4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
56 #include "epcaconfig.h"
58 /* ---------------------- Begin defines ------------------------ */
60 #define VERSION "1.3.0.1-LK2.6"
62 /* This major needs to be submitted to Linux to join the majors list */
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
72 /* ----------------- Begin global definitions ------------------- */
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
77 static int setup_error_code;
78 static int invalid_lilo_config;
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
92 /* ------------- Begin structures used for driver registeration ---------- */
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
97 /* ------------------ Begin Digi specific structures -------------------- */
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
107 static struct channel digi_channels[MAX_ALLOC];
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
116 static struct timer_list epca_timer;
118 /* ---------------------- Begin function prototypes --------------------- */
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
124 ----------------------------------------------------------------------- */
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
174 /* ------------------- Begin declare functions ----------------------- */
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
230 static void memwinon(struct board_info *b, unsigned int win)
232 (b->memwinon)(b, win);
235 static void memwinoff(struct board_info *b, unsigned int win)
237 (b->memwinoff)(b, win);
240 static void globalwinon(struct channel *ch)
242 (ch->board->globalwinon)(ch);
245 static void rxwinon(struct channel *ch)
247 (ch->board->rxwinon)(ch);
250 static void txwinon(struct channel *ch)
252 (ch->board->txwinon)(ch);
255 static void memoff(struct channel *ch)
257 (ch->board->memoff)(ch);
259 static void assertgwinon(struct channel *ch)
261 (ch->board->assertgwinon)(ch);
264 static void assertmemoff(struct channel *ch)
266 (ch->board->assertmemoff)(ch);
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
272 ------------------------------------------------------------ */
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
276 outb_p(FEPWIN|win, b->port + 1);
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
281 outb_p(0, b->port + 1);
284 static void pcxem_globalwinon(struct channel *ch)
286 outb_p( FEPWIN, (int)ch->board->port + 1);
289 static void pcxem_rxwinon(struct channel *ch)
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
294 static void pcxem_txwinon(struct channel *ch)
296 outb_p(ch->txwin, (int)ch->board->port + 1);
299 static void pcxem_memoff(struct channel *ch)
301 outb_p(0, (int)ch->board->port + 1);
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
308 outb_p(FEPWIN | win, b->port + 1);
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
313 outb_p(inb(b->port) & ~FEPMEM,
315 outb_p(0, b->port + 1);
318 static void pcxe_globalwinon(struct channel *ch)
320 outb_p( FEPWIN, (int)ch->board->port + 1);
323 static void pcxe_rxwinon(struct channel *ch)
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
328 static void pcxe_txwinon(struct channel *ch)
330 outb_p(ch->txwin, (int)ch->board->port + 1);
333 static void pcxe_memoff(struct channel *ch)
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
343 outb_p(inb(b->port) | FEPMEM, b->port);
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
351 static void pcxi_globalwinon(struct channel *ch)
353 outb_p(FEPMEM, ch->board->port);
356 static void pcxi_rxwinon(struct channel *ch)
358 outb_p(FEPMEM, ch->board->port);
361 static void pcxi_txwinon(struct channel *ch)
363 outb_p(FEPMEM, ch->board->port);
366 static void pcxi_memoff(struct channel *ch)
368 outb_p(0, ch->board->port);
371 static void pcxi_assertgwinon(struct channel *ch)
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
376 static void pcxi_assertmemoff(struct channel *ch)
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
399 static void dummy_globalwinon(struct channel *ch)
403 static void dummy_rxwinon(struct channel *ch)
407 static void dummy_txwinon(struct channel *ch)
411 static void dummy_memoff(struct channel *ch)
415 static void dummy_assertgwinon(struct channel *ch)
419 static void dummy_assertmemoff(struct channel *ch)
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
441 } /* End verifyChannel */
443 /* ------------------ Begin pc_sched_event ------------------------- */
445 static void pc_sched_event(struct channel *ch, int event)
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
455 /* ------------------ Begin epca_error ------------------------- */
457 static void epca_error(int line, char *msg)
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
486 } /* End channel is open more than once */
488 /* Port open only once go ahead with shutdown & reset */
492 /* ---------------------------------------------------------------
493 Let the rest of the driver know the channel is being closed.
494 This becomes important if an open is attempted before close
496 ------------------------------------------------------------------ */
497 ch->asyncflags |= ASYNC_CLOSING;
500 spin_unlock_irqrestore(&epca_lock, flags);
502 if (ch->asyncflags & ASYNC_INITIALIZED) {
503 /* Setup an event to indicate when the transmit buffer empties */
504 setup_empty_event(tty, ch);
505 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
507 if (tty->driver->flush_buffer)
508 tty->driver->flush_buffer(tty);
510 tty_ldisc_flush(tty);
513 spin_lock_irqsave(&epca_lock, flags);
517 spin_unlock_irqrestore(&epca_lock, flags);
519 if (ch->blocked_open) { /* Begin if blocked_open */
521 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
522 wake_up_interruptible(&ch->open_wait);
523 } /* End if blocked_open */
524 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
526 wake_up_interruptible(&ch->close_wait);
527 } /* End if ch != NULL */
530 /* ------------------ Begin shutdown ------------------------- */
532 static void shutdown(struct channel *ch)
533 { /* Begin shutdown */
536 struct tty_struct *tty;
537 struct board_chan __iomem *bc;
539 if (!(ch->asyncflags & ASYNC_INITIALIZED))
542 spin_lock_irqsave(&epca_lock, flags);
547 /* ------------------------------------------------------------------
548 In order for an event to be generated on the receipt of data the
549 idata flag must be set. Since we are shutting down, this is not
550 necessary clear this flag.
551 --------------------------------------------------------------------- */
554 writeb(0, &bc->idata);
557 /* ----------------------------------------------------------------
558 If we're a modem control device and HUPCL is on, drop RTS & DTR.
559 ------------------------------------------------------------------ */
561 if (tty->termios->c_cflag & HUPCL) {
562 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
563 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
567 /* ------------------------------------------------------------------
568 The channel has officialy been closed. The next time it is opened
569 it will have to reinitialized. Set a flag to indicate this.
570 ---------------------------------------------------------------------- */
572 /* Prevent future Digi programmed interrupts from coming active */
574 ch->asyncflags &= ~ASYNC_INITIALIZED;
575 spin_unlock_irqrestore(&epca_lock, flags);
579 /* ------------------ Begin pc_hangup ------------------------- */
581 static void pc_hangup(struct tty_struct *tty)
582 { /* Begin pc_hangup */
585 /* ---------------------------------------------------------
586 verifyChannel returns the channel from the tty struct
587 if it is valid. This serves as a sanity check.
588 ------------------------------------------------------------- */
590 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
593 if (tty->driver->flush_buffer)
594 tty->driver->flush_buffer(tty);
595 tty_ldisc_flush(tty);
598 spin_lock_irqsave(&epca_lock, flags);
602 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
603 spin_unlock_irqrestore(&epca_lock, flags);
604 wake_up_interruptible(&ch->open_wait);
605 } /* End if ch != NULL */
607 } /* End pc_hangup */
609 /* ------------------ Begin pc_write ------------------------- */
611 static int pc_write(struct tty_struct * tty,
612 const unsigned char *buf, int bytesAvailable)
613 { /* Begin pc_write */
614 unsigned int head, tail;
621 struct board_chan __iomem *bc;
623 /* ----------------------------------------------------------------
624 pc_write is primarily called directly by the kernel routine
625 tty_write (Though it can also be called by put_char) found in
626 tty_io.c. pc_write is passed a line discipline buffer where
627 the data to be written out is stored. The line discipline
628 implementation itself is done at the kernel level and is not
629 brought into the driver.
630 ------------------------------------------------------------------- */
632 /* ---------------------------------------------------------
633 verifyChannel returns the channel from the tty struct
634 if it is valid. This serves as a sanity check.
635 ------------------------------------------------------------- */
637 if ((ch = verifyChannel(tty)) == NULL)
640 /* Make a pointer to the channel data structure found on the board. */
643 size = ch->txbufsize;
646 spin_lock_irqsave(&epca_lock, flags);
649 head = readw(&bc->tin) & (size - 1);
650 tail = readw(&bc->tout);
652 if (tail != readw(&bc->tout))
653 tail = readw(&bc->tout);
656 /* If head >= tail, head has not wrapped around. */
657 if (head >= tail) { /* Begin head has not wrapped */
658 /* ---------------------------------------------------------------
659 remain (much like dataLen above) represents the total amount of
660 space available on the card for data. Here dataLen represents
661 the space existing between the head pointer and the end of
662 buffer. This is important because a memcpy cannot be told to
663 automatically wrap around when it hits the buffer end.
664 ------------------------------------------------------------------ */
665 dataLen = size - head;
666 remain = size - (head - tail) - 1;
667 } else { /* Begin head has wrapped around */
669 remain = tail - head - 1;
672 } /* End head has wrapped around */
673 /* -------------------------------------------------------------------
674 Check the space on the card. If we have more data than
675 space; reduce the amount of data to fit the space.
676 ---------------------------------------------------------------------- */
677 bytesAvailable = min(remain, bytesAvailable);
679 while (bytesAvailable > 0)
680 { /* Begin while there is data to copy onto card */
682 /* -----------------------------------------------------------------
683 If head is not wrapped, the below will make sure the first
684 data copy fills to the end of card buffer.
685 ------------------------------------------------------------------- */
687 dataLen = min(bytesAvailable, dataLen);
688 memcpy_toio(ch->txptr + head, buf, dataLen);
691 amountCopied += dataLen;
692 bytesAvailable -= dataLen;
698 } /* End while there is data to copy onto card */
699 ch->statusflags |= TXBUSY;
701 writew(head, &bc->tin);
703 if ((ch->statusflags & LOWWAIT) == 0) {
704 ch->statusflags |= LOWWAIT;
705 writeb(1, &bc->ilow);
708 spin_unlock_irqrestore(&epca_lock, flags);
709 return(amountCopied);
713 /* ------------------ Begin pc_put_char ------------------------- */
715 static void pc_put_char(struct tty_struct *tty, unsigned char c)
716 { /* Begin pc_put_char */
717 pc_write(tty, &c, 1);
718 } /* End pc_put_char */
720 /* ------------------ Begin pc_write_room ------------------------- */
722 static int pc_write_room(struct tty_struct *tty)
723 { /* Begin pc_write_room */
728 unsigned int head, tail;
729 struct board_chan __iomem *bc;
733 /* ---------------------------------------------------------
734 verifyChannel returns the channel from the tty struct
735 if it is valid. This serves as a sanity check.
736 ------------------------------------------------------------- */
738 if ((ch = verifyChannel(tty)) != NULL) {
739 spin_lock_irqsave(&epca_lock, flags);
743 head = readw(&bc->tin) & (ch->txbufsize - 1);
744 tail = readw(&bc->tout);
746 if (tail != readw(&bc->tout))
747 tail = readw(&bc->tout);
748 /* Wrap tail if necessary */
749 tail &= (ch->txbufsize - 1);
751 if ((remain = tail - head - 1) < 0 )
752 remain += ch->txbufsize;
754 if (remain && (ch->statusflags & LOWWAIT) == 0) {
755 ch->statusflags |= LOWWAIT;
756 writeb(1, &bc->ilow);
759 spin_unlock_irqrestore(&epca_lock, flags);
761 /* Return how much room is left on card */
764 } /* End pc_write_room */
766 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
768 static int pc_chars_in_buffer(struct tty_struct *tty)
769 { /* Begin pc_chars_in_buffer */
772 unsigned int ctail, head, tail;
776 struct board_chan __iomem *bc;
778 /* ---------------------------------------------------------
779 verifyChannel returns the channel from the tty struct
780 if it is valid. This serves as a sanity check.
781 ------------------------------------------------------------- */
783 if ((ch = verifyChannel(tty)) == NULL)
786 spin_lock_irqsave(&epca_lock, flags);
790 tail = readw(&bc->tout);
791 head = readw(&bc->tin);
792 ctail = readw(&ch->mailbox->cout);
794 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
796 else { /* Begin if some space on the card has been used */
797 head = readw(&bc->tin) & (ch->txbufsize - 1);
798 tail &= (ch->txbufsize - 1);
799 /* --------------------------------------------------------------
800 The logic here is basically opposite of the above pc_write_room
801 here we are finding the amount of bytes in the buffer filled.
802 Not the amount of bytes empty.
803 ------------------------------------------------------------------- */
804 if ((remain = tail - head - 1) < 0 )
805 remain += ch->txbufsize;
806 chars = (int)(ch->txbufsize - remain);
807 /* -------------------------------------------------------------
808 Make it possible to wakeup anything waiting for output
811 If not already set. Setup an event to indicate when the
812 transmit buffer empties
813 ----------------------------------------------------------------- */
814 if (!(ch->statusflags & EMPTYWAIT))
815 setup_empty_event(tty,ch);
817 } /* End if some space on the card has been used */
819 spin_unlock_irqrestore(&epca_lock, flags);
820 /* Return number of characters residing on card. */
823 } /* End pc_chars_in_buffer */
825 /* ------------------ Begin pc_flush_buffer ---------------------- */
827 static void pc_flush_buffer(struct tty_struct *tty)
828 { /* Begin pc_flush_buffer */
833 struct board_chan __iomem *bc;
834 /* ---------------------------------------------------------
835 verifyChannel returns the channel from the tty struct
836 if it is valid. This serves as a sanity check.
837 ------------------------------------------------------------- */
838 if ((ch = verifyChannel(tty)) == NULL)
841 spin_lock_irqsave(&epca_lock, flags);
844 tail = readw(&bc->tout);
845 /* Have FEP move tout pointer; effectively flushing transmit buffer */
846 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
848 spin_unlock_irqrestore(&epca_lock, flags);
849 wake_up_interruptible(&tty->write_wait);
851 } /* End pc_flush_buffer */
853 /* ------------------ Begin pc_flush_chars ---------------------- */
855 static void pc_flush_chars(struct tty_struct *tty)
856 { /* Begin pc_flush_chars */
858 /* ---------------------------------------------------------
859 verifyChannel returns the channel from the tty struct
860 if it is valid. This serves as a sanity check.
861 ------------------------------------------------------------- */
862 if ((ch = verifyChannel(tty)) != NULL) {
864 spin_lock_irqsave(&epca_lock, flags);
865 /* ----------------------------------------------------------------
866 If not already set and the transmitter is busy setup an event
867 to indicate when the transmit empties.
868 ------------------------------------------------------------------- */
869 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
870 setup_empty_event(tty,ch);
871 spin_unlock_irqrestore(&epca_lock, flags);
873 } /* End pc_flush_chars */
875 /* ------------------ Begin block_til_ready ---------------------- */
877 static int block_til_ready(struct tty_struct *tty,
878 struct file *filp, struct channel *ch)
879 { /* Begin block_til_ready */
880 DECLARE_WAITQUEUE(wait,current);
881 int retval, do_clocal = 0;
884 if (tty_hung_up_p(filp)) {
885 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
888 retval = -ERESTARTSYS;
892 /* -----------------------------------------------------------------
893 If the device is in the middle of being closed, then block
894 until it's done, and then try again.
895 -------------------------------------------------------------------- */
896 if (ch->asyncflags & ASYNC_CLOSING) {
897 interruptible_sleep_on(&ch->close_wait);
899 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
905 if (filp->f_flags & O_NONBLOCK) {
906 /* -----------------------------------------------------------------
907 If non-blocking mode is set, then make the check up front
909 -------------------------------------------------------------------- */
910 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
913 if (tty->termios->c_cflag & CLOCAL)
915 /* Block waiting for the carrier detect and the line to become free */
918 add_wait_queue(&ch->open_wait, &wait);
920 spin_lock_irqsave(&epca_lock, flags);
921 /* We dec count so that pc_close will know when to free things */
922 if (!tty_hung_up_p(filp))
926 { /* Begin forever while */
927 set_current_state(TASK_INTERRUPTIBLE);
928 if (tty_hung_up_p(filp) ||
929 !(ch->asyncflags & ASYNC_INITIALIZED))
931 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
934 retval = -ERESTARTSYS;
937 if (!(ch->asyncflags & ASYNC_CLOSING) &&
938 (do_clocal || (ch->imodem & ch->dcd)))
940 if (signal_pending(current)) {
941 retval = -ERESTARTSYS;
944 spin_unlock_irqrestore(&epca_lock, flags);
945 /* ---------------------------------------------------------------
946 Allow someone else to be scheduled. We will occasionally go
947 through this loop until one of the above conditions change.
948 The below schedule call will allow other processes to enter and
949 prevent this loop from hogging the cpu.
950 ------------------------------------------------------------------ */
952 spin_lock_irqsave(&epca_lock, flags);
954 } /* End forever while */
956 current->state = TASK_RUNNING;
957 remove_wait_queue(&ch->open_wait, &wait);
958 if (!tty_hung_up_p(filp))
962 spin_unlock_irqrestore(&epca_lock, flags);
967 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
969 } /* End block_til_ready */
971 /* ------------------ Begin pc_open ---------------------- */
973 static int pc_open(struct tty_struct *tty, struct file * filp)
974 { /* Begin pc_open */
978 int line, retval, boardnum;
979 struct board_chan __iomem *bc;
983 if (line < 0 || line >= nbdevs)
986 ch = &digi_channels[line];
987 boardnum = ch->boardnum;
989 /* Check status of board configured in system. */
991 /* -----------------------------------------------------------------
992 I check to see if the epca_setup routine detected an user error.
993 It might be better to put this in pc_init, but for the moment it
995 ---------------------------------------------------------------------- */
997 if (invalid_lilo_config) {
998 if (setup_error_code & INVALID_BOARD_TYPE)
999 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
1000 if (setup_error_code & INVALID_NUM_PORTS)
1001 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1002 if (setup_error_code & INVALID_MEM_BASE)
1003 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_PORT_BASE)
1005 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1006 if (setup_error_code & INVALID_BOARD_STATUS)
1007 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1008 if (setup_error_code & INVALID_ALTPIN)
1009 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1010 tty->driver_data = NULL; /* Mark this device as 'down' */
1013 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1014 tty->driver_data = NULL; /* Mark this device as 'down' */
1018 if ((bc = ch->brdchan) == 0) {
1019 tty->driver_data = NULL;
1023 spin_lock_irqsave(&epca_lock, flags);
1024 /* ------------------------------------------------------------------
1025 Every time a channel is opened, increment a counter. This is
1026 necessary because we do not wish to flush and shutdown the channel
1027 until the last app holding the channel open, closes it.
1028 --------------------------------------------------------------------- */
1030 /* ----------------------------------------------------------------
1031 Set a kernel structures pointer to our local channel
1032 structure. This way we can get to it when passed only
1034 ------------------------------------------------------------------ */
1035 tty->driver_data = ch;
1036 /* ----------------------------------------------------------------
1037 If this is the first time the channel has been opened, initialize
1038 the tty->termios struct otherwise let pc_close handle it.
1039 -------------------------------------------------------------------- */
1041 ch->statusflags = 0;
1043 /* Save boards current modem status */
1044 ch->imodem = readb(&bc->mstat);
1046 /* ----------------------------------------------------------------
1047 Set receive head and tail ptrs to each other. This indicates
1048 no data available to read.
1049 ----------------------------------------------------------------- */
1050 head = readw(&bc->rin);
1051 writew(head, &bc->rout);
1053 /* Set the channels associated tty structure */
1056 /* -----------------------------------------------------------------
1057 The below routine generally sets up parity, baud, flow control
1058 issues, etc.... It effect both control flags and input flags.
1059 -------------------------------------------------------------------- */
1061 ch->asyncflags |= ASYNC_INITIALIZED;
1063 spin_unlock_irqrestore(&epca_lock, flags);
1065 retval = block_til_ready(tty, filp, ch);
1068 /* -------------------------------------------------------------
1069 Set this again in case a hangup set it to zero while this
1070 open() was waiting for the line...
1071 --------------------------------------------------------------- */
1072 spin_lock_irqsave(&epca_lock, flags);
1075 /* Enable Digi Data events */
1076 writeb(1, &bc->idata);
1078 spin_unlock_irqrestore(&epca_lock, flags);
1082 static int __init epca_module_init(void)
1083 { /* Begin init_module */
1087 module_init(epca_module_init);
1089 static struct pci_driver epca_driver;
1091 static void __exit epca_module_exit(void)
1094 struct board_info *bd;
1097 del_timer_sync(&epca_timer);
1099 if ((tty_unregister_driver(pc_driver)) ||
1100 (tty_unregister_driver(pc_info)))
1102 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1105 put_tty_driver(pc_driver);
1106 put_tty_driver(pc_info);
1108 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1111 { /* Begin sanity check */
1112 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1114 } /* End sanity check */
1116 for (count = 0; count < bd->numports; count++, ch++)
1117 { /* Begin for each port */
1120 tty_hangup(ch->tty);
1123 } /* End for each port */
1124 } /* End for each card */
1125 pci_unregister_driver (&epca_driver);
1128 module_exit(epca_module_exit);
1130 static struct tty_operations pc_ops = {
1134 .write_room = pc_write_room,
1135 .flush_buffer = pc_flush_buffer,
1136 .chars_in_buffer = pc_chars_in_buffer,
1137 .flush_chars = pc_flush_chars,
1138 .put_char = pc_put_char,
1140 .set_termios = pc_set_termios,
1143 .throttle = pc_throttle,
1144 .unthrottle = pc_unthrottle,
1145 .hangup = pc_hangup,
1148 static int info_open(struct tty_struct *tty, struct file * filp)
1153 static struct tty_operations info_ops = {
1155 .ioctl = info_ioctl,
1158 /* ------------------ Begin pc_init ---------------------- */
1160 static int __init pc_init(void)
1161 { /* Begin pc_init */
1163 struct board_info *bd;
1164 unsigned char board_id = 0;
1166 int pci_boards_found, pci_count;
1170 pc_driver = alloc_tty_driver(MAX_ALLOC);
1174 pc_info = alloc_tty_driver(MAX_ALLOC);
1176 put_tty_driver(pc_driver);
1180 /* -----------------------------------------------------------------------
1181 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1182 board structure defined by digiConfig into drivers board structure.
1183 Note : If LILO has ran epca_setup then epca_setup will handle defining
1184 num_cards as well as copying the data into the board structure.
1185 -------------------------------------------------------------------------- */
1186 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1189 num_cards = NUMCARDS;
1190 memcpy((void *)&boards, (void *)&static_boards,
1191 (sizeof(struct board_info) * NUMCARDS));
1192 } /* End driver has been configured via. epcaconfig */
1194 /* -----------------------------------------------------------------
1195 Note : If lilo was used to configure the driver and the
1196 ignore epcaconfig option was choosen (digiepca=2) then
1197 nbdevs and num_cards will equal 0 at this point. This is
1198 okay; PCI cards will still be picked up if detected.
1199 --------------------------------------------------------------------- */
1201 /* -----------------------------------------------------------
1202 Set up interrupt, we will worry about memory allocation in
1204 --------------------------------------------------------------- */
1207 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1209 /* ------------------------------------------------------------------
1210 NOTE : This code assumes that the number of ports found in
1211 the boards array is correct. This could be wrong if
1212 the card in question is PCI (And therefore has no ports
1213 entry in the boards structure.) The rest of the
1214 information will be valid for PCI because the beginning
1215 of pc_init scans for PCI and determines i/o and base
1216 memory addresses. I am not sure if it is possible to
1217 read the number of ports supported by the card prior to
1218 it being booted (Since that is the state it is in when
1219 pc_init is run). Because it is not possible to query the
1220 number of supported ports until after the card has booted;
1221 we are required to calculate the card_ptrs as the card is
1222 is initialized (Inside post_fep_init). The negative thing
1223 about this approach is that digiDload's call to GET_INFO
1224 will have a bad port value. (Since this is called prior
1227 --------------------------------------------------------------------- */
1229 pci_boards_found = 0;
1230 if(num_cards < MAXBOARDS)
1231 pci_boards_found += init_PCI();
1232 num_cards += pci_boards_found;
1234 pc_driver->owner = THIS_MODULE;
1235 pc_driver->name = "ttyD";
1236 pc_driver->devfs_name = "tts/D";
1237 pc_driver->major = DIGI_MAJOR;
1238 pc_driver->minor_start = 0;
1239 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1240 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1241 pc_driver->init_termios = tty_std_termios;
1242 pc_driver->init_termios.c_iflag = 0;
1243 pc_driver->init_termios.c_oflag = 0;
1244 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1245 pc_driver->init_termios.c_lflag = 0;
1246 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1247 tty_set_operations(pc_driver, &pc_ops);
1249 pc_info->owner = THIS_MODULE;
1250 pc_info->name = "digi_ctl";
1251 pc_info->major = DIGIINFOMAJOR;
1252 pc_info->minor_start = 0;
1253 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1254 pc_info->subtype = SERIAL_TYPE_INFO;
1255 pc_info->init_termios = tty_std_termios;
1256 pc_info->init_termios.c_iflag = 0;
1257 pc_info->init_termios.c_oflag = 0;
1258 pc_info->init_termios.c_lflag = 0;
1259 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1260 pc_info->flags = TTY_DRIVER_REAL_RAW;
1261 tty_set_operations(pc_info, &info_ops);
1264 for (crd = 0; crd < num_cards; crd++)
1265 { /* Begin for each card */
1267 /* ------------------------------------------------------------------
1268 This is where the appropriate memory handlers for the hardware is
1269 set. Everything at runtime blindly jumps through these vectors.
1270 ---------------------------------------------------------------------- */
1272 /* defined in epcaconfig.h */
1276 { /* Begin switch on bd->type {board type} */
1279 bd->memwinon = pcxem_memwinon ;
1280 bd->memwinoff = pcxem_memwinoff ;
1281 bd->globalwinon = pcxem_globalwinon ;
1282 bd->txwinon = pcxem_txwinon ;
1283 bd->rxwinon = pcxem_rxwinon ;
1284 bd->memoff = pcxem_memoff ;
1285 bd->assertgwinon = dummy_assertgwinon;
1286 bd->assertmemoff = dummy_assertmemoff;
1292 bd->memwinon = dummy_memwinon;
1293 bd->memwinoff = dummy_memwinoff;
1294 bd->globalwinon = dummy_globalwinon;
1295 bd->txwinon = dummy_txwinon;
1296 bd->rxwinon = dummy_rxwinon;
1297 bd->memoff = dummy_memoff;
1298 bd->assertgwinon = dummy_assertgwinon;
1299 bd->assertmemoff = dummy_assertmemoff;
1305 bd->memwinon = pcxe_memwinon;
1306 bd->memwinoff = pcxe_memwinoff;
1307 bd->globalwinon = pcxe_globalwinon;
1308 bd->txwinon = pcxe_txwinon;
1309 bd->rxwinon = pcxe_rxwinon;
1310 bd->memoff = pcxe_memoff;
1311 bd->assertgwinon = dummy_assertgwinon;
1312 bd->assertmemoff = dummy_assertmemoff;
1318 bd->memwinon = pcxi_memwinon;
1319 bd->memwinoff = pcxi_memwinoff;
1320 bd->globalwinon = pcxi_globalwinon;
1321 bd->txwinon = pcxi_txwinon;
1322 bd->rxwinon = pcxi_rxwinon;
1323 bd->memoff = pcxi_memoff;
1324 bd->assertgwinon = pcxi_assertgwinon;
1325 bd->assertmemoff = pcxi_assertmemoff;
1331 } /* End switch on bd->type */
1333 /* ---------------------------------------------------------------
1334 Some cards need a memory segment to be defined for use in
1335 transmit and receive windowing operations. These boards
1336 are listed in the below switch. In the case of the XI the
1337 amount of memory on the board is variable so the memory_seg
1338 is also variable. This code determines what they segment
1340 ----------------------------------------------------------------- */
1343 { /* Begin switch on bd->type {board type} */
1348 bd->memory_seg = 0xf000;
1352 board_id = inb((int)bd->port);
1353 if ((board_id & 0x1) == 0x1)
1354 { /* Begin it's an XI card */
1356 /* Is it a 64K board */
1357 if ((board_id & 0x30) == 0)
1358 bd->memory_seg = 0xf000;
1360 /* Is it a 128K board */
1361 if ((board_id & 0x30) == 0x10)
1362 bd->memory_seg = 0xe000;
1364 /* Is is a 256K board */
1365 if ((board_id & 0x30) == 0x20)
1366 bd->memory_seg = 0xc000;
1368 /* Is it a 512K board */
1369 if ((board_id & 0x30) == 0x30)
1370 bd->memory_seg = 0x8000;
1372 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1375 } /* End switch on bd->type */
1377 } /* End for each card */
1379 if (tty_register_driver(pc_driver))
1380 panic("Couldn't register Digi PC/ driver");
1382 if (tty_register_driver(pc_info))
1383 panic("Couldn't register Digi PC/ info ");
1385 /* -------------------------------------------------------------------
1386 Start up the poller to check for events on all enabled boards
1387 ---------------------------------------------------------------------- */
1389 init_timer(&epca_timer);
1390 epca_timer.function = epcapoll;
1391 mod_timer(&epca_timer, jiffies + HZ/25);
1396 /* ------------------ Begin post_fep_init ---------------------- */
1398 static void post_fep_init(unsigned int crd)
1399 { /* Begin post_fep_init */
1402 void __iomem *memaddr;
1403 struct global_data __iomem *gd;
1404 struct board_info *bd;
1405 struct board_chan __iomem *bc;
1407 int shrinkmem = 0, lowwater ;
1409 /* -------------------------------------------------------------
1410 This call is made by the user via. the ioctl call DIGI_INIT.
1411 It is responsible for setting up all the card specific stuff.
1412 ---------------------------------------------------------------- */
1415 /* -----------------------------------------------------------------
1416 If this is a PCI board, get the port info. Remember PCI cards
1417 do not have entries into the epcaconfig.h file, so we can't get
1418 the number of ports from it. Unfortunetly, this means that anyone
1419 doing a DIGI_GETINFO before the board has booted will get an invalid
1420 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1421 after DIGI_INIT has been called will return the proper values.
1422 ------------------------------------------------------------------- */
1424 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1425 /* --------------------------------------------------------------------
1426 Below we use XEMPORTS as a memory offset regardless of which PCI
1427 card it is. This is because all of the supported PCI cards have
1428 the same memory offset for the channel data. This will have to be
1429 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1430 states that the port offset is 0xC22 as opposed to 0xC02. This is
1431 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1432 On the PCI cards the number of ports is determined by reading a
1433 ID PROM located in the box attached to the card. The card can then
1434 determine the index the id to determine the number of ports available.
1435 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1436 if the box in question is a XEM or CX)).
1437 ------------------------------------------------------------------------ */
1438 /* PCI cards are already remapped at this point ISA are not */
1439 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1440 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1441 nbdevs += (bd->numports);
1443 /* Fix up the mappings for ISA/EISA etc */
1444 /* FIXME: 64K - can we be smarter ? */
1445 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1449 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1451 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1454 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1456 memaddr = bd->re_map_membase;
1458 /* -----------------------------------------------------------------
1459 The below assignment will set bc to point at the BEGINING of
1460 the cards channel structures. For 1 card there will be between
1461 8 and 64 of these structures.
1462 -------------------------------------------------------------------- */
1464 bc = memaddr + CHANSTRUCT;
1466 /* -------------------------------------------------------------------
1467 The below assignment will set gd to point at the BEGINING of
1468 global memory address 0xc00. The first data in that global
1469 memory actually starts at address 0xc1a. The command in
1470 pointer begins at 0xd10.
1471 ---------------------------------------------------------------------- */
1473 gd = memaddr + GLOBAL;
1475 /* --------------------------------------------------------------------
1476 XEPORTS (address 0xc22) points at the number of channels the
1477 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1478 ----------------------------------------------------------------------- */
1480 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1482 if (bd->type < PCIXEM)
1483 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1487 /* --------------------------------------------------------------------
1488 Remember ch is the main drivers channels structure, while bc is
1489 the cards channel structure.
1490 ------------------------------------------------------------------------ */
1492 /* For every port on the card do ..... */
1494 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1495 unsigned long flags;
1500 INIT_WORK(&ch->tqueue, do_softint, ch);
1501 ch->board = &boards[crd];
1503 spin_lock_irqsave(&epca_lock, flags);
1505 /* ----------------------------------------------------------------
1506 Since some of the boards use different bitmaps for their
1507 control signals we cannot hard code these values and retain
1508 portability. We virtualize this data here.
1509 ------------------------------------------------------------------- */
1535 } /* End switch bd->type */
1537 if (boards[crd].altpin) {
1538 ch->dsr = ch->m_dcd;
1539 ch->dcd = ch->m_dsr;
1540 ch->digiext.digi_flags |= DIGI_ALTPIN;
1543 ch->dcd = ch->m_dcd;
1544 ch->dsr = ch->m_dsr;
1549 ch->magic = EPCA_MAGIC;
1553 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1557 tseg = readw(&bc->tseg);
1558 rseg = readw(&bc->rseg);
1565 /* Cover all the 2MEG cards */
1566 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1567 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1568 ch->txwin = FEPWIN | (tseg >> 11);
1569 ch->rxwin = FEPWIN | (rseg >> 11);
1574 /* Cover all the 32K windowed cards */
1575 /* Mask equal to window size - 1 */
1576 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1577 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1578 ch->txwin = FEPWIN | (tseg >> 11);
1579 ch->rxwin = FEPWIN | (rseg >> 11);
1584 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1585 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1586 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1587 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1592 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1593 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1594 ch->txwin = ch->rxwin = 0;
1597 } /* End switch bd->type */
1600 ch->txbufsize = readw(&bc->tmax) + 1;
1603 ch->rxbufsize = readw(&bc->rmax) + 1;
1605 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1607 /* Set transmitter low water mark */
1608 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1610 /* Set receiver low water mark */
1612 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1614 /* Set receiver high water mark */
1616 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1618 writew(100, &bc->edelay);
1619 writeb(1, &bc->idata);
1621 ch->startc = readb(&bc->startc);
1622 ch->stopc = readb(&bc->stopc);
1623 ch->startca = readb(&bc->startca);
1624 ch->stopca = readb(&bc->stopca);
1634 ch->close_delay = 50;
1636 ch->blocked_open = 0;
1637 init_waitqueue_head(&ch->open_wait);
1638 init_waitqueue_head(&ch->close_wait);
1640 spin_unlock_irqrestore(&epca_lock, flags);
1642 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1644 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1645 release_region((int)bd->port, 4);
1647 kfree((ch--)->tmp_buf);
1650 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1651 } /* End for each port */
1654 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1655 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1658 } /* End post_fep_init */
1660 /* --------------------- Begin epcapoll ------------------------ */
1662 static void epcapoll(unsigned long ignored)
1663 { /* Begin epcapoll */
1665 unsigned long flags;
1667 volatile unsigned int head, tail;
1669 struct board_info *bd;
1671 /* -------------------------------------------------------------------
1672 This routine is called upon every timer interrupt. Even though
1673 the Digi series cards are capable of generating interrupts this
1674 method of non-looping polling is more efficient. This routine
1675 checks for card generated events (Such as receive data, are transmit
1676 buffer empty) and acts on those events.
1677 ----------------------------------------------------------------------- */
1679 for (crd = 0; crd < num_cards; crd++)
1680 { /* Begin for each card */
1685 if ((bd->status == DISABLED) || digi_poller_inhibited)
1686 continue; /* Begin loop next interation */
1688 /* -----------------------------------------------------------
1689 assertmemoff is not needed here; indeed it is an empty subroutine.
1690 It is being kept because future boards may need this as well as
1692 ---------------------------------------------------------------- */
1694 spin_lock_irqsave(&epca_lock, flags);
1700 /* ---------------------------------------------------------------
1701 In this case head and tail actually refer to the event queue not
1702 the transmit or receive queue.
1703 ------------------------------------------------------------------- */
1705 head = readw(&ch->mailbox->ein);
1706 tail = readw(&ch->mailbox->eout);
1708 /* If head isn't equal to tail we have an event */
1714 spin_unlock_irqrestore(&epca_lock, flags);
1716 } /* End for each card */
1717 mod_timer(&epca_timer, jiffies + (HZ / 25));
1718 } /* End epcapoll */
1720 /* --------------------- Begin doevent ------------------------ */
1722 static void doevent(int crd)
1723 { /* Begin doevent */
1725 void __iomem *eventbuf;
1726 struct channel *ch, *chan0;
1727 static struct tty_struct *tty;
1728 struct board_info *bd;
1729 struct board_chan __iomem *bc;
1730 unsigned int tail, head;
1734 /* -------------------------------------------------------------------
1735 This subroutine is called by epcapoll when an event is detected
1736 in the event queue. This routine responds to those events.
1737 --------------------------------------------------------------------- */
1740 chan0 = card_ptr[crd];
1741 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1742 assertgwinon(chan0);
1743 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1744 { /* Begin while something in event queue */
1745 assertgwinon(chan0);
1746 eventbuf = bd->re_map_membase + tail + ISTART;
1747 /* Get the channel the event occurred on */
1748 channel = readb(eventbuf);
1749 /* Get the actual event code that occurred */
1750 event = readb(eventbuf + 1);
1751 /* ----------------------------------------------------------------
1752 The two assignments below get the current modem status (mstat)
1753 and the previous modem status (lstat). These are useful becuase
1754 an event could signal a change in modem signals itself.
1755 ------------------------------------------------------------------- */
1756 mstat = readb(eventbuf + 2);
1757 lstat = readb(eventbuf + 3);
1759 ch = chan0 + channel;
1760 if ((unsigned)channel >= bd->numports || !ch) {
1761 if (channel >= bd->numports)
1767 if ((bc = ch->brdchan) == NULL)
1770 if (event & DATA_IND) { /* Begin DATA_IND */
1773 } /* End DATA_IND */
1774 /* else *//* Fix for DCD transition missed bug */
1775 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1776 /* A modem signal change has been indicated */
1778 if (ch->asyncflags & ASYNC_CHECK_CD) {
1779 if (mstat & ch->dcd) /* We are now receiving dcd */
1780 wake_up_interruptible(&ch->open_wait);
1782 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1784 } /* End MODEMCHG_IND */
1786 if (tty) { /* Begin if valid tty */
1787 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1788 /* A break has been indicated */
1790 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
1791 *tty->flip.char_buf_ptr++ = 0;
1792 tty_schedule_flip(tty);
1793 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1794 if (ch->statusflags & LOWWAIT)
1795 { /* Begin if LOWWAIT */
1796 ch->statusflags &= ~LOWWAIT;
1798 wake_up_interruptible(&tty->write_wait);
1799 } /* End if LOWWAIT */
1800 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1801 /* This event is generated by setup_empty_event */
1802 ch->statusflags &= ~TXBUSY;
1803 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1804 ch->statusflags &= ~EMPTYWAIT;
1806 wake_up_interruptible(&tty->write_wait);
1807 } /* End if EMPTYWAIT */
1808 } /* End EMPTYTX_IND */
1809 } /* End if valid tty */
1813 writew(1, &bc->idata);
1814 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1816 } /* End while something in event queue */
1819 /* --------------------- Begin fepcmd ------------------------ */
1821 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1822 int byte2, int ncmds, int bytecmd)
1823 { /* Begin fepcmd */
1824 unchar __iomem *memaddr;
1825 unsigned int head, cmdTail, cmdStart, cmdMax;
1829 /* This is the routine in which commands may be passed to the card. */
1831 if (ch->board->status == DISABLED)
1834 /* Remember head (As well as max) is just an offset not a base addr */
1835 head = readw(&ch->mailbox->cin);
1836 /* cmdStart is a base address */
1837 cmdStart = readw(&ch->mailbox->cstart);
1838 /* ------------------------------------------------------------------
1839 We do the addition below because we do not want a max pointer
1840 relative to cmdStart. We want a max pointer that points at the
1841 physical end of the command queue.
1842 -------------------------------------------------------------------- */
1843 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1844 memaddr = ch->board->re_map_membase;
1846 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1847 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1848 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1852 writeb(cmd, memaddr + head + cmdStart + 0);
1853 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1854 /* Below word_or_byte is bits to set */
1855 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1856 /* Below byte2 is bits to reset */
1857 writeb(byte2, memaddr + head + cmdStart + 3);
1859 writeb(cmd, memaddr + head + cmdStart + 0);
1860 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1861 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1863 head = (head + 4) & (cmdMax - cmdStart - 4);
1864 writew(head, &ch->mailbox->cin);
1867 for (;;) { /* Begin forever loop */
1870 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1873 head = readw(&ch->mailbox->cin);
1874 cmdTail = readw(&ch->mailbox->cout);
1875 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1876 /* ----------------------------------------------------------
1877 Basically this will break when the FEP acknowledges the
1878 command by incrementing cmdTail (Making it equal to head).
1879 ------------------------------------------------------------- */
1880 if (n <= ncmds * (sizeof(short) * 4))
1881 break; /* Well nearly forever :-) */
1882 } /* End forever loop */
1885 /* ---------------------------------------------------------------------
1886 Digi products use fields in their channels structures that are very
1887 similar to the c_cflag and c_iflag fields typically found in UNIX
1888 termios structures. The below three routines allow mappings
1889 between these hardware "flags" and their respective Linux flags.
1890 ------------------------------------------------------------------------- */
1892 /* --------------------- Begin termios2digi_h -------------------- */
1894 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1895 { /* Begin termios2digi_h */
1898 if (cflag & CRTSCTS) {
1899 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1900 res |= ((ch->m_cts) | (ch->m_rts));
1903 if (ch->digiext.digi_flags & RTSPACE)
1906 if (ch->digiext.digi_flags & DTRPACE)
1909 if (ch->digiext.digi_flags & CTSPACE)
1912 if (ch->digiext.digi_flags & DSRPACE)
1915 if (ch->digiext.digi_flags & DCDPACE)
1918 if (res & (ch->m_rts))
1919 ch->digiext.digi_flags |= RTSPACE;
1921 if (res & (ch->m_cts))
1922 ch->digiext.digi_flags |= CTSPACE;
1926 } /* End termios2digi_h */
1928 /* --------------------- Begin termios2digi_i -------------------- */
1929 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1930 { /* Begin termios2digi_i */
1932 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1933 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1934 if (ch->digiext.digi_flags & DIGI_AIXON)
1938 } /* End termios2digi_i */
1940 /* --------------------- Begin termios2digi_c -------------------- */
1942 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1943 { /* Begin termios2digi_c */
1946 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1947 ch->digiext.digi_flags |= DIGI_FAST;
1948 /* -------------------------------------------------------------
1949 HUPCL bit is used by FEP to indicate fast baud
1950 table is to be used.
1951 ----------------------------------------------------------------- */
1953 } /* End detected CBAUDEX */
1954 else ch->digiext.digi_flags &= ~DIGI_FAST;
1955 /* -------------------------------------------------------------------
1956 CBAUD has bit position 0x1000 set these days to indicate Linux
1957 baud rate remap. Digi hardware can't handle the bit assignment.
1958 (We use a different bit assignment for high speed.). Clear this
1960 ---------------------------------------------------------------------- */
1961 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1962 /* -------------------------------------------------------------
1963 This gets a little confusing. The Digi cards have their own
1964 representation of c_cflags controling baud rate. For the most
1965 part this is identical to the Linux implementation. However;
1966 Digi supports one rate (76800) that Linux doesn't. This means
1967 that the c_cflag entry that would normally mean 76800 for Digi
1968 actually means 115200 under Linux. Without the below mapping,
1969 a stty 115200 would only drive the board at 76800. Since
1970 the rate 230400 is also found after 76800, the same problem afflicts
1971 us when we choose a rate of 230400. Without the below modificiation
1972 stty 230400 would actually give us 115200.
1974 There are two additional differences. The Linux value for CLOCAL
1975 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1976 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1977 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1978 should be checked for a screened out prior to termios2digi_c
1979 returning. Since CLOCAL isn't used by the board this can be
1980 ignored as long as the returned value is used only by Digi hardware.
1981 ----------------------------------------------------------------- */
1982 if (cflag & CBAUDEX) {
1983 /* -------------------------------------------------------------
1984 The below code is trying to guarantee that only baud rates
1985 115200 and 230400 are remapped. We use exclusive or because
1986 the various baud rates share common bit positions and therefore
1987 can't be tested for easily.
1988 ----------------------------------------------------------------- */
1991 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1992 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1997 } /* End termios2digi_c */
1999 /* --------------------- Begin epcaparam ----------------------- */
2001 /* Caller must hold the locks */
2002 static void epcaparam(struct tty_struct *tty, struct channel *ch)
2003 { /* Begin epcaparam */
2005 unsigned int cmdHead;
2007 struct board_chan __iomem *bc;
2008 unsigned mval, hflow, cflag, iflag;
2011 epcaassert(bc !=0, "bc out of range");
2015 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2016 cmdHead = readw(&bc->rin);
2017 writew(cmdHead, &bc->rout);
2018 cmdHead = readw(&bc->tin);
2019 /* Changing baud in mid-stream transmission can be wonderful */
2020 /* ---------------------------------------------------------------
2021 Flush current transmit buffer by setting cmdTail pointer (tout)
2022 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2023 ----------------------------------------------------------------- */
2024 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2026 } else { /* Begin CBAUD not detected */
2027 /* -------------------------------------------------------------------
2028 c_cflags have changed but that change had nothing to do with BAUD.
2029 Propagate the change to the card.
2030 ---------------------------------------------------------------------- */
2031 cflag = termios2digi_c(ch, ts->c_cflag);
2032 if (cflag != ch->fepcflag) {
2033 ch->fepcflag = cflag;
2034 /* Set baud rate, char size, stop bits, parity */
2035 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2037 /* ----------------------------------------------------------------
2038 If the user has not forced CLOCAL and if the device is not a
2039 CALLOUT device (Which is always CLOCAL) we set flags such that
2040 the driver will wait on carrier detect.
2041 ------------------------------------------------------------------- */
2042 if (ts->c_cflag & CLOCAL)
2043 ch->asyncflags &= ~ASYNC_CHECK_CD;
2045 ch->asyncflags |= ASYNC_CHECK_CD;
2046 mval = ch->m_dtr | ch->m_rts;
2047 } /* End CBAUD not detected */
2048 iflag = termios2digi_i(ch, ts->c_iflag);
2049 /* Check input mode flags */
2050 if (iflag != ch->fepiflag) {
2051 ch->fepiflag = iflag;
2052 /* ---------------------------------------------------------------
2053 Command sets channels iflag structure on the board. Such things
2054 as input soft flow control, handling of parity errors, and
2055 break handling are all set here.
2056 ------------------------------------------------------------------- */
2057 /* break handling, parity handling, input stripping, flow control chars */
2058 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2060 /* ---------------------------------------------------------------
2061 Set the board mint value for this channel. This will cause hardware
2062 events to be generated each time the DCD signal (Described in mint)
2064 ------------------------------------------------------------------- */
2065 writeb(ch->dcd, &bc->mint);
2066 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2067 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2068 writeb(0, &bc->mint);
2069 ch->imodem = readb(&bc->mstat);
2070 hflow = termios2digi_h(ch, ts->c_cflag);
2071 if (hflow != ch->hflow) {
2073 /* --------------------------------------------------------------
2074 Hard flow control has been selected but the board is not
2075 using it. Activate hard flow control now.
2076 ----------------------------------------------------------------- */
2077 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2079 mval ^= ch->modemfake & (mval ^ ch->modem);
2081 if (ch->omodem ^ mval) {
2083 /* --------------------------------------------------------------
2084 The below command sets the DTR and RTS mstat structure. If
2085 hard flow control is NOT active these changes will drive the
2086 output of the actual DTR and RTS lines. If hard flow control
2087 is active, the changes will be saved in the mstat structure and
2088 only asserted when hard flow control is turned off.
2089 ----------------------------------------------------------------- */
2091 /* First reset DTR & RTS; then set them */
2092 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2093 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2095 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2096 ch->fepstartc = ch->startc;
2097 ch->fepstopc = ch->stopc;
2098 /* ------------------------------------------------------------
2099 The XON / XOFF characters have changed; propagate these
2100 changes to the card.
2101 --------------------------------------------------------------- */
2102 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2104 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2105 ch->fepstartca = ch->startca;
2106 ch->fepstopca = ch->stopca;
2107 /* ---------------------------------------------------------------
2108 Similar to the above, this time the auxilarly XON / XOFF
2109 characters have changed; propagate these changes to the card.
2110 ------------------------------------------------------------------ */
2111 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2113 } /* End epcaparam */
2115 /* --------------------- Begin receive_data ----------------------- */
2116 /* Caller holds lock */
2117 static void receive_data(struct channel *ch)
2118 { /* Begin receive_data */
2121 struct termios *ts = NULL;
2122 struct tty_struct *tty;
2123 struct board_chan __iomem *bc;
2124 int dataToRead, wrapgap, bytesAvailable;
2125 unsigned int tail, head;
2126 unsigned int wrapmask;
2129 /* ---------------------------------------------------------------
2130 This routine is called by doint when a receive data event
2132 ------------------------------------------------------------------- */
2135 if (ch->statusflags & RXSTOPPED)
2142 wrapmask = ch->rxbufsize - 1;
2144 /* ---------------------------------------------------------------------
2145 Get the head and tail pointers to the receiver queue. Wrap the
2146 head pointer if it has reached the end of the buffer.
2147 ------------------------------------------------------------------------ */
2148 head = readw(&bc->rin);
2150 tail = readw(&bc->rout) & wrapmask;
2152 bytesAvailable = (head - tail) & wrapmask;
2153 if (bytesAvailable == 0)
2156 /* ------------------------------------------------------------------
2157 If CREAD bit is off or device not open, set TX tail to head
2158 --------------------------------------------------------------------- */
2160 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2161 writew(head, &bc->rout);
2165 if (tty->flip.count == TTY_FLIPBUF_SIZE)
2168 if (readb(&bc->orun)) {
2169 writeb(0, &bc->orun);
2170 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2173 rptr = tty->flip.char_buf_ptr;
2174 rc = tty->flip.count;
2175 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2176 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2177 /* ---------------------------------------------------------------
2178 Even if head has wrapped around only report the amount of
2179 data to be equal to the size - tail. Remember memcpy can't
2180 automaticly wrap around the receive buffer.
2181 ----------------------------------------------------------------- */
2182 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2183 /* --------------------------------------------------------------
2184 Make sure we don't overflow the buffer
2185 ----------------------------------------------------------------- */
2186 if ((rc + dataToRead) > TTY_FLIPBUF_SIZE)
2187 dataToRead = TTY_FLIPBUF_SIZE - rc;
2188 if (dataToRead == 0)
2190 /* ---------------------------------------------------------------
2191 Move data read from our card into the line disciplines buffer
2192 for translation if necessary.
2193 ------------------------------------------------------------------ */
2194 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2197 tail = (tail + dataToRead) & wrapmask;
2198 bytesAvailable -= dataToRead;
2199 } /* End while there is data on the card */
2200 tty->flip.count = rc;
2201 tty->flip.char_buf_ptr = rptr;
2203 writew(tail, &bc->rout);
2204 /* Must be called with global data */
2205 tty_schedule_flip(ch->tty);
2207 } /* End receive_data */
2209 static int info_ioctl(struct tty_struct *tty, struct file * file,
2210 unsigned int cmd, unsigned long arg)
2213 { /* Begin switch cmd */
2215 { /* Begin case DIGI_GETINFO */
2216 struct digi_info di ;
2219 if(get_user(brd, (unsigned int __user *)arg))
2221 if (brd < 0 || brd >= num_cards || num_cards == 0)
2224 memset(&di, 0, sizeof(di));
2227 di.status = boards[brd].status;
2228 di.type = boards[brd].type ;
2229 di.numports = boards[brd].numports ;
2230 /* Legacy fixups - just move along nothing to see */
2231 di.port = (unsigned char *)boards[brd].port ;
2232 di.membase = (unsigned char *)boards[brd].membase ;
2234 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2238 } /* End case DIGI_GETINFO */
2241 { /* Begin case DIGI_POLLER */
2243 int brd = arg & 0xff000000 >> 16 ;
2244 unsigned char state = arg & 0xff ;
2246 if (brd < 0 || brd >= num_cards) {
2247 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2250 digi_poller_inhibited = state ;
2252 } /* End case DIGI_POLLER */
2255 { /* Begin case DIGI_INIT */
2256 /* ------------------------------------------------------------
2257 This call is made by the apps to complete the initilization
2258 of the board(s). This routine is responsible for setting
2259 the card to its initial state and setting the drivers control
2260 fields to the sutianle settings for the card in question.
2261 ---------------------------------------------------------------- */
2263 for (crd = 0; crd < num_cards; crd++)
2264 post_fep_init (crd);
2266 } /* End case DIGI_INIT */
2269 } /* End switch cmd */
2272 /* --------------------- Begin pc_ioctl ----------------------- */
2274 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2276 struct channel *ch = (struct channel *) tty->driver_data;
2277 struct board_chan __iomem *bc;
2278 unsigned int mstat, mflag = 0;
2279 unsigned long flags;
2286 spin_lock_irqsave(&epca_lock, flags);
2288 mstat = readb(&bc->mstat);
2290 spin_unlock_irqrestore(&epca_lock, flags);
2292 if (mstat & ch->m_dtr)
2294 if (mstat & ch->m_rts)
2296 if (mstat & ch->m_cts)
2298 if (mstat & ch->dsr)
2300 if (mstat & ch->m_ri)
2302 if (mstat & ch->dcd)
2307 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2308 unsigned int set, unsigned int clear)
2310 struct channel *ch = (struct channel *) tty->driver_data;
2311 unsigned long flags;
2316 spin_lock_irqsave(&epca_lock, flags);
2318 * I think this modemfake stuff is broken. It doesn't
2319 * correctly reflect the behaviour desired by the TIOCM*
2320 * ioctls. Therefore this is probably broken.
2322 if (set & TIOCM_RTS) {
2323 ch->modemfake |= ch->m_rts;
2324 ch->modem |= ch->m_rts;
2326 if (set & TIOCM_DTR) {
2327 ch->modemfake |= ch->m_dtr;
2328 ch->modem |= ch->m_dtr;
2330 if (clear & TIOCM_RTS) {
2331 ch->modemfake |= ch->m_rts;
2332 ch->modem &= ~ch->m_rts;
2334 if (clear & TIOCM_DTR) {
2335 ch->modemfake |= ch->m_dtr;
2336 ch->modem &= ~ch->m_dtr;
2339 /* --------------------------------------------------------------
2340 The below routine generally sets up parity, baud, flow control
2341 issues, etc.... It effect both control flags and input flags.
2342 ------------------------------------------------------------------ */
2345 spin_unlock_irqrestore(&epca_lock, flags);
2349 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2350 unsigned int cmd, unsigned long arg)
2351 { /* Begin pc_ioctl */
2355 unsigned long flags;
2356 unsigned int mflag, mstat;
2357 unsigned char startc, stopc;
2358 struct board_chan __iomem *bc;
2359 struct channel *ch = (struct channel *) tty->driver_data;
2360 void __user *argp = (void __user *)arg;
2367 /* -------------------------------------------------------------------
2368 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2369 in /usr/src/linux/drivers/char for a good example. In particular
2370 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2371 ---------------------------------------------------------------------- */
2374 { /* Begin switch cmd */
2377 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2381 return get_termio(tty, argp);
2382 case TCSBRK: /* SVID version: non-zero arg --> no break */
2383 retval = tty_check_change(tty);
2386 /* Setup an event to indicate when the transmit buffer empties */
2387 spin_lock_irqsave(&epca_lock, flags);
2388 setup_empty_event(tty,ch);
2389 spin_unlock_irqrestore(&epca_lock, flags);
2390 tty_wait_until_sent(tty, 0);
2392 digi_send_break(ch, HZ/4); /* 1/4 second */
2394 case TCSBRKP: /* support for POSIX tcsendbreak() */
2395 retval = tty_check_change(tty);
2399 /* Setup an event to indicate when the transmit buffer empties */
2400 spin_lock_irqsave(&epca_lock, flags);
2401 setup_empty_event(tty,ch);
2402 spin_unlock_irqrestore(&epca_lock, flags);
2403 tty_wait_until_sent(tty, 0);
2404 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2407 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2414 if (get_user(value, (unsigned __user *)argp))
2416 tty->termios->c_cflag =
2417 ((tty->termios->c_cflag & ~CLOCAL) |
2418 (value ? CLOCAL : 0));
2422 mflag = pc_tiocmget(tty, file);
2423 if (put_user(mflag, (unsigned long __user *)argp))
2427 if (get_user(mstat, (unsigned __user *)argp))
2429 return pc_tiocmset(tty, file, mstat, ~mstat);
2431 spin_lock_irqsave(&epca_lock, flags);
2432 ch->omodem |= ch->m_dtr;
2434 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2436 spin_unlock_irqrestore(&epca_lock, flags);
2440 spin_lock_irqsave(&epca_lock, flags);
2441 ch->omodem &= ~ch->m_dtr;
2443 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2445 spin_unlock_irqrestore(&epca_lock, flags);
2448 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2453 if (cmd == DIGI_SETAW) {
2454 /* Setup an event to indicate when the transmit buffer empties */
2455 spin_lock_irqsave(&epca_lock, flags);
2456 setup_empty_event(tty,ch);
2457 spin_unlock_irqrestore(&epca_lock, flags);
2458 tty_wait_until_sent(tty, 0);
2460 /* ldisc lock already held in ioctl */
2461 if (tty->ldisc.flush_buffer)
2462 tty->ldisc.flush_buffer(tty);
2466 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2469 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2470 ch->dcd = ch->m_dsr;
2471 ch->dsr = ch->m_dcd;
2473 ch->dcd = ch->m_dcd;
2474 ch->dsr = ch->m_dsr;
2477 spin_lock_irqsave(&epca_lock, flags);
2480 /* -----------------------------------------------------------------
2481 The below routine generally sets up parity, baud, flow control
2482 issues, etc.... It effect both control flags and input flags.
2483 ------------------------------------------------------------------- */
2487 spin_unlock_irqrestore(&epca_lock, flags);
2492 spin_lock_irqsave(&epca_lock, flags);
2494 if (cmd == DIGI_GETFLOW) {
2495 dflow.startc = readb(&bc->startc);
2496 dflow.stopc = readb(&bc->stopc);
2498 dflow.startc = readb(&bc->startca);
2499 dflow.stopc = readb(&bc->stopca);
2502 spin_unlock_irqrestore(&epca_lock, flags);
2504 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2510 if (cmd == DIGI_SETFLOW) {
2511 startc = ch->startc;
2514 startc = ch->startca;
2518 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2521 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2522 spin_lock_irqsave(&epca_lock, flags);
2525 if (cmd == DIGI_SETFLOW) {
2526 ch->fepstartc = ch->startc = dflow.startc;
2527 ch->fepstopc = ch->stopc = dflow.stopc;
2528 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2530 ch->fepstartca = ch->startca = dflow.startc;
2531 ch->fepstopca = ch->stopca = dflow.stopc;
2532 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2535 if (ch->statusflags & TXSTOPPED)
2539 spin_unlock_irqrestore(&epca_lock, flags);
2540 } /* End if setflow toggled */
2543 return -ENOIOCTLCMD;
2544 } /* End switch cmd */
2546 } /* End pc_ioctl */
2548 /* --------------------- Begin pc_set_termios ----------------------- */
2550 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2551 { /* Begin pc_set_termios */
2554 unsigned long flags;
2555 /* ---------------------------------------------------------
2556 verifyChannel returns the channel from the tty struct
2557 if it is valid. This serves as a sanity check.
2558 ------------------------------------------------------------- */
2559 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2560 spin_lock_irqsave(&epca_lock, flags);
2564 spin_unlock_irqrestore(&epca_lock, flags);
2566 if ((old_termios->c_cflag & CRTSCTS) &&
2567 ((tty->termios->c_cflag & CRTSCTS) == 0))
2568 tty->hw_stopped = 0;
2570 if (!(old_termios->c_cflag & CLOCAL) &&
2571 (tty->termios->c_cflag & CLOCAL))
2572 wake_up_interruptible(&ch->open_wait);
2574 } /* End if channel valid */
2576 } /* End pc_set_termios */
2578 /* --------------------- Begin do_softint ----------------------- */
2580 static void do_softint(void *private_)
2581 { /* Begin do_softint */
2582 struct channel *ch = (struct channel *) private_;
2583 /* Called in response to a modem change event */
2584 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2585 struct tty_struct *tty = ch->tty;
2587 if (tty && tty->driver_data) {
2588 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2589 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2590 wake_up_interruptible(&ch->open_wait);
2591 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2592 } /* End if clear_bit */
2594 } /* End EPCA_MAGIC */
2595 } /* End do_softint */
2597 /* ------------------------------------------------------------
2598 pc_stop and pc_start provide software flow control to the
2599 routine and the pc_ioctl routine.
2600 ---------------------------------------------------------------- */
2602 /* --------------------- Begin pc_stop ----------------------- */
2604 static void pc_stop(struct tty_struct *tty)
2605 { /* Begin pc_stop */
2608 unsigned long flags;
2609 /* ---------------------------------------------------------
2610 verifyChannel returns the channel from the tty struct
2611 if it is valid. This serves as a sanity check.
2612 ------------------------------------------------------------- */
2613 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2614 spin_lock_irqsave(&epca_lock, flags);
2615 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2617 /* STOP transmitting now !! */
2618 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2619 ch->statusflags |= TXSTOPPED;
2621 } /* End if transmit stop requested */
2622 spin_unlock_irqrestore(&epca_lock, flags);
2623 } /* End if valid channel */
2626 /* --------------------- Begin pc_start ----------------------- */
2628 static void pc_start(struct tty_struct *tty)
2629 { /* Begin pc_start */
2631 /* ---------------------------------------------------------
2632 verifyChannel returns the channel from the tty struct
2633 if it is valid. This serves as a sanity check.
2634 ------------------------------------------------------------- */
2635 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2636 unsigned long flags;
2637 spin_lock_irqsave(&epca_lock, flags);
2638 /* Just in case output was resumed because of a change in Digi-flow */
2639 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2640 struct board_chan __iomem *bc;
2643 if (ch->statusflags & LOWWAIT)
2644 writeb(1, &bc->ilow);
2645 /* Okay, you can start transmitting again... */
2646 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2647 ch->statusflags &= ~TXSTOPPED;
2649 } /* End transmit resume requested */
2650 spin_unlock_irqrestore(&epca_lock, flags);
2651 } /* End if channel valid */
2652 } /* End pc_start */
2654 /* ------------------------------------------------------------------
2655 The below routines pc_throttle and pc_unthrottle are used
2656 to slow (And resume) the receipt of data into the kernels
2657 receive buffers. The exact occurrence of this depends on the
2658 size of the kernels receive buffer and what the 'watermarks'
2659 are set to for that buffer. See the n_ttys.c file for more
2661 ______________________________________________________________________ */
2662 /* --------------------- Begin throttle ----------------------- */
2664 static void pc_throttle(struct tty_struct * tty)
2665 { /* Begin pc_throttle */
2667 unsigned long flags;
2668 /* ---------------------------------------------------------
2669 verifyChannel returns the channel from the tty struct
2670 if it is valid. This serves as a sanity check.
2671 ------------------------------------------------------------- */
2672 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2673 spin_lock_irqsave(&epca_lock, flags);
2674 if ((ch->statusflags & RXSTOPPED) == 0) {
2676 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2677 ch->statusflags |= RXSTOPPED;
2680 spin_unlock_irqrestore(&epca_lock, flags);
2681 } /* End if channel valid */
2682 } /* End pc_throttle */
2684 /* --------------------- Begin unthrottle ----------------------- */
2686 static void pc_unthrottle(struct tty_struct *tty)
2687 { /* Begin pc_unthrottle */
2689 unsigned long flags;
2690 /* ---------------------------------------------------------
2691 verifyChannel returns the channel from the tty struct
2692 if it is valid. This serves as a sanity check.
2693 ------------------------------------------------------------- */
2694 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2695 /* Just in case output was resumed because of a change in Digi-flow */
2696 spin_lock_irqsave(&epca_lock, flags);
2697 if (ch->statusflags & RXSTOPPED) {
2699 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2700 ch->statusflags &= ~RXSTOPPED;
2703 spin_unlock_irqrestore(&epca_lock, flags);
2704 } /* End if channel valid */
2705 } /* End pc_unthrottle */
2707 /* --------------------- Begin digi_send_break ----------------------- */
2709 void digi_send_break(struct channel *ch, int msec)
2710 { /* Begin digi_send_break */
2711 unsigned long flags;
2713 spin_lock_irqsave(&epca_lock, flags);
2715 /* --------------------------------------------------------------------
2716 Maybe I should send an infinite break here, schedule() for
2717 msec amount of time, and then stop the break. This way,
2718 the user can't screw up the FEP by causing digi_send_break()
2719 to be called (i.e. via an ioctl()) more than once in msec amount
2720 of time. Try this for now...
2721 ------------------------------------------------------------------------ */
2722 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2724 spin_unlock_irqrestore(&epca_lock, flags);
2725 } /* End digi_send_break */
2727 /* --------------------- Begin setup_empty_event ----------------------- */
2729 /* Caller MUST hold the lock */
2731 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2732 { /* Begin setup_empty_event */
2734 struct board_chan __iomem *bc = ch->brdchan;
2737 ch->statusflags |= EMPTYWAIT;
2738 /* ------------------------------------------------------------------
2739 When set the iempty flag request a event to be generated when the
2740 transmit buffer is empty (If there is no BREAK in progress).
2741 --------------------------------------------------------------------- */
2742 writeb(1, &bc->iempty);
2744 } /* End setup_empty_event */
2746 /* --------------------- Begin get_termio ----------------------- */
2748 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2749 { /* Begin get_termio */
2750 return kernel_termios_to_user_termio(termio, tty->termios);
2751 } /* End get_termio */
2753 /* ---------------------- Begin epca_setup -------------------------- */
2754 void epca_setup(char *str, int *ints)
2755 { /* Begin epca_setup */
2756 struct board_info board;
2757 int index, loop, last;
2761 /* ----------------------------------------------------------------------
2762 If this routine looks a little strange it is because it is only called
2763 if a LILO append command is given to boot the kernel with parameters.
2764 In this way, we can provide the user a method of changing his board
2765 configuration without rebuilding the kernel.
2766 ----------------------------------------------------------------------- */
2770 memset(&board, 0, sizeof(board));
2772 /* Assume the data is int first, later we can change it */
2773 /* I think that array position 0 of ints holds the number of args */
2774 for (last = 0, index = 1; index <= ints[0]; index++)
2776 { /* Begin parse switch */
2778 board.status = ints[index];
2779 /* ---------------------------------------------------------
2780 We check for 2 (As opposed to 1; because 2 is a flag
2781 instructing the driver to ignore epcaconfig.) For this
2782 reason we check for 2.
2783 ------------------------------------------------------------ */
2784 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2788 } /* End ignore epcaconfig as well as lilo cmd line */
2790 if (board.status > 2) {
2791 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2792 invalid_lilo_config = 1;
2793 setup_error_code |= INVALID_BOARD_STATUS;
2799 board.type = ints[index];
2800 if (board.type >= PCIXEM) {
2801 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2802 invalid_lilo_config = 1;
2803 setup_error_code |= INVALID_BOARD_TYPE;
2809 board.altpin = ints[index];
2810 if (board.altpin > 1) {
2811 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2812 invalid_lilo_config = 1;
2813 setup_error_code |= INVALID_ALTPIN;
2820 board.numports = ints[index];
2821 if (board.numports < 2 || board.numports > 256) {
2822 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2823 invalid_lilo_config = 1;
2824 setup_error_code |= INVALID_NUM_PORTS;
2827 nbdevs += board.numports;
2832 board.port = ints[index];
2833 if (ints[index] <= 0) {
2834 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2835 invalid_lilo_config = 1;
2836 setup_error_code |= INVALID_PORT_BASE;
2843 board.membase = ints[index];
2844 if (ints[index] <= 0) {
2845 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2846 invalid_lilo_config = 1;
2847 setup_error_code |= INVALID_MEM_BASE;
2854 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2857 } /* End parse switch */
2859 while (str && *str) { /* Begin while there is a string arg */
2860 /* find the next comma or terminator */
2862 /* While string is not null, and a comma hasn't been found */
2863 while (*temp && (*temp != ','))
2869 /* Set index to the number of args + 1 */
2876 if (strncmp("Disable", str, len) == 0)
2878 else if (strncmp("Enable", str, len) == 0)
2881 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2882 invalid_lilo_config = 1;
2883 setup_error_code |= INVALID_BOARD_STATUS;
2890 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2891 if (strcmp(board_desc[loop], str) == 0)
2893 /* ---------------------------------------------------------------
2894 If the index incremented above refers to a legitamate board
2896 ------------------------------------------------------------------*/
2897 if (index < EPCA_NUM_TYPES)
2900 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2901 invalid_lilo_config = 1;
2902 setup_error_code |= INVALID_BOARD_TYPE;
2910 if (strncmp("Disable", str, len) == 0)
2912 else if (strncmp("Enable", str, len) == 0)
2915 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2916 invalid_lilo_config = 1;
2917 setup_error_code |= INVALID_ALTPIN;
2925 while (isdigit(*t2))
2929 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2930 invalid_lilo_config = 1;
2931 setup_error_code |= INVALID_NUM_PORTS;
2935 /* ------------------------------------------------------------
2936 There is not a man page for simple_strtoul but the code can be
2937 found in vsprintf.c. The first argument is the string to
2938 translate (To an unsigned long obviously), the second argument
2939 can be the address of any character variable or a NULL. If a
2940 variable is given, the end pointer of the string will be stored
2941 in that variable; if a NULL is given the end pointer will
2942 not be returned. The last argument is the base to use. If
2943 a 0 is indicated, the routine will attempt to determine the
2944 proper base by looking at the values prefix (A '0' for octal,
2945 a 'x' for hex, etc ... If a value is given it will use that
2947 ---------------------------------------------------------------- */
2948 board.numports = simple_strtoul(str, NULL, 0);
2949 nbdevs += board.numports;
2955 while (isxdigit(*t2))
2959 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2960 invalid_lilo_config = 1;
2961 setup_error_code |= INVALID_PORT_BASE;
2965 board.port = simple_strtoul(str, NULL, 16);
2971 while (isxdigit(*t2))
2975 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2976 invalid_lilo_config = 1;
2977 setup_error_code |= INVALID_MEM_BASE;
2980 board.membase = simple_strtoul(str, NULL, 16);
2984 printk(KERN_ERR "epca: Too many string parms\n");
2988 } /* End while there is a string arg */
2991 printk(KERN_ERR "epca: Insufficient parms specified\n");
2995 /* I should REALLY validate the stuff here */
2996 /* Copies our local copy of board into boards */
2997 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2998 /* Does this get called once per lilo arg are what ? */
2999 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
3000 num_cards, board_desc[board.type],
3001 board.numports, (int)board.port, (unsigned int) board.membase);
3003 } /* End epca_setup */
3006 /* ------------------------ Begin init_PCI --------------------------- */
3008 enum epic_board_types {
3016 /* indexed directly by epic_board_types enum */
3018 unsigned char board_type;
3019 unsigned bar_idx; /* PCI base address region */
3020 } epca_info_tbl[] = {
3027 static int __devinit epca_init_one (struct pci_dev *pdev,
3028 const struct pci_device_id *ent)
3030 static int board_num = -1;
3031 int board_idx, info_idx = ent->driver_data;
3034 if (pci_enable_device(pdev))
3038 board_idx = board_num + num_cards;
3039 if (board_idx >= MAXBOARDS)
3042 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3044 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3045 epca_info_tbl[info_idx].bar_idx);
3049 boards[board_idx].status = ENABLED;
3050 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3051 boards[board_idx].numports = 0x0;
3052 boards[board_idx].port = addr + PCI_IO_OFFSET;
3053 boards[board_idx].membase = addr;
3055 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3056 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3057 0x200000, addr + PCI_IO_OFFSET);
3061 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3062 if (!boards[board_idx].re_map_port) {
3063 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3064 0x200000, addr + PCI_IO_OFFSET);
3065 goto err_out_free_pciio;
3068 if (!request_mem_region (addr, 0x200000, "epca")) {
3069 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3071 goto err_out_free_iounmap;
3074 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3075 if (!boards[board_idx].re_map_membase) {
3076 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3077 0x200000, addr + PCI_IO_OFFSET);
3078 goto err_out_free_memregion;
3081 /* --------------------------------------------------------------
3082 I don't know what the below does, but the hardware guys say
3083 its required on everything except PLX (In this case XRJ).
3084 ---------------------------------------------------------------- */
3085 if (info_idx != brd_xrj) {
3086 pci_write_config_byte(pdev, 0x40, 0);
3087 pci_write_config_byte(pdev, 0x46, 0);
3092 err_out_free_memregion:
3093 release_mem_region (addr, 0x200000);
3094 err_out_free_iounmap:
3095 iounmap (boards[board_idx].re_map_port);
3097 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3103 static struct pci_device_id epca_pci_tbl[] = {
3104 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3105 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3106 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3107 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3111 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3113 int __init init_PCI (void)
3114 { /* Begin init_PCI */
3115 memset (&epca_driver, 0, sizeof (epca_driver));
3116 epca_driver.name = "epca";
3117 epca_driver.id_table = epca_pci_tbl;
3118 epca_driver.probe = epca_init_one;
3120 return pci_register_driver(&epca_driver);
3123 MODULE_LICENSE("GPL");