2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/pci.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/device.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <linux/libata.h>
38 #define DRV_NAME "sata_mv"
39 #define DRV_VERSION "0.25"
42 /* BAR's are enumerated in terms of pci_resource_start() terms */
43 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
44 MV_IO_BAR = 2, /* offset 0x18: IO space */
45 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
48 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
51 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
52 MV_SATAHC0_REG_BASE = 0x20000,
54 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
55 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
56 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
57 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
59 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
62 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
64 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
65 * CRPB needs alignment on a 256B boundary. Size == 256B
66 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
67 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
69 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
70 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
72 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
73 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
75 /* Our DMA boundary is determined by an ePRD being unable to handle
76 * anything larger than 64KB
78 MV_DMA_BOUNDARY = 0xffffU,
81 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
83 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
87 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
88 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
89 MV_FLAG_GLBL_SFT_RST = (1 << 28), /* Global Soft Reset support */
90 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
92 MV_6XXX_FLAGS = (MV_FLAG_IRQ_COALESCE |
93 MV_FLAG_GLBL_SFT_RST),
100 CRQB_FLAG_READ = (1 << 0),
102 CRQB_CMD_ADDR_SHIFT = 8,
103 CRQB_CMD_CS = (0x2 << 11),
104 CRQB_CMD_LAST = (1 << 15),
106 CRPB_FLAG_STATUS_SHIFT = 8,
108 EPRD_FLAG_END_OF_TBL = (1 << 31),
110 /* PCI interface registers */
112 PCI_COMMAND_OFS = 0xc00,
114 PCI_MAIN_CMD_STS_OFS = 0xd30,
115 STOP_PCI_MASTER = (1 << 2),
116 PCI_MASTER_EMPTY = (1 << 3),
117 GLOB_SFT_RST = (1 << 4),
119 PCI_IRQ_CAUSE_OFS = 0x1d58,
120 PCI_IRQ_MASK_OFS = 0x1d5c,
121 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
123 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
124 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
125 PORT0_ERR = (1 << 0), /* shift by port # */
126 PORT0_DONE = (1 << 1), /* shift by port # */
127 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
128 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
130 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
131 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
132 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
133 GPIO_INT = (1 << 22),
134 SELF_INT = (1 << 23),
135 TWSI_INT = (1 << 24),
136 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
137 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
138 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
141 /* SATAHC registers */
144 HC_IRQ_CAUSE_OFS = 0x14,
145 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
146 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
147 DEV_IRQ = (1 << 8), /* shift by port # */
149 /* Shadow block registers */
151 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
154 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
155 SATA_ACTIVE_OFS = 0x350,
159 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
160 EDMA_CFG_NCQ = (1 << 5),
161 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
162 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
163 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
165 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
166 EDMA_ERR_IRQ_MASK_OFS = 0xc,
167 EDMA_ERR_D_PAR = (1 << 0),
168 EDMA_ERR_PRD_PAR = (1 << 1),
169 EDMA_ERR_DEV = (1 << 2),
170 EDMA_ERR_DEV_DCON = (1 << 3),
171 EDMA_ERR_DEV_CON = (1 << 4),
172 EDMA_ERR_SERR = (1 << 5),
173 EDMA_ERR_SELF_DIS = (1 << 7),
174 EDMA_ERR_BIST_ASYNC = (1 << 8),
175 EDMA_ERR_CRBQ_PAR = (1 << 9),
176 EDMA_ERR_CRPB_PAR = (1 << 10),
177 EDMA_ERR_INTRL_PAR = (1 << 11),
178 EDMA_ERR_IORDY = (1 << 12),
179 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
180 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
181 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
182 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
183 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
184 EDMA_ERR_TRANS_PROTO = (1 << 31),
185 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
186 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
187 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
188 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
189 EDMA_ERR_LNK_DATA_RX |
190 EDMA_ERR_LNK_DATA_TX |
191 EDMA_ERR_TRANS_PROTO),
193 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
194 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
195 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
197 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
198 EDMA_REQ_Q_PTR_SHIFT = 5,
200 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
201 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
202 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
203 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
204 EDMA_RSP_Q_PTR_SHIFT = 3,
211 /* Host private flags (hp_flags) */
212 MV_HP_FLAG_MSI = (1 << 0),
214 /* Port private flags (pp_flags) */
215 MV_PP_FLAG_EDMA_EN = (1 << 0),
216 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
219 /* Command ReQuest Block: 32B */
227 /* Command ResPonse Block: 8B */
234 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
242 struct mv_port_priv {
243 struct mv_crqb *crqb;
245 struct mv_crpb *crpb;
247 struct mv_sg *sg_tbl;
248 dma_addr_t sg_tbl_dma;
250 unsigned req_producer; /* cp of req_in_ptr */
251 unsigned rsp_consumer; /* cp of rsp_out_ptr */
255 struct mv_host_priv {
259 static void mv_irq_clear(struct ata_port *ap);
260 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
261 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
262 static void mv_phy_reset(struct ata_port *ap);
263 static void mv_host_stop(struct ata_host_set *host_set);
264 static int mv_port_start(struct ata_port *ap);
265 static void mv_port_stop(struct ata_port *ap);
266 static void mv_qc_prep(struct ata_queued_cmd *qc);
267 static int mv_qc_issue(struct ata_queued_cmd *qc);
268 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
269 struct pt_regs *regs);
270 static void mv_eng_timeout(struct ata_port *ap);
271 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
273 static struct scsi_host_template mv_sht = {
274 .module = THIS_MODULE,
276 .ioctl = ata_scsi_ioctl,
277 .queuecommand = ata_scsi_queuecmd,
278 .eh_strategy_handler = ata_scsi_error,
279 .can_queue = MV_USE_Q_DEPTH,
280 .this_id = ATA_SHT_THIS_ID,
281 .sg_tablesize = MV_MAX_SG_CT,
282 .max_sectors = ATA_MAX_SECTORS,
283 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
284 .emulated = ATA_SHT_EMULATED,
285 .use_clustering = ATA_SHT_USE_CLUSTERING,
286 .proc_name = DRV_NAME,
287 .dma_boundary = MV_DMA_BOUNDARY,
288 .slave_configure = ata_scsi_slave_config,
289 .bios_param = ata_std_bios_param,
293 static const struct ata_port_operations mv_ops = {
294 .port_disable = ata_port_disable,
296 .tf_load = ata_tf_load,
297 .tf_read = ata_tf_read,
298 .check_status = ata_check_status,
299 .exec_command = ata_exec_command,
300 .dev_select = ata_std_dev_select,
302 .phy_reset = mv_phy_reset,
304 .qc_prep = mv_qc_prep,
305 .qc_issue = mv_qc_issue,
307 .eng_timeout = mv_eng_timeout,
309 .irq_handler = mv_interrupt,
310 .irq_clear = mv_irq_clear,
312 .scr_read = mv_scr_read,
313 .scr_write = mv_scr_write,
315 .port_start = mv_port_start,
316 .port_stop = mv_port_stop,
317 .host_stop = mv_host_stop,
320 static struct ata_port_info mv_port_info[] = {
323 .host_flags = MV_COMMON_FLAGS,
324 .pio_mask = 0x1f, /* pio0-4 */
325 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
330 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
331 .pio_mask = 0x1f, /* pio0-4 */
332 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
337 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
338 .pio_mask = 0x1f, /* pio0-4 */
339 .udma_mask = 0x7f, /* udma0-6 */
344 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
346 .pio_mask = 0x1f, /* pio0-4 */
347 .udma_mask = 0x7f, /* udma0-6 */
352 static const struct pci_device_id mv_pci_tbl[] = {
353 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
354 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
355 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_508x},
356 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
358 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
359 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
360 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
361 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
363 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
364 {} /* terminate list */
367 static struct pci_driver mv_pci_driver = {
369 .id_table = mv_pci_tbl,
370 .probe = mv_init_one,
371 .remove = ata_pci_remove_one,
378 static inline void writelfl(unsigned long data, void __iomem *addr)
381 (void) readl(addr); /* flush to avoid PCI posted write */
384 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
386 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
389 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
391 return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) +
392 MV_SATAHC_ARBTR_REG_SZ +
393 ((port & MV_PORT_MASK) * MV_PORT_REG_SZ));
396 static inline void __iomem *mv_ap_base(struct ata_port *ap)
398 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
401 static inline int mv_get_hc_count(unsigned long hp_flags)
403 return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
406 static void mv_irq_clear(struct ata_port *ap)
411 * mv_start_dma - Enable eDMA engine
412 * @base: port base address
413 * @pp: port private data
415 * Verify the local cache of the eDMA state is accurate with an
419 * Inherited from caller.
421 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
423 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
424 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
425 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
427 assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
431 * mv_stop_dma - Disable eDMA engine
432 * @ap: ATA channel to manipulate
434 * Verify the local cache of the eDMA state is accurate with an
438 * Inherited from caller.
440 static void mv_stop_dma(struct ata_port *ap)
442 void __iomem *port_mmio = mv_ap_base(ap);
443 struct mv_port_priv *pp = ap->private_data;
447 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
448 /* Disable EDMA if active. The disable bit auto clears.
450 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
451 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
453 assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
456 /* now properly wait for the eDMA to stop */
457 for (i = 1000; i > 0; i--) {
458 reg = readl(port_mmio + EDMA_CMD_OFS);
459 if (!(EDMA_EN & reg)) {
466 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
467 /* FIXME: Consider doing a reset here to recover */
472 static void mv_dump_mem(void __iomem *start, unsigned bytes)
475 for (b = 0; b < bytes; ) {
476 DPRINTK("%p: ", start + b);
477 for (w = 0; b < bytes && w < 4; w++) {
478 printk("%08x ",readl(start + b));
486 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
491 for (b = 0; b < bytes; ) {
492 DPRINTK("%02x: ", b);
493 for (w = 0; b < bytes && w < 4; w++) {
494 (void) pci_read_config_dword(pdev,b,&dw);
502 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
503 struct pci_dev *pdev)
506 void __iomem *hc_base = mv_hc_base(mmio_base,
507 port >> MV_PORT_HC_SHIFT);
508 void __iomem *port_base;
509 int start_port, num_ports, p, start_hc, num_hcs, hc;
512 start_hc = start_port = 0;
513 num_ports = 8; /* shld be benign for 4 port devs */
516 start_hc = port >> MV_PORT_HC_SHIFT;
518 num_ports = num_hcs = 1;
520 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
521 num_ports > 1 ? num_ports - 1 : start_port);
524 DPRINTK("PCI config space regs:\n");
525 mv_dump_pci_cfg(pdev, 0x68);
527 DPRINTK("PCI regs:\n");
528 mv_dump_mem(mmio_base+0xc00, 0x3c);
529 mv_dump_mem(mmio_base+0xd00, 0x34);
530 mv_dump_mem(mmio_base+0xf00, 0x4);
531 mv_dump_mem(mmio_base+0x1d00, 0x6c);
532 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
533 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
534 DPRINTK("HC regs (HC %i):\n", hc);
535 mv_dump_mem(hc_base, 0x1c);
537 for (p = start_port; p < start_port + num_ports; p++) {
538 port_base = mv_port_base(mmio_base, p);
539 DPRINTK("EDMA regs (port %i):\n",p);
540 mv_dump_mem(port_base, 0x54);
541 DPRINTK("SATA regs (port %i):\n",p);
542 mv_dump_mem(port_base+0x300, 0x60);
547 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
555 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
558 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
567 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
569 unsigned int ofs = mv_scr_offset(sc_reg_in);
571 if (0xffffffffU != ofs) {
572 return readl(mv_ap_base(ap) + ofs);
578 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
580 unsigned int ofs = mv_scr_offset(sc_reg_in);
582 if (0xffffffffU != ofs) {
583 writelfl(val, mv_ap_base(ap) + ofs);
588 * mv_global_soft_reset - Perform the 6xxx global soft reset
589 * @mmio_base: base address of the HBA
591 * This routine only applies to 6xxx parts.
594 * Inherited from caller.
596 static int mv_global_soft_reset(void __iomem *mmio_base)
598 void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
602 /* Following procedure defined in PCI "main command and status
606 writel(t | STOP_PCI_MASTER, reg);
608 for (i = 0; i < 1000; i++) {
611 if (PCI_MASTER_EMPTY & t) {
615 if (!(PCI_MASTER_EMPTY & t)) {
616 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
624 writel(t | GLOB_SFT_RST, reg);
627 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
629 if (!(GLOB_SFT_RST & t)) {
630 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
635 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
638 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
641 } while ((GLOB_SFT_RST & t) && (i-- > 0));
643 if (GLOB_SFT_RST & t) {
644 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
652 * mv_host_stop - Host specific cleanup/stop routine.
653 * @host_set: host data structure
655 * Disable ints, cleanup host memory, call general purpose
659 * Inherited from caller.
661 static void mv_host_stop(struct ata_host_set *host_set)
663 struct mv_host_priv *hpriv = host_set->private_data;
664 struct pci_dev *pdev = to_pci_dev(host_set->dev);
666 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
667 pci_disable_msi(pdev);
672 ata_host_stop(host_set);
675 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
677 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
681 * mv_port_start - Port specific init/start routine.
682 * @ap: ATA channel to manipulate
684 * Allocate and point to DMA memory, init port private memory,
688 * Inherited from caller.
690 static int mv_port_start(struct ata_port *ap)
692 struct device *dev = ap->host_set->dev;
693 struct mv_port_priv *pp;
694 void __iomem *port_mmio = mv_ap_base(ap);
699 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
702 memset(pp, 0, sizeof(*pp));
704 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
708 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
710 rc = ata_pad_alloc(ap, dev);
714 /* First item in chunk of DMA memory:
715 * 32-slot command request table (CRQB), 32 bytes each in size
718 pp->crqb_dma = mem_dma;
720 mem_dma += MV_CRQB_Q_SZ;
723 * 32-slot command response table (CRPB), 8 bytes each in size
726 pp->crpb_dma = mem_dma;
728 mem_dma += MV_CRPB_Q_SZ;
731 * Table of scatter-gather descriptors (ePRD), 16 bytes each
734 pp->sg_tbl_dma = mem_dma;
736 writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
737 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
739 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
740 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
741 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
743 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
744 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
746 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
747 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
748 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
750 pp->req_producer = pp->rsp_consumer = 0;
752 /* Don't turn on EDMA here...do it before DMA commands only. Else
753 * we'll be unable to send non-data, PIO, etc due to restricted access
756 ap->private_data = pp;
760 mv_priv_free(pp, dev);
768 * mv_port_stop - Port specific cleanup/stop routine.
769 * @ap: ATA channel to manipulate
771 * Stop DMA, cleanup port memory.
774 * This routine uses the host_set lock to protect the DMA stop.
776 static void mv_port_stop(struct ata_port *ap)
778 struct device *dev = ap->host_set->dev;
779 struct mv_port_priv *pp = ap->private_data;
782 spin_lock_irqsave(&ap->host_set->lock, flags);
784 spin_unlock_irqrestore(&ap->host_set->lock, flags);
786 ap->private_data = NULL;
787 ata_pad_free(ap, dev);
788 mv_priv_free(pp, dev);
793 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
794 * @qc: queued command whose SG list to source from
796 * Populate the SG list and mark the last entry.
799 * Inherited from caller.
801 static void mv_fill_sg(struct ata_queued_cmd *qc)
803 struct mv_port_priv *pp = qc->ap->private_data;
805 struct scatterlist *sg;
807 ata_for_each_sg(sg, qc) {
811 addr = sg_dma_address(sg);
812 sg_len = sg_dma_len(sg);
814 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
815 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
816 assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
817 pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
818 if (ata_sg_is_last(sg, qc))
819 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
825 static inline unsigned mv_inc_q_index(unsigned *index)
827 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
831 static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
833 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
834 (last ? CRQB_CMD_LAST : 0);
838 * mv_qc_prep - Host specific command preparation.
839 * @qc: queued command to prepare
841 * This routine simply redirects to the general purpose routine
842 * if command is not DMA. Else, it handles prep of the CRQB
843 * (command request block), does some sanity checking, and calls
844 * the SG load routine.
847 * Inherited from caller.
849 static void mv_qc_prep(struct ata_queued_cmd *qc)
851 struct ata_port *ap = qc->ap;
852 struct mv_port_priv *pp = ap->private_data;
854 struct ata_taskfile *tf;
857 if (ATA_PROT_DMA != qc->tf.protocol) {
861 /* the req producer index should be the same as we remember it */
862 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
863 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
866 /* Fill in command request block
868 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
869 flags |= CRQB_FLAG_READ;
871 assert(MV_MAX_Q_DEPTH > qc->tag);
872 flags |= qc->tag << CRQB_TAG_SHIFT;
874 pp->crqb[pp->req_producer].sg_addr =
875 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
876 pp->crqb[pp->req_producer].sg_addr_hi =
877 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
878 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
880 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
883 /* Sadly, the CRQB cannot accomodate all registers--there are
884 * only 11 bytes...so we must pick and choose required
885 * registers based on the command. So, we drop feature and
886 * hob_feature for [RW] DMA commands, but they are needed for
887 * NCQ. NCQ will drop hob_nsect.
889 switch (tf->command) {
891 case ATA_CMD_READ_EXT:
893 case ATA_CMD_WRITE_EXT:
894 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
896 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
897 case ATA_CMD_FPDMA_READ:
898 case ATA_CMD_FPDMA_WRITE:
899 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
900 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
902 #endif /* FIXME: remove this line when NCQ added */
904 /* The only other commands EDMA supports in non-queued and
905 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
906 * of which are defined/used by Linux. If we get here, this
909 * FIXME: modify libata to give qc_prep a return value and
915 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
916 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
917 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
918 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
919 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
920 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
921 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
922 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
923 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
925 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
932 * mv_qc_issue - Initiate a command to the host
933 * @qc: queued command to start
935 * This routine simply redirects to the general purpose routine
936 * if command is not DMA. Else, it sanity checks our local
937 * caches of the request producer/consumer indices then enables
938 * DMA and bumps the request producer index.
941 * Inherited from caller.
943 static int mv_qc_issue(struct ata_queued_cmd *qc)
945 void __iomem *port_mmio = mv_ap_base(qc->ap);
946 struct mv_port_priv *pp = qc->ap->private_data;
949 if (ATA_PROT_DMA != qc->tf.protocol) {
950 /* We're about to send a non-EDMA capable command to the
951 * port. Turn off EDMA so there won't be problems accessing
952 * shadow block, etc registers.
955 return ata_qc_issue_prot(qc);
958 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
960 /* the req producer index should be the same as we remember it */
961 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
963 /* until we do queuing, the queue should be empty at this point */
964 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
965 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
966 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
968 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
970 mv_start_dma(port_mmio, pp);
972 /* and write the request in pointer to kick the EDMA to life */
973 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
974 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
975 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
981 * mv_get_crpb_status - get status from most recently completed cmd
982 * @ap: ATA channel to manipulate
984 * This routine is for use when the port is in DMA mode, when it
985 * will be using the CRPB (command response block) method of
986 * returning command completion information. We assert indices
987 * are good, grab status, and bump the response consumer index to
988 * prove that we're up to date.
991 * Inherited from caller.
993 static u8 mv_get_crpb_status(struct ata_port *ap)
995 void __iomem *port_mmio = mv_ap_base(ap);
996 struct mv_port_priv *pp = ap->private_data;
999 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1001 /* the response consumer index should be the same as we remember it */
1002 assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1005 /* increment our consumer index... */
1006 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1008 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1009 assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
1010 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1013 /* write out our inc'd consumer index so EDMA knows we're caught up */
1014 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1015 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
1016 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1018 /* Return ATA status register for completed CRPB */
1019 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1023 * mv_err_intr - Handle error interrupts on the port
1024 * @ap: ATA channel to manipulate
1026 * In most cases, just clear the interrupt and move on. However,
1027 * some cases require an eDMA reset, which is done right before
1028 * the COMRESET in mv_phy_reset(). The SERR case requires a
1029 * clear of pending errors in the SATA SERROR register. Finally,
1030 * if the port disabled DMA, update our cached copy to match.
1033 * Inherited from caller.
1035 static void mv_err_intr(struct ata_port *ap)
1037 void __iomem *port_mmio = mv_ap_base(ap);
1038 u32 edma_err_cause, serr = 0;
1040 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1042 if (EDMA_ERR_SERR & edma_err_cause) {
1043 serr = scr_read(ap, SCR_ERROR);
1044 scr_write_flush(ap, SCR_ERROR, serr);
1046 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1047 struct mv_port_priv *pp = ap->private_data;
1048 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1050 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1051 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1053 /* Clear EDMA now that SERR cleanup done */
1054 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1056 /* check for fatal here and recover if needed */
1057 if (EDMA_ERR_FATAL & edma_err_cause) {
1063 * mv_host_intr - Handle all interrupts on the given host controller
1064 * @host_set: host specific structure
1065 * @relevant: port error bits relevant to this host controller
1066 * @hc: which host controller we're to look at
1068 * Read then write clear the HC interrupt status then walk each
1069 * port connected to the HC and see if it needs servicing. Port
1070 * success ints are reported in the HC interrupt status reg, the
1071 * port error ints are reported in the higher level main
1072 * interrupt status register and thus are passed in via the
1073 * 'relevant' argument.
1076 * Inherited from caller.
1078 static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1081 void __iomem *mmio = host_set->mmio_base;
1082 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1083 struct ata_port *ap;
1084 struct ata_queued_cmd *qc;
1086 int shift, port, port0, hard_port, handled;
1087 unsigned int err_mask;
1093 port0 = MV_PORTS_PER_HC;
1096 /* we'll need the HC success int register in most cases */
1097 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1099 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1102 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1103 hc,relevant,hc_irq_cause);
1105 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1106 ap = host_set->ports[port];
1107 hard_port = port & MV_PORT_MASK; /* range 0-3 */
1108 handled = 0; /* ensure ata_status is set if handled++ */
1110 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1111 /* new CRPB on the queue; just one at a time until NCQ
1113 ata_status = mv_get_crpb_status(ap);
1115 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1116 /* received ATA IRQ; read the status reg to clear INTRQ
1118 ata_status = readb((void __iomem *)
1119 ap->ioaddr.status_addr);
1123 err_mask = ac_err_mask(ata_status);
1125 shift = port << 1; /* (port * 2) */
1126 if (port >= MV_PORTS_PER_HC) {
1127 shift++; /* skip bit 8 in the HC Main IRQ reg */
1129 if ((PORT0_ERR << shift) & relevant) {
1131 err_mask |= AC_ERR_OTHER;
1135 if (handled && ap) {
1136 qc = ata_qc_from_tag(ap, ap->active_tag);
1138 VPRINTK("port %u IRQ found for qc, "
1139 "ata_status 0x%x\n", port,ata_status);
1140 /* mark qc status appropriately */
1141 ata_qc_complete(qc, err_mask);
1151 * @dev_instance: private data; in this case the host structure
1154 * Read the read only register to determine if any host
1155 * controllers have pending interrupts. If so, call lower level
1156 * routine to handle. Also check for PCI errors which are only
1160 * This routine holds the host_set lock while processing pending
1163 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1164 struct pt_regs *regs)
1166 struct ata_host_set *host_set = dev_instance;
1167 unsigned int hc, handled = 0, n_hcs;
1168 void __iomem *mmio = host_set->mmio_base;
1171 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1173 /* check the cases where we either have nothing pending or have read
1174 * a bogus register value which can indicate HW removal or PCI fault
1176 if (!irq_stat || (0xffffffffU == irq_stat)) {
1180 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1181 spin_lock(&host_set->lock);
1183 for (hc = 0; hc < n_hcs; hc++) {
1184 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1186 mv_host_intr(host_set, relevant, hc);
1190 if (PCI_ERR & irq_stat) {
1191 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1192 readl(mmio + PCI_IRQ_CAUSE_OFS));
1194 DPRINTK("All regs @ PCI error\n");
1195 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1197 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1200 spin_unlock(&host_set->lock);
1202 return IRQ_RETVAL(handled);
1206 * mv_phy_reset - Perform eDMA reset followed by COMRESET
1207 * @ap: ATA channel to manipulate
1209 * Part of this is taken from __sata_phy_reset and modified to
1210 * not sleep since this routine gets called from interrupt level.
1213 * Inherited from caller. This is coded to safe to call at
1214 * interrupt level, i.e. it does not sleep.
1216 static void mv_phy_reset(struct ata_port *ap)
1218 void __iomem *port_mmio = mv_ap_base(ap);
1219 struct ata_taskfile tf;
1220 struct ata_device *dev = &ap->device[0];
1221 unsigned long timeout;
1223 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1227 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1228 udelay(25); /* allow reset propagation */
1230 /* Spec never mentions clearing the bit. Marvell's driver does
1231 * clear the bit, however.
1233 writelfl(0, port_mmio + EDMA_CMD_OFS);
1235 VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1236 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1237 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1239 /* proceed to init communications via the scr_control reg */
1240 scr_write_flush(ap, SCR_CONTROL, 0x301);
1242 scr_write_flush(ap, SCR_CONTROL, 0x300);
1243 timeout = jiffies + (HZ * 1);
1246 if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
1248 } while (time_before(jiffies, timeout));
1250 VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1251 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1252 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1254 if (sata_dev_present(ap)) {
1257 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1258 ap->id, scr_read(ap, SCR_STATUS));
1259 ata_port_disable(ap);
1262 ap->cbl = ATA_CBL_SATA;
1264 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1265 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1266 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1267 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1269 dev->class = ata_dev_classify(&tf);
1270 if (!ata_dev_present(dev)) {
1271 VPRINTK("Port disabled post-sig: No device present.\n");
1272 ata_port_disable(ap);
1278 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1279 * @ap: ATA channel to manipulate
1281 * Intent is to clear all pending error conditions, reset the
1282 * chip/bus, fail the command, and move on.
1285 * This routine holds the host_set lock while failing the command.
1287 static void mv_eng_timeout(struct ata_port *ap)
1289 struct ata_queued_cmd *qc;
1290 unsigned long flags;
1292 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
1293 DPRINTK("All regs @ start of eng_timeout\n");
1294 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1295 to_pci_dev(ap->host_set->dev));
1297 qc = ata_qc_from_tag(ap, ap->active_tag);
1298 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1299 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1300 &qc->scsicmd->cmnd);
1306 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
1309 /* hack alert! We cannot use the supplied completion
1310 * function from inside the ->eh_strategy_handler() thread.
1311 * libata is the only user of ->eh_strategy_handler() in
1312 * any kernel, so the default scsi_done() assumes it is
1313 * not being called from the SCSI EH.
1315 spin_lock_irqsave(&ap->host_set->lock, flags);
1316 qc->scsidone = scsi_finish_command;
1317 ata_qc_complete(qc, AC_ERR_OTHER);
1318 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1323 * mv_port_init - Perform some early initialization on a single port.
1324 * @port: libata data structure storing shadow register addresses
1325 * @port_mmio: base address of the port
1327 * Initialize shadow register mmio addresses, clear outstanding
1328 * interrupts on the port, and unmask interrupts for the future
1329 * start of the port.
1332 * Inherited from caller.
1334 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
1336 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
1339 /* PIO related setup
1341 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
1343 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
1344 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
1345 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
1346 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
1347 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
1348 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1350 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
1351 /* special case: control/altstatus doesn't have ATA_REG_ address */
1352 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
1355 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
1357 /* Clear any currently outstanding port interrupt conditions */
1358 serr_ofs = mv_scr_offset(SCR_ERROR);
1359 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
1360 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1362 /* unmask all EDMA error interrupts */
1363 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1365 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1366 readl(port_mmio + EDMA_CFG_OFS),
1367 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
1368 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1372 * mv_host_init - Perform some early initialization of the host.
1373 * @probe_ent: early data struct representing the host
1375 * If possible, do an early global reset of the host. Then do
1376 * our port init and clear/unmask all/relevant host interrupts.
1379 * Inherited from caller.
1381 static int mv_host_init(struct ata_probe_ent *probe_ent)
1383 int rc = 0, n_hc, port, hc;
1384 void __iomem *mmio = probe_ent->mmio_base;
1385 void __iomem *port_mmio;
1387 if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) &&
1388 mv_global_soft_reset(probe_ent->mmio_base)) {
1393 n_hc = mv_get_hc_count(probe_ent->host_flags);
1394 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
1396 for (port = 0; port < probe_ent->n_ports; port++) {
1397 port_mmio = mv_port_base(mmio, port);
1398 mv_port_init(&probe_ent->port[port], port_mmio);
1401 for (hc = 0; hc < n_hc; hc++) {
1402 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1404 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
1405 "(before clear)=0x%08x\n", hc,
1406 readl(hc_mmio + HC_CFG_OFS),
1407 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
1409 /* Clear any currently outstanding hc interrupt conditions */
1410 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
1413 /* Clear any currently outstanding host interrupt conditions */
1414 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1416 /* and unmask interrupt generation for host regs */
1417 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
1418 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
1420 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
1421 "PCI int cause/mask=0x%08x/0x%08x\n",
1422 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
1423 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
1424 readl(mmio + PCI_IRQ_CAUSE_OFS),
1425 readl(mmio + PCI_IRQ_MASK_OFS));
1431 * mv_print_info - Dump key info to kernel log for perusal.
1432 * @probe_ent: early data struct representing the host
1434 * FIXME: complete this.
1437 * Inherited from caller.
1439 static void mv_print_info(struct ata_probe_ent *probe_ent)
1441 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
1442 struct mv_host_priv *hpriv = probe_ent->private_data;
1446 /* Use this to determine the HW stepping of the chip so we know
1447 * what errata to workaround
1449 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1451 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
1454 else if (scc == 0x01)
1459 dev_printk(KERN_INFO, &pdev->dev,
1460 "%u slots %u ports %s mode IRQ via %s\n",
1461 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
1462 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
1466 * mv_init_one - handle a positive probe of a Marvell host
1467 * @pdev: PCI device found
1468 * @ent: PCI device ID entry for the matched host
1471 * Inherited from caller.
1473 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1475 static int printed_version = 0;
1476 struct ata_probe_ent *probe_ent = NULL;
1477 struct mv_host_priv *hpriv;
1478 unsigned int board_idx = (unsigned int)ent->driver_data;
1479 void __iomem *mmio_base;
1480 int pci_dev_busy = 0, rc;
1482 if (!printed_version++)
1483 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
1485 rc = pci_enable_device(pdev);
1490 rc = pci_request_regions(pdev, DRV_NAME);
1496 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
1497 if (probe_ent == NULL) {
1499 goto err_out_regions;
1502 memset(probe_ent, 0, sizeof(*probe_ent));
1503 probe_ent->dev = pci_dev_to_dev(pdev);
1504 INIT_LIST_HEAD(&probe_ent->node);
1506 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
1507 if (mmio_base == NULL) {
1509 goto err_out_free_ent;
1512 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
1515 goto err_out_iounmap;
1517 memset(hpriv, 0, sizeof(*hpriv));
1519 probe_ent->sht = mv_port_info[board_idx].sht;
1520 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
1521 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
1522 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
1523 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
1525 probe_ent->irq = pdev->irq;
1526 probe_ent->irq_flags = SA_SHIRQ;
1527 probe_ent->mmio_base = mmio_base;
1528 probe_ent->private_data = hpriv;
1530 /* initialize adapter */
1531 rc = mv_host_init(probe_ent);
1536 /* Enable interrupts */
1537 if (pci_enable_msi(pdev) == 0) {
1538 hpriv->hp_flags |= MV_HP_FLAG_MSI;
1543 mv_dump_pci_cfg(pdev, 0x68);
1544 mv_print_info(probe_ent);
1546 if (ata_device_add(probe_ent) == 0) {
1547 rc = -ENODEV; /* No devices discovered */
1548 goto err_out_dev_add;
1555 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
1556 pci_disable_msi(pdev);
1563 pci_iounmap(pdev, mmio_base);
1567 pci_release_regions(pdev);
1569 if (!pci_dev_busy) {
1570 pci_disable_device(pdev);
1576 static int __init mv_init(void)
1578 return pci_module_init(&mv_pci_driver);
1581 static void __exit mv_exit(void)
1583 pci_unregister_driver(&mv_pci_driver);
1586 MODULE_AUTHOR("Brett Russ");
1587 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
1588 MODULE_LICENSE("GPL");
1589 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
1590 MODULE_VERSION(DRV_VERSION);
1592 module_init(mv_init);
1593 module_exit(mv_exit);