2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
55 #include <linux/config.h>
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
80 int sysctl_tcp_tw_reuse;
81 int sysctl_tcp_low_latency;
83 /* Check TCP sequence numbers in ICMP packets. */
84 #define ICMP_MIN_LENGTH 8
86 /* Socket used for sending RSTs */
87 static struct socket *tcp_socket;
89 void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93 .lhash_lock = RW_LOCK_UNLOCKED,
94 .lhash_users = ATOMIC_INIT(0),
95 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
100 return inet_csk_get_port(&tcp_hashinfo, sk, snum);
103 static void tcp_v4_hash(struct sock *sk)
105 inet_hash(&tcp_hashinfo, sk);
108 void tcp_unhash(struct sock *sk)
110 inet_unhash(&tcp_hashinfo, sk);
113 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
115 return secure_tcp_sequence_number(skb->nh.iph->daddr,
121 /* called with local bh disabled */
122 static int __tcp_v4_check_established(struct sock *sk, __u16 lport,
123 struct inet_timewait_sock **twp)
125 struct inet_sock *inet = inet_sk(sk);
126 u32 daddr = inet->rcv_saddr;
127 u32 saddr = inet->daddr;
128 int dif = sk->sk_bound_dev_if;
129 INET_ADDR_COOKIE(acookie, saddr, daddr)
130 const __u32 ports = INET_COMBINED_PORTS(inet->dport, lport);
131 unsigned int hash = inet_ehashfn(daddr, lport, saddr, inet->dport);
132 struct inet_ehash_bucket *head = inet_ehash_bucket(&tcp_hashinfo, hash);
134 const struct hlist_node *node;
135 struct inet_timewait_sock *tw;
137 prefetch(head->chain.first);
138 write_lock(&head->lock);
140 /* Check TIME-WAIT sockets first. */
141 sk_for_each(sk2, node, &(head + tcp_hashinfo.ehash_size)->chain) {
144 if (INET_TW_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif)) {
145 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk2);
146 struct tcp_sock *tp = tcp_sk(sk);
148 /* With PAWS, it is safe from the viewpoint
149 of data integrity. Even without PAWS it
150 is safe provided sequence spaces do not
151 overlap i.e. at data rates <= 80Mbit/sec.
153 Actually, the idea is close to VJ's one,
154 only timestamp cache is held not per host,
155 but per port pair and TW bucket is used
158 If TW bucket has been already destroyed we
159 fall back to VJ's scheme and use initial
160 timestamp retrieved from peer table.
162 if (tcptw->tw_ts_recent_stamp &&
163 (!twp || (sysctl_tcp_tw_reuse &&
165 tcptw->tw_ts_recent_stamp > 1))) {
166 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
167 if (tp->write_seq == 0)
169 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
170 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
179 /* And established part... */
180 sk_for_each(sk2, node, &head->chain) {
181 if (INET_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif))
186 /* Must record num and sport now. Otherwise we will see
187 * in hash table socket with a funny identity. */
189 inet->sport = htons(lport);
191 BUG_TRAP(sk_unhashed(sk));
192 __sk_add_node(sk, &head->chain);
193 sock_prot_inc_use(sk->sk_prot);
194 write_unlock(&head->lock);
198 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
200 /* Silly. Should hash-dance instead... */
201 inet_twsk_deschedule(tw, &tcp_death_row);
202 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
210 write_unlock(&head->lock);
211 return -EADDRNOTAVAIL;
214 static inline u32 connect_port_offset(const struct sock *sk)
216 const struct inet_sock *inet = inet_sk(sk);
218 return secure_tcp_port_ephemeral(inet->rcv_saddr, inet->daddr,
223 * Bind a port for a connect operation and hash it.
225 static inline int tcp_v4_hash_connect(struct sock *sk)
227 const unsigned short snum = inet_sk(sk)->num;
228 struct inet_bind_hashbucket *head;
229 struct inet_bind_bucket *tb;
233 int low = sysctl_local_port_range[0];
234 int high = sysctl_local_port_range[1];
235 int range = high - low;
239 u32 offset = hint + connect_port_offset(sk);
240 struct hlist_node *node;
241 struct inet_timewait_sock *tw = NULL;
244 for (i = 1; i <= range; i++) {
245 port = low + (i + offset) % range;
246 head = &tcp_hashinfo.bhash[inet_bhashfn(port, tcp_hashinfo.bhash_size)];
247 spin_lock(&head->lock);
249 /* Does not bother with rcv_saddr checks,
250 * because the established check is already
253 inet_bind_bucket_for_each(tb, node, &head->chain) {
254 if (tb->port == port) {
255 BUG_TRAP(!hlist_empty(&tb->owners));
256 if (tb->fastreuse >= 0)
258 if (!__tcp_v4_check_established(sk,
266 tb = inet_bind_bucket_create(tcp_hashinfo.bind_bucket_cachep, head, port);
268 spin_unlock(&head->lock);
275 spin_unlock(&head->lock);
279 return -EADDRNOTAVAIL;
284 /* Head lock still held and bh's disabled */
285 inet_bind_hash(sk, tb, port);
286 if (sk_unhashed(sk)) {
287 inet_sk(sk)->sport = htons(port);
288 __inet_hash(&tcp_hashinfo, sk, 0);
290 spin_unlock(&head->lock);
293 inet_twsk_deschedule(tw, &tcp_death_row);;
301 head = &tcp_hashinfo.bhash[inet_bhashfn(snum, tcp_hashinfo.bhash_size)];
302 tb = inet_csk(sk)->icsk_bind_hash;
303 spin_lock_bh(&head->lock);
304 if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) {
305 __inet_hash(&tcp_hashinfo, sk, 0);
306 spin_unlock_bh(&head->lock);
309 spin_unlock(&head->lock);
310 /* No definite answer... Walk to established hash table */
311 ret = __tcp_v4_check_established(sk, snum, NULL);
318 /* This will initiate an outgoing connection. */
319 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
321 struct inet_sock *inet = inet_sk(sk);
322 struct tcp_sock *tp = tcp_sk(sk);
323 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
329 if (addr_len < sizeof(struct sockaddr_in))
332 if (usin->sin_family != AF_INET)
333 return -EAFNOSUPPORT;
335 nexthop = daddr = usin->sin_addr.s_addr;
336 if (inet->opt && inet->opt->srr) {
339 nexthop = inet->opt->faddr;
342 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
343 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
345 inet->sport, usin->sin_port, sk);
349 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
354 if (!inet->opt || !inet->opt->srr)
358 inet->saddr = rt->rt_src;
359 inet->rcv_saddr = inet->saddr;
361 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
362 /* Reset inherited state */
363 tp->rx_opt.ts_recent = 0;
364 tp->rx_opt.ts_recent_stamp = 0;
368 if (tcp_death_row.sysctl_tw_recycle &&
369 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
370 struct inet_peer *peer = rt_get_peer(rt);
372 /* VJ's idea. We save last timestamp seen from
373 * the destination in peer table, when entering state TIME-WAIT
374 * and initialize rx_opt.ts_recent from it, when trying new connection.
377 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
378 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
379 tp->rx_opt.ts_recent = peer->tcp_ts;
383 inet->dport = usin->sin_port;
386 tp->ext_header_len = 0;
388 tp->ext_header_len = inet->opt->optlen;
390 tp->rx_opt.mss_clamp = 536;
392 /* Socket identity is still unknown (sport may be zero).
393 * However we set state to SYN-SENT and not releasing socket
394 * lock select source port, enter ourselves into the hash tables and
395 * complete initialization after this.
397 tcp_set_state(sk, TCP_SYN_SENT);
398 err = tcp_v4_hash_connect(sk);
402 err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
406 /* OK, now commit destination to socket. */
407 sk_setup_caps(sk, &rt->u.dst);
410 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
415 inet->id = tp->write_seq ^ jiffies;
417 err = tcp_connect(sk);
425 /* This unhashes the socket and releases the local port, if necessary. */
426 tcp_set_state(sk, TCP_CLOSE);
428 sk->sk_route_caps = 0;
434 * This routine does path mtu discovery as defined in RFC1191.
436 static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph,
439 struct dst_entry *dst;
440 struct inet_sock *inet = inet_sk(sk);
441 struct tcp_sock *tp = tcp_sk(sk);
443 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
444 * send out by Linux are always <576bytes so they should go through
447 if (sk->sk_state == TCP_LISTEN)
450 /* We don't check in the destentry if pmtu discovery is forbidden
451 * on this route. We just assume that no packet_to_big packets
452 * are send back when pmtu discovery is not active.
453 * There is a small race when the user changes this flag in the
454 * route, but I think that's acceptable.
456 if ((dst = __sk_dst_check(sk, 0)) == NULL)
459 dst->ops->update_pmtu(dst, mtu);
461 /* Something is about to be wrong... Remember soft error
462 * for the case, if this connection will not able to recover.
464 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
465 sk->sk_err_soft = EMSGSIZE;
469 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
470 tp->pmtu_cookie > mtu) {
471 tcp_sync_mss(sk, mtu);
473 /* Resend the TCP packet because it's
474 * clear that the old packet has been
475 * dropped. This is the new "fast" path mtu
478 tcp_simple_retransmit(sk);
479 } /* else let the usual retransmit timer handle it */
483 * This routine is called by the ICMP module when it gets some
484 * sort of error condition. If err < 0 then the socket should
485 * be closed and the error returned to the user. If err > 0
486 * it's just the icmp type << 8 | icmp code. After adjustment
487 * header points to the first 8 bytes of the tcp header. We need
488 * to find the appropriate port.
490 * The locking strategy used here is very "optimistic". When
491 * someone else accesses the socket the ICMP is just dropped
492 * and for some paths there is no check at all.
493 * A more general error queue to queue errors for later handling
494 * is probably better.
498 void tcp_v4_err(struct sk_buff *skb, u32 info)
500 struct iphdr *iph = (struct iphdr *)skb->data;
501 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
503 struct inet_sock *inet;
504 int type = skb->h.icmph->type;
505 int code = skb->h.icmph->code;
510 if (skb->len < (iph->ihl << 2) + 8) {
511 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
515 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
516 th->source, inet_iif(skb));
518 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
521 if (sk->sk_state == TCP_TIME_WAIT) {
522 inet_twsk_put((struct inet_timewait_sock *)sk);
527 /* If too many ICMPs get dropped on busy
528 * servers this needs to be solved differently.
530 if (sock_owned_by_user(sk))
531 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
533 if (sk->sk_state == TCP_CLOSE)
537 seq = ntohl(th->seq);
538 if (sk->sk_state != TCP_LISTEN &&
539 !between(seq, tp->snd_una, tp->snd_nxt)) {
540 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
545 case ICMP_SOURCE_QUENCH:
546 /* Just silently ignore these. */
548 case ICMP_PARAMETERPROB:
551 case ICMP_DEST_UNREACH:
552 if (code > NR_ICMP_UNREACH)
555 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
556 if (!sock_owned_by_user(sk))
557 do_pmtu_discovery(sk, iph, info);
561 err = icmp_err_convert[code].errno;
563 case ICMP_TIME_EXCEEDED:
570 switch (sk->sk_state) {
571 struct request_sock *req, **prev;
573 if (sock_owned_by_user(sk))
576 req = inet_csk_search_req(sk, &prev, th->dest,
577 iph->daddr, iph->saddr);
581 /* ICMPs are not backlogged, hence we cannot get
582 an established socket here.
586 if (seq != tcp_rsk(req)->snt_isn) {
587 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
592 * Still in SYN_RECV, just remove it silently.
593 * There is no good way to pass the error to the newly
594 * created socket, and POSIX does not want network
595 * errors returned from accept().
597 inet_csk_reqsk_queue_drop(sk, req, prev);
601 case TCP_SYN_RECV: /* Cannot happen.
602 It can f.e. if SYNs crossed.
604 if (!sock_owned_by_user(sk)) {
605 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
608 sk->sk_error_report(sk);
612 sk->sk_err_soft = err;
617 /* If we've already connected we will keep trying
618 * until we time out, or the user gives up.
620 * rfc1122 4.2.3.9 allows to consider as hard errors
621 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
622 * but it is obsoleted by pmtu discovery).
624 * Note, that in modern internet, where routing is unreliable
625 * and in each dark corner broken firewalls sit, sending random
626 * errors ordered by their masters even this two messages finally lose
627 * their original sense (even Linux sends invalid PORT_UNREACHs)
629 * Now we are in compliance with RFCs.
634 if (!sock_owned_by_user(sk) && inet->recverr) {
636 sk->sk_error_report(sk);
637 } else { /* Only an error on timeout */
638 sk->sk_err_soft = err;
646 /* This routine computes an IPv4 TCP checksum. */
647 void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
650 struct inet_sock *inet = inet_sk(sk);
652 if (skb->ip_summed == CHECKSUM_HW) {
653 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
654 skb->csum = offsetof(struct tcphdr, check);
656 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
657 csum_partial((char *)th,
664 * This routine will send an RST to the other tcp.
666 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
668 * Answer: if a packet caused RST, it is not for a socket
669 * existing in our system, if it is matched to a socket,
670 * it is just duplicate segment or bug in other side's TCP.
671 * So that we build reply only basing on parameters
672 * arrived with segment.
673 * Exception: precedence violation. We do not implement it in any case.
676 static void tcp_v4_send_reset(struct sk_buff *skb)
678 struct tcphdr *th = skb->h.th;
680 struct ip_reply_arg arg;
682 /* Never send a reset in response to a reset. */
686 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
689 /* Swap the send and the receive. */
690 memset(&rth, 0, sizeof(struct tcphdr));
691 rth.dest = th->source;
692 rth.source = th->dest;
693 rth.doff = sizeof(struct tcphdr) / 4;
697 rth.seq = th->ack_seq;
700 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
701 skb->len - (th->doff << 2));
704 memset(&arg, 0, sizeof arg);
705 arg.iov[0].iov_base = (unsigned char *)&rth;
706 arg.iov[0].iov_len = sizeof rth;
707 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
708 skb->nh.iph->saddr, /*XXX*/
709 sizeof(struct tcphdr), IPPROTO_TCP, 0);
710 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
712 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
714 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
715 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
718 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
719 outside socket context is ugly, certainly. What can I do?
722 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
725 struct tcphdr *th = skb->h.th;
730 struct ip_reply_arg arg;
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof arg);
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
738 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
741 rep.tsopt[1] = htonl(tcp_time_stamp);
742 rep.tsopt[2] = htonl(ts);
743 arg.iov[0].iov_len = sizeof(rep);
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
753 rep.th.window = htons(win);
755 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
756 skb->nh.iph->saddr, /*XXX*/
757 arg.iov[0].iov_len, IPPROTO_TCP, 0);
758 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
760 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
762 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
765 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
767 struct inet_timewait_sock *tw = inet_twsk(sk);
768 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
770 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
771 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
776 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
778 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
783 * Send a SYN-ACK after having received an ACK.
784 * This still operates on a request_sock only, not on a big
787 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
788 struct dst_entry *dst)
790 const struct inet_request_sock *ireq = inet_rsk(req);
792 struct sk_buff * skb;
794 /* First, grab a route. */
795 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
798 skb = tcp_make_synack(sk, dst, req);
801 struct tcphdr *th = skb->h.th;
803 th->check = tcp_v4_check(th, skb->len,
806 csum_partial((char *)th, skb->len,
809 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
812 if (err == NET_XMIT_CN)
822 * IPv4 request_sock destructor.
824 static void tcp_v4_reqsk_destructor(struct request_sock *req)
826 kfree(inet_rsk(req)->opt);
829 static inline void syn_flood_warning(struct sk_buff *skb)
831 static unsigned long warntime;
833 if (time_after(jiffies, (warntime + HZ * 60))) {
836 "possible SYN flooding on port %d. Sending cookies.\n",
837 ntohs(skb->h.th->dest));
842 * Save and compile IPv4 options into the request_sock if needed.
844 static inline struct ip_options *tcp_v4_save_options(struct sock *sk,
847 struct ip_options *opt = &(IPCB(skb)->opt);
848 struct ip_options *dopt = NULL;
850 if (opt && opt->optlen) {
851 int opt_size = optlength(opt);
852 dopt = kmalloc(opt_size, GFP_ATOMIC);
854 if (ip_options_echo(dopt, skb)) {
863 struct request_sock_ops tcp_request_sock_ops = {
865 .obj_size = sizeof(struct tcp_request_sock),
866 .rtx_syn_ack = tcp_v4_send_synack,
867 .send_ack = tcp_v4_reqsk_send_ack,
868 .destructor = tcp_v4_reqsk_destructor,
869 .send_reset = tcp_v4_send_reset,
872 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
874 struct inet_request_sock *ireq;
875 struct tcp_options_received tmp_opt;
876 struct request_sock *req;
877 __u32 saddr = skb->nh.iph->saddr;
878 __u32 daddr = skb->nh.iph->daddr;
879 __u32 isn = TCP_SKB_CB(skb)->when;
880 struct dst_entry *dst = NULL;
881 #ifdef CONFIG_SYN_COOKIES
884 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
887 /* Never answer to SYNs send to broadcast or multicast */
888 if (((struct rtable *)skb->dst)->rt_flags &
889 (RTCF_BROADCAST | RTCF_MULTICAST))
892 /* TW buckets are converted to open requests without
893 * limitations, they conserve resources and peer is
894 * evidently real one.
896 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
897 #ifdef CONFIG_SYN_COOKIES
898 if (sysctl_tcp_syncookies) {
905 /* Accept backlog is full. If we have already queued enough
906 * of warm entries in syn queue, drop request. It is better than
907 * clogging syn queue with openreqs with exponentially increasing
910 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
913 req = reqsk_alloc(&tcp_request_sock_ops);
917 tcp_clear_options(&tmp_opt);
918 tmp_opt.mss_clamp = 536;
919 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
921 tcp_parse_options(skb, &tmp_opt, 0);
924 tcp_clear_options(&tmp_opt);
925 tmp_opt.saw_tstamp = 0;
928 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
929 /* Some OSes (unknown ones, but I see them on web server, which
930 * contains information interesting only for windows'
931 * users) do not send their stamp in SYN. It is easy case.
932 * We simply do not advertise TS support.
934 tmp_opt.saw_tstamp = 0;
935 tmp_opt.tstamp_ok = 0;
937 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
939 tcp_openreq_init(req, &tmp_opt, skb);
941 ireq = inet_rsk(req);
942 ireq->loc_addr = daddr;
943 ireq->rmt_addr = saddr;
944 ireq->opt = tcp_v4_save_options(sk, skb);
946 TCP_ECN_create_request(req, skb->h.th);
949 #ifdef CONFIG_SYN_COOKIES
950 syn_flood_warning(skb);
952 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
954 struct inet_peer *peer = NULL;
956 /* VJ's idea. We save last timestamp seen
957 * from the destination in peer table, when entering
958 * state TIME-WAIT, and check against it before
959 * accepting new connection request.
961 * If "isn" is not zero, this request hit alive
962 * timewait bucket, so that all the necessary checks
963 * are made in the function processing timewait state.
965 if (tmp_opt.saw_tstamp &&
966 tcp_death_row.sysctl_tw_recycle &&
967 (dst = inet_csk_route_req(sk, req)) != NULL &&
968 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
969 peer->v4daddr == saddr) {
970 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
971 (s32)(peer->tcp_ts - req->ts_recent) >
973 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
978 /* Kill the following clause, if you dislike this way. */
979 else if (!sysctl_tcp_syncookies &&
980 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
981 (sysctl_max_syn_backlog >> 2)) &&
982 (!peer || !peer->tcp_ts_stamp) &&
983 (!dst || !dst_metric(dst, RTAX_RTT))) {
984 /* Without syncookies last quarter of
985 * backlog is filled with destinations,
986 * proven to be alive.
987 * It means that we continue to communicate
988 * to destinations, already remembered
989 * to the moment of synflood.
991 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
992 "request from %u.%u.%u.%u/%u\n",
994 ntohs(skb->h.th->source));
999 isn = tcp_v4_init_sequence(sk, skb);
1001 tcp_rsk(req)->snt_isn = isn;
1003 if (tcp_v4_send_synack(sk, req, dst))
1009 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1016 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
1022 * The three way handshake has completed - we got a valid synack -
1023 * now create the new socket.
1025 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1026 struct request_sock *req,
1027 struct dst_entry *dst)
1029 struct inet_request_sock *ireq;
1030 struct inet_sock *newinet;
1031 struct tcp_sock *newtp;
1034 if (sk_acceptq_is_full(sk))
1037 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1040 newsk = tcp_create_openreq_child(sk, req, skb);
1044 sk_setup_caps(newsk, dst);
1046 newtp = tcp_sk(newsk);
1047 newinet = inet_sk(newsk);
1048 ireq = inet_rsk(req);
1049 newinet->daddr = ireq->rmt_addr;
1050 newinet->rcv_saddr = ireq->loc_addr;
1051 newinet->saddr = ireq->loc_addr;
1052 newinet->opt = ireq->opt;
1054 newinet->mc_index = inet_iif(skb);
1055 newinet->mc_ttl = skb->nh.iph->ttl;
1056 newtp->ext_header_len = 0;
1058 newtp->ext_header_len = newinet->opt->optlen;
1059 newinet->id = newtp->write_seq ^ jiffies;
1061 tcp_sync_mss(newsk, dst_mtu(dst));
1062 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1063 tcp_initialize_rcv_mss(newsk);
1065 __inet_hash(&tcp_hashinfo, newsk, 0);
1066 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
1071 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1073 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1078 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1080 struct tcphdr *th = skb->h.th;
1081 struct iphdr *iph = skb->nh.iph;
1083 struct request_sock **prev;
1084 /* Find possible connection requests. */
1085 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1086 iph->saddr, iph->daddr);
1088 return tcp_check_req(sk, skb, req, prev);
1090 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
1091 th->source, skb->nh.iph->daddr,
1092 ntohs(th->dest), inet_iif(skb));
1095 if (nsk->sk_state != TCP_TIME_WAIT) {
1099 inet_twsk_put((struct inet_timewait_sock *)nsk);
1103 #ifdef CONFIG_SYN_COOKIES
1104 if (!th->rst && !th->syn && th->ack)
1105 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1110 static int tcp_v4_checksum_init(struct sk_buff *skb)
1112 if (skb->ip_summed == CHECKSUM_HW) {
1113 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1114 skb->nh.iph->daddr, skb->csum)) {
1115 skb->ip_summed = CHECKSUM_UNNECESSARY;
1120 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
1121 skb->len, IPPROTO_TCP, 0);
1123 if (skb->len <= 76) {
1124 return __skb_checksum_complete(skb);
1130 /* The socket must have it's spinlock held when we get
1133 * We have a potential double-lock case here, so even when
1134 * doing backlog processing we use the BH locking scheme.
1135 * This is because we cannot sleep with the original spinlock
1138 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1140 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1141 TCP_CHECK_TIMER(sk);
1142 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1144 TCP_CHECK_TIMER(sk);
1148 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1151 if (sk->sk_state == TCP_LISTEN) {
1152 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1157 if (tcp_child_process(sk, nsk, skb))
1163 TCP_CHECK_TIMER(sk);
1164 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1166 TCP_CHECK_TIMER(sk);
1170 tcp_v4_send_reset(skb);
1173 /* Be careful here. If this function gets more complicated and
1174 * gcc suffers from register pressure on the x86, sk (in %ebx)
1175 * might be destroyed here. This current version compiles correctly,
1176 * but you have been warned.
1181 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1189 int tcp_v4_rcv(struct sk_buff *skb)
1195 if (skb->pkt_type != PACKET_HOST)
1198 /* Count it even if it's bad */
1199 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1201 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1206 if (th->doff < sizeof(struct tcphdr) / 4)
1208 if (!pskb_may_pull(skb, th->doff * 4))
1211 /* An explanation is required here, I think.
1212 * Packet length and doff are validated by header prediction,
1213 * provided case of th->doff==0 is eliminated.
1214 * So, we defer the checks. */
1215 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1216 tcp_v4_checksum_init(skb)))
1220 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1221 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1222 skb->len - th->doff * 4);
1223 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1224 TCP_SKB_CB(skb)->when = 0;
1225 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1226 TCP_SKB_CB(skb)->sacked = 0;
1228 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1229 skb->nh.iph->daddr, ntohs(th->dest),
1236 if (sk->sk_state == TCP_TIME_WAIT)
1239 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1240 goto discard_and_relse;
1242 if (sk_filter(sk, skb, 0))
1243 goto discard_and_relse;
1249 if (!sock_owned_by_user(sk)) {
1250 if (!tcp_prequeue(sk, skb))
1251 ret = tcp_v4_do_rcv(sk, skb);
1253 sk_add_backlog(sk, skb);
1261 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1264 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1266 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1268 tcp_v4_send_reset(skb);
1272 /* Discard frame. */
1281 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1282 inet_twsk_put((struct inet_timewait_sock *) sk);
1286 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1287 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1288 inet_twsk_put((struct inet_timewait_sock *) sk);
1291 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1294 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1299 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1301 inet_twsk_put((struct inet_timewait_sock *)sk);
1305 /* Fall through to ACK */
1308 tcp_v4_timewait_ack(sk, skb);
1312 case TCP_TW_SUCCESS:;
1317 static void v4_addr2sockaddr(struct sock *sk, struct sockaddr * uaddr)
1319 struct sockaddr_in *sin = (struct sockaddr_in *) uaddr;
1320 struct inet_sock *inet = inet_sk(sk);
1322 sin->sin_family = AF_INET;
1323 sin->sin_addr.s_addr = inet->daddr;
1324 sin->sin_port = inet->dport;
1327 /* VJ's idea. Save last timestamp seen from this destination
1328 * and hold it at least for normal timewait interval to use for duplicate
1329 * segment detection in subsequent connections, before they enter synchronized
1333 int tcp_v4_remember_stamp(struct sock *sk)
1335 struct inet_sock *inet = inet_sk(sk);
1336 struct tcp_sock *tp = tcp_sk(sk);
1337 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1338 struct inet_peer *peer = NULL;
1341 if (!rt || rt->rt_dst != inet->daddr) {
1342 peer = inet_getpeer(inet->daddr, 1);
1346 rt_bind_peer(rt, 1);
1351 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1352 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1353 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1354 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1355 peer->tcp_ts = tp->rx_opt.ts_recent;
1365 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1367 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1370 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1372 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1373 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1374 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1375 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1376 peer->tcp_ts = tcptw->tw_ts_recent;
1385 struct tcp_func ipv4_specific = {
1386 .queue_xmit = ip_queue_xmit,
1387 .send_check = tcp_v4_send_check,
1388 .rebuild_header = inet_sk_rebuild_header,
1389 .conn_request = tcp_v4_conn_request,
1390 .syn_recv_sock = tcp_v4_syn_recv_sock,
1391 .remember_stamp = tcp_v4_remember_stamp,
1392 .net_header_len = sizeof(struct iphdr),
1393 .setsockopt = ip_setsockopt,
1394 .getsockopt = ip_getsockopt,
1395 .addr2sockaddr = v4_addr2sockaddr,
1396 .sockaddr_len = sizeof(struct sockaddr_in),
1399 /* NOTE: A lot of things set to zero explicitly by call to
1400 * sk_alloc() so need not be done here.
1402 static int tcp_v4_init_sock(struct sock *sk)
1404 struct inet_connection_sock *icsk = inet_csk(sk);
1405 struct tcp_sock *tp = tcp_sk(sk);
1407 skb_queue_head_init(&tp->out_of_order_queue);
1408 tcp_init_xmit_timers(sk);
1409 tcp_prequeue_init(tp);
1411 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1412 tp->mdev = TCP_TIMEOUT_INIT;
1414 /* So many TCP implementations out there (incorrectly) count the
1415 * initial SYN frame in their delayed-ACK and congestion control
1416 * algorithms that we must have the following bandaid to talk
1417 * efficiently to them. -DaveM
1421 /* See draft-stevens-tcpca-spec-01 for discussion of the
1422 * initialization of these values.
1424 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1425 tp->snd_cwnd_clamp = ~0;
1426 tp->mss_cache = 536;
1428 tp->reordering = sysctl_tcp_reordering;
1429 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1431 sk->sk_state = TCP_CLOSE;
1433 sk->sk_write_space = sk_stream_write_space;
1434 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1436 tp->af_specific = &ipv4_specific;
1438 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1439 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1441 atomic_inc(&tcp_sockets_allocated);
1446 int tcp_v4_destroy_sock(struct sock *sk)
1448 struct tcp_sock *tp = tcp_sk(sk);
1450 tcp_clear_xmit_timers(sk);
1452 tcp_cleanup_congestion_control(sk);
1454 /* Cleanup up the write buffer. */
1455 sk_stream_writequeue_purge(sk);
1457 /* Cleans up our, hopefully empty, out_of_order_queue. */
1458 __skb_queue_purge(&tp->out_of_order_queue);
1460 /* Clean prequeue, it must be empty really */
1461 __skb_queue_purge(&tp->ucopy.prequeue);
1463 /* Clean up a referenced TCP bind bucket. */
1464 if (inet_csk(sk)->icsk_bind_hash)
1465 inet_put_port(&tcp_hashinfo, sk);
1468 * If sendmsg cached page exists, toss it.
1470 if (sk->sk_sndmsg_page) {
1471 __free_page(sk->sk_sndmsg_page);
1472 sk->sk_sndmsg_page = NULL;
1475 atomic_dec(&tcp_sockets_allocated);
1480 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1482 #ifdef CONFIG_PROC_FS
1483 /* Proc filesystem TCP sock list dumping. */
1485 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1487 return hlist_empty(head) ? NULL :
1488 list_entry(head->first, struct inet_timewait_sock, tw_node);
1491 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1493 return tw->tw_node.next ?
1494 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1497 static void *listening_get_next(struct seq_file *seq, void *cur)
1499 struct inet_connection_sock *icsk;
1500 struct hlist_node *node;
1501 struct sock *sk = cur;
1502 struct tcp_iter_state* st = seq->private;
1506 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1512 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1513 struct request_sock *req = cur;
1515 icsk = inet_csk(st->syn_wait_sk);
1519 if (req->rsk_ops->family == st->family) {
1525 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1528 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1530 sk = sk_next(st->syn_wait_sk);
1531 st->state = TCP_SEQ_STATE_LISTENING;
1532 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1534 icsk = inet_csk(sk);
1535 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1536 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1538 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1542 sk_for_each_from(sk, node) {
1543 if (sk->sk_family == st->family) {
1547 icsk = inet_csk(sk);
1548 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1549 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1551 st->uid = sock_i_uid(sk);
1552 st->syn_wait_sk = sk;
1553 st->state = TCP_SEQ_STATE_OPENREQ;
1557 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1559 if (++st->bucket < INET_LHTABLE_SIZE) {
1560 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1568 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1570 void *rc = listening_get_next(seq, NULL);
1572 while (rc && *pos) {
1573 rc = listening_get_next(seq, rc);
1579 static void *established_get_first(struct seq_file *seq)
1581 struct tcp_iter_state* st = seq->private;
1584 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1586 struct hlist_node *node;
1587 struct inet_timewait_sock *tw;
1589 /* We can reschedule _before_ having picked the target: */
1590 cond_resched_softirq();
1592 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1593 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1594 if (sk->sk_family != st->family) {
1600 st->state = TCP_SEQ_STATE_TIME_WAIT;
1601 inet_twsk_for_each(tw, node,
1602 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1603 if (tw->tw_family != st->family) {
1609 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1610 st->state = TCP_SEQ_STATE_ESTABLISHED;
1616 static void *established_get_next(struct seq_file *seq, void *cur)
1618 struct sock *sk = cur;
1619 struct inet_timewait_sock *tw;
1620 struct hlist_node *node;
1621 struct tcp_iter_state* st = seq->private;
1625 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1629 while (tw && tw->tw_family != st->family) {
1636 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1637 st->state = TCP_SEQ_STATE_ESTABLISHED;
1639 /* We can reschedule between buckets: */
1640 cond_resched_softirq();
1642 if (++st->bucket < tcp_hashinfo.ehash_size) {
1643 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1644 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1652 sk_for_each_from(sk, node) {
1653 if (sk->sk_family == st->family)
1657 st->state = TCP_SEQ_STATE_TIME_WAIT;
1658 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1666 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1668 void *rc = established_get_first(seq);
1671 rc = established_get_next(seq, rc);
1677 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1680 struct tcp_iter_state* st = seq->private;
1682 inet_listen_lock(&tcp_hashinfo);
1683 st->state = TCP_SEQ_STATE_LISTENING;
1684 rc = listening_get_idx(seq, &pos);
1687 inet_listen_unlock(&tcp_hashinfo);
1689 st->state = TCP_SEQ_STATE_ESTABLISHED;
1690 rc = established_get_idx(seq, pos);
1696 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1698 struct tcp_iter_state* st = seq->private;
1699 st->state = TCP_SEQ_STATE_LISTENING;
1701 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1704 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1707 struct tcp_iter_state* st;
1709 if (v == SEQ_START_TOKEN) {
1710 rc = tcp_get_idx(seq, 0);
1715 switch (st->state) {
1716 case TCP_SEQ_STATE_OPENREQ:
1717 case TCP_SEQ_STATE_LISTENING:
1718 rc = listening_get_next(seq, v);
1720 inet_listen_unlock(&tcp_hashinfo);
1722 st->state = TCP_SEQ_STATE_ESTABLISHED;
1723 rc = established_get_first(seq);
1726 case TCP_SEQ_STATE_ESTABLISHED:
1727 case TCP_SEQ_STATE_TIME_WAIT:
1728 rc = established_get_next(seq, v);
1736 static void tcp_seq_stop(struct seq_file *seq, void *v)
1738 struct tcp_iter_state* st = seq->private;
1740 switch (st->state) {
1741 case TCP_SEQ_STATE_OPENREQ:
1743 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1744 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1746 case TCP_SEQ_STATE_LISTENING:
1747 if (v != SEQ_START_TOKEN)
1748 inet_listen_unlock(&tcp_hashinfo);
1750 case TCP_SEQ_STATE_TIME_WAIT:
1751 case TCP_SEQ_STATE_ESTABLISHED:
1753 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1759 static int tcp_seq_open(struct inode *inode, struct file *file)
1761 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1762 struct seq_file *seq;
1763 struct tcp_iter_state *s;
1766 if (unlikely(afinfo == NULL))
1769 s = kmalloc(sizeof(*s), GFP_KERNEL);
1772 memset(s, 0, sizeof(*s));
1773 s->family = afinfo->family;
1774 s->seq_ops.start = tcp_seq_start;
1775 s->seq_ops.next = tcp_seq_next;
1776 s->seq_ops.show = afinfo->seq_show;
1777 s->seq_ops.stop = tcp_seq_stop;
1779 rc = seq_open(file, &s->seq_ops);
1782 seq = file->private_data;
1791 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1794 struct proc_dir_entry *p;
1798 afinfo->seq_fops->owner = afinfo->owner;
1799 afinfo->seq_fops->open = tcp_seq_open;
1800 afinfo->seq_fops->read = seq_read;
1801 afinfo->seq_fops->llseek = seq_lseek;
1802 afinfo->seq_fops->release = seq_release_private;
1804 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1812 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1816 proc_net_remove(afinfo->name);
1817 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1820 static void get_openreq4(struct sock *sk, struct request_sock *req,
1821 char *tmpbuf, int i, int uid)
1823 const struct inet_request_sock *ireq = inet_rsk(req);
1824 int ttd = req->expires - jiffies;
1826 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1827 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1830 ntohs(inet_sk(sk)->sport),
1832 ntohs(ireq->rmt_port),
1834 0, 0, /* could print option size, but that is af dependent. */
1835 1, /* timers active (only the expire timer) */
1836 jiffies_to_clock_t(ttd),
1839 0, /* non standard timer */
1840 0, /* open_requests have no inode */
1841 atomic_read(&sk->sk_refcnt),
1845 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1848 unsigned long timer_expires;
1849 struct tcp_sock *tp = tcp_sk(sp);
1850 const struct inet_connection_sock *icsk = inet_csk(sp);
1851 struct inet_sock *inet = inet_sk(sp);
1852 unsigned int dest = inet->daddr;
1853 unsigned int src = inet->rcv_saddr;
1854 __u16 destp = ntohs(inet->dport);
1855 __u16 srcp = ntohs(inet->sport);
1857 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1859 timer_expires = icsk->icsk_timeout;
1860 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1862 timer_expires = icsk->icsk_timeout;
1863 } else if (timer_pending(&sp->sk_timer)) {
1865 timer_expires = sp->sk_timer.expires;
1868 timer_expires = jiffies;
1871 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1872 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1873 i, src, srcp, dest, destp, sp->sk_state,
1874 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1876 jiffies_to_clock_t(timer_expires - jiffies),
1877 icsk->icsk_retransmits,
1879 icsk->icsk_probes_out,
1881 atomic_read(&sp->sk_refcnt), sp,
1884 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1886 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1889 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1891 unsigned int dest, src;
1893 int ttd = tw->tw_ttd - jiffies;
1898 dest = tw->tw_daddr;
1899 src = tw->tw_rcv_saddr;
1900 destp = ntohs(tw->tw_dport);
1901 srcp = ntohs(tw->tw_sport);
1903 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1904 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1905 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1906 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1907 atomic_read(&tw->tw_refcnt), tw);
1912 static int tcp4_seq_show(struct seq_file *seq, void *v)
1914 struct tcp_iter_state* st;
1915 char tmpbuf[TMPSZ + 1];
1917 if (v == SEQ_START_TOKEN) {
1918 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1919 " sl local_address rem_address st tx_queue "
1920 "rx_queue tr tm->when retrnsmt uid timeout "
1926 switch (st->state) {
1927 case TCP_SEQ_STATE_LISTENING:
1928 case TCP_SEQ_STATE_ESTABLISHED:
1929 get_tcp4_sock(v, tmpbuf, st->num);
1931 case TCP_SEQ_STATE_OPENREQ:
1932 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1934 case TCP_SEQ_STATE_TIME_WAIT:
1935 get_timewait4_sock(v, tmpbuf, st->num);
1938 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1943 static struct file_operations tcp4_seq_fops;
1944 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1945 .owner = THIS_MODULE,
1948 .seq_show = tcp4_seq_show,
1949 .seq_fops = &tcp4_seq_fops,
1952 int __init tcp4_proc_init(void)
1954 return tcp_proc_register(&tcp4_seq_afinfo);
1957 void tcp4_proc_exit(void)
1959 tcp_proc_unregister(&tcp4_seq_afinfo);
1961 #endif /* CONFIG_PROC_FS */
1963 struct proto tcp_prot = {
1965 .owner = THIS_MODULE,
1967 .connect = tcp_v4_connect,
1968 .disconnect = tcp_disconnect,
1969 .accept = inet_csk_accept,
1971 .init = tcp_v4_init_sock,
1972 .destroy = tcp_v4_destroy_sock,
1973 .shutdown = tcp_shutdown,
1974 .setsockopt = tcp_setsockopt,
1975 .getsockopt = tcp_getsockopt,
1976 .sendmsg = tcp_sendmsg,
1977 .recvmsg = tcp_recvmsg,
1978 .backlog_rcv = tcp_v4_do_rcv,
1979 .hash = tcp_v4_hash,
1980 .unhash = tcp_unhash,
1981 .get_port = tcp_v4_get_port,
1982 .enter_memory_pressure = tcp_enter_memory_pressure,
1983 .sockets_allocated = &tcp_sockets_allocated,
1984 .orphan_count = &tcp_orphan_count,
1985 .memory_allocated = &tcp_memory_allocated,
1986 .memory_pressure = &tcp_memory_pressure,
1987 .sysctl_mem = sysctl_tcp_mem,
1988 .sysctl_wmem = sysctl_tcp_wmem,
1989 .sysctl_rmem = sysctl_tcp_rmem,
1990 .max_header = MAX_TCP_HEADER,
1991 .obj_size = sizeof(struct tcp_sock),
1992 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1993 .rsk_prot = &tcp_request_sock_ops,
1998 void __init tcp_v4_init(struct net_proto_family *ops)
2000 int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
2002 panic("Failed to create the TCP control socket.\n");
2003 tcp_socket->sk->sk_allocation = GFP_ATOMIC;
2004 inet_sk(tcp_socket->sk)->uc_ttl = -1;
2006 /* Unhash it so that IP input processing does not even
2007 * see it, we do not wish this socket to see incoming
2010 tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
2013 EXPORT_SYMBOL(ipv4_specific);
2014 EXPORT_SYMBOL(inet_bind_bucket_create);
2015 EXPORT_SYMBOL(tcp_hashinfo);
2016 EXPORT_SYMBOL(tcp_prot);
2017 EXPORT_SYMBOL(tcp_unhash);
2018 EXPORT_SYMBOL(tcp_v4_conn_request);
2019 EXPORT_SYMBOL(tcp_v4_connect);
2020 EXPORT_SYMBOL(tcp_v4_do_rcv);
2021 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2022 EXPORT_SYMBOL(tcp_v4_send_check);
2023 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2025 #ifdef CONFIG_PROC_FS
2026 EXPORT_SYMBOL(tcp_proc_register);
2027 EXPORT_SYMBOL(tcp_proc_unregister);
2029 EXPORT_SYMBOL(sysctl_local_port_range);
2030 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2031 EXPORT_SYMBOL(sysctl_tcp_tw_reuse);