2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/config.h>
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/pagemap.h>
48 #include <linux/kref.h>
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
60 #define NFSDBG_FACILITY NFSDBG_VFS
62 static kmem_cache_t *nfs_direct_cachep;
65 * This represents a set of asynchronous requests that we're waiting on
67 struct nfs_direct_req {
68 struct kref kref; /* release manager */
71 struct list_head list, /* nfs_read/write_data structs */
72 rewrite_list; /* saved nfs_write_data structs */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76 unsigned long user_addr; /* location of user's buffer */
77 size_t user_count; /* total bytes to move */
78 loff_t pos; /* starting offset in file */
79 struct page ** pages; /* pages in our buffer */
80 unsigned int npages; /* count of pages */
82 /* completion state */
83 spinlock_t lock; /* protect completion state */
84 int outstanding; /* i/os we're waiting for */
85 ssize_t count, /* bytes actually processed */
86 error; /* any reported error */
87 struct completion completion; /* wait for i/o completion */
90 struct nfs_write_data * commit_data; /* special write_data for commits */
92 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
93 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
94 struct nfs_writeverf verf; /* unstable write verifier */
97 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync);
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
101 * nfs_direct_IO - NFS address space operation for direct I/O
102 * @rw: direction (read or write)
103 * @iocb: target I/O control block
104 * @iov: array of vectors that define I/O buffer
105 * @pos: offset in file to begin the operation
106 * @nr_segs: size of iovec array
108 * The presence of this routine in the address space ops vector means
109 * the NFS client supports direct I/O. However, we shunt off direct
110 * read and write requests before the VFS gets them, so this method
111 * should never be called.
113 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
115 struct dentry *dentry = iocb->ki_filp->f_dentry;
117 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
118 dentry->d_name.name, (long long) pos, nr_segs);
123 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
126 for (i = 0; i < npages; i++) {
127 struct page *page = pages[i];
128 if (do_dirty && !PageCompound(page))
129 set_page_dirty_lock(page);
130 page_cache_release(page);
135 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
137 int result = -ENOMEM;
138 unsigned long page_count;
141 page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
142 page_count -= user_addr >> PAGE_SHIFT;
144 array_size = (page_count * sizeof(struct page *));
145 *pages = kmalloc(array_size, GFP_KERNEL);
147 down_read(¤t->mm->mmap_sem);
148 result = get_user_pages(current, current->mm, user_addr,
149 page_count, (rw == READ), 0,
151 up_read(¤t->mm->mmap_sem);
152 if (result != page_count) {
154 * If we got fewer pages than expected from
155 * get_user_pages(), the user buffer runs off the
156 * end of a mapping; return EFAULT.
159 nfs_free_user_pages(*pages, result, 0);
169 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
171 struct nfs_direct_req *dreq;
173 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
177 kref_init(&dreq->kref);
178 init_completion(&dreq->completion);
179 INIT_LIST_HEAD(&dreq->list);
180 INIT_LIST_HEAD(&dreq->rewrite_list);
183 spin_lock_init(&dreq->lock);
184 dreq->outstanding = 0;
192 static void nfs_direct_req_release(struct kref *kref)
194 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
196 if (dreq->ctx != NULL)
197 put_nfs_open_context(dreq->ctx);
198 kmem_cache_free(nfs_direct_cachep, dreq);
202 * Collects and returns the final error value/byte-count.
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
206 ssize_t result = -EIOCBQUEUED;
208 /* Async requests don't wait here */
212 result = wait_for_completion_interruptible(&dreq->completion);
215 result = dreq->error;
217 result = dreq->count;
220 kref_put(&dreq->kref, nfs_direct_req_release);
221 return (ssize_t) result;
225 * We must hold a reference to all the pages in this direct read request
226 * until the RPCs complete. This could be long *after* we are woken up in
227 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
229 * In addition, synchronous I/O uses a stack-allocated iocb. Thus we
230 * can't trust the iocb is still valid here if this is a synchronous
231 * request. If the waiter is woken prematurely, the iocb is long gone.
233 static void nfs_direct_complete(struct nfs_direct_req *dreq)
235 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
238 long res = (long) dreq->error;
240 res = (long) dreq->count;
241 aio_complete(dreq->iocb, res, 0);
243 complete_all(&dreq->completion);
245 kref_put(&dreq->kref, nfs_direct_req_release);
249 * Note we also set the number of requests we have in the dreq when we are
250 * done. This prevents races with I/O completion so we will always wait
251 * until all requests have been dispatched and completed.
253 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
255 struct list_head *list;
256 struct nfs_direct_req *dreq;
257 unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
259 dreq = nfs_direct_req_alloc();
265 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
267 if (unlikely(!data)) {
268 while (!list_empty(list)) {
269 data = list_entry(list->next,
270 struct nfs_read_data, pages);
271 list_del(&data->pages);
272 nfs_readdata_free(data);
274 kref_put(&dreq->kref, nfs_direct_req_release);
278 INIT_LIST_HEAD(&data->pages);
279 list_add(&data->pages, list);
281 data->req = (struct nfs_page *) dreq;
287 kref_get(&dreq->kref);
291 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
293 struct nfs_read_data *data = calldata;
294 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
296 if (nfs_readpage_result(task, data) != 0)
299 spin_lock(&dreq->lock);
301 if (likely(task->tk_status >= 0))
302 dreq->count += data->res.count;
304 dreq->error = task->tk_status;
306 if (--dreq->outstanding) {
307 spin_unlock(&dreq->lock);
311 spin_unlock(&dreq->lock);
312 nfs_direct_complete(dreq);
315 static const struct rpc_call_ops nfs_read_direct_ops = {
316 .rpc_call_done = nfs_direct_read_result,
317 .rpc_release = nfs_readdata_release,
321 * For each nfs_read_data struct that was allocated on the list, dispatch
322 * an NFS READ operation
324 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq)
326 struct nfs_open_context *ctx = dreq->ctx;
327 struct inode *inode = ctx->dentry->d_inode;
328 struct list_head *list = &dreq->list;
329 struct page **pages = dreq->pages;
330 size_t count = dreq->user_count;
331 loff_t pos = dreq->pos;
332 size_t rsize = NFS_SERVER(inode)->rsize;
333 unsigned int curpage, pgbase;
336 pgbase = dreq->user_addr & ~PAGE_MASK;
338 struct nfs_read_data *data;
345 BUG_ON(list_empty(list));
346 data = list_entry(list->next, struct nfs_read_data, pages);
347 list_del_init(&data->pages);
350 data->cred = ctx->cred;
351 data->args.fh = NFS_FH(inode);
352 data->args.context = ctx;
353 data->args.offset = pos;
354 data->args.pgbase = pgbase;
355 data->args.pages = &pages[curpage];
356 data->args.count = bytes;
357 data->res.fattr = &data->fattr;
359 data->res.count = bytes;
361 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
362 &nfs_read_direct_ops, data);
363 NFS_PROTO(inode)->read_setup(data);
365 data->task.tk_cookie = (unsigned long) inode;
368 rpc_execute(&data->task);
371 dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
374 (long long)NFS_FILEID(inode),
376 (unsigned long long)data->args.offset);
380 curpage += pgbase >> PAGE_SHIFT;
381 pgbase &= ~PAGE_MASK;
384 } while (count != 0);
385 BUG_ON(!list_empty(list));
388 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
392 struct inode *inode = iocb->ki_filp->f_mapping->host;
393 struct rpc_clnt *clnt = NFS_CLIENT(inode);
394 struct nfs_direct_req *dreq;
396 dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
400 dreq->user_addr = user_addr;
401 dreq->user_count = count;
404 dreq->npages = nr_pages;
406 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
407 if (!is_sync_kiocb(iocb))
410 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
411 rpc_clnt_sigmask(clnt, &oldset);
412 nfs_direct_read_schedule(dreq);
413 result = nfs_direct_wait(dreq);
414 rpc_clnt_sigunmask(clnt, &oldset);
419 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
421 list_splice_init(&dreq->rewrite_list, &dreq->list);
422 while (!list_empty(&dreq->list)) {
423 struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages);
424 list_del(&data->pages);
425 nfs_writedata_release(data);
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
430 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
432 struct list_head *pos;
434 list_splice_init(&dreq->rewrite_list, &dreq->list);
435 list_for_each(pos, &dreq->list)
439 nfs_direct_write_schedule(dreq, FLUSH_STABLE);
442 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
444 struct nfs_write_data *data = calldata;
445 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
447 /* Call the NFS version-specific code */
448 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
450 if (unlikely(task->tk_status < 0)) {
451 dreq->error = task->tk_status;
452 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
454 if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
455 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
456 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
459 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
460 nfs_direct_write_complete(dreq, data->inode);
463 static const struct rpc_call_ops nfs_commit_direct_ops = {
464 .rpc_call_done = nfs_direct_commit_result,
465 .rpc_release = nfs_commit_release,
468 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
470 struct nfs_write_data *data = dreq->commit_data;
471 struct rpc_task *task = &data->task;
473 data->inode = dreq->inode;
474 data->cred = dreq->ctx->cred;
476 data->args.fh = NFS_FH(data->inode);
477 data->args.offset = dreq->pos;
478 data->args.count = dreq->user_count;
480 data->res.fattr = &data->fattr;
481 data->res.verf = &data->verf;
483 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
484 &nfs_commit_direct_ops, data);
485 NFS_PROTO(data->inode)->commit_setup(data, 0);
487 data->task.tk_priority = RPC_PRIORITY_NORMAL;
488 data->task.tk_cookie = (unsigned long)data->inode;
489 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
490 dreq->commit_data = NULL;
492 dprintk("NFS: %5u initiated commit call\n", task->tk_pid);
495 rpc_execute(&data->task);
499 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
501 int flags = dreq->flags;
505 case NFS_ODIRECT_DO_COMMIT:
506 nfs_direct_commit_schedule(dreq);
508 case NFS_ODIRECT_RESCHED_WRITES:
509 nfs_direct_write_reschedule(dreq);
512 nfs_end_data_update(inode);
513 if (dreq->commit_data != NULL)
514 nfs_commit_free(dreq->commit_data);
515 nfs_direct_free_writedata(dreq);
516 nfs_direct_complete(dreq);
520 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
522 dreq->commit_data = nfs_commit_alloc(0);
523 if (dreq->commit_data != NULL)
524 dreq->commit_data->req = (struct nfs_page *) dreq;
527 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
529 dreq->commit_data = NULL;
532 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
534 nfs_end_data_update(inode);
535 nfs_direct_free_writedata(dreq);
536 nfs_direct_complete(dreq);
540 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
542 struct list_head *list;
543 struct nfs_direct_req *dreq;
544 unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
546 dreq = nfs_direct_req_alloc();
552 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
554 if (unlikely(!data)) {
555 while (!list_empty(list)) {
556 data = list_entry(list->next,
557 struct nfs_write_data, pages);
558 list_del(&data->pages);
559 nfs_writedata_free(data);
561 kref_put(&dreq->kref, nfs_direct_req_release);
565 INIT_LIST_HEAD(&data->pages);
566 list_add(&data->pages, list);
568 data->req = (struct nfs_page *) dreq;
575 nfs_alloc_commit_data(dreq);
577 kref_get(&dreq->kref);
581 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
583 struct nfs_write_data *data = calldata;
584 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
585 int status = task->tk_status;
587 if (nfs_writeback_done(task, data) != 0)
590 spin_lock(&dreq->lock);
592 if (likely(status >= 0))
593 dreq->count += data->res.count;
595 dreq->error = task->tk_status;
597 if (data->res.verf->committed != NFS_FILE_SYNC) {
598 switch (dreq->flags) {
600 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
601 dreq->flags = NFS_ODIRECT_DO_COMMIT;
603 case NFS_ODIRECT_DO_COMMIT:
604 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
605 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
606 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
610 /* In case we have to resend */
611 data->args.stable = NFS_FILE_SYNC;
613 spin_unlock(&dreq->lock);
617 * NB: Return the value of the first error return code. Subsequent
618 * errors after the first one are ignored.
620 static void nfs_direct_write_release(void *calldata)
622 struct nfs_write_data *data = calldata;
623 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
625 spin_lock(&dreq->lock);
626 if (--dreq->outstanding) {
627 spin_unlock(&dreq->lock);
630 spin_unlock(&dreq->lock);
632 nfs_direct_write_complete(dreq, data->inode);
635 static const struct rpc_call_ops nfs_write_direct_ops = {
636 .rpc_call_done = nfs_direct_write_result,
637 .rpc_release = nfs_direct_write_release,
641 * For each nfs_write_data struct that was allocated on the list, dispatch
642 * an NFS WRITE operation
644 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync)
646 struct nfs_open_context *ctx = dreq->ctx;
647 struct inode *inode = ctx->dentry->d_inode;
648 struct list_head *list = &dreq->list;
649 struct page **pages = dreq->pages;
650 size_t count = dreq->user_count;
651 loff_t pos = dreq->pos;
652 size_t wsize = NFS_SERVER(inode)->wsize;
653 unsigned int curpage, pgbase;
656 pgbase = dreq->user_addr & ~PAGE_MASK;
658 struct nfs_write_data *data;
665 BUG_ON(list_empty(list));
666 data = list_entry(list->next, struct nfs_write_data, pages);
667 list_move_tail(&data->pages, &dreq->rewrite_list);
670 data->cred = ctx->cred;
671 data->args.fh = NFS_FH(inode);
672 data->args.context = ctx;
673 data->args.offset = pos;
674 data->args.pgbase = pgbase;
675 data->args.pages = &pages[curpage];
676 data->args.count = bytes;
677 data->res.fattr = &data->fattr;
678 data->res.count = bytes;
679 data->res.verf = &data->verf;
681 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
682 &nfs_write_direct_ops, data);
683 NFS_PROTO(inode)->write_setup(data, sync);
685 data->task.tk_priority = RPC_PRIORITY_NORMAL;
686 data->task.tk_cookie = (unsigned long) inode;
689 rpc_execute(&data->task);
692 dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
695 (long long)NFS_FILEID(inode),
697 (unsigned long long)data->args.offset);
701 curpage += pgbase >> PAGE_SHIFT;
702 pgbase &= ~PAGE_MASK;
705 } while (count != 0);
706 BUG_ON(!list_empty(list));
709 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
713 struct inode *inode = iocb->ki_filp->f_mapping->host;
714 struct rpc_clnt *clnt = NFS_CLIENT(inode);
715 struct nfs_direct_req *dreq;
716 size_t wsize = NFS_SERVER(inode)->wsize;
719 dreq = nfs_direct_write_alloc(count, wsize);
722 if (dreq->commit_data == NULL || count < wsize)
725 dreq->user_addr = user_addr;
726 dreq->user_count = count;
729 dreq->npages = nr_pages;
731 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
732 if (!is_sync_kiocb(iocb))
735 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
737 nfs_begin_data_update(inode);
739 rpc_clnt_sigmask(clnt, &oldset);
740 nfs_direct_write_schedule(dreq, sync);
741 result = nfs_direct_wait(dreq);
742 rpc_clnt_sigunmask(clnt, &oldset);
748 * nfs_file_direct_read - file direct read operation for NFS files
749 * @iocb: target I/O control block
750 * @buf: user's buffer into which to read data
751 * @count: number of bytes to read
752 * @pos: byte offset in file where reading starts
754 * We use this function for direct reads instead of calling
755 * generic_file_aio_read() in order to avoid gfar's check to see if
756 * the request starts before the end of the file. For that check
757 * to work, we must generate a GETATTR before each direct read, and
758 * even then there is a window between the GETATTR and the subsequent
759 * READ where the file size could change. Our preference is simply
760 * to do all reads the application wants, and the server will take
761 * care of managing the end of file boundary.
763 * This function also eliminates unnecessarily updating the file's
764 * atime locally, as the NFS server sets the file's atime, and this
765 * client must read the updated atime from the server back into its
768 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
770 ssize_t retval = -EINVAL;
773 struct file *file = iocb->ki_filp;
774 struct address_space *mapping = file->f_mapping;
776 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
777 file->f_dentry->d_parent->d_name.name,
778 file->f_dentry->d_name.name,
779 (unsigned long) count, (long long) pos);
784 if (!access_ok(VERIFY_WRITE, buf, count))
790 retval = nfs_sync_mapping(mapping);
794 retval = nfs_get_user_pages(READ, (unsigned long) buf,
800 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
803 iocb->ki_pos = pos + retval;
810 * nfs_file_direct_write - file direct write operation for NFS files
811 * @iocb: target I/O control block
812 * @buf: user's buffer from which to write data
813 * @count: number of bytes to write
814 * @pos: byte offset in file where writing starts
816 * We use this function for direct writes instead of calling
817 * generic_file_aio_write() in order to avoid taking the inode
818 * semaphore and updating the i_size. The NFS server will set
819 * the new i_size and this client must read the updated size
820 * back into its cache. We let the server do generic write
821 * parameter checking and report problems.
823 * We also avoid an unnecessary invocation of generic_osync_inode(),
824 * as it is fairly meaningless to sync the metadata of an NFS file.
826 * We eliminate local atime updates, see direct read above.
828 * We avoid unnecessary page cache invalidations for normal cached
829 * readers of this file.
831 * Note that O_APPEND is not supported for NFS direct writes, as there
832 * is no atomic O_APPEND write facility in the NFS protocol.
834 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
839 struct file *file = iocb->ki_filp;
840 struct address_space *mapping = file->f_mapping;
842 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
843 file->f_dentry->d_parent->d_name.name,
844 file->f_dentry->d_name.name,
845 (unsigned long) count, (long long) pos);
847 retval = generic_write_checks(file, &pos, &count, 0);
852 if ((ssize_t) count < 0)
859 if (!access_ok(VERIFY_READ, buf, count))
862 retval = nfs_sync_mapping(mapping);
866 retval = nfs_get_user_pages(WRITE, (unsigned long) buf,
872 retval = nfs_direct_write(iocb, (unsigned long) buf, count,
873 pos, pages, page_count);
876 * XXX: nfs_end_data_update() already ensures this file's
877 * cached data is subsequently invalidated. Do we really
878 * need to call invalidate_inode_pages2() again here?
880 * For aio writes, this invalidation will almost certainly
881 * occur before the writes complete. Kind of racey.
883 if (mapping->nrpages)
884 invalidate_inode_pages2(mapping);
887 iocb->ki_pos = pos + retval;
894 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
897 int nfs_init_directcache(void)
899 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
900 sizeof(struct nfs_direct_req),
901 0, SLAB_RECLAIM_ACCOUNT,
903 if (nfs_direct_cachep == NULL)
910 * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures
913 void nfs_destroy_directcache(void)
915 if (kmem_cache_destroy(nfs_direct_cachep))
916 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");