3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
87 #include <asm/uaccess.h>
90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
95 static int newary(struct ipc_namespace *, struct ipc_params *);
96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
101 #define SEMMSL_FAST 256 /* 512 bytes on stack */
102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
105 * linked list protection:
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
113 #define sc_semmsl sem_ctls[0]
114 #define sc_semmns sem_ctls[1]
115 #define sc_semopm sem_ctls[2]
116 #define sc_semmni sem_ctls[3]
118 void sem_init_ns(struct ipc_namespace *ns)
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
129 void sem_exit_ns(struct ipc_namespace *ns)
131 free_ipcs(ns, &sem_ids(ns), freeary);
135 void __init sem_init (void)
137 sem_init_ns(&init_ipc_ns);
138 ipc_init_proc_interface("sysvipc/sem",
139 " key semid perms nsems uid gid cuid cgid otime ctime\n",
140 IPC_SEM_IDS, sysvipc_sem_proc_show);
144 * sem_lock_(check_) routines are called in the paths where the rw_mutex
147 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
149 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
152 return (struct sem_array *)ipcp;
154 return container_of(ipcp, struct sem_array, sem_perm);
157 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
160 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
163 return (struct sem_array *)ipcp;
165 return container_of(ipcp, struct sem_array, sem_perm);
168 static inline void sem_lock_and_putref(struct sem_array *sma)
170 ipc_lock_by_ptr(&sma->sem_perm);
174 static inline void sem_getref_and_unlock(struct sem_array *sma)
177 ipc_unlock(&(sma)->sem_perm);
180 static inline void sem_putref(struct sem_array *sma)
182 ipc_lock_by_ptr(&sma->sem_perm);
184 ipc_unlock(&(sma)->sem_perm);
187 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
189 ipc_rmid(&sem_ids(ns), &s->sem_perm);
193 * Lockless wakeup algorithm:
194 * Without the check/retry algorithm a lockless wakeup is possible:
195 * - queue.status is initialized to -EINTR before blocking.
196 * - wakeup is performed by
197 * * unlinking the queue entry from sma->sem_pending
198 * * setting queue.status to IN_WAKEUP
199 * This is the notification for the blocked thread that a
200 * result value is imminent.
201 * * call wake_up_process
202 * * set queue.status to the final value.
203 * - the previously blocked thread checks queue.status:
204 * * if it's IN_WAKEUP, then it must wait until the value changes
205 * * if it's not -EINTR, then the operation was completed by
206 * update_queue. semtimedop can return queue.status without
207 * performing any operation on the sem array.
208 * * otherwise it must acquire the spinlock and check what's up.
210 * The two-stage algorithm is necessary to protect against the following
212 * - if queue.status is set after wake_up_process, then the woken up idle
213 * thread could race forward and try (and fail) to acquire sma->lock
214 * before update_queue had a chance to set queue.status
215 * - if queue.status is written before wake_up_process and if the
216 * blocked process is woken up by a signal between writing
217 * queue.status and the wake_up_process, then the woken up
218 * process could return from semtimedop and die by calling
219 * sys_exit before wake_up_process is called. Then wake_up_process
220 * will oops, because the task structure is already invalid.
221 * (yes, this happened on s390 with sysv msg).
227 * newary - Create a new semaphore set
229 * @params: ptr to the structure that contains key, semflg and nsems
231 * Called with sem_ids.rw_mutex held (as a writer)
234 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
238 struct sem_array *sma;
240 key_t key = params->key;
241 int nsems = params->u.nsems;
242 int semflg = params->flg;
246 if (ns->used_sems + nsems > ns->sc_semmns)
249 size = sizeof (*sma) + nsems * sizeof (struct sem);
250 sma = ipc_rcu_alloc(size);
254 memset (sma, 0, size);
256 sma->sem_perm.mode = (semflg & S_IRWXUGO);
257 sma->sem_perm.key = key;
259 sma->sem_perm.security = NULL;
260 retval = security_sem_alloc(sma);
266 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
268 security_sem_free(sma);
272 ns->used_sems += nsems;
274 sma->sem_base = (struct sem *) &sma[1];
275 /* sma->sem_pending = NULL; */
276 sma->sem_pending_last = &sma->sem_pending;
277 /* sma->undo = NULL; */
278 sma->sem_nsems = nsems;
279 sma->sem_ctime = get_seconds();
282 return sma->sem_perm.id;
287 * Called with sem_ids.rw_mutex and ipcp locked.
289 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
291 struct sem_array *sma;
293 sma = container_of(ipcp, struct sem_array, sem_perm);
294 return security_sem_associate(sma, semflg);
298 * Called with sem_ids.rw_mutex and ipcp locked.
300 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
301 struct ipc_params *params)
303 struct sem_array *sma;
305 sma = container_of(ipcp, struct sem_array, sem_perm);
306 if (params->u.nsems > sma->sem_nsems)
312 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
314 struct ipc_namespace *ns;
315 struct ipc_ops sem_ops;
316 struct ipc_params sem_params;
318 ns = current->nsproxy->ipc_ns;
320 if (nsems < 0 || nsems > ns->sc_semmsl)
323 sem_ops.getnew = newary;
324 sem_ops.associate = sem_security;
325 sem_ops.more_checks = sem_more_checks;
327 sem_params.key = key;
328 sem_params.flg = semflg;
329 sem_params.u.nsems = nsems;
331 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
334 /* Manage the doubly linked list sma->sem_pending as a FIFO:
335 * insert new queue elements at the tail sma->sem_pending_last.
337 static inline void append_to_queue (struct sem_array * sma,
338 struct sem_queue * q)
340 *(q->prev = sma->sem_pending_last) = q;
341 *(sma->sem_pending_last = &q->next) = NULL;
344 static inline void prepend_to_queue (struct sem_array * sma,
345 struct sem_queue * q)
347 q->next = sma->sem_pending;
348 *(q->prev = &sma->sem_pending) = q;
350 q->next->prev = &q->next;
351 else /* sma->sem_pending_last == &sma->sem_pending */
352 sma->sem_pending_last = &q->next;
355 static inline void remove_from_queue (struct sem_array * sma,
356 struct sem_queue * q)
358 *(q->prev) = q->next;
360 q->next->prev = q->prev;
361 else /* sma->sem_pending_last == &q->next */
362 sma->sem_pending_last = q->prev;
363 q->prev = NULL; /* mark as removed */
367 * Determine whether a sequence of semaphore operations would succeed
368 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
371 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
372 int nsops, struct sem_undo *un, int pid)
378 for (sop = sops; sop < sops + nsops; sop++) {
379 curr = sma->sem_base + sop->sem_num;
380 sem_op = sop->sem_op;
381 result = curr->semval;
383 if (!sem_op && result)
391 if (sop->sem_flg & SEM_UNDO) {
392 int undo = un->semadj[sop->sem_num] - sem_op;
394 * Exceeding the undo range is an error.
396 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
399 curr->semval = result;
403 while (sop >= sops) {
404 sma->sem_base[sop->sem_num].sempid = pid;
405 if (sop->sem_flg & SEM_UNDO)
406 un->semadj[sop->sem_num] -= sop->sem_op;
410 sma->sem_otime = get_seconds();
418 if (sop->sem_flg & IPC_NOWAIT)
425 while (sop >= sops) {
426 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
433 /* Go through the pending queue for the indicated semaphore
434 * looking for tasks that can be completed.
436 static void update_queue (struct sem_array * sma)
439 struct sem_queue * q;
441 q = sma->sem_pending;
443 error = try_atomic_semop(sma, q->sops, q->nsops,
446 /* Does q->sleeper still need to sleep? */
449 remove_from_queue(sma,q);
450 q->status = IN_WAKEUP;
452 * Continue scanning. The next operation
453 * that must be checked depends on the type of the
454 * completed operation:
455 * - if the operation modified the array, then
456 * restart from the head of the queue and
457 * check for threads that might be waiting
458 * for semaphore values to become 0.
459 * - if the operation didn't modify the array,
460 * then just continue.
463 n = sma->sem_pending;
466 wake_up_process(q->sleeper);
467 /* hands-off: q will disappear immediately after
479 /* The following counts are associated to each semaphore:
480 * semncnt number of tasks waiting on semval being nonzero
481 * semzcnt number of tasks waiting on semval being zero
482 * This model assumes that a task waits on exactly one semaphore.
483 * Since semaphore operations are to be performed atomically, tasks actually
484 * wait on a whole sequence of semaphores simultaneously.
485 * The counts we return here are a rough approximation, but still
486 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
488 static int count_semncnt (struct sem_array * sma, ushort semnum)
491 struct sem_queue * q;
494 for (q = sma->sem_pending; q; q = q->next) {
495 struct sembuf * sops = q->sops;
496 int nsops = q->nsops;
498 for (i = 0; i < nsops; i++)
499 if (sops[i].sem_num == semnum
500 && (sops[i].sem_op < 0)
501 && !(sops[i].sem_flg & IPC_NOWAIT))
506 static int count_semzcnt (struct sem_array * sma, ushort semnum)
509 struct sem_queue * q;
512 for (q = sma->sem_pending; q; q = q->next) {
513 struct sembuf * sops = q->sops;
514 int nsops = q->nsops;
516 for (i = 0; i < nsops; i++)
517 if (sops[i].sem_num == semnum
518 && (sops[i].sem_op == 0)
519 && !(sops[i].sem_flg & IPC_NOWAIT))
525 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
526 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
527 * remains locked on exit.
529 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
533 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
535 /* Invalidate the existing undo structures for this semaphore set.
536 * (They will be freed without any further action in exit_sem()
537 * or during the next semop.)
539 for (un = sma->undo; un; un = un->id_next)
542 /* Wake up all pending processes and let them fail with EIDRM. */
543 q = sma->sem_pending;
546 /* lazy remove_from_queue: we are killing the whole queue */
549 q->status = IN_WAKEUP;
550 wake_up_process(q->sleeper); /* doesn't sleep */
552 q->status = -EIDRM; /* hands-off q */
556 /* Remove the semaphore set from the IDR */
560 ns->used_sems -= sma->sem_nsems;
561 security_sem_free(sma);
565 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
569 return copy_to_user(buf, in, sizeof(*in));
574 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
576 out.sem_otime = in->sem_otime;
577 out.sem_ctime = in->sem_ctime;
578 out.sem_nsems = in->sem_nsems;
580 return copy_to_user(buf, &out, sizeof(out));
587 static int semctl_nolock(struct ipc_namespace *ns, int semid,
588 int cmd, int version, union semun arg)
591 struct sem_array *sma;
597 struct seminfo seminfo;
600 err = security_sem_semctl(NULL, cmd);
604 memset(&seminfo,0,sizeof(seminfo));
605 seminfo.semmni = ns->sc_semmni;
606 seminfo.semmns = ns->sc_semmns;
607 seminfo.semmsl = ns->sc_semmsl;
608 seminfo.semopm = ns->sc_semopm;
609 seminfo.semvmx = SEMVMX;
610 seminfo.semmnu = SEMMNU;
611 seminfo.semmap = SEMMAP;
612 seminfo.semume = SEMUME;
613 down_read(&sem_ids(ns).rw_mutex);
614 if (cmd == SEM_INFO) {
615 seminfo.semusz = sem_ids(ns).in_use;
616 seminfo.semaem = ns->used_sems;
618 seminfo.semusz = SEMUSZ;
619 seminfo.semaem = SEMAEM;
621 max_id = ipc_get_maxid(&sem_ids(ns));
622 up_read(&sem_ids(ns).rw_mutex);
623 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
625 return (max_id < 0) ? 0: max_id;
630 struct semid64_ds tbuf;
633 if (cmd == SEM_STAT) {
634 sma = sem_lock(ns, semid);
637 id = sma->sem_perm.id;
639 sma = sem_lock_check(ns, semid);
646 if (ipcperms (&sma->sem_perm, S_IRUGO))
649 err = security_sem_semctl(sma, cmd);
653 memset(&tbuf, 0, sizeof(tbuf));
655 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
656 tbuf.sem_otime = sma->sem_otime;
657 tbuf.sem_ctime = sma->sem_ctime;
658 tbuf.sem_nsems = sma->sem_nsems;
660 if (copy_semid_to_user (arg.buf, &tbuf, version))
673 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
674 int cmd, int version, union semun arg)
676 struct sem_array *sma;
679 ushort fast_sem_io[SEMMSL_FAST];
680 ushort* sem_io = fast_sem_io;
683 sma = sem_lock_check(ns, semid);
687 nsems = sma->sem_nsems;
690 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
693 err = security_sem_semctl(sma, cmd);
701 ushort __user *array = arg.array;
704 if(nsems > SEMMSL_FAST) {
705 sem_getref_and_unlock(sma);
707 sem_io = ipc_alloc(sizeof(ushort)*nsems);
713 sem_lock_and_putref(sma);
714 if (sma->sem_perm.deleted) {
721 for (i = 0; i < sma->sem_nsems; i++)
722 sem_io[i] = sma->sem_base[i].semval;
725 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
734 sem_getref_and_unlock(sma);
736 if(nsems > SEMMSL_FAST) {
737 sem_io = ipc_alloc(sizeof(ushort)*nsems);
744 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
750 for (i = 0; i < nsems; i++) {
751 if (sem_io[i] > SEMVMX) {
757 sem_lock_and_putref(sma);
758 if (sma->sem_perm.deleted) {
764 for (i = 0; i < nsems; i++)
765 sma->sem_base[i].semval = sem_io[i];
766 for (un = sma->undo; un; un = un->id_next)
767 for (i = 0; i < nsems; i++)
769 sma->sem_ctime = get_seconds();
770 /* maybe some queued-up processes were waiting for this */
775 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
778 if(semnum < 0 || semnum >= nsems)
781 curr = &sma->sem_base[semnum];
791 err = count_semncnt(sma,semnum);
794 err = count_semzcnt(sma,semnum);
801 if (val > SEMVMX || val < 0)
804 for (un = sma->undo; un; un = un->id_next)
805 un->semadj[semnum] = 0;
807 curr->sempid = task_tgid_vnr(current);
808 sma->sem_ctime = get_seconds();
809 /* maybe some queued-up processes were waiting for this */
818 if(sem_io != fast_sem_io)
819 ipc_free(sem_io, sizeof(ushort)*nsems);
823 static inline unsigned long
824 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
828 if (copy_from_user(out, buf, sizeof(*out)))
833 struct semid_ds tbuf_old;
835 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
838 out->sem_perm.uid = tbuf_old.sem_perm.uid;
839 out->sem_perm.gid = tbuf_old.sem_perm.gid;
840 out->sem_perm.mode = tbuf_old.sem_perm.mode;
850 * This function handles some semctl commands which require the rw_mutex
851 * to be held in write mode.
852 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
854 static int semctl_down(struct ipc_namespace *ns, int semid,
855 int cmd, int version, union semun arg)
857 struct sem_array *sma;
859 struct semid64_ds semid64;
860 struct kern_ipc_perm *ipcp;
863 if (copy_semid_from_user(&semid64, arg.buf, version))
867 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
869 return PTR_ERR(ipcp);
871 sma = container_of(ipcp, struct sem_array, sem_perm);
873 err = security_sem_semctl(sma, cmd);
882 ipc_update_perm(&semid64.sem_perm, ipcp);
883 sma->sem_ctime = get_seconds();
892 up_write(&sem_ids(ns).rw_mutex);
896 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
900 struct ipc_namespace *ns;
905 version = ipc_parse_version(&cmd);
906 ns = current->nsproxy->ipc_ns;
913 err = semctl_nolock(ns, semid, cmd, version, arg);
922 err = semctl_main(ns,semid,semnum,cmd,version,arg);
926 err = semctl_down(ns, semid, cmd, version, arg);
933 /* If the task doesn't already have a undo_list, then allocate one
934 * here. We guarantee there is only one thread using this undo list,
935 * and current is THE ONE
937 * If this allocation and assignment succeeds, but later
938 * portions of this code fail, there is no need to free the sem_undo_list.
939 * Just let it stay associated with the task, and it'll be freed later
942 * This can block, so callers must hold no locks.
944 static inline int get_undo_list(struct sem_undo_list **undo_listp)
946 struct sem_undo_list *undo_list;
948 undo_list = current->sysvsem.undo_list;
950 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
951 if (undo_list == NULL)
953 spin_lock_init(&undo_list->lock);
954 atomic_set(&undo_list->refcnt, 1);
955 current->sysvsem.undo_list = undo_list;
957 *undo_listp = undo_list;
961 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
963 struct sem_undo **last, *un;
965 last = &ulp->proc_list;
981 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
983 struct sem_array *sma;
984 struct sem_undo_list *ulp;
985 struct sem_undo *un, *new;
989 error = get_undo_list(&ulp);
991 return ERR_PTR(error);
993 spin_lock(&ulp->lock);
994 un = lookup_undo(ulp, semid);
995 spin_unlock(&ulp->lock);
996 if (likely(un!=NULL))
999 /* no undo structure around - allocate one. */
1000 sma = sem_lock_check(ns, semid);
1002 return ERR_PTR(PTR_ERR(sma));
1004 nsems = sma->sem_nsems;
1005 sem_getref_and_unlock(sma);
1007 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1010 return ERR_PTR(-ENOMEM);
1012 new->semadj = (short *) &new[1];
1015 spin_lock(&ulp->lock);
1016 un = lookup_undo(ulp, semid);
1018 spin_unlock(&ulp->lock);
1023 sem_lock_and_putref(sma);
1024 if (sma->sem_perm.deleted) {
1026 spin_unlock(&ulp->lock);
1028 un = ERR_PTR(-EIDRM);
1031 new->proc_next = ulp->proc_list;
1032 ulp->proc_list = new;
1033 new->id_next = sma->undo;
1037 spin_unlock(&ulp->lock);
1042 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1043 unsigned nsops, const struct timespec __user *timeout)
1045 int error = -EINVAL;
1046 struct sem_array *sma;
1047 struct sembuf fast_sops[SEMOPM_FAST];
1048 struct sembuf* sops = fast_sops, *sop;
1049 struct sem_undo *un;
1050 int undos = 0, alter = 0, max;
1051 struct sem_queue queue;
1052 unsigned long jiffies_left = 0;
1053 struct ipc_namespace *ns;
1055 ns = current->nsproxy->ipc_ns;
1057 if (nsops < 1 || semid < 0)
1059 if (nsops > ns->sc_semopm)
1061 if(nsops > SEMOPM_FAST) {
1062 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1066 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1071 struct timespec _timeout;
1072 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1076 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1077 _timeout.tv_nsec >= 1000000000L) {
1081 jiffies_left = timespec_to_jiffies(&_timeout);
1084 for (sop = sops; sop < sops + nsops; sop++) {
1085 if (sop->sem_num >= max)
1087 if (sop->sem_flg & SEM_UNDO)
1089 if (sop->sem_op != 0)
1095 un = find_undo(ns, semid);
1097 error = PTR_ERR(un);
1103 sma = sem_lock_check(ns, semid);
1105 error = PTR_ERR(sma);
1110 * semid identifiers are not unique - find_undo may have
1111 * allocated an undo structure, it was invalidated by an RMID
1112 * and now a new array with received the same id. Check and retry.
1114 if (un && un->semid == -1) {
1119 if (max >= sma->sem_nsems)
1120 goto out_unlock_free;
1123 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1124 goto out_unlock_free;
1126 error = security_sem_semop(sma, sops, nsops, alter);
1128 goto out_unlock_free;
1130 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1132 if (alter && error == 0)
1134 goto out_unlock_free;
1137 /* We need to sleep on this operation, so we put the current
1138 * task into the pending queue and go to sleep.
1143 queue.nsops = nsops;
1145 queue.pid = task_tgid_vnr(current);
1147 queue.alter = alter;
1149 append_to_queue(sma ,&queue);
1151 prepend_to_queue(sma ,&queue);
1153 queue.status = -EINTR;
1154 queue.sleeper = current;
1155 current->state = TASK_INTERRUPTIBLE;
1159 jiffies_left = schedule_timeout(jiffies_left);
1163 error = queue.status;
1164 while(unlikely(error == IN_WAKEUP)) {
1166 error = queue.status;
1169 if (error != -EINTR) {
1170 /* fast path: update_queue already obtained all requested
1175 sma = sem_lock(ns, semid);
1177 BUG_ON(queue.prev != NULL);
1183 * If queue.status != -EINTR we are woken up by another process
1185 error = queue.status;
1186 if (error != -EINTR) {
1187 goto out_unlock_free;
1191 * If an interrupt occurred we have to clean up the queue
1193 if (timeout && jiffies_left == 0)
1195 remove_from_queue(sma,&queue);
1196 goto out_unlock_free;
1201 if(sops != fast_sops)
1206 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1208 return sys_semtimedop(semid, tsops, nsops, NULL);
1211 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1212 * parent and child tasks.
1215 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1217 struct sem_undo_list *undo_list;
1220 if (clone_flags & CLONE_SYSVSEM) {
1221 error = get_undo_list(&undo_list);
1224 atomic_inc(&undo_list->refcnt);
1225 tsk->sysvsem.undo_list = undo_list;
1227 tsk->sysvsem.undo_list = NULL;
1233 * add semadj values to semaphores, free undo structures.
1234 * undo structures are not freed when semaphore arrays are destroyed
1235 * so some of them may be out of date.
1236 * IMPLEMENTATION NOTE: There is some confusion over whether the
1237 * set of adjustments that needs to be done should be done in an atomic
1238 * manner or not. That is, if we are attempting to decrement the semval
1239 * should we queue up and wait until we can do so legally?
1240 * The original implementation attempted to do this (queue and wait).
1241 * The current implementation does not do so. The POSIX standard
1242 * and SVID should be consulted to determine what behavior is mandated.
1244 void exit_sem(struct task_struct *tsk)
1246 struct sem_undo_list *undo_list;
1247 struct sem_undo *u, **up;
1248 struct ipc_namespace *ns;
1250 undo_list = tsk->sysvsem.undo_list;
1253 tsk->sysvsem.undo_list = NULL;
1255 if (!atomic_dec_and_test(&undo_list->refcnt))
1258 ns = tsk->nsproxy->ipc_ns;
1259 /* There's no need to hold the semundo list lock, as current
1260 * is the last task exiting for this undo list.
1262 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1263 struct sem_array *sma;
1265 struct sem_undo *un, **unp;
1272 sma = sem_lock(ns, semid);
1279 BUG_ON(sem_checkid(sma, u->semid));
1281 /* remove u from the sma->undo list */
1282 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1286 printk ("exit_sem undo list error id=%d\n", u->semid);
1290 /* perform adjustments registered in u */
1291 nsems = sma->sem_nsems;
1292 for (i = 0; i < nsems; i++) {
1293 struct sem * semaphore = &sma->sem_base[i];
1295 semaphore->semval += u->semadj[i];
1297 * Range checks of the new semaphore value,
1298 * not defined by sus:
1299 * - Some unices ignore the undo entirely
1300 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1301 * - some cap the value (e.g. FreeBSD caps
1302 * at 0, but doesn't enforce SEMVMX)
1304 * Linux caps the semaphore value, both at 0
1307 * Manfred <manfred@colorfullife.com>
1309 if (semaphore->semval < 0)
1310 semaphore->semval = 0;
1311 if (semaphore->semval > SEMVMX)
1312 semaphore->semval = SEMVMX;
1313 semaphore->sempid = task_tgid_vnr(current);
1316 sma->sem_otime = get_seconds();
1317 /* maybe some queued-up processes were waiting for this */
1325 #ifdef CONFIG_PROC_FS
1326 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1328 struct sem_array *sma = it;
1330 return seq_printf(s,
1331 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",