2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: This supports the initialization of the host adapter commuication interface.
28 * This is a platform dependent module for the pci cyclone board.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/completion.h>
42 #include <scsi/scsi_host.h>
43 #include <asm/semaphore.h>
47 struct aac_common aac_config;
49 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
52 unsigned long size, align;
53 const unsigned long fibsize = 4096;
54 const unsigned long printfbufsiz = 256;
55 struct aac_init *init;
58 size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz;
61 base = pci_alloc_consistent(dev->pdev, size, &phys);
65 printk(KERN_ERR "aacraid: unable to create mapping.\n");
68 dev->comm_addr = (void *)base;
69 dev->comm_phys = phys;
70 dev->comm_size = size;
72 dev->init = (struct aac_init *)(base + fibsize);
73 dev->init_pa = phys + fibsize;
77 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
78 if (dev->max_fib_size != sizeof(struct hw_fib))
79 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
80 init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
81 init->fsrev = cpu_to_le32(dev->fsrev);
84 * Adapter Fibs are the first thing allocated so that they
87 dev->aif_base_va = (struct hw_fib *)base;
89 init->AdapterFibsVirtualAddress = 0;
90 init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
91 init->AdapterFibsSize = cpu_to_le32(fibsize);
92 init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
94 * number of 4k pages of host physical memory. The aacraid fw needs
95 * this number to be less than 4gb worth of pages. num_physpages is in
96 * system page units. New firmware doesn't have any issues with the
97 * mapping system, but older Firmware did, and had *troubles* dealing
98 * with the math overloading past 32 bits, thus we must limit this
101 * This assumes the memory is mapped zero->n, which isnt
102 * always true on real computers. It also has some slight problems
103 * with the GART on x86-64. I've btw never tried DMA from PCI space
104 * on this platform but don't be suprised if its problematic.
106 #ifndef CONFIG_GART_IOMMU
107 if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) {
108 init->HostPhysMemPages =
109 cpu_to_le32(num_physpages << (PAGE_SHIFT-12));
113 init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
117 init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
118 init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
119 init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
122 * Increment the base address by the amount already used
124 base = base + fibsize + sizeof(struct aac_init);
125 phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init));
127 * Align the beginning of Headers to commalign
129 align = (commalign - ((unsigned long)(base) & (commalign - 1)));
133 * Fill in addresses of the Comm Area Headers and Queues
136 init->CommHeaderAddress = cpu_to_le32((u32)phys);
138 * Increment the base address by the size of the CommArea
140 base = base + commsize;
141 phys = phys + commsize;
143 * Place the Printf buffer area after the Fast I/O comm area.
145 dev->printfbuf = (void *)base;
146 init->printfbuf = cpu_to_le32(phys);
147 init->printfbufsiz = cpu_to_le32(printfbufsiz);
148 memset(base, 0, printfbufsiz);
152 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
156 INIT_LIST_HEAD(&q->pendingq);
157 init_waitqueue_head(&q->cmdready);
158 INIT_LIST_HEAD(&q->cmdq);
159 init_waitqueue_head(&q->qfull);
160 spin_lock_init(&q->lockdata);
161 q->lock = &q->lockdata;
162 q->headers.producer = (__le32 *)mem;
163 q->headers.consumer = (__le32 *)(mem+1);
164 *(q->headers.producer) = cpu_to_le32(qsize);
165 *(q->headers.consumer) = cpu_to_le32(qsize);
170 * aac_send_shutdown - shutdown an adapter
171 * @dev: Adapter to shutdown
173 * This routine will send a VM_CloseAll (shutdown) request to the adapter.
176 int aac_send_shutdown(struct aac_dev * dev)
179 struct aac_close *cmd;
182 fibctx = fib_alloc(dev);
187 cmd = (struct aac_close *) fib_data(fibctx);
189 cmd->command = cpu_to_le32(VM_CloseAll);
190 cmd->cid = cpu_to_le32(0xffffffff);
192 status = fib_send(ContainerCommand,
194 sizeof(struct aac_close),
200 fib_complete(fibctx);
206 * aac_comm_init - Initialise FSA data structures
207 * @dev: Adapter to initialise
209 * Initializes the data structures that are required for the FSA commuication
210 * interface to operate.
212 * 1 - if we were able to init the commuication interface.
213 * 0 - If there were errors initing. This is a fatal error.
216 static int aac_comm_init(struct aac_dev * dev)
218 unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
219 unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
221 struct aac_entry * queues;
223 struct aac_queue_block * comm = dev->queues;
225 * Now allocate and initialize the zone structures used as our
226 * pool of FIB context records. The size of the zone is based
227 * on the system memory size. We also initialize the mutex used
228 * to protect the zone.
230 spin_lock_init(&dev->fib_lock);
233 * Allocate the physically contigous space for the commuication
237 size = hdrsize + queuesize;
239 if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
242 queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
244 /* Adapter to Host normal priority Command queue */
245 comm->queue[HostNormCmdQueue].base = queues;
246 aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
247 queues += HOST_NORM_CMD_ENTRIES;
250 /* Adapter to Host high priority command queue */
251 comm->queue[HostHighCmdQueue].base = queues;
252 aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
254 queues += HOST_HIGH_CMD_ENTRIES;
257 /* Host to adapter normal priority command queue */
258 comm->queue[AdapNormCmdQueue].base = queues;
259 aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
261 queues += ADAP_NORM_CMD_ENTRIES;
264 /* host to adapter high priority command queue */
265 comm->queue[AdapHighCmdQueue].base = queues;
266 aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
268 queues += ADAP_HIGH_CMD_ENTRIES;
271 /* adapter to host normal priority response queue */
272 comm->queue[HostNormRespQueue].base = queues;
273 aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
274 queues += HOST_NORM_RESP_ENTRIES;
277 /* adapter to host high priority response queue */
278 comm->queue[HostHighRespQueue].base = queues;
279 aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
281 queues += HOST_HIGH_RESP_ENTRIES;
284 /* host to adapter normal priority response queue */
285 comm->queue[AdapNormRespQueue].base = queues;
286 aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
288 queues += ADAP_NORM_RESP_ENTRIES;
291 /* host to adapter high priority response queue */
292 comm->queue[AdapHighRespQueue].base = queues;
293 aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
295 comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
296 comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
297 comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
298 comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
303 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
306 struct Scsi_Host * host = dev->scsi_host_ptr;
309 * Check the preferred comm settings, defaults from template.
311 dev->max_fib_size = sizeof(struct hw_fib);
312 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
313 - sizeof(struct aac_fibhdr)
314 - sizeof(struct aac_write) + sizeof(struct sgmap))
315 / sizeof(struct sgmap);
316 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
318 status+0, status+1, status+2, status+3, status+4))
319 && (status[0] == 0x00000001)) {
321 * status[1] >> 16 maximum command size in KB
322 * status[1] & 0xFFFF maximum FIB size
323 * status[2] >> 16 maximum SG elements to driver
324 * status[2] & 0xFFFF maximum SG elements from driver
325 * status[3] & 0xFFFF maximum number FIBs outstanding
327 host->max_sectors = (status[1] >> 16) << 1;
328 dev->max_fib_size = status[1] & 0xFFFF;
329 host->sg_tablesize = status[2] >> 16;
330 dev->sg_tablesize = status[2] & 0xFFFF;
331 host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
334 * All these overrides are based on a fixed internal
335 * knowledge and understanding of existing adapters,
336 * acbsize should be set with caution.
338 if (acbsize == 512) {
339 host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
340 dev->max_fib_size = 512;
341 dev->sg_tablesize = host->sg_tablesize
342 = (512 - sizeof(struct aac_fibhdr)
343 - sizeof(struct aac_write) + sizeof(struct sgmap))
344 / sizeof(struct sgmap);
345 host->can_queue = AAC_NUM_IO_FIB;
346 } else if (acbsize == 2048) {
347 host->max_sectors = 512;
348 dev->max_fib_size = 2048;
349 host->sg_tablesize = 65;
350 dev->sg_tablesize = 81;
351 host->can_queue = 512 - AAC_NUM_MGT_FIB;
352 } else if (acbsize == 4096) {
353 host->max_sectors = 1024;
354 dev->max_fib_size = 4096;
355 host->sg_tablesize = 129;
356 dev->sg_tablesize = 166;
357 host->can_queue = 256 - AAC_NUM_MGT_FIB;
358 } else if (acbsize == 8192) {
359 host->max_sectors = 2048;
360 dev->max_fib_size = 8192;
361 host->sg_tablesize = 257;
362 dev->sg_tablesize = 337;
363 host->can_queue = 128 - AAC_NUM_MGT_FIB;
364 } else if (acbsize > 0) {
365 printk("Illegal acbsize=%d ignored\n", acbsize);
371 if (numacb < host->can_queue)
372 host->can_queue = numacb;
374 printk("numacb=%d ignored\n", numacb);
379 * Ok now init the communication subsystem
382 dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
383 if (dev->queues == NULL) {
384 printk(KERN_ERR "Error could not allocate comm region.\n");
387 memset(dev->queues, 0, sizeof(struct aac_queue_block));
389 if (aac_comm_init(dev)<0){
394 * Initialize the list of fibs
396 if(fib_setup(dev)<0){
401 INIT_LIST_HEAD(&dev->fib_list);
402 init_completion(&dev->aif_completion);