Merge master.kernel.org:/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6] / mm / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/blktrace_api.h>
30 #include <asm/tlbflush.h>
31
32 static mempool_t *page_pool, *isa_page_pool;
33
34 static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data)
35 {
36         return mempool_alloc_pages(gfp_mask | GFP_DMA, data);
37 }
38
39 /*
40  * Virtual_count is not a pure "count".
41  *  0 means that it is not mapped, and has not been mapped
42  *    since a TLB flush - it is usable.
43  *  1 means that there are no users, but it has been mapped
44  *    since the last TLB flush - so we can't use it.
45  *  n means that there are (n-1) current users of it.
46  */
47 #ifdef CONFIG_HIGHMEM
48
49 static int pkmap_count[LAST_PKMAP];
50 static unsigned int last_pkmap_nr;
51 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
52
53 pte_t * pkmap_page_table;
54
55 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
56
57 static void flush_all_zero_pkmaps(void)
58 {
59         int i;
60
61         flush_cache_kmaps();
62
63         for (i = 0; i < LAST_PKMAP; i++) {
64                 struct page *page;
65
66                 /*
67                  * zero means we don't have anything to do,
68                  * >1 means that it is still in use. Only
69                  * a count of 1 means that it is free but
70                  * needs to be unmapped
71                  */
72                 if (pkmap_count[i] != 1)
73                         continue;
74                 pkmap_count[i] = 0;
75
76                 /* sanity check */
77                 BUG_ON(pte_none(pkmap_page_table[i]));
78
79                 /*
80                  * Don't need an atomic fetch-and-clear op here;
81                  * no-one has the page mapped, and cannot get at
82                  * its virtual address (and hence PTE) without first
83                  * getting the kmap_lock (which is held here).
84                  * So no dangers, even with speculative execution.
85                  */
86                 page = pte_page(pkmap_page_table[i]);
87                 pte_clear(&init_mm, (unsigned long)page_address(page),
88                           &pkmap_page_table[i]);
89
90                 set_page_address(page, NULL);
91         }
92         flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
93 }
94
95 static inline unsigned long map_new_virtual(struct page *page)
96 {
97         unsigned long vaddr;
98         int count;
99
100 start:
101         count = LAST_PKMAP;
102         /* Find an empty entry */
103         for (;;) {
104                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
105                 if (!last_pkmap_nr) {
106                         flush_all_zero_pkmaps();
107                         count = LAST_PKMAP;
108                 }
109                 if (!pkmap_count[last_pkmap_nr])
110                         break;  /* Found a usable entry */
111                 if (--count)
112                         continue;
113
114                 /*
115                  * Sleep for somebody else to unmap their entries
116                  */
117                 {
118                         DECLARE_WAITQUEUE(wait, current);
119
120                         __set_current_state(TASK_UNINTERRUPTIBLE);
121                         add_wait_queue(&pkmap_map_wait, &wait);
122                         spin_unlock(&kmap_lock);
123                         schedule();
124                         remove_wait_queue(&pkmap_map_wait, &wait);
125                         spin_lock(&kmap_lock);
126
127                         /* Somebody else might have mapped it while we slept */
128                         if (page_address(page))
129                                 return (unsigned long)page_address(page);
130
131                         /* Re-start */
132                         goto start;
133                 }
134         }
135         vaddr = PKMAP_ADDR(last_pkmap_nr);
136         set_pte_at(&init_mm, vaddr,
137                    &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
138
139         pkmap_count[last_pkmap_nr] = 1;
140         set_page_address(page, (void *)vaddr);
141
142         return vaddr;
143 }
144
145 void fastcall *kmap_high(struct page *page)
146 {
147         unsigned long vaddr;
148
149         /*
150          * For highmem pages, we can't trust "virtual" until
151          * after we have the lock.
152          *
153          * We cannot call this from interrupts, as it may block
154          */
155         spin_lock(&kmap_lock);
156         vaddr = (unsigned long)page_address(page);
157         if (!vaddr)
158                 vaddr = map_new_virtual(page);
159         pkmap_count[PKMAP_NR(vaddr)]++;
160         BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
161         spin_unlock(&kmap_lock);
162         return (void*) vaddr;
163 }
164
165 EXPORT_SYMBOL(kmap_high);
166
167 void fastcall kunmap_high(struct page *page)
168 {
169         unsigned long vaddr;
170         unsigned long nr;
171         int need_wakeup;
172
173         spin_lock(&kmap_lock);
174         vaddr = (unsigned long)page_address(page);
175         BUG_ON(!vaddr);
176         nr = PKMAP_NR(vaddr);
177
178         /*
179          * A count must never go down to zero
180          * without a TLB flush!
181          */
182         need_wakeup = 0;
183         switch (--pkmap_count[nr]) {
184         case 0:
185                 BUG();
186         case 1:
187                 /*
188                  * Avoid an unnecessary wake_up() function call.
189                  * The common case is pkmap_count[] == 1, but
190                  * no waiters.
191                  * The tasks queued in the wait-queue are guarded
192                  * by both the lock in the wait-queue-head and by
193                  * the kmap_lock.  As the kmap_lock is held here,
194                  * no need for the wait-queue-head's lock.  Simply
195                  * test if the queue is empty.
196                  */
197                 need_wakeup = waitqueue_active(&pkmap_map_wait);
198         }
199         spin_unlock(&kmap_lock);
200
201         /* do wake-up, if needed, race-free outside of the spin lock */
202         if (need_wakeup)
203                 wake_up(&pkmap_map_wait);
204 }
205
206 EXPORT_SYMBOL(kunmap_high);
207
208 #define POOL_SIZE       64
209
210 static __init int init_emergency_pool(void)
211 {
212         struct sysinfo i;
213         si_meminfo(&i);
214         si_swapinfo(&i);
215         
216         if (!i.totalhigh)
217                 return 0;
218
219         page_pool = mempool_create_page_pool(POOL_SIZE, 0);
220         BUG_ON(!page_pool);
221         printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
222
223         return 0;
224 }
225
226 __initcall(init_emergency_pool);
227
228 /*
229  * highmem version, map in to vec
230  */
231 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
232 {
233         unsigned long flags;
234         unsigned char *vto;
235
236         local_irq_save(flags);
237         vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
238         memcpy(vto + to->bv_offset, vfrom, to->bv_len);
239         kunmap_atomic(vto, KM_BOUNCE_READ);
240         local_irq_restore(flags);
241 }
242
243 #else /* CONFIG_HIGHMEM */
244
245 #define bounce_copy_vec(to, vfrom)      \
246         memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
247
248 #endif
249
250 #define ISA_POOL_SIZE   16
251
252 /*
253  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
254  * as the max address, so check if the pool has already been created.
255  */
256 int init_emergency_isa_pool(void)
257 {
258         if (isa_page_pool)
259                 return 0;
260
261         isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa,
262                                        mempool_free_pages, (void *) 0);
263         BUG_ON(!isa_page_pool);
264
265         printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
266         return 0;
267 }
268
269 /*
270  * Simple bounce buffer support for highmem pages. Depending on the
271  * queue gfp mask set, *to may or may not be a highmem page. kmap it
272  * always, it will do the Right Thing
273  */
274 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
275 {
276         unsigned char *vfrom;
277         struct bio_vec *tovec, *fromvec;
278         int i;
279
280         __bio_for_each_segment(tovec, to, i, 0) {
281                 fromvec = from->bi_io_vec + i;
282
283                 /*
284                  * not bounced
285                  */
286                 if (tovec->bv_page == fromvec->bv_page)
287                         continue;
288
289                 /*
290                  * fromvec->bv_offset and fromvec->bv_len might have been
291                  * modified by the block layer, so use the original copy,
292                  * bounce_copy_vec already uses tovec->bv_len
293                  */
294                 vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
295
296                 flush_dcache_page(tovec->bv_page);
297                 bounce_copy_vec(tovec, vfrom);
298         }
299 }
300
301 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
302 {
303         struct bio *bio_orig = bio->bi_private;
304         struct bio_vec *bvec, *org_vec;
305         int i;
306
307         if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
308                 set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
309
310         /*
311          * free up bounce indirect pages used
312          */
313         __bio_for_each_segment(bvec, bio, i, 0) {
314                 org_vec = bio_orig->bi_io_vec + i;
315                 if (bvec->bv_page == org_vec->bv_page)
316                         continue;
317
318                 dec_zone_page_state(bvec->bv_page, NR_BOUNCE);
319                 mempool_free(bvec->bv_page, pool);
320         }
321
322         bio_endio(bio_orig, bio_orig->bi_size, err);
323         bio_put(bio);
324 }
325
326 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
327 {
328         if (bio->bi_size)
329                 return 1;
330
331         bounce_end_io(bio, page_pool, err);
332         return 0;
333 }
334
335 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
336 {
337         if (bio->bi_size)
338                 return 1;
339
340         bounce_end_io(bio, isa_page_pool, err);
341         return 0;
342 }
343
344 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
345 {
346         struct bio *bio_orig = bio->bi_private;
347
348         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
349                 copy_to_high_bio_irq(bio_orig, bio);
350
351         bounce_end_io(bio, pool, err);
352 }
353
354 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
355 {
356         if (bio->bi_size)
357                 return 1;
358
359         __bounce_end_io_read(bio, page_pool, err);
360         return 0;
361 }
362
363 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
364 {
365         if (bio->bi_size)
366                 return 1;
367
368         __bounce_end_io_read(bio, isa_page_pool, err);
369         return 0;
370 }
371
372 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
373                                mempool_t *pool)
374 {
375         struct page *page;
376         struct bio *bio = NULL;
377         int i, rw = bio_data_dir(*bio_orig);
378         struct bio_vec *to, *from;
379
380         bio_for_each_segment(from, *bio_orig, i) {
381                 page = from->bv_page;
382
383                 /*
384                  * is destination page below bounce pfn?
385                  */
386                 if (page_to_pfn(page) < q->bounce_pfn)
387                         continue;
388
389                 /*
390                  * irk, bounce it
391                  */
392                 if (!bio)
393                         bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
394
395                 to = bio->bi_io_vec + i;
396
397                 to->bv_page = mempool_alloc(pool, q->bounce_gfp);
398                 to->bv_len = from->bv_len;
399                 to->bv_offset = from->bv_offset;
400                 inc_zone_page_state(to->bv_page, NR_BOUNCE);
401
402                 if (rw == WRITE) {
403                         char *vto, *vfrom;
404
405                         flush_dcache_page(from->bv_page);
406                         vto = page_address(to->bv_page) + to->bv_offset;
407                         vfrom = kmap(from->bv_page) + from->bv_offset;
408                         memcpy(vto, vfrom, to->bv_len);
409                         kunmap(from->bv_page);
410                 }
411         }
412
413         /*
414          * no pages bounced
415          */
416         if (!bio)
417                 return;
418
419         /*
420          * at least one page was bounced, fill in possible non-highmem
421          * pages
422          */
423         __bio_for_each_segment(from, *bio_orig, i, 0) {
424                 to = bio_iovec_idx(bio, i);
425                 if (!to->bv_page) {
426                         to->bv_page = from->bv_page;
427                         to->bv_len = from->bv_len;
428                         to->bv_offset = from->bv_offset;
429                 }
430         }
431
432         bio->bi_bdev = (*bio_orig)->bi_bdev;
433         bio->bi_flags |= (1 << BIO_BOUNCED);
434         bio->bi_sector = (*bio_orig)->bi_sector;
435         bio->bi_rw = (*bio_orig)->bi_rw;
436
437         bio->bi_vcnt = (*bio_orig)->bi_vcnt;
438         bio->bi_idx = (*bio_orig)->bi_idx;
439         bio->bi_size = (*bio_orig)->bi_size;
440
441         if (pool == page_pool) {
442                 bio->bi_end_io = bounce_end_io_write;
443                 if (rw == READ)
444                         bio->bi_end_io = bounce_end_io_read;
445         } else {
446                 bio->bi_end_io = bounce_end_io_write_isa;
447                 if (rw == READ)
448                         bio->bi_end_io = bounce_end_io_read_isa;
449         }
450
451         bio->bi_private = *bio_orig;
452         *bio_orig = bio;
453 }
454
455 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
456 {
457         mempool_t *pool;
458
459         /*
460          * for non-isa bounce case, just check if the bounce pfn is equal
461          * to or bigger than the highest pfn in the system -- in that case,
462          * don't waste time iterating over bio segments
463          */
464         if (!(q->bounce_gfp & GFP_DMA)) {
465                 if (q->bounce_pfn >= blk_max_pfn)
466                         return;
467                 pool = page_pool;
468         } else {
469                 BUG_ON(!isa_page_pool);
470                 pool = isa_page_pool;
471         }
472
473         blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE);
474
475         /*
476          * slow path
477          */
478         __blk_queue_bounce(q, bio_orig, pool);
479 }
480
481 EXPORT_SYMBOL(blk_queue_bounce);
482
483 #if defined(HASHED_PAGE_VIRTUAL)
484
485 #define PA_HASH_ORDER   7
486
487 /*
488  * Describes one page->virtual association
489  */
490 struct page_address_map {
491         struct page *page;
492         void *virtual;
493         struct list_head list;
494 };
495
496 /*
497  * page_address_map freelist, allocated from page_address_maps.
498  */
499 static struct list_head page_address_pool;      /* freelist */
500 static spinlock_t pool_lock;                    /* protects page_address_pool */
501
502 /*
503  * Hash table bucket
504  */
505 static struct page_address_slot {
506         struct list_head lh;                    /* List of page_address_maps */
507         spinlock_t lock;                        /* Protect this bucket's list */
508 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
509
510 static struct page_address_slot *page_slot(struct page *page)
511 {
512         return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
513 }
514
515 void *page_address(struct page *page)
516 {
517         unsigned long flags;
518         void *ret;
519         struct page_address_slot *pas;
520
521         if (!PageHighMem(page))
522                 return lowmem_page_address(page);
523
524         pas = page_slot(page);
525         ret = NULL;
526         spin_lock_irqsave(&pas->lock, flags);
527         if (!list_empty(&pas->lh)) {
528                 struct page_address_map *pam;
529
530                 list_for_each_entry(pam, &pas->lh, list) {
531                         if (pam->page == page) {
532                                 ret = pam->virtual;
533                                 goto done;
534                         }
535                 }
536         }
537 done:
538         spin_unlock_irqrestore(&pas->lock, flags);
539         return ret;
540 }
541
542 EXPORT_SYMBOL(page_address);
543
544 void set_page_address(struct page *page, void *virtual)
545 {
546         unsigned long flags;
547         struct page_address_slot *pas;
548         struct page_address_map *pam;
549
550         BUG_ON(!PageHighMem(page));
551
552         pas = page_slot(page);
553         if (virtual) {          /* Add */
554                 BUG_ON(list_empty(&page_address_pool));
555
556                 spin_lock_irqsave(&pool_lock, flags);
557                 pam = list_entry(page_address_pool.next,
558                                 struct page_address_map, list);
559                 list_del(&pam->list);
560                 spin_unlock_irqrestore(&pool_lock, flags);
561
562                 pam->page = page;
563                 pam->virtual = virtual;
564
565                 spin_lock_irqsave(&pas->lock, flags);
566                 list_add_tail(&pam->list, &pas->lh);
567                 spin_unlock_irqrestore(&pas->lock, flags);
568         } else {                /* Remove */
569                 spin_lock_irqsave(&pas->lock, flags);
570                 list_for_each_entry(pam, &pas->lh, list) {
571                         if (pam->page == page) {
572                                 list_del(&pam->list);
573                                 spin_unlock_irqrestore(&pas->lock, flags);
574                                 spin_lock_irqsave(&pool_lock, flags);
575                                 list_add_tail(&pam->list, &page_address_pool);
576                                 spin_unlock_irqrestore(&pool_lock, flags);
577                                 goto done;
578                         }
579                 }
580                 spin_unlock_irqrestore(&pas->lock, flags);
581         }
582 done:
583         return;
584 }
585
586 static struct page_address_map page_address_maps[LAST_PKMAP];
587
588 void __init page_address_init(void)
589 {
590         int i;
591
592         INIT_LIST_HEAD(&page_address_pool);
593         for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
594                 list_add(&page_address_maps[i].list, &page_address_pool);
595         for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
596                 INIT_LIST_HEAD(&page_address_htable[i].lh);
597                 spin_lock_init(&page_address_htable[i].lock);
598         }
599         spin_lock_init(&pool_lock);
600 }
601
602 #endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */