very little allocation pressure
2099 * on them otherwise.
2100 * It returns -1 if no node is found.
2102 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2105 int min_val = INT_MAX;
2107 node_to_cpumask_ptr(tmp, 0);
2109 /* Use the local node if we haven't already */
2110 if (!node_isset(node, *used_node_mask)) {
2111 node_set(node, *used_node_mask);
2115 for_each_node_state(n, N_HIGH_MEMORY) {
2117 /* Don't want a node to appear more than once */
2118 if (node_isset(n, *used_node_mask))
2121 /* Use the distance array to find the distance */
2122 val = node_distance(node, n);
2124 /* Penalize nodes under us ("prefer the next node") */
2127 /* Give preference to headless and unused nodes */
2128 node_to_cpumask_ptr_next(tmp, n);
2129 if (!cpus_empty(*tmp))
2130 val += PENALTY_FOR_NODE_WITH_CPUS;
2132 /* Slight preference for less loaded node */
2133 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2134 val += node_load[n];
2136 if (val < min_val) {
2143 node_set(best_node, *used_node_mask);
2150 * Build zonelists ordered by node and zones within node.
2151 * This results in maximum locality--normal zone overflows into local
2152 * DMA zone, if any--but risks exhausting DMA zone.
2154 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2157 struct zonelist *zonelist;
2159 zonelist = &pgdat->node_zonelists[0];
2160 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2162 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2164 zonelist->_zonerefs[j].zone = NULL;
2165 zonelist->_zonerefs[j].zone_idx = 0;
2169 * Build gfp_thisnode zonelists
2171 static void build_thisnode_zonelists(pg_data_t *pgdat)
2174 struct zonelist *zonelist;
2176 zonelist = &pgdat->node_zonelists[1];
2177 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2178 zonelist->_zonerefs[j].zone = NULL;
2179 zonelist->_zonerefs[j].zone_idx = 0;
2183 * Build zonelists ordered by zone and nodes within zones.
2184 * This results in conserving DMA zone[s] until all Normal memory is
2185 * exhausted, but results in overflowing to remote node while memory
2186 * may still exist in local DMA zone.
2188 static int node_order[MAX_NUMNODES];
2190 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2193 int zone_type; /* needs to be signed */
2195 struct zonelist *zonelist;
2197 zonelist = &pgdat->node_zonelists[0];
2199 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2200 for (j = 0; j < nr_nodes; j++) {
2201 node = node_order[j];
2202 z = &NODE_DATA(node)->node_zones[zone_type];
2203 if (populated_zone(z)) {
2205 &zonelist->_zonerefs[pos++]);
2206 check_highest_zone(zone_type);
2210 zonelist->_zonerefs[pos].zone = NULL;
2211 zonelist->_zonerefs[pos].zone_idx = 0;
2214 static int default_zonelist_order(void)
2217 unsigned long low_kmem_size,total_size;
2221 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2222 * If they are really small and used heavily, the system can fall
2223 * into OOM very easily.
2224 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2226 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2229 for_each_online_node(nid) {
2230 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2231 z = &NODE_DATA(nid)->node_zones[zone_type];
2232 if (populated_zone(z)) {
2233 if (zone_type < ZONE_NORMAL)
2234 low_kmem_size += z->present_pages;
2235 total_size += z->present_pages;
2239 if (!low_kmem_size || /* there are no DMA area. */
2240 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2241 return ZONELIST_ORDER_NODE;
2243 * look into each node's config.
2244 * If there is a node whose DMA/DMA32 memory is very big area on
2245 * local memory, NODE_ORDER may be suitable.
2247 average_size = total_size /
2248 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2249 for_each_online_node(nid) {
2252 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2253 z = &NODE_DATA(nid)->node_zones[zone_type];
2254 if (populated_zone(z)) {
2255 if (zone_type < ZONE_NORMAL)
2256 low_kmem_size += z->present_pages;
2257 total_size += z->present_pages;
2260 if (low_kmem_size &&
2261 total_size > average_size && /* ignore small node */
2262 low_kmem_size > total_size * 70/100)
2263 return ZONELIST_ORDER_NODE;
2265 return ZONELIST_ORDER_ZONE;
2268 static void set_zonelist_order(void)
2270 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2271 current_zonelist_order = default_zonelist_order();
2273 current_zonelist_order = user_zonelist_order;
2276 static void build_zonelists(pg_data_t *pgdat)
2280 nodemask_t used_mask;
2281 int local_node, prev_node;
2282 struct zonelist *zonelist;
2283 int order = current_zonelist_order;
2285 /* initialize zonelists */
2286 for (i = 0; i < MAX_ZONELISTS; i++) {
2287 zonelist = pgdat->node_zonelists + i;
2288 zonelist->_zonerefs[0].zone = NULL;
2289 zonelist->_zonerefs[0].zone_idx = 0;
2292 /* NUMA-aware ordering of nodes */
2293 local_node = pgdat->node_id;
2294 load = num_online_nodes();
2295 prev_node = local_node;
2296 nodes_clear(used_mask);
2298 memset(node_load, 0, sizeof(node_load));
2299 memset(node_order, 0, sizeof(node_order));
2302 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2303 int distance = node_distance(local_node, node);
2306 * If another node is sufficiently far away then it is better
2307 * to reclaim pages in a zone before going off node.
2309 if (distance > RECLAIM_DISTANCE)
2310 zone_reclaim_mode = 1;
2313 * We don't want to pressure a particular node.
2314 * So adding penalty to the first node in same
2315 * distance group to make it round-robin.
2317 if (distance != node_distance(local_node, prev_node))
2318 node_load[node] = load;
2322 if (order == ZONELIST_ORDER_NODE)
2323 build_zonelists_in_node_order(pgdat, node);
2325 node_order[j++] = node; /* remember order */
2328 if (order == ZONELIST_ORDER_ZONE) {
2329 /* calculate node order -- i.e., DMA last! */
2330 build_zonelists_in_zone_order(pgdat, j);
2333 build_thisnode_zonelists(pgdat);
2336 /* Construct the zonelist performance cache - see further mmzone.h */
2337 static void build_zonelist_cache(pg_data_t *pgdat)
2339 struct zonelist *zonelist;
2340 struct zonelist_cache *zlc;
2343 zonelist = &pgdat->node_zonelists[0];
2344 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2345 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2346 for (z = zonelist->_zonerefs; z->zone; z++)
2347 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2351 #else /* CONFIG_NUMA */
2353 static void set_zonelist_order(void)
2355 current_zonelist_order = ZONELIST_ORDER_ZONE;
2358 static void build_zonelists(pg_data_t *pgdat)
2360 int node, local_node;
2362 struct zonelist *zonelist;
2364 local_node = pgdat->node_id;
2366 zonelist = &pgdat->node_zonelists[0];
2367 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2370 * Now we build the zonelist so that it contains the zones
2371 * of all the other nodes.
2372 * We don't want to pressure a particular node, so when
2373 * building the zones for node N, we make sure that the
2374 * zones coming right after the local ones are those from
2375 * node N+1 (modulo N)
2377 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2378 if (!node_online(node))
2380 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2383 for (node = 0; node < local_node; node++) {
2384 if (!node_online(node))
2386 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2390 zonelist->_zonerefs[j].zone = NULL;
2391 zonelist->_zonerefs[j].zone_idx = 0;
2394 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2395 static void build_zonelist_cache(pg_data_t *pgdat)
2397 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2400 #endif /* CONFIG_NUMA */
2402 /* return values int ....just for stop_machine() */
2403 static int __build_all_zonelists(void *dummy)
2407 for_each_online_node(nid) {
2408 pg_data_t *pgdat = NODE_DATA(nid);
2410 build_zonelists(pgdat);
2411 build_zonelist_cache(pgdat);
2416 void build_all_zonelists(void)
2418 set_zonelist_order();
2420 if (system_state == SYSTEM_BOOTING) {
2421 __build_all_zonelists(NULL);
2422 mminit_verify_zonelist();
2423 cpuset_init_current_mems_allowed();
2425 /* we have to stop all cpus to guarantee there is no user
2427 stop_machine(__build_all_zonelists, NULL, NULL);
2428 /* cpuset refresh routine should be here */
2430 vm_total_pages = nr_free_pagecache_pages();
2432 * Disable grouping by mobility if the number of pages in the
2433 * system is too low to allow the mechanism to work. It would be
2434 * more accurate, but expensive to check per-zone. This check is
2435 * made on memory-hotadd so a system can start with mobility
2436 * disabled and enable it later
2438 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2439 page_group_by_mobility_disabled = 1;
2441 page_group_by_mobility_disabled = 0;
2443 printk("Built %i zonelists in %s order, mobility grouping %s. "
2444 "Total pages: %ld\n",
2446 zonelist_order_name[current_zonelist_order],
2447 page_group_by_mobility_disabled ? "off" : "on",
2450 printk("Policy zone: %s\n", zone_names[policy_zone]);
2455 * Helper functions to size the waitqueue hash table.
2456 * Essentially these want to choose hash table sizes sufficiently
2457 * large so that collisions trying to wait on pages are rare.
2458 * But in fact, the number of active page waitqueues on typical
2459 * systems is ridiculously low, less than 200. So this is even
2460 * conservative, even though it seems large.
2462 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2463 * waitqueues, i.e. the size of the waitq table given the number of pages.
2465 #define PAGES_PER_WAITQUEUE 256
2467 #ifndef CONFIG_MEMORY_HOTPLUG
2468 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2470 unsigned long size = 1;
2472 pages /= PAGES_PER_WAITQUEUE;
2474 while (size < pages)
2478 * Once we have dozens or even hundreds of threads sleeping
2479 * on IO we've got bigger problems than wait queue collision.
2480 * Limit the size of the wait table to a reasonable size.
2482 size = min(size, 4096UL);
2484 return max(size, 4UL);
2488 * A zone's size might be changed by hot-add, so it is not possible to determine
2489 * a suitable size for its wait_table. So we use the maximum size now.
2491 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2493 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2494 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2495 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2497 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2498 * or more by the traditional way. (See above). It equals:
2500 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2501 * ia64(16K page size) : = ( 8G + 4M)byte.
2502 * powerpc (64K page size) : = (32G +16M)byte.
2504 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2511 * This is an integer logarithm so that shifts can be used later
2512 * to extract the more random high bits from the multiplicative
2513 * hash function before the remainder is taken.
2515 static inline unsigned long wait_table_bits(unsigned long size)
2520 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2523 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2524 * of blocks reserved is based on zone->pages_min. The memory within the
2525 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2526 * higher will lead to a bigger reserve which will get freed as contiguous
2527 * blocks as reclaim kicks in
2529 static void setup_zone_migrate_reserve(struct zone *zone)
2531 unsigned long start_pfn, pfn, end_pfn;
2533 unsigned long reserve, block_migratetype;
2535 /* Get the start pfn, end pfn and the number of blocks to reserve */
2536 start_pfn = zone->zone_start_pfn;
2537 end_pfn = start_pfn + zone->spanned_pages;
2538 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2541 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2542 if (!pfn_valid(pfn))
2544 page = pfn_to_page(pfn);
2546 /* Watch out for overlapping nodes */
2547 if (page_to_nid(page) != zone_to_nid(zone))
2550 /* Blocks with reserved pages will never free, skip them. */
2551 if (PageReserved(page))
2554 block_migratetype = get_pageblock_migratetype(page);
2556 /* If this block is reserved, account for it */
2557 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2562 /* Suitable for reserving if this block is movable */
2563 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2564 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2565 move_freepages_block(zone, page, MIGRATE_RESERVE);
2571 * If the reserve is met and this is a previous reserved block,
2574 if (block_migratetype == MIGRATE_RESERVE) {
2575 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2576 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2582 * Initially all pages are reserved - free ones are freed
2583 * up by free_all_bootmem() once the early boot process is
2584 * done. Non-atomic initialization, single-pass.
2586 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2587 unsigned long start_pfn, enum memmap_context context)
2590 unsigned long end_pfn = start_pfn + size;
2594 z = &NODE_DATA(nid)->node_zones[zone];
2595 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2597 * There can be holes in boot-time mem_map[]s
2598 * handed to this function. They do not
2599 * exist on hotplugged memory.
2601 if (context == MEMMAP_EARLY) {
2602 if (!early_pfn_valid(pfn))
2604 if (!early_pfn_in_nid(pfn, nid))
2607 page = pfn_to_page(pfn);
2608 set_page_links(page, zone, nid, pfn);
2609 mminit_verify_page_links(page, zone, nid, pfn);
2610 init_page_count(page);
2611 reset_page_mapcount(page);
2612 SetPageReserved(page);
2614 * Mark the block movable so that blocks are reserved for
2615 * movable at startup. This will force kernel allocations
2616 * to reserve their blocks rather than leaking throughout
2617 * the address space during boot when many long-lived
2618 * kernel allocations are made. Later some blocks near
2619 * the start are marked MIGRATE_RESERVE by
2620 * setup_zone_migrate_reserve()
2622 * bitmap is created for zone's valid pfn range. but memmap
2623 * can be created for invalid pages (for alignment)
2624 * check here not to call set_pageblock_migratetype() against
2627 if ((z->zone_start_pfn <= pfn)
2628 && (pfn < z->zone_start_pfn + z->spanned_pages)
2629 && !(pfn & (pageblock_nr_pages - 1)))
2630 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2632 INIT_LIST_HEAD(&page->lru);
2633 #ifdef WANT_PAGE_VIRTUAL
2634 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2635 if (!is_highmem_idx(zone))
2636 set_page_address(page, __va(pfn << PAGE_SHIFT));
2641 static void __meminit zone_init_free_lists(struct zone *zone)
2644 for_each_migratetype_order(order, t) {
2645 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2646 zone->free_area[order].nr_free = 0;
2650 #ifndef __HAVE_ARCH_MEMMAP_INIT
2651 #define memmap_init(size, nid, zone, start_pfn) \
2652 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2655 static int zone_batchsize(struct zone *zone)
2660 * The per-cpu-pages pools are set to around 1000th of the
2661 * size of the zone. But no more than 1/2 of a meg.
2663 * OK, so we don't know how big the cache is. So guess.
2665 batch = zone->present_pages / 1024;
2666 if (batch * PAGE_SIZE > 512 * 1024)
2667 batch = (512 * 1024) / PAGE_SIZE;
2668 batch /= 4; /* We effectively *= 4 below */
2673 * Clamp the batch to a 2^n - 1 value. Having a power
2674 * of 2 value was found to be more likely to have
2675 * suboptimal cache aliasing properties in some cases.
2677 * For example if 2 tasks are alternately allocating
2678 * batches of pages, one task can end up with a lot
2679 * of pages of one half of the possible page colors
2680 * and the other with pages of the other colors.
2682 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2687 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2689 struct per_cpu_pages *pcp;
2691 memset(p, 0, sizeof(*p));
2695 pcp->high = 6 * batch;
2696 pcp->batch = max(1UL, 1 * batch);
2697 INIT_LIST_HEAD(&pcp->list);
2701 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2702 * to the value high for the pageset p.
2705 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2708 struct per_cpu_pages *pcp;
2712 pcp->batch = max(1UL, high/4);
2713 if ((high/4) > (PAGE_SHIFT * 8))
2714 pcp->batch = PAGE_SHIFT * 8;
2720 * Boot pageset table. One per cpu which is going to be used for all
2721 * zones and all nodes. The parameters will be set in such a way
2722 * that an item put on a list will immediately be handed over to
2723 * the buddy list. This is safe since pageset manipulation is done
2724 * with interrupts disabled.
2726 * Some NUMA counter updates may also be caught by the boot pagesets.
2728 * The boot_pagesets must be kept even after bootup is complete for
2729 * unused processors and/or zones. They do play a role for bootstrapping
2730 * hotplugged processors.
2732 * zoneinfo_show() and maybe other functions do
2733 * not check if the processor is online before following the pageset pointer.
2734 * Other parts of the kernel may not check if the zone is available.
2736 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2739 * Dynamically allocate memory for the
2740 * per cpu pageset array in struct zone.
2742 static int __cpuinit process_zones(int cpu)
2744 struct zone *zone, *dzone;
2745 int node = cpu_to_node(cpu);
2747 node_set_state(node, N_CPU); /* this node has a cpu */
2749 for_each_zone(zone) {
2751 if (!populated_zone(zone))
2754 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2756 if (!zone_pcp(zone, cpu))
2759 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2761 if (percpu_pagelist_fraction)
2762 setup_pagelist_highmark(zone_pcp(zone, cpu),
2763 (zone->present_pages / percpu_pagelist_fraction));
2768 for_each_zone(dzone) {
2769 if (!populated_zone(dzone))
2773 kfree(zone_pcp(dzone, cpu));
2774 zone_pcp(dzone, cpu) = NULL;
2779 static inline void free_zone_pagesets(int cpu)
2783 for_each_zone(zone) {
2784 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2786 /* Free per_cpu_pageset if it is slab allocated */
2787 if (pset != &boot_pageset[cpu])
2789 zone_pcp(zone, cpu) = NULL;
2793 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2794 unsigned long action,
2797 int cpu = (long)hcpu;
2798 int ret = NOTIFY_OK;
2801 case CPU_UP_PREPARE:
2802 case CPU_UP_PREPARE_FROZEN:
2803 if (process_zones(cpu))
2806 case CPU_UP_CANCELED:
2807 case CPU_UP_CANCELED_FROZEN:
2809 case CPU_DEAD_FROZEN:
2810 free_zone_pagesets(cpu);
2818 static struct notifier_block __cpuinitdata pageset_notifier =
2819 { &pageset_cpuup_callback, NULL, 0 };
2821 void __init setup_per_cpu_pageset(void)
2825 /* Initialize per_cpu_pageset for cpu 0.
2826 * A cpuup callback will do this for every cpu
2827 * as it comes online
2829 err = process_zones(smp_processor_id());
2831 register_cpu_notifier(&pageset_notifier);
2836 static noinline __init_refok
2837 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2840 struct pglist_data *pgdat = zone->zone_pgdat;
2844 * The per-page waitqueue mechanism uses hashed waitqueues
2847 zone->wait_table_hash_nr_entries =
2848 wait_table_hash_nr_entries(zone_size_pages);
2849 zone->wait_table_bits =
2850 wait_table_bits(zone->wait_table_hash_nr_entries);
2851 alloc_size = zone->wait_table_hash_nr_entries
2852 * sizeof(wait_queue_head_t);
2854 if (!slab_is_available()) {
2855 zone->wait_table = (wait_queue_head_t *)
2856 alloc_bootmem_node(pgdat, alloc_size);
2859 * This case means that a zone whose size was 0 gets new memory
2860 * via memory hot-add.
2861 * But it may be the case that a new node was hot-added. In
2862 * this case vmalloc() will not be able to use this new node's
2863 * memory - this wait_table must be initialized to use this new
2864 * node itself as well.
2865 * To use this new node's memory, further consideration will be
2868 zone->wait_table = vmalloc(alloc_size);
2870 if (!zone->wait_table)
2873 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2874 init_waitqueue_head(zone->wait_table + i);
2879 static __meminit void zone_pcp_init(struct zone *zone)
2882 unsigned long batch = zone_batchsize(zone);
2884 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2886 /* Early boot. Slab allocator not functional yet */
2887 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2888 setup_pageset(&boot_pageset[cpu],0);
2890 setup_pageset(zone_pcp(zone,cpu), batch);
2893 if (zone->present_pages)
2894 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2895 zone->name, zone->present_pages, batch);
2898 __meminit int init_currently_empty_zone(struct zone *zone,
2899 unsigned long zone_start_pfn,
2901 enum memmap_context context)
2903 struct pglist_data *pgdat = zone->zone_pgdat;
2905 ret = zone_wait_table_init(zone, size);
2908 pgdat->nr_zones = zone_idx(zone) + 1;
2910 zone->zone_start_pfn = zone_start_pfn;
2912 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2913 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2915 (unsigned long)zone_idx(zone),
2916 zone_start_pfn, (zone_start_pfn + size));
2918 zone_init_free_lists(zone);
2923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2925 * Basic iterator support. Return the first range of PFNs for a node
2926 * Note: nid == MAX_NUMNODES returns first region regardless of node
2928 static int __meminit first_active_region_index_in_nid(int nid)
2932 for (i = 0; i < nr_nodemap_entries; i++)
2933 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2940 * Basic iterator support. Return the next active range of PFNs for a node
2941 * Note: nid == MAX_NUMNODES returns next region regardless of node
2943 static int __meminit next_active_region_index_in_nid(int index, int nid)
2945 for (index = index + 1; index < nr_nodemap_entries; index++)
2946 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2952 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2954 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2955 * Architectures may implement their own version but if add_active_range()
2956 * was used and there are no special requirements, this is a convenient
2959 int __meminit early_pfn_to_nid(unsigned long pfn)
2963 for (i = 0; i < nr_nodemap_entries; i++) {
2964 unsigned long start_pfn = early_node_map[i].start_pfn;
2965 unsigned long end_pfn = early_node_map[i].end_pfn;
2967 if (start_pfn <= pfn && pfn < end_pfn)
2968 return early_node_map[i].nid;
2973 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2975 /* Basic iterator support to walk early_node_map[] */
2976 #define for_each_active_range_index_in_nid(i, nid) \
2977 for (i = first_active_region_index_in_nid(nid); i != -1; \
2978 i = next_active_region_index_in_nid(i, nid))
2981 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2982 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2983 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2985 * If an architecture guarantees that all ranges registered with
2986 * add_active_ranges() contain no holes and may be freed, this
2987 * this function may be used instead of calling free_bootmem() manually.
2989 void __init free_bootmem_with_active_regions(int nid,
2990 unsigned long max_low_pfn)
2994 for_each_active_range_index_in_nid(i, nid) {
2995 unsigned long size_pages = 0;
2996 unsigned long end_pfn = early_node_map[i].end_pfn;
2998 if (early_node_map[i].start_pfn >= max_low_pfn)
3001 if (end_pfn > max_low_pfn)
3002 end_pfn = max_low_pfn;
3004 size_pages = end_pfn - early_node_map[i].start_pfn;
3005 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3006 PFN_PHYS(early_node_map[i].start_pfn),
3007 size_pages << PAGE_SHIFT);
3011 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3016 for_each_active_range_index_in_nid(i, nid) {
3017 ret = work_fn(early_node_map[i].start_pfn,
3018 early_node_map[i].end_pfn, data);
3024 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3025 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3027 * If an architecture guarantees that all ranges registered with
3028 * add_active_ranges() contain no holes and may be freed, this
3029 * function may be used instead of calling memory_present() manually.
3031 void __init sparse_memory_present_with_active_regions(int nid)
3035 for_each_active_range_index_in_nid(i, nid)
3036 memory_present(early_node_map[i].nid,
3037 early_node_map[i].start_pfn,
3038 early_node_map[i].end_pfn);
3042 * push_node_boundaries - Push node boundaries to at least the requested boundary
3043 * @nid: The nid of the node to push the boundary for
3044 * @start_pfn: The start pfn of the node
3045 * @end_pfn: The end pfn of the node
3047 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3048 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3049 * be hotplugged even though no physical memory exists. This function allows
3050 * an arch to push out the node boundaries so mem_map is allocated that can
3053 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3054 void __init push_node_boundaries(unsigned int nid,
3055 unsigned long start_pfn, unsigned long end_pfn)
3057 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3058 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3059 nid, start_pfn, end_pfn);
3061 /* Initialise the boundary for this node if necessary */
3062 if (node_boundary_end_pfn[nid] == 0)
3063 node_boundary_start_pfn[nid] = -1UL;
3065 /* Update the boundaries */
3066 if (node_boundary_start_pfn[nid] > start_pfn)
3067 node_boundary_start_pfn[nid] = start_pfn;
3068 if (node_boundary_end_pfn[nid] < end_pfn)
3069 node_boundary_end_pfn[nid] = end_pfn;
3072 /* If necessary, push the node boundary out for reserve hotadd */
3073 static void __meminit account_node_boundary(unsigned int nid,
3074 unsigned long *start_pfn, unsigned long *end_pfn)
3076 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3077 "Entering account_node_boundary(%u, %lu, %lu)\n",
3078 nid, *start_pfn, *end_pfn);
3080 /* Return if boundary information has not been provided */
3081 if (node_boundary_end_pfn[nid] == 0)
3084 /* Check the boundaries and update if necessary */
3085 if (node_boundary_start_pfn[nid] < *start_pfn)
3086 *start_pfn = node_boundary_start_pfn[nid];
3087 if (node_boundary_end_pfn[nid] > *end_pfn)
3088 *end_pfn = node_boundary_end_pfn[nid];
3091 void __init push_node_boundaries(unsigned int nid,
3092 unsigned long start_pfn, unsigned long end_pfn) {}
3094 static void __meminit account_node_boundary(unsigned int nid,
3095 unsigned long *start_pfn, unsigned long *end_pfn) {}
3100 * get_pfn_range_for_nid - Return the start and end page frames for a node
3101 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3102 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3103 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3105 * It returns the start and end page frame of a node based on information
3106 * provided by an arch calling add_active_range(). If called for a node
3107 * with no available memory, a warning is printed and the start and end
3110 void __meminit get_pfn_range_for_nid(unsigned int nid,
3111 unsigned long *start_pfn, unsigned long *end_pfn)
3117 for_each_active_range_index_in_nid(i, nid) {
3118 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3119 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3122 if (*start_pfn == -1UL)
3125 /* Push the node boundaries out if requested */
3126 account_node_boundary(nid, start_pfn, end_pfn);
3130 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3131 * assumption is made that zones within a node are ordered in monotonic
3132 * increasing memory addresses so that the "highest" populated zone is used
3134 static void __init find_usable_zone_for_movable(void)
3137 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3138 if (zone_index == ZONE_MOVABLE)
3141 if (arch_zone_highest_possible_pfn[zone_index] >
3142 arch_zone_lowest_possible_pfn[zone_index])
3146 VM_BUG_ON(zone_index == -1);
3147 movable_zone = zone_index;
3151 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3152 * because it is sized independant of architecture. Unlike the other zones,
3153 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3154 * in each node depending on the size of each node and how evenly kernelcore
3155 * is distributed. This helper function adjusts the zone ranges
3156 * provided by the architecture for a given node by using the end of the
3157 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3158 * zones within a node are in order of monotonic increases memory addresses
3160 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3161 unsigned long zone_type,
3162 unsigned long node_start_pfn,
3163 unsigned long node_end_pfn,
3164 unsigned long *zone_start_pfn,
3165 unsigned long *zone_end_pfn)
3167 /* Only adjust if ZONE_MOVABLE is on this node */
3168 if (zone_movable_pfn[nid]) {
3169 /* Size ZONE_MOVABLE */
3170 if (zone_type == ZONE_MOVABLE) {
3171 *zone_start_pfn = zone_movable_pfn[nid];
3172 *zone_end_pfn = min(node_end_pfn,
3173 arch_zone_highest_possible_pfn[movable_zone]);
3175 /* Adjust for ZONE_MOVABLE starting within this range */
3176 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3177 *zone_end_pfn > zone_movable_pfn[nid]) {
3178 *zone_end_pfn = zone_movable_pfn[nid];
3180 /* Check if this whole range is within ZONE_MOVABLE */
3181 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3182 *zone_start_pfn = *zone_end_pfn;
3187 * Return the number of pages a zone spans in a node, including holes
3188 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3190 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3191 unsigned long zone_type,
3192 unsigned long *ignored)
3194 unsigned long node_start_pfn, node_end_pfn;
3195 unsigned long zone_start_pfn, zone_end_pfn;
3197 /* Get the start and end of the node and zone */
3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3199 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3200 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3201 adjust_zone_range_for_zone_movable(nid, zone_type,
3202 node_start_pfn, node_end_pfn,
3203 &zone_start_pfn, &zone_end_pfn);
3205 /* Check that this node has pages within the zone's required range */
3206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3209 /* Move the zone boundaries inside the node if necessary */
3210 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3211 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3213 /* Return the spanned pages */
3214 return zone_end_pfn - zone_start_pfn;
3218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3219 * then all holes in the requested range will be accounted for.
3221 static unsigned long __meminit __absent_pages_in_range(int nid,
3222 unsigned long range_start_pfn,
3223 unsigned long range_end_pfn)
3226 unsigned long prev_end_pfn = 0, hole_pages = 0;
3227 unsigned long start_pfn;
3229 /* Find the end_pfn of the first active range of pfns in the node */
3230 i = first_active_region_index_in_nid(nid);
3234 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3236 /* Account for ranges before physical memory on this node */
3237 if (early_node_map[i].start_pfn > range_start_pfn)
3238 hole_pages = prev_end_pfn - range_start_pfn;
3240 /* Find all holes for the zone within the node */
3241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3243 /* No need to continue if prev_end_pfn is outside the zone */
3244 if (prev_end_pfn >= range_end_pfn)
3247 /* Make sure the end of the zone is not within the hole */
3248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3249 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3251 /* Update the hole size cound and move on */
3252 if (start_pfn > range_start_pfn) {
3253 BUG_ON(prev_end_pfn > start_pfn);
3254 hole_pages += start_pfn - prev_end_pfn;
3256 prev_end_pfn = early_node_map[i].end_pfn;
3259 /* Account for ranges past physical memory on this node */
3260 if (range_end_pfn > prev_end_pfn)
3261 hole_pages += range_end_pfn -
3262 max(range_start_pfn, prev_end_pfn);
3268 * absent_pages_in_range - Return number of page frames in holes within a range
3269 * @start_pfn: The start PFN to start searching for holes
3270 * @end_pfn: The end PFN to stop searching for holes
3272 * It returns the number of pages frames in memory holes within a range.
3274 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3275 unsigned long end_pfn)
3277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3280 /* Return the number of page frames in holes in a zone on a node */
3281 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3282 unsigned long zone_type,
3283 unsigned long *ignored)
3285 unsigned long node_start_pfn, node_end_pfn;
3286 unsigned long zone_start_pfn, zone_end_pfn;
3288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3294 adjust_zone_range_for_zone_movable(nid, zone_type,
3295 node_start_pfn, node_end_pfn,
3296 &zone_start_pfn, &zone_end_pfn);
3297 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3301 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3302 unsigned long zone_type,
3303 unsigned long *zones_size)
3305 return zones_size[zone_type];
3308 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3309 unsigned long zone_type,
3310 unsigned long *zholes_size)
3315 return zholes_size[zone_type];
3320 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3321 unsigned long *zones_size, unsigned long *zholes_size)
3323 unsigned long realtotalpages, totalpages = 0;
3326 for (i = 0; i < MAX_NR_ZONES; i++)
3327 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3329 pgdat->node_spanned_pages = totalpages;
3331 realtotalpages = totalpages;
3332 for (i = 0; i < MAX_NR_ZONES; i++)
3334 zone_absent_pages_in_node(pgdat->node_id, i,
3336 pgdat->node_present_pages = realtotalpages;
3337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3341 #ifndef CONFIG_SPARSEMEM
3343 * Calculate the size of the zone->blockflags rounded to an unsigned long
3344 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3346 * round what is now in bits to nearest long in bits, then return it in
3349 static unsigned long __init usemap_size(unsigned long zonesize)
3351 unsigned long usemapsize;
3353 usemapsize = roundup(zonesize, pageblock_nr_pages);
3354 usemapsize = usemapsize >> pageblock_order;
3355 usemapsize *= NR_PAGEBLOCK_BITS;
3356 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3358 return usemapsize / 8;
3361 static void __init setup_usemap(struct pglist_data *pgdat,
3362 struct zone *zone, unsigned long zonesize)
3364 unsigned long usemapsize = usemap_size(zonesize);
3365 zone->pageblock_flags = NULL;
3367 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3368 memset(zone->pageblock_flags, 0, usemapsize);
3372 static void inline setup_usemap(struct pglist_data *pgdat,
3373 struct zone *zone, unsigned long zonesize) {}
3374 #endif /* CONFIG_SPARSEMEM */
3376 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3378 /* Return a sensible default order for the pageblock size. */
3379 static inline int pageblock_default_order(void)
3381 if (HPAGE_SHIFT > PAGE_SHIFT)
3382 return HUGETLB_PAGE_ORDER;
3387 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3388 static inline void __init set_pageblock_order(unsigned int order)
3390 /* Check that pageblock_nr_pages has not already been setup */
3391 if (pageblock_order)
3395 * Assume the largest contiguous order of interest is a huge page.
3396 * This value may be variable depending on boot parameters on IA64
3398 pageblock_order = order;
3400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3403 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3404 * and pageblock_default_order() are unused as pageblock_order is set
3405 * at compile-time. See include/linux/pageblock-flags.h for the values of
3406 * pageblock_order based on the kernel config
3408 static inline int pageblock_default_order(unsigned int order)
3412 #define set_pageblock_order(x) do {} while (0)
3414 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3417 * Set up the zone data structures:
3418 * - mark all pages reserved
3419 * - mark all memory queues empty
3420 * - clear the memory bitmaps
3422 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3423 unsigned long *zones_size, unsigned long *zholes_size)
3426 int nid = pgdat->node_id;
3427 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3430 pgdat_resize_init(pgdat);
3431 pgdat->nr_zones = 0;
3432 init_waitqueue_head(&pgdat->kswapd_wait);
3433 pgdat->kswapd_max_order = 0;
3434 pgdat_page_cgroup_init(pgdat);
3436 for (j = 0; j < MAX_NR_ZONES; j++) {
3437 struct zone *zone = pgdat->node_zones + j;
3438 unsigned long size, realsize, memmap_pages;
3441 size = zone_spanned_pages_in_node(nid, j, zones_size);
3442 realsize = size - zone_absent_pages_in_node(nid, j,
3446 * Adjust realsize so that it accounts for how much memory
3447 * is used by this zone for memmap. This affects the watermark
3448 * and per-cpu initialisations
3451 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3452 if (realsize >= memmap_pages) {
3453 realsize -= memmap_pages;
3455 " %s zone: %lu pages used for memmap\n",
3456 zone_names[j], memmap_pages);
3459 " %s zone: %lu pages exceeds realsize %lu\n",
3460 zone_names[j], memmap_pages, realsize);
3462 /* Account for reserved pages */
3463 if (j == 0 && realsize > dma_reserve) {
3464 realsize -= dma_reserve;
3465 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3466 zone_names[0], dma_reserve);
3469 if (!is_highmem_idx(j))
3470 nr_kernel_pages += realsize;
3471 nr_all_pages += realsize;
3473 zone->spanned_pages = size;
3474 zone->present_pages = realsize;
3477 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3479 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3481 zone->name = zone_names[j];
3482 spin_lock_init(&zone->lock);
3483 spin_lock_init(&zone->lru_lock);
3484 zone_seqlock_init(zone);
3485 zone->zone_pgdat = pgdat;
3487 zone->prev_priority = DEF_PRIORITY;
3489 zone_pcp_init(zone);
3491 INIT_LIST_HEAD(&zone->lru[l].list);
3492 zone->lru[l].nr_scan = 0;
3494 zone->recent_rotated[0] = 0;
3495 zone->recent_rotated[1] = 0;
3496 zone->recent_scanned[0] = 0;
3497 zone->recent_scanned[1] = 0;
3498 zap_zone_vm_stats(zone);
3503 set_pageblock_order(pageblock_default_order());
3504 setup_usemap(pgdat, zone, size);
3505 ret = init_currently_empty_zone(zone, zone_start_pfn,
3506 size, MEMMAP_EARLY);
3508 memmap_init(size, nid, j, zone_start_pfn);
3509 zone_start_pfn += size;
3513 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3515 /* Skip empty nodes */
3516 if (!pgdat->node_spanned_pages)
3519 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3520 /* ia64 gets its own node_mem_map, before this, without bootmem */
3521 if (!pgdat->node_mem_map) {
3522 unsigned long size, start, end;
3526 * The zone's endpoints aren't required to be MAX_ORDER
3527 * aligned but the node_mem_map endpoints must be in order
3528 * for the buddy allocator to function correctly.
3530 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3531 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3532 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3533 size = (end - start) * sizeof(struct page);
3534 map = alloc_remap(pgdat->node_id, size);
3536 map = alloc_bootmem_node(pgdat, size);
3537 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3539 #ifndef CONFIG_NEED_MULTIPLE_NODES
3541 * With no DISCONTIG, the global mem_map is just set as node 0's
3543 if (pgdat == NODE_DATA(0)) {
3544 mem_map = NODE_DATA(0)->node_mem_map;
3545 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3547 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3548 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3551 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3554 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3555 unsigned long node_start_pfn, unsigned long *zholes_size)
3557 pg_data_t *pgdat = NODE_DATA(nid);
3559 pgdat->node_id = nid;
3560 pgdat->node_start_pfn = node_start_pfn;
3561 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3563 alloc_node_mem_map(pgdat);
3564 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3565 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3566 nid, (unsigned long)pgdat,
3567 (unsigned long)pgdat->node_mem_map);
3570 free_area_init_core(pgdat, zones_size, zholes_size);
3573 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3575 #if MAX_NUMNODES > 1
3577 * Figure out the number of possible node ids.
3579 static void __init setup_nr_node_ids(void)
3582 unsigned int highest = 0;
3584 for_each_node_mask(node, node_possible_map)
3586 nr_node_ids = highest + 1;
3589 static inline void setup_nr_node_ids(void)
3595 * add_active_range - Register a range of PFNs backed by physical memory
3596 * @nid: The node ID the range resides on
3597 * @start_pfn: The start PFN of the available physical memory
3598 * @end_pfn: The end PFN of the available physical memory
3600 * These ranges are stored in an early_node_map[] and later used by
3601 * free_area_init_nodes() to calculate zone sizes and holes. If the
3602 * range spans a memory hole, it is up to the architecture to ensure
3603 * the memory is not freed by the bootmem allocator. If possible
3604 * the range being registered will be merged with existing ranges.
3606 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3607 unsigned long end_pfn)
3611 mminit_dprintk(MMINIT_TRACE, "memory_register",
3612 "Entering add_active_range(%d, %#lx, %#lx) "
3613 "%d entries of %d used\n",
3614 nid, start_pfn, end_pfn,
3615 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3617 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3619 /* Merge with existing active regions if possible */
3620 for (i = 0; i < nr_nodemap_entries; i++) {
3621 if (early_node_map[i].nid != nid)
3624 /* Skip if an existing region covers this new one */
3625 if (start_pfn >= early_node_map[i].start_pfn &&
3626 end_pfn <= early_node_map[i].end_pfn)
3629 /* Merge forward if suitable */
3630 if (start_pfn <= early_node_map[i].end_pfn &&
3631 end_pfn > early_node_map[i].end_pfn) {
3632 early_node_map[i].end_pfn = end_pfn;
3636 /* Merge backward if suitable */
3637 if (start_pfn < early_node_map[i].end_pfn &&
3638 end_pfn >= early_node_map[i].start_pfn) {
3639 early_node_map[i].start_pfn = start_pfn;
3644 /* Check that early_node_map is large enough */
3645 if (i >= MAX_ACTIVE_REGIONS) {
3646 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3647 MAX_ACTIVE_REGIONS);
3651 early_node_map[i].nid = nid;
3652 early_node_map[i].start_pfn = start_pfn;
3653 early_node_map[i].end_pfn = end_pfn;
3654 nr_nodemap_entries = i + 1;
3658 * remove_active_range - Shrink an existing registered range of PFNs
3659 * @nid: The node id the range is on that should be shrunk
3660 * @start_pfn: The new PFN of the range
3661 * @end_pfn: The new PFN of the range
3663 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3664 * The map is kept near the end physical page range that has already been
3665 * registered. This function allows an arch to shrink an existing registered
3668 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3669 unsigned long end_pfn)
3674 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3675 nid, start_pfn, end_pfn);
3677 /* Find the old active region end and shrink */
3678 for_each_active_range_index_in_nid(i, nid) {
3679 if (early_node_map[i].start_pfn >= start_pfn &&
3680 early_node_map[i].end_pfn <= end_pfn) {
3682 early_node_map[i].start_pfn = 0;
3683 early_node_map[i].end_pfn = 0;
3687 if (early_node_map[i].start_pfn < start_pfn &&
3688 early_node_map[i].end_pfn > start_pfn) {
3689 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3690 early_node_map[i].end_pfn = start_pfn;
3691 if (temp_end_pfn > end_pfn)
3692 add_active_range(nid, end_pfn, temp_end_pfn);
3695 if (early_node_map[i].start_pfn >= start_pfn &&
3696 early_node_map[i].end_pfn > end_pfn &&
3697 early_node_map[i].start_pfn < end_pfn) {
3698 early_node_map[i].start_pfn = end_pfn;
3706 /* remove the blank ones */
3707 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3708 if (early_node_map[i].nid != nid)
3710 if (early_node_map[i].end_pfn)
3712 /* we found it, get rid of it */
3713 for (j = i; j < nr_nodemap_entries - 1; j++)
3714 memcpy(&early_node_map[j], &early_node_map[j+1],
3715 sizeof(early_node_map[j]));
3716 j = nr_nodemap_entries - 1;
3717 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3718 nr_nodemap_entries--;
3723 * remove_all_active_ranges - Remove all currently registered regions
3725 * During discovery, it may be found that a table like SRAT is invalid
3726 * and an alternative discovery method must be used. This function removes
3727 * all currently registered regions.
3729 void __init remove_all_active_ranges(void)
3731 memset(early_node_map, 0, sizeof(early_node_map));
3732 nr_nodemap_entries = 0;
3733 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3734 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3735 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3736 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3739 /* Compare two active node_active_regions */
3740 static int __init cmp_node_active_region(const void *a, const void *b)
3742 struct node_active_region *arange = (struct node_active_region *)a;
3743 struct node_active_region *brange = (struct node_active_region *)b;
3745 /* Done this way to avoid overflows */
3746 if (arange->start_pfn > brange->start_pfn)
3748 if (arange->start_pfn < brange->start_pfn)
3754 /* sort the node_map by start_pfn */
3755 static void __init sort_node_map(void)
3757 sort(early_node_map, (size_t)nr_nodemap_entries,
3758 sizeof(struct node_active_region),
3759 cmp_node_active_region, NULL);
3762 /* Find the lowest pfn for a node */
3763 static unsigned long __init find_min_pfn_for_node(int nid)
3766 unsigned long min_pfn = ULONG_MAX;
3768 /* Assuming a sorted map, the first range found has the starting pfn */
3769 for_each_active_range_index_in_nid(i, nid)
3770 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3772 if (min_pfn == ULONG_MAX) {
3774 "Could not find start_pfn for node %d\n", nid);
3782 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3784 * It returns the minimum PFN based on information provided via
3785 * add_active_range().
3787 unsigned long __init find_min_pfn_with_active_regions(void)
3789 return find_min_pfn_for_node(MAX_NUMNODES);
3793 * early_calculate_totalpages()
3794 * Sum pages in active regions for movable zone.
3795 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3797 static unsigned long __init early_calculate_totalpages(void)
3800 unsigned long totalpages = 0;
3802 for (i = 0; i < nr_nodemap_entries; i++) {
3803 unsigned long pages = early_node_map[i].end_pfn -
3804 early_node_map[i].start_pfn;
3805 totalpages += pages;
3807 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3813 * Find the PFN the Movable zone begins in each node. Kernel memory
3814 * is spread evenly between nodes as long as the nodes have enough
3815 * memory. When they don't, some nodes will have more kernelcore than
3818 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3821 unsigned long usable_startpfn;
3822 unsigned long kernelcore_node, kernelcore_remaining;
3823 unsigned long totalpages = early_calculate_totalpages();
3824 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3827 * If movablecore was specified, calculate what size of
3828 * kernelcore that corresponds so that memory usable for
3829 * any allocation type is evenly spread. If both kernelcore
3830 * and movablecore are specified, then the value of kernelcore
3831 * will be used for required_kernelcore if it's greater than
3832 * what movablecore would have allowed.
3834 if (required_movablecore) {
3835 unsigned long corepages;
3838 * Round-up so that ZONE_MOVABLE is at least as large as what
3839 * was requested by the user
3841 required_movablecore =
3842 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3843 corepages = totalpages - required_movablecore;
3845 required_kernelcore = max(required_kernelcore, corepages);
3848 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3849 if (!required_kernelcore)
3852 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3853 find_usable_zone_for_movable();
3854 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3857 /* Spread kernelcore memory as evenly as possible throughout nodes */
3858 kernelcore_node = required_kernelcore / usable_nodes;
3859 for_each_node_state(nid, N_HIGH_MEMORY) {
3861 * Recalculate kernelcore_node if the division per node
3862 * now exceeds what is necessary to satisfy the requested
3863 * amount of memory for the kernel
3865 if (required_kernelcore < kernelcore_node)
3866 kernelcore_node = required_kernelcore / usable_nodes;
3869 * As the map is walked, we track how much memory is usable
3870 * by the kernel using kernelcore_remaining. When it is
3871 * 0, the rest of the node is usable by ZONE_MOVABLE
3873 kernelcore_remaining = kernelcore_node;
3875 /* Go through each range of PFNs within this node */
3876 for_each_active_range_index_in_nid(i, nid) {
3877 unsigned long start_pfn, end_pfn;
3878 unsigned long size_pages;
3880 start_pfn = max(early_node_map[i].start_pfn,
3881 zone_movable_pfn[nid]);
3882 end_pfn = early_node_map[i].end_pfn;
3883 if (start_pfn >= end_pfn)
3886 /* Account for what is only usable for kernelcore */
3887 if (start_pfn < usable_startpfn) {
3888 unsigned long kernel_pages;
3889 kernel_pages = min(end_pfn, usable_startpfn)
3892 kernelcore_remaining -= min(kernel_pages,
3893 kernelcore_remaining);
3894 required_kernelcore -= min(kernel_pages,
3895 required_kernelcore);
3897 /* Continue if range is now fully accounted */
3898 if (end_pfn <= usable_startpfn) {
3901 * Push zone_movable_pfn to the end so
3902 * that if we have to rebalance
3903 * kernelcore across nodes, we will
3904 * not double account here
3906 zone_movable_pfn[nid] = end_pfn;
3909 start_pfn = usable_startpfn;
3913 * The usable PFN range for ZONE_MOVABLE is from
3914 * start_pfn->end_pfn. Calculate size_pages as the
3915 * number of pages used as kernelcore
3917 size_pages = end_pfn - start_pfn;
3918 if (size_pages > kernelcore_remaining)
3919 size_pages = kernelcore_remaining;
3920 zone_movable_pfn[nid] = start_pfn + size_pages;
3923 * Some kernelcore has been met, update counts and
3924 * break if the kernelcore for this node has been
3927 required_kernelcore -= min(required_kernelcore,
3929 kernelcore_remaining -= size_pages;
3930 if (!kernelcore_remaining)
3936 * If there is still required_kernelcore, we do another pass with one
3937 * less node in the count. This will push zone_movable_pfn[nid] further
3938 * along on the nodes that still have memory until kernelcore is
3942 if (usable_nodes && required_kernelcore > usable_nodes)
3945 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3946 for (nid = 0; nid < MAX_NUMNODES; nid++)
3947 zone_movable_pfn[nid] =
3948 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3951 /* Any regular memory on that node ? */
3952 static void check_for_regular_memory(pg_data_t *pgdat)
3954 #ifdef CONFIG_HIGHMEM
3955 enum zone_type zone_type;
3957 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3958 struct zone *zone = &pgdat->node_zones[zone_type];
3959 if (zone->present_pages)
3960 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3966 * free_area_init_nodes - Initialise all pg_data_t and zone data
3967 * @max_zone_pfn: an array of max PFNs for each zone
3969 * This will call free_area_init_node() for each active node in the system.
3970 * Using the page ranges provided by add_active_range(), the size of each
3971 * zone in each node and their holes is calculated. If the maximum PFN
3972 * between two adjacent zones match, it is assumed that the zone is empty.
3973 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3974 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3975 * starts where the previous one ended. For example, ZONE_DMA32 starts
3976 * at arch_max_dma_pfn.
3978 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3983 /* Sort early_node_map as initialisation assumes it is sorted */
3986 /* Record where the zone boundaries are */
3987 memset(arch_zone_lowest_possible_pfn, 0,
3988 sizeof(arch_zone_lowest_possible_pfn));
3989 memset(arch_zone_highest_possible_pfn, 0,
3990 sizeof(arch_zone_highest_possible_pfn));
3991 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3992 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3993 for (i = 1; i < MAX_NR_ZONES; i++) {
3994 if (i == ZONE_MOVABLE)
3996 arch_zone_lowest_possible_pfn[i] =
3997 arch_zone_highest_possible_pfn[i-1];
3998 arch_zone_highest_possible_pfn[i] =
3999 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4001 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4002 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4004 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4005 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4006 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4008 /* Print out the zone ranges */
4009 printk("Zone PFN ranges:\n");
4010 for (i = 0; i < MAX_NR_ZONES; i++) {
4011 if (i == ZONE_MOVABLE)
4013 printk(" %-8s %0#10lx -> %0#10lx\n",
4015 arch_zone_lowest_possible_pfn[i],
4016 arch_zone_highest_possible_pfn[i]);
4019 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4020 printk("Movable zone start PFN for each node\n");
4021 for (i = 0; i < MAX_NUMNODES; i++) {
4022 if (zone_movable_pfn[i])
4023 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4026 /* Print out the early_node_map[] */
4027 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4028 for (i = 0; i < nr_nodemap_entries; i++)
4029 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4030 early_node_map[i].start_pfn,
4031 early_node_map[i].end_pfn);
4033 /* Initialise every node */
4034 mminit_verify_pageflags_layout();
4035 setup_nr_node_ids();
4036 for_each_online_node(nid) {
4037 pg_data_t *pgdat = NODE_DATA(nid);
4038 free_area_init_node(nid, NULL,
4039 find_min_pfn_for_node(nid), NULL);
4041 /* Any memory on that node */
4042 if (pgdat->node_present_pages)
4043 node_set_state(nid, N_HIGH_MEMORY);
4044 check_for_regular_memory(pgdat);
4048 static int __init cmdline_parse_core(char *p, unsigned long *core)
4050 unsigned long long coremem;
4054 coremem = memparse(p, &p);
4055 *core = coremem >> PAGE_SHIFT;
4057 /* Paranoid check that UL is enough for the coremem value */
4058 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4064 * kernelcore=size sets the amount of memory for use for allocations that
4065 * cannot be reclaimed or migrated.
4067 static int __init cmdline_parse_kernelcore(char *p)
4069 return cmdline_parse_core(p, &required_kernelcore);
4073 * movablecore=size sets the amount of memory for use for allocations that
4074 * can be reclaimed or migrated.
4076 static int __init cmdline_parse_movablecore(char *p)
4078 return cmdline_parse_core(p, &required_movablecore);
4081 early_param("kernelcore", cmdline_parse_kernelcore);
4082 early_param("movablecore", cmdline_parse_movablecore);
4084 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4087 * set_dma_reserve - set the specified number of pages reserved in the first zone
4088 * @new_dma_reserve: The number of pages to mark reserved
4090 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4091 * In the DMA zone, a significant percentage may be consumed by kernel image
4092 * and other unfreeable allocations which can skew the watermarks badly. This
4093 * function may optionally be used to account for unfreeable pages in the
4094 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4095 * smaller per-cpu batchsize.
4097 void __init set_dma_reserve(unsigned long new_dma_reserve)
4099 dma_reserve = new_dma_reserve;
4102 #ifndef CONFIG_NEED_MULTIPLE_NODES
4103 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4104 EXPORT_SYMBOL(contig_page_data);
4107 void __init free_area_init(unsigned long *zones_size)
4109 free_area_init_node(0, zones_size,
4110 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4113 static int page_alloc_cpu_notify(struct notifier_block *self,
4114 unsigned long action, void *hcpu)
4116 int cpu = (unsigned long)hcpu;
4118 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4122 * Spill the event counters of the dead processor
4123 * into the current processors event counters.
4124 * This artificially elevates the count of the current
4127 vm_events_fold_cpu(cpu);
4130 * Zero the differential counters of the dead processor
4131 * so that the vm statistics are consistent.
4133 * This is only okay since the processor is dead and cannot
4134 * race with what we are doing.
4136 refresh_cpu_vm_stats(cpu);
4141 void __init page_alloc_init(void)
4143 hotcpu_notifier(page_alloc_cpu_notify, 0);
4147 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4148 * or min_free_kbytes changes.
4150 static void calculate_totalreserve_pages(void)
4152 struct pglist_data *pgdat;
4153 unsigned long reserve_pages = 0;
4154 enum zone_type i, j;
4156 for_each_online_pgdat(pgdat) {
4157 for (i = 0; i < MAX_NR_ZONES; i++) {
4158 struct zone *zone = pgdat->node_zones + i;
4159 unsigned long max = 0;
4161 /* Find valid and maximum lowmem_reserve in the zone */
4162 for (j = i; j < MAX_NR_ZONES; j++) {
4163 if (zone->lowmem_reserve[j] > max)
4164 max = zone->lowmem_reserve[j];
4167 /* we treat pages_high as reserved pages. */
4168 max += zone->pages_high;
4170 if (max > zone->present_pages)
4171 max = zone->present_pages;
4172 reserve_pages += max;
4175 totalreserve_pages = reserve_pages;
4179 * setup_per_zone_lowmem_reserve - called whenever
4180 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4181 * has a correct pages reserved value, so an adequate number of
4182 * pages are left in the zone after a successful __alloc_pages().
4184 static void setup_per_zone_lowmem_reserve(void)
4186 struct pglist_data *pgdat;
4187 enum zone_type j, idx;
4189 for_each_online_pgdat(pgdat) {
4190 for (j = 0; j < MAX_NR_ZONES; j++) {
4191 struct zone *zone = pgdat->node_zones + j;
4192 unsigned long present_pages = zone->present_pages;
4194 zone->lowmem_reserve[j] = 0;
4198 struct zone *lower_zone;
4202 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4203 sysctl_lowmem_reserve_ratio[idx] = 1;
4205 lower_zone = pgdat->node_zones + idx;
4206 lower_zone->lowmem_reserve[j] = present_pages /
4207 sysctl_lowmem_reserve_ratio[idx];
4208 present_pages += lower_zone->present_pages;
4213 /* update totalreserve_pages */
4214 calculate_totalreserve_pages();
4218 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4220 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4221 * with respect to min_free_kbytes.
4223 void setup_per_zone_pages_min(void)
4225 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4226 unsigned long lowmem_pages = 0;
4228 unsigned long flags;
4230 /* Calculate total number of !ZONE_HIGHMEM pages */
4231 for_each_zone(zone) {
4232 if (!is_highmem(zone))
4233 lowmem_pages += zone->present_pages;
4236 for_each_zone(zone) {
4239 spin_lock_irqsave(&zone->lock, flags);
4240 tmp = (u64)pages_min * zone->present_pages;
4241 do_div(tmp, lowmem_pages);
4242 if (is_highmem(zone)) {
4244 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4245 * need highmem pages, so cap pages_min to a small
4248 * The (pages_high-pages_low) and (pages_low-pages_min)
4249 * deltas controls asynch page reclaim, and so should
4250 * not be capped for highmem.
4254 min_pages = zone->present_pages / 1024;
4255 if (min_pages < SWAP_CLUSTER_MAX)
4256 min_pages = SWAP_CLUSTER_MAX;
4257 if (min_pages > 128)
4259 zone->pages_min = min_pages;
4262 * If it's a lowmem zone, reserve a number of pages
4263 * proportionate to the zone's size.
4265 zone->pages_min = tmp;
4268 zone->pages_low = zone->pages_min + (tmp >> 2);
4269 zone->pages_high = zone->pages_min + (tmp >> 1);
4270 setup_zone_migrate_reserve(zone);
4271 spin_unlock_irqrestore(&zone->lock, flags);
4274 /* update totalreserve_pages */
4275 calculate_totalreserve_pages();
4279 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4281 * The inactive anon list should be small enough that the VM never has to
4282 * do too much work, but large enough that each inactive page has a chance
4283 * to be referenced again before it is swapped out.
4285 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4286 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4287 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4288 * the anonymous pages are kept on the inactive list.
4291 * memory ratio inactive anon
4292 * -------------------------------------
4301 void setup_per_zone_inactive_ratio(void)
4305 for_each_zone(zone) {
4306 unsigned int gb, ratio;
4308 /* Zone size in gigabytes */
4309 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4310 ratio = int_sqrt(10 * gb);
4314 zone->inactive_ratio = ratio;
4319 * Initialise min_free_kbytes.
4321 * For small machines we want it small (128k min). For large machines
4322 * we want it large (64MB max). But it is not linear, because network
4323 * bandwidth does not increase linearly with machine size. We use
4325 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4326 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4342 static int __init init_per_zone_pages_min(void)
4344 unsigned long lowmem_kbytes;
4346 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4348 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4349 if (min_free_kbytes < 128)
4350 min_free_kbytes = 128;
4351 if (min_free_kbytes > 65536)
4352 min_free_kbytes = 65536;
4353 setup_per_zone_pages_min();
4354 setup_per_zone_lowmem_reserve();
4355 setup_per_zone_inactive_ratio();
4358 module_init(init_per_zone_pages_min)
4361 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4362 * that we can call two helper functions whenever min_free_kbytes
4365 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4366 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4368 proc_dointvec(table, write, file, buffer, length, ppos);
4370 setup_per_zone_pages_min();
4375 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4376 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4381 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4386 zone->min_unmapped_pages = (zone->present_pages *
4387 sysctl_min_unmapped_ratio) / 100;
4391 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4392 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4397 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4402 zone->min_slab_pages = (zone->present_pages *
4403 sysctl_min_slab_ratio) / 100;
4409 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4410 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4411 * whenever sysctl_lowmem_reserve_ratio changes.
4413 * The reserve ratio obviously has absolutely no relation with the
4414 * pages_min watermarks. The lowmem reserve ratio can only make sense
4415 * if in function of the boot time zone sizes.
4417 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4418 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4420 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4421 setup_per_zone_lowmem_reserve();
4426 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4427 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4428 * can have before it gets flushed back to buddy allocator.
4431 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4432 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4438 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4439 if (!write || (ret == -EINVAL))
4441 for_each_zone(zone) {
4442 for_each_online_cpu(cpu) {
4444 high = zone->present_pages / percpu_pagelist_fraction;
4445 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4451 int hashdist = HASHDIST_DEFAULT;
4454 static int __init set_hashdist(char *str)
4458 hashdist = simple_strtoul(str, &str, 0);
4461 __setup("hashdist=", set_hashdist);
4465 * allocate a large system hash table from bootmem
4466 * - it is assumed that the hash table must contain an exact power-of-2
4467 * quantity of entries
4468 * - limit is the number of hash buckets, not the total allocation size
4470 void *__init alloc_large_system_hash(const char *tablename,
4471 unsigned long bucketsize,
4472 unsigned long numentries,
4475 unsigned int *_hash_shift,
4476 unsigned int *_hash_mask,
4477 unsigned long limit)
4479 unsigned long long max = limit;
4480 unsigned long log2qty, size;
4483 /* allow the kernel cmdline to have a say */
4485 /* round applicable memory size up to nearest megabyte */
4486 numentries = nr_kernel_pages;
4487 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4488 numentries >>= 20 - PAGE_SHIFT;
4489 numentries <<= 20 - PAGE_SHIFT;
4491 /* limit to 1 bucket per 2^scale bytes of low memory */
4492 if (scale > PAGE_SHIFT)
4493 numentries >>= (scale - PAGE_SHIFT);
4495 numentries <<= (PAGE_SHIFT - scale);
4497 /* Make sure we've got at least a 0-order allocation.. */
4498 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4499 numentries = PAGE_SIZE / bucketsize;
4501 numentries = roundup_pow_of_two(numentries);
4503 /* limit allocation size to 1/16 total memory by default */
4505 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4506 do_div(max, bucketsize);
4509 if (numentries > max)
4512 log2qty = ilog2(numentries);
4515 size = bucketsize << log2qty;
4516 if (flags & HASH_EARLY)
4517 table = alloc_bootmem_nopanic(size);
4519 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4521 unsigned long order = get_order(size);
4522 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4524 * If bucketsize is not a power-of-two, we may free
4525 * some pages at the end of hash table.
4528 unsigned long alloc_end = (unsigned long)table +
4529 (PAGE_SIZE << order);
4530 unsigned long used = (unsigned long)table +
4532 split_page(virt_to_page(table), order);
4533 while (used < alloc_end) {
4539 } while (!table && size > PAGE_SIZE && --log2qty);
4542 panic("Failed to allocate %s hash table\n", tablename);
4544 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4547 ilog2(size) - PAGE_SHIFT,
4551 *_hash_shift = log2qty;
4553 *_hash_mask = (1 << log2qty) - 1;
4558 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4559 struct page *pfn_to_page(unsigned long pfn)
4561 return __pfn_to_page(pfn);
4563 unsigned long page_to_pfn(struct page *page)
4565 return __page_to_pfn(page);
4567 EXPORT_SYMBOL(pfn_to_page);
4568 EXPORT_SYMBOL(page_to_pfn);
4569 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4571 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4575 #ifdef CONFIG_SPARSEMEM
4576 return __pfn_to_section(pfn)->pageblock_flags;
4578 return zone->pageblock_flags;
4579 #endif /* CONFIG_SPARSEMEM */
4582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4584 #ifdef CONFIG_SPARSEMEM
4585 pfn &= (PAGES_PER_SECTION-1);
4586 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4588 pfn = pfn - zone->zone_start_pfn;
4589 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4590 #endif /* CONFIG_SPARSEMEM */
4594 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4595 * @page: The page within the block of interest
4596 * @start_bitidx: The first bit of interest to retrieve
4597 * @end_bitidx: The last bit of interest
4598 * returns pageblock_bits flags
4600 unsigned long get_pageblock_flags_group(struct page *page,
4601 int start_bitidx, int end_bitidx)
4604 unsigned long *bitmap;
4605 unsigned long pfn, bitidx;
4606 unsigned long flags = 0;
4607 unsigned long value = 1;
4609 zone = page_zone(page);
4610 pfn = page_to_pfn(page);
4611 bitmap = get_pageblock_bitmap(zone, pfn);
4612 bitidx = pfn_to_bitidx(zone, pfn);
4614 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4615 if (test_bit(bitidx + start_bitidx, bitmap))
4622 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4623 * @page: The page within the block of interest
4624 * @start_bitidx: The first bit of interest
4625 * @end_bitidx: The last bit of interest
4626 * @flags: The flags to set
4628 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4629 int start_bitidx, int end_bitidx)
4632 unsigned long *bitmap;
4633 unsigned long pfn, bitidx;
4634 unsigned long value = 1;
4636 zone = page_zone(page);
4637 pfn = page_to_pfn(page);
4638 bitmap = get_pageblock_bitmap(zone, pfn);
4639 bitidx = pfn_to_bitidx(zone, pfn);
4640 VM_BUG_ON(pfn < zone->zone_start_pfn);
4641 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4643 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4645 __set_bit(bitidx + start_bitidx, bitmap);
4647 __clear_bit(bitidx + start_bitidx, bitmap);
4651 * This is designed as sub function...plz see page_isolation.c also.
4652 * set/clear page block's type to be ISOLATE.
4653 * page allocater never alloc memory from ISOLATE block.
4656 int set_migratetype_isolate(struct page *page)
4659 unsigned long flags;
4662 zone = page_zone(page);
4663 spin_lock_irqsave(&zone->lock, flags);
4665 * In future, more migrate types will be able to be isolation target.
4667 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4669 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4670 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4673 spin_unlock_irqrestore(&zone->lock, flags);
4679 void unset_migratetype_isolate(struct page *page)
4682 unsigned long flags;
4683 zone = page_zone(page);
4684 spin_lock_irqsave(&zone->lock, flags);
4685 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4687 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4688 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4690 spin_unlock_irqrestore(&zone->lock, flags);
4693 #ifdef CONFIG_MEMORY_HOTREMOVE
4695 * All pages in the range must be isolated before calling this.
4698 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4704 unsigned long flags;
4705 /* find the first valid pfn */
4706 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4711 zone = page_zone(pfn_to_page(pfn));
4712 spin_lock_irqsave(&zone->lock, flags);
4714 while (pfn < end_pfn) {
4715 if (!pfn_valid(pfn)) {
4719 page = pfn_to_page(pfn);
4720 BUG_ON(page_count(page));
4721 BUG_ON(!PageBuddy(page));
4722 order = page_order(page);
4723 #ifdef CONFIG_DEBUG_VM
4724 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4725 pfn, 1 << order, end_pfn);
4727 list_del(&page->lru);
4728 rmv_page_order(page);
4729 zone->free_area[order].nr_free--;
4730 __mod_zone_page_state(zone, NR_FREE_PAGES,
4732 for (i = 0; i < (1 << order); i++)
4733 SetPageReserved((page+i));
4734 pfn += (1 << order);
4736 spin_unlock_irqrestore(&zone->lock, flags);