2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
54 static struct workqueue_struct *aio_wq;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init aio_setup(void)
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
149 if (unlikely(info->nr_pages != nr_pages)) {
154 ctx->user_id = info->mmap_base;
156 info->nr = nr_events; /* trusted copy */
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
199 static void __put_ioctx(struct kioctx *ctx)
201 unsigned nr_events = ctx->max_reqs;
203 BUG_ON(ctx->reqs_active);
205 cancel_delayed_work(&ctx->wq);
206 cancel_work_sync(&ctx->wq.work);
210 pr_debug("__put_ioctx: freeing %p\n", ctx);
211 kmem_cache_free(kioctx_cachep, ctx);
214 spin_lock(&aio_nr_lock);
215 BUG_ON(aio_nr - nr_events > aio_nr);
217 spin_unlock(&aio_nr_lock);
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 struct mm_struct *mm;
239 /* Prevent overflows */
240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL);
246 if ((unsigned long)nr_events > aio_max_nr)
247 return ERR_PTR(-EAGAIN);
249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
251 return ERR_PTR(-ENOMEM);
253 ctx->max_reqs = nr_events;
254 mm = ctx->mm = current->mm;
255 atomic_inc(&mm->mm_count);
257 atomic_set(&ctx->users, 1);
258 spin_lock_init(&ctx->ctx_lock);
259 spin_lock_init(&ctx->ring_info.ring_lock);
260 init_waitqueue_head(&ctx->wait);
262 INIT_LIST_HEAD(&ctx->active_reqs);
263 INIT_LIST_HEAD(&ctx->run_list);
264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
266 if (aio_setup_ring(ctx) < 0)
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock);
271 if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 aio_nr + ctx->max_reqs < aio_nr)
275 aio_nr += ctx->max_reqs;
276 spin_unlock(&aio_nr_lock);
277 if (ctx->max_reqs == 0)
280 /* now link into global list. kludge. FIXME */
281 write_lock(&mm->ioctx_list_lock);
282 ctx->next = mm->ioctx_list;
283 mm->ioctx_list = ctx;
284 write_unlock(&mm->ioctx_list_lock);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
292 return ERR_PTR(-EAGAIN);
296 kmem_cache_free(kioctx_cachep, ctx);
297 ctx = ERR_PTR(-ENOMEM);
299 dprintk("aio: error allocating ioctx %p\n", ctx);
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
308 static void aio_cancel_all(struct kioctx *ctx)
310 int (*cancel)(struct kiocb *, struct io_event *);
312 spin_lock_irq(&ctx->ctx_lock);
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
322 spin_unlock_irq(&ctx->ctx_lock);
324 spin_lock_irq(&ctx->ctx_lock);
327 spin_unlock_irq(&ctx->ctx_lock);
330 static void wait_for_all_aios(struct kioctx *ctx)
332 struct task_struct *tsk = current;
333 DECLARE_WAITQUEUE(wait, tsk);
335 spin_lock_irq(&ctx->ctx_lock);
336 if (!ctx->reqs_active)
339 add_wait_queue(&ctx->wait, &wait);
340 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 while (ctx->reqs_active) {
342 spin_unlock_irq(&ctx->ctx_lock);
344 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 spin_lock_irq(&ctx->ctx_lock);
347 __set_task_state(tsk, TASK_RUNNING);
348 remove_wait_queue(&ctx->wait, &wait);
351 spin_unlock_irq(&ctx->ctx_lock);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
359 while (iocb->ki_users) {
360 set_current_state(TASK_UNINTERRUPTIBLE);
365 __set_current_state(TASK_RUNNING);
366 return iocb->ki_user_data;
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
376 void exit_aio(struct mm_struct *mm)
378 struct kioctx *ctx = mm->ioctx_list;
379 mm->ioctx_list = NULL;
381 struct kioctx *next = ctx->next;
385 wait_for_all_aios(ctx);
387 * Ensure we don't leave the ctx on the aio_wq
389 cancel_work_sync(&ctx->wq.work);
391 if (1 != atomic_read(&ctx->users))
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx->users), ctx->dead,
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
413 struct kiocb *req = NULL;
414 struct aio_ring *ring;
417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
425 req->ki_cancel = NULL;
426 req->ki_retry = NULL;
429 req->ki_iovec = NULL;
430 INIT_LIST_HEAD(&req->ki_run_list);
431 req->ki_eventfd = ERR_PTR(-EINVAL);
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
436 spin_lock_irq(&ctx->ctx_lock);
437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 list_add(&req->ki_list, &ctx->active_reqs);
443 kunmap_atomic(ring, KM_USER0);
444 spin_unlock_irq(&ctx->ctx_lock);
447 kmem_cache_free(kiocb_cachep, req);
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
461 req = __aio_get_req(ctx);
462 if (unlikely(NULL == req)) {
463 aio_fput_routine(NULL);
464 req = __aio_get_req(ctx);
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
471 assert_spin_locked(&ctx->ctx_lock);
473 if (!IS_ERR(req->ki_eventfd))
474 fput(req->ki_eventfd);
477 if (req->ki_iovec != &req->ki_inline_vec)
478 kfree(req->ki_iovec);
479 kmem_cache_free(kiocb_cachep, req);
482 if (unlikely(!ctx->reqs_active && ctx->dead))
486 static void aio_fput_routine(struct work_struct *data)
488 spin_lock_irq(&fput_lock);
489 while (likely(!list_empty(&fput_head))) {
490 struct kiocb *req = list_kiocb(fput_head.next);
491 struct kioctx *ctx = req->ki_ctx;
493 list_del(&req->ki_list);
494 spin_unlock_irq(&fput_lock);
496 /* Complete the fput */
497 __fput(req->ki_filp);
499 /* Link the iocb into the context's free list */
500 spin_lock_irq(&ctx->ctx_lock);
501 really_put_req(ctx, req);
502 spin_unlock_irq(&ctx->ctx_lock);
505 spin_lock_irq(&fput_lock);
507 spin_unlock_irq(&fput_lock);
511 * Returns true if this put was the last user of the request.
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
516 req, atomic_read(&req->ki_filp->f_count));
518 assert_spin_locked(&ctx->ctx_lock);
521 BUG_ON(req->ki_users < 0);
522 if (likely(req->ki_users))
524 list_del(&req->ki_list); /* remove from active_reqs */
525 req->ki_cancel = NULL;
526 req->ki_retry = NULL;
528 /* Must be done under the lock to serialise against cancellation.
529 * Call this aio_fput as it duplicates fput via the fput_work.
531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
533 spin_lock(&fput_lock);
534 list_add(&req->ki_list, &fput_head);
535 spin_unlock(&fput_lock);
536 queue_work(aio_wq, &fput_work);
538 really_put_req(ctx, req);
543 * Returns true if this put was the last user of the kiocb,
544 * false if the request is still in use.
546 int aio_put_req(struct kiocb *req)
548 struct kioctx *ctx = req->ki_ctx;
550 spin_lock_irq(&ctx->ctx_lock);
551 ret = __aio_put_req(ctx, req);
552 spin_unlock_irq(&ctx->ctx_lock);
556 /* Lookup an ioctx id. ioctx_list is lockless for reads.
557 * FIXME: this is O(n) and is only suitable for development.
559 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
561 struct kioctx *ioctx;
562 struct mm_struct *mm;
565 read_lock(&mm->ioctx_list_lock);
566 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
567 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
571 read_unlock(&mm->ioctx_list_lock);
578 * Makes the calling kernel thread take on the specified
580 * Called by the retry thread execute retries within the
581 * iocb issuer's mm context, so that copy_from/to_user
582 * operations work seamlessly for aio.
583 * (Note: this routine is intended to be called only
584 * from a kernel thread context)
586 static void use_mm(struct mm_struct *mm)
588 struct mm_struct *active_mm;
589 struct task_struct *tsk = current;
592 tsk->flags |= PF_BORROWED_MM;
593 active_mm = tsk->active_mm;
594 atomic_inc(&mm->mm_count);
598 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
599 * it won't work. Update it accordingly if you change it here
601 switch_mm(active_mm, mm, tsk);
609 * Reverses the effect of use_mm, i.e. releases the
610 * specified mm context which was earlier taken on
611 * by the calling kernel thread
612 * (Note: this routine is intended to be called only
613 * from a kernel thread context)
615 static void unuse_mm(struct mm_struct *mm)
617 struct task_struct *tsk = current;
620 tsk->flags &= ~PF_BORROWED_MM;
622 /* active_mm is still 'mm' */
623 enter_lazy_tlb(mm, tsk);
628 * Queue up a kiocb to be retried. Assumes that the kiocb
629 * has already been marked as kicked, and places it on
630 * the retry run list for the corresponding ioctx, if it
631 * isn't already queued. Returns 1 if it actually queued
632 * the kiocb (to tell the caller to activate the work
633 * queue to process it), or 0, if it found that it was
636 static inline int __queue_kicked_iocb(struct kiocb *iocb)
638 struct kioctx *ctx = iocb->ki_ctx;
640 assert_spin_locked(&ctx->ctx_lock);
642 if (list_empty(&iocb->ki_run_list)) {
643 list_add_tail(&iocb->ki_run_list,
651 * This is the core aio execution routine. It is
652 * invoked both for initial i/o submission and
653 * subsequent retries via the aio_kick_handler.
654 * Expects to be invoked with iocb->ki_ctx->lock
655 * already held. The lock is released and reacquired
656 * as needed during processing.
658 * Calls the iocb retry method (already setup for the
659 * iocb on initial submission) for operation specific
660 * handling, but takes care of most of common retry
661 * execution details for a given iocb. The retry method
662 * needs to be non-blocking as far as possible, to avoid
663 * holding up other iocbs waiting to be serviced by the
664 * retry kernel thread.
666 * The trickier parts in this code have to do with
667 * ensuring that only one retry instance is in progress
668 * for a given iocb at any time. Providing that guarantee
669 * simplifies the coding of individual aio operations as
670 * it avoids various potential races.
672 static ssize_t aio_run_iocb(struct kiocb *iocb)
674 struct kioctx *ctx = iocb->ki_ctx;
675 ssize_t (*retry)(struct kiocb *);
678 if (!(retry = iocb->ki_retry)) {
679 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
684 * We don't want the next retry iteration for this
685 * operation to start until this one has returned and
686 * updated the iocb state. However, wait_queue functions
687 * can trigger a kick_iocb from interrupt context in the
688 * meantime, indicating that data is available for the next
689 * iteration. We want to remember that and enable the
690 * next retry iteration _after_ we are through with
693 * So, in order to be able to register a "kick", but
694 * prevent it from being queued now, we clear the kick
695 * flag, but make the kick code *think* that the iocb is
696 * still on the run list until we are actually done.
697 * When we are done with this iteration, we check if
698 * the iocb was kicked in the meantime and if so, queue
702 kiocbClearKicked(iocb);
705 * This is so that aio_complete knows it doesn't need to
706 * pull the iocb off the run list (We can't just call
707 * INIT_LIST_HEAD because we don't want a kick_iocb to
708 * queue this on the run list yet)
710 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
711 spin_unlock_irq(&ctx->ctx_lock);
713 /* Quit retrying if the i/o has been cancelled */
714 if (kiocbIsCancelled(iocb)) {
716 aio_complete(iocb, ret, 0);
717 /* must not access the iocb after this */
722 * Now we are all set to call the retry method in async
727 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
728 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
729 aio_complete(iocb, ret, 0);
732 spin_lock_irq(&ctx->ctx_lock);
734 if (-EIOCBRETRY == ret) {
736 * OK, now that we are done with this iteration
737 * and know that there is more left to go,
738 * this is where we let go so that a subsequent
739 * "kick" can start the next iteration
742 /* will make __queue_kicked_iocb succeed from here on */
743 INIT_LIST_HEAD(&iocb->ki_run_list);
744 /* we must queue the next iteration ourselves, if it
745 * has already been kicked */
746 if (kiocbIsKicked(iocb)) {
747 __queue_kicked_iocb(iocb);
750 * __queue_kicked_iocb will always return 1 here, because
751 * iocb->ki_run_list is empty at this point so it should
752 * be safe to unconditionally queue the context into the
763 * Process all pending retries queued on the ioctx
765 * Assumes it is operating within the aio issuer's mm
768 static int __aio_run_iocbs(struct kioctx *ctx)
771 struct list_head run_list;
773 assert_spin_locked(&ctx->ctx_lock);
775 list_replace_init(&ctx->run_list, &run_list);
776 while (!list_empty(&run_list)) {
777 iocb = list_entry(run_list.next, struct kiocb,
779 list_del(&iocb->ki_run_list);
781 * Hold an extra reference while retrying i/o.
783 iocb->ki_users++; /* grab extra reference */
785 __aio_put_req(ctx, iocb);
787 if (!list_empty(&ctx->run_list))
792 static void aio_queue_work(struct kioctx * ctx)
794 unsigned long timeout;
796 * if someone is waiting, get the work started right
797 * away, otherwise, use a longer delay
800 if (waitqueue_active(&ctx->wait))
804 queue_delayed_work(aio_wq, &ctx->wq, timeout);
810 * Process all pending retries queued on the ioctx
812 * Assumes it is operating within the aio issuer's mm
815 static inline void aio_run_iocbs(struct kioctx *ctx)
819 spin_lock_irq(&ctx->ctx_lock);
821 requeue = __aio_run_iocbs(ctx);
822 spin_unlock_irq(&ctx->ctx_lock);
828 * just like aio_run_iocbs, but keeps running them until
829 * the list stays empty
831 static inline void aio_run_all_iocbs(struct kioctx *ctx)
833 spin_lock_irq(&ctx->ctx_lock);
834 while (__aio_run_iocbs(ctx))
836 spin_unlock_irq(&ctx->ctx_lock);
841 * Work queue handler triggered to process pending
842 * retries on an ioctx. Takes on the aio issuer's
843 * mm context before running the iocbs, so that
844 * copy_xxx_user operates on the issuer's address
846 * Run on aiod's context.
848 static void aio_kick_handler(struct work_struct *work)
850 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
851 mm_segment_t oldfs = get_fs();
852 struct mm_struct *mm;
857 spin_lock_irq(&ctx->ctx_lock);
858 requeue =__aio_run_iocbs(ctx);
860 spin_unlock_irq(&ctx->ctx_lock);
864 * we're in a worker thread already, don't use queue_delayed_work,
867 queue_delayed_work(aio_wq, &ctx->wq, 0);
872 * Called by kick_iocb to queue the kiocb for retry
873 * and if required activate the aio work queue to process
876 static void try_queue_kicked_iocb(struct kiocb *iocb)
878 struct kioctx *ctx = iocb->ki_ctx;
882 /* We're supposed to be the only path putting the iocb back on the run
883 * list. If we find that the iocb is *back* on a wait queue already
884 * than retry has happened before we could queue the iocb. This also
885 * means that the retry could have completed and freed our iocb, no
887 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
889 spin_lock_irqsave(&ctx->ctx_lock, flags);
890 /* set this inside the lock so that we can't race with aio_run_iocb()
891 * testing it and putting the iocb on the run list under the lock */
892 if (!kiocbTryKick(iocb))
893 run = __queue_kicked_iocb(iocb);
894 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
901 * Called typically from a wait queue callback context
902 * (aio_wake_function) to trigger a retry of the iocb.
903 * The retry is usually executed by aio workqueue
904 * threads (See aio_kick_handler).
906 void kick_iocb(struct kiocb *iocb)
908 /* sync iocbs are easy: they can only ever be executing from a
910 if (is_sync_kiocb(iocb)) {
911 kiocbSetKicked(iocb);
912 wake_up_process(iocb->ki_obj.tsk);
916 try_queue_kicked_iocb(iocb);
918 EXPORT_SYMBOL(kick_iocb);
921 * Called when the io request on the given iocb is complete.
922 * Returns true if this is the last user of the request. The
923 * only other user of the request can be the cancellation code.
925 int aio_complete(struct kiocb *iocb, long res, long res2)
927 struct kioctx *ctx = iocb->ki_ctx;
928 struct aio_ring_info *info;
929 struct aio_ring *ring;
930 struct io_event *event;
936 * Special case handling for sync iocbs:
937 * - events go directly into the iocb for fast handling
938 * - the sync task with the iocb in its stack holds the single iocb
939 * ref, no other paths have a way to get another ref
940 * - the sync task helpfully left a reference to itself in the iocb
942 if (is_sync_kiocb(iocb)) {
943 BUG_ON(iocb->ki_users != 1);
944 iocb->ki_user_data = res;
946 wake_up_process(iocb->ki_obj.tsk);
950 info = &ctx->ring_info;
952 /* add a completion event to the ring buffer.
953 * must be done holding ctx->ctx_lock to prevent
954 * other code from messing with the tail
955 * pointer since we might be called from irq
958 spin_lock_irqsave(&ctx->ctx_lock, flags);
960 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
961 list_del_init(&iocb->ki_run_list);
964 * cancelled requests don't get events, userland was given one
965 * when the event got cancelled.
967 if (kiocbIsCancelled(iocb))
970 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
973 event = aio_ring_event(info, tail, KM_IRQ0);
974 if (++tail >= info->nr)
977 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
978 event->data = iocb->ki_user_data;
982 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
983 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
986 /* after flagging the request as done, we
987 * must never even look at it again
989 smp_wmb(); /* make event visible before updating tail */
994 put_aio_ring_event(event, KM_IRQ0);
995 kunmap_atomic(ring, KM_IRQ1);
997 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1000 * Check if the user asked us to deliver the result through an
1001 * eventfd. The eventfd_signal() function is safe to be called
1004 if (!IS_ERR(iocb->ki_eventfd))
1005 eventfd_signal(iocb->ki_eventfd, 1);
1008 /* everything turned out well, dispose of the aiocb. */
1009 ret = __aio_put_req(ctx, iocb);
1012 * We have to order our ring_info tail store above and test
1013 * of the wait list below outside the wait lock. This is
1014 * like in wake_up_bit() where clearing a bit has to be
1015 * ordered with the unlocked test.
1019 if (waitqueue_active(&ctx->wait))
1020 wake_up(&ctx->wait);
1022 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1027 * Pull an event off of the ioctx's event ring. Returns the number of
1028 * events fetched (0 or 1 ;-)
1029 * FIXME: make this use cmpxchg.
1030 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1032 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1034 struct aio_ring_info *info = &ioctx->ring_info;
1035 struct aio_ring *ring;
1039 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1040 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1041 (unsigned long)ring->head, (unsigned long)ring->tail,
1042 (unsigned long)ring->nr);
1044 if (ring->head == ring->tail)
1047 spin_lock(&info->ring_lock);
1049 head = ring->head % info->nr;
1050 if (head != ring->tail) {
1051 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1053 head = (head + 1) % info->nr;
1054 smp_mb(); /* finish reading the event before updatng the head */
1057 put_aio_ring_event(evp, KM_USER1);
1059 spin_unlock(&info->ring_lock);
1062 kunmap_atomic(ring, KM_USER0);
1063 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1064 (unsigned long)ring->head, (unsigned long)ring->tail);
1068 struct aio_timeout {
1069 struct timer_list timer;
1071 struct task_struct *p;
1074 static void timeout_func(unsigned long data)
1076 struct aio_timeout *to = (struct aio_timeout *)data;
1079 wake_up_process(to->p);
1082 static inline void init_timeout(struct aio_timeout *to)
1084 init_timer(&to->timer);
1085 to->timer.data = (unsigned long)to;
1086 to->timer.function = timeout_func;
1091 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1092 const struct timespec *ts)
1094 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1095 if (time_after(to->timer.expires, jiffies))
1096 add_timer(&to->timer);
1101 static inline void clear_timeout(struct aio_timeout *to)
1103 del_singleshot_timer_sync(&to->timer);
1106 static int read_events(struct kioctx *ctx,
1107 long min_nr, long nr,
1108 struct io_event __user *event,
1109 struct timespec __user *timeout)
1111 long start_jiffies = jiffies;
1112 struct task_struct *tsk = current;
1113 DECLARE_WAITQUEUE(wait, tsk);
1116 struct io_event ent;
1117 struct aio_timeout to;
1120 /* needed to zero any padding within an entry (there shouldn't be
1121 * any, but C is fun!
1123 memset(&ent, 0, sizeof(ent));
1126 while (likely(i < nr)) {
1127 ret = aio_read_evt(ctx, &ent);
1128 if (unlikely(ret <= 0))
1131 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1132 ent.data, ent.obj, ent.res, ent.res2);
1134 /* Could we split the check in two? */
1136 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1137 dprintk("aio: lost an event due to EFAULT.\n");
1142 /* Good, event copied to userland, update counts. */
1154 /* racey check, but it gets redone */
1155 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1157 aio_run_all_iocbs(ctx);
1165 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1168 set_timeout(start_jiffies, &to, &ts);
1171 while (likely(i < nr)) {
1172 add_wait_queue_exclusive(&ctx->wait, &wait);
1174 set_task_state(tsk, TASK_INTERRUPTIBLE);
1175 ret = aio_read_evt(ctx, &ent);
1180 if (unlikely(ctx->dead)) {
1184 if (to.timed_out) /* Only check after read evt */
1186 /* Try to only show up in io wait if there are ops
1188 if (ctx->reqs_active)
1192 if (signal_pending(tsk)) {
1196 /*ret = aio_read_evt(ctx, &ent);*/
1199 set_task_state(tsk, TASK_RUNNING);
1200 remove_wait_queue(&ctx->wait, &wait);
1202 if (unlikely(ret <= 0))
1206 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1207 dprintk("aio: lost an event due to EFAULT.\n");
1211 /* Good, event copied to userland, update counts. */
1222 /* Take an ioctx and remove it from the list of ioctx's. Protects
1223 * against races with itself via ->dead.
1225 static void io_destroy(struct kioctx *ioctx)
1227 struct mm_struct *mm = current->mm;
1228 struct kioctx **tmp;
1231 /* delete the entry from the list is someone else hasn't already */
1232 write_lock(&mm->ioctx_list_lock);
1233 was_dead = ioctx->dead;
1235 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1236 tmp = &(*tmp)->next)
1240 write_unlock(&mm->ioctx_list_lock);
1242 dprintk("aio_release(%p)\n", ioctx);
1243 if (likely(!was_dead))
1244 put_ioctx(ioctx); /* twice for the list */
1246 aio_cancel_all(ioctx);
1247 wait_for_all_aios(ioctx);
1250 * Wake up any waiters. The setting of ctx->dead must be seen
1251 * by other CPUs at this point. Right now, we rely on the
1252 * locking done by the above calls to ensure this consistency.
1254 wake_up(&ioctx->wait);
1255 put_ioctx(ioctx); /* once for the lookup */
1259 * Create an aio_context capable of receiving at least nr_events.
1260 * ctxp must not point to an aio_context that already exists, and
1261 * must be initialized to 0 prior to the call. On successful
1262 * creation of the aio_context, *ctxp is filled in with the resulting
1263 * handle. May fail with -EINVAL if *ctxp is not initialized,
1264 * if the specified nr_events exceeds internal limits. May fail
1265 * with -EAGAIN if the specified nr_events exceeds the user's limit
1266 * of available events. May fail with -ENOMEM if insufficient kernel
1267 * resources are available. May fail with -EFAULT if an invalid
1268 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1271 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1273 struct kioctx *ioctx = NULL;
1277 ret = get_user(ctx, ctxp);
1282 if (unlikely(ctx || nr_events == 0)) {
1283 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1288 ioctx = ioctx_alloc(nr_events);
1289 ret = PTR_ERR(ioctx);
1290 if (!IS_ERR(ioctx)) {
1291 ret = put_user(ioctx->user_id, ctxp);
1295 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1304 * Destroy the aio_context specified. May cancel any outstanding
1305 * AIOs and block on completion. Will fail with -ENOSYS if not
1306 * implemented. May fail with -EFAULT if the context pointed to
1309 asmlinkage long sys_io_destroy(aio_context_t ctx)
1311 struct kioctx *ioctx = lookup_ioctx(ctx);
1312 if (likely(NULL != ioctx)) {
1316 pr_debug("EINVAL: io_destroy: invalid context id\n");
1320 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1322 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1326 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1327 ssize_t this = min((ssize_t)iov->iov_len, ret);
1328 iov->iov_base += this;
1329 iov->iov_len -= this;
1330 iocb->ki_left -= this;
1332 if (iov->iov_len == 0) {
1338 /* the caller should not have done more io than what fit in
1339 * the remaining iovecs */
1340 BUG_ON(ret > 0 && iocb->ki_left == 0);
1343 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1345 struct file *file = iocb->ki_filp;
1346 struct address_space *mapping = file->f_mapping;
1347 struct inode *inode = mapping->host;
1348 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1349 unsigned long, loff_t);
1351 unsigned short opcode;
1353 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1354 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1355 rw_op = file->f_op->aio_read;
1356 opcode = IOCB_CMD_PREADV;
1358 rw_op = file->f_op->aio_write;
1359 opcode = IOCB_CMD_PWRITEV;
1362 /* This matches the pread()/pwrite() logic */
1363 if (iocb->ki_pos < 0)
1367 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1368 iocb->ki_nr_segs - iocb->ki_cur_seg,
1371 aio_advance_iovec(iocb, ret);
1373 /* retry all partial writes. retry partial reads as long as its a
1375 } while (ret > 0 && iocb->ki_left > 0 &&
1376 (opcode == IOCB_CMD_PWRITEV ||
1377 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1379 /* This means we must have transferred all that we could */
1380 /* No need to retry anymore */
1381 if ((ret == 0) || (iocb->ki_left == 0))
1382 ret = iocb->ki_nbytes - iocb->ki_left;
1384 /* If we managed to write some out we return that, rather than
1385 * the eventual error. */
1386 if (opcode == IOCB_CMD_PWRITEV
1387 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1388 && iocb->ki_nbytes - iocb->ki_left)
1389 ret = iocb->ki_nbytes - iocb->ki_left;
1394 static ssize_t aio_fdsync(struct kiocb *iocb)
1396 struct file *file = iocb->ki_filp;
1397 ssize_t ret = -EINVAL;
1399 if (file->f_op->aio_fsync)
1400 ret = file->f_op->aio_fsync(iocb, 1);
1404 static ssize_t aio_fsync(struct kiocb *iocb)
1406 struct file *file = iocb->ki_filp;
1407 ssize_t ret = -EINVAL;
1409 if (file->f_op->aio_fsync)
1410 ret = file->f_op->aio_fsync(iocb, 0);
1414 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1418 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1419 kiocb->ki_nbytes, 1,
1420 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1424 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1425 kiocb->ki_cur_seg = 0;
1426 /* ki_nbytes/left now reflect bytes instead of segs */
1427 kiocb->ki_nbytes = ret;
1428 kiocb->ki_left = ret;
1435 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1437 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1438 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1439 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1440 kiocb->ki_nr_segs = 1;
1441 kiocb->ki_cur_seg = 0;
1447 * Performs the initial checks and aio retry method
1448 * setup for the kiocb at the time of io submission.
1450 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1452 struct file *file = kiocb->ki_filp;
1455 switch (kiocb->ki_opcode) {
1456 case IOCB_CMD_PREAD:
1458 if (unlikely(!(file->f_mode & FMODE_READ)))
1461 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1464 ret = security_file_permission(file, MAY_READ);
1467 ret = aio_setup_single_vector(kiocb);
1471 if (file->f_op->aio_read)
1472 kiocb->ki_retry = aio_rw_vect_retry;
1474 case IOCB_CMD_PWRITE:
1476 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1479 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1482 ret = security_file_permission(file, MAY_WRITE);
1485 ret = aio_setup_single_vector(kiocb);
1489 if (file->f_op->aio_write)
1490 kiocb->ki_retry = aio_rw_vect_retry;
1492 case IOCB_CMD_PREADV:
1494 if (unlikely(!(file->f_mode & FMODE_READ)))
1496 ret = security_file_permission(file, MAY_READ);
1499 ret = aio_setup_vectored_rw(READ, kiocb);
1503 if (file->f_op->aio_read)
1504 kiocb->ki_retry = aio_rw_vect_retry;
1506 case IOCB_CMD_PWRITEV:
1508 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1510 ret = security_file_permission(file, MAY_WRITE);
1513 ret = aio_setup_vectored_rw(WRITE, kiocb);
1517 if (file->f_op->aio_write)
1518 kiocb->ki_retry = aio_rw_vect_retry;
1520 case IOCB_CMD_FDSYNC:
1522 if (file->f_op->aio_fsync)
1523 kiocb->ki_retry = aio_fdsync;
1525 case IOCB_CMD_FSYNC:
1527 if (file->f_op->aio_fsync)
1528 kiocb->ki_retry = aio_fsync;
1531 dprintk("EINVAL: io_submit: no operation provided\n");
1535 if (!kiocb->ki_retry)
1542 * aio_wake_function:
1543 * wait queue callback function for aio notification,
1544 * Simply triggers a retry of the operation via kick_iocb.
1546 * This callback is specified in the wait queue entry in
1550 * This routine is executed with the wait queue lock held.
1551 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1552 * the ioctx lock inside the wait queue lock. This is safe
1553 * because this callback isn't used for wait queues which
1554 * are nested inside ioctx lock (i.e. ctx->wait)
1556 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1557 int sync, void *key)
1559 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1561 list_del_init(&wait->task_list);
1566 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1573 /* enforce forwards compatibility on users */
1574 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1575 pr_debug("EINVAL: io_submit: reserve field set\n");
1579 /* prevent overflows */
1581 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1582 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1583 ((ssize_t)iocb->aio_nbytes < 0)
1585 pr_debug("EINVAL: io_submit: overflow check\n");
1589 file = fget(iocb->aio_fildes);
1590 if (unlikely(!file))
1593 req = aio_get_req(ctx); /* returns with 2 references to req */
1594 if (unlikely(!req)) {
1598 req->ki_filp = file;
1599 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1601 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1602 * instance of the file* now. The file descriptor must be
1603 * an eventfd() fd, and will be signaled for each completed
1604 * event using the eventfd_signal() function.
1606 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1607 if (unlikely(IS_ERR(req->ki_eventfd))) {
1608 ret = PTR_ERR(req->ki_eventfd);
1613 ret = put_user(req->ki_key, &user_iocb->aio_key);
1614 if (unlikely(ret)) {
1615 dprintk("EFAULT: aio_key\n");
1619 req->ki_obj.user = user_iocb;
1620 req->ki_user_data = iocb->aio_data;
1621 req->ki_pos = iocb->aio_offset;
1623 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1624 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1625 req->ki_opcode = iocb->aio_lio_opcode;
1626 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1627 INIT_LIST_HEAD(&req->ki_wait.task_list);
1629 ret = aio_setup_iocb(req);
1634 spin_lock_irq(&ctx->ctx_lock);
1636 if (!list_empty(&ctx->run_list)) {
1637 /* drain the run list */
1638 while (__aio_run_iocbs(ctx))
1641 spin_unlock_irq(&ctx->ctx_lock);
1642 aio_put_req(req); /* drop extra ref to req */
1646 aio_put_req(req); /* drop extra ref to req */
1647 aio_put_req(req); /* drop i/o ref to req */
1652 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1653 * the number of iocbs queued. May return -EINVAL if the aio_context
1654 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1655 * *iocbpp[0] is not properly initialized, if the operation specified
1656 * is invalid for the file descriptor in the iocb. May fail with
1657 * -EFAULT if any of the data structures point to invalid data. May
1658 * fail with -EBADF if the file descriptor specified in the first
1659 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1660 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1661 * fail with -ENOSYS if not implemented.
1663 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1664 struct iocb __user * __user *iocbpp)
1670 if (unlikely(nr < 0))
1673 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1676 ctx = lookup_ioctx(ctx_id);
1677 if (unlikely(!ctx)) {
1678 pr_debug("EINVAL: io_submit: invalid context id\n");
1683 * AKPM: should this return a partial result if some of the IOs were
1684 * successfully submitted?
1686 for (i=0; i<nr; i++) {
1687 struct iocb __user *user_iocb;
1690 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1695 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1700 ret = io_submit_one(ctx, user_iocb, &tmp);
1710 * Finds a given iocb for cancellation.
1712 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1715 struct list_head *pos;
1717 assert_spin_locked(&ctx->ctx_lock);
1719 /* TODO: use a hash or array, this sucks. */
1720 list_for_each(pos, &ctx->active_reqs) {
1721 struct kiocb *kiocb = list_kiocb(pos);
1722 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1729 * Attempts to cancel an iocb previously passed to io_submit. If
1730 * the operation is successfully cancelled, the resulting event is
1731 * copied into the memory pointed to by result without being placed
1732 * into the completion queue and 0 is returned. May fail with
1733 * -EFAULT if any of the data structures pointed to are invalid.
1734 * May fail with -EINVAL if aio_context specified by ctx_id is
1735 * invalid. May fail with -EAGAIN if the iocb specified was not
1736 * cancelled. Will fail with -ENOSYS if not implemented.
1738 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1739 struct io_event __user *result)
1741 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1743 struct kiocb *kiocb;
1747 ret = get_user(key, &iocb->aio_key);
1751 ctx = lookup_ioctx(ctx_id);
1755 spin_lock_irq(&ctx->ctx_lock);
1757 kiocb = lookup_kiocb(ctx, iocb, key);
1758 if (kiocb && kiocb->ki_cancel) {
1759 cancel = kiocb->ki_cancel;
1761 kiocbSetCancelled(kiocb);
1764 spin_unlock_irq(&ctx->ctx_lock);
1766 if (NULL != cancel) {
1767 struct io_event tmp;
1768 pr_debug("calling cancel\n");
1769 memset(&tmp, 0, sizeof(tmp));
1770 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1771 tmp.data = kiocb->ki_user_data;
1772 ret = cancel(kiocb, &tmp);
1774 /* Cancellation succeeded -- copy the result
1775 * into the user's buffer.
1777 if (copy_to_user(result, &tmp, sizeof(tmp)))
1789 * Attempts to read at least min_nr events and up to nr events from
1790 * the completion queue for the aio_context specified by ctx_id. May
1791 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1792 * if nr is out of range, if when is out of range. May fail with
1793 * -EFAULT if any of the memory specified to is invalid. May return
1794 * 0 or < min_nr if no events are available and the timeout specified
1795 * by when has elapsed, where when == NULL specifies an infinite
1796 * timeout. Note that the timeout pointed to by when is relative and
1797 * will be updated if not NULL and the operation blocks. Will fail
1798 * with -ENOSYS if not implemented.
1800 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1803 struct io_event __user *events,
1804 struct timespec __user *timeout)
1806 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1809 if (likely(ioctx)) {
1810 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1811 ret = read_events(ioctx, min_nr, nr, events, timeout);
1815 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1819 __initcall(aio_setup);
1821 EXPORT_SYMBOL(aio_complete);
1822 EXPORT_SYMBOL(aio_put_req);
1823 EXPORT_SYMBOL(wait_on_sync_kiocb);