2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 #include <linux/module.h>
25 #include <linux/sysctl.h>
26 #include <linux/workqueue.h>
28 #include <net/inet_common.h>
32 #define SYNC_INIT 0 /* let the user enable it */
37 int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
38 EXPORT_SYMBOL(sysctl_tcp_syncookies);
40 int sysctl_tcp_abort_on_overflow __read_mostly;
42 struct inet_timewait_death_row tcp_death_row = {
43 .sysctl_max_tw_buckets = NR_FILE * 2,
44 .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
45 .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
46 .hashinfo = &tcp_hashinfo,
47 .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
48 (unsigned long)&tcp_death_row),
49 .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
50 inet_twdr_twkill_work),
51 /* Short-time timewait calendar */
54 .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
55 (unsigned long)&tcp_death_row),
58 EXPORT_SYMBOL_GPL(tcp_death_row);
60 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
64 if (after(end_seq, s_win) && before(seq, e_win))
66 return (seq == e_win && seq == end_seq);
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
98 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99 const struct tcphdr *th)
101 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 struct tcp_options_received tmp_opt;
105 tmp_opt.saw_tstamp = 0;
106 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
107 tcp_parse_options(skb, &tmp_opt, 0);
109 if (tmp_opt.saw_tstamp) {
110 tmp_opt.ts_recent = tcptw->tw_ts_recent;
111 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
112 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
116 if (tw->tw_substate == TCP_FIN_WAIT2) {
117 /* Just repeat all the checks of tcp_rcv_state_process() */
119 /* Out of window, send ACK */
121 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
129 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
133 if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
134 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
136 return TCP_TW_SUCCESS;
139 /* New data or FIN. If new data arrive after half-duplex close,
143 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
145 inet_twsk_deschedule(tw, &tcp_death_row);
150 /* FIN arrived, enter true time-wait state. */
151 tw->tw_substate = TCP_TIME_WAIT;
152 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
153 if (tmp_opt.saw_tstamp) {
154 tcptw->tw_ts_recent_stamp = get_seconds();
155 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
158 /* I am shamed, but failed to make it more elegant.
159 * Yes, it is direct reference to IP, which is impossible
160 * to generalize to IPv6. Taking into account that IPv6
161 * do not understand recycling in any case, it not
162 * a big problem in practice. --ANK */
163 if (tw->tw_family == AF_INET &&
164 tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
165 tcp_v4_tw_remember_stamp(tw))
166 inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
169 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
175 * Now real TIME-WAIT state.
178 * "When a connection is [...] on TIME-WAIT state [...]
179 * [a TCP] MAY accept a new SYN from the remote TCP to
180 * reopen the connection directly, if it:
182 * (1) assigns its initial sequence number for the new
183 * connection to be larger than the largest sequence
184 * number it used on the previous connection incarnation,
187 * (2) returns to TIME-WAIT state if the SYN turns out
188 * to be an old duplicate".
192 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
193 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194 /* In window segment, it may be only reset or bare ack. */
197 /* This is TIME_WAIT assassination, in two flavors.
198 * Oh well... nobody has a sufficient solution to this
201 if (sysctl_tcp_rfc1337 == 0) {
203 inet_twsk_deschedule(tw, &tcp_death_row);
205 return TCP_TW_SUCCESS;
208 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
211 if (tmp_opt.saw_tstamp) {
212 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
213 tcptw->tw_ts_recent_stamp = get_seconds();
217 return TCP_TW_SUCCESS;
220 /* Out of window segment.
222 All the segments are ACKed immediately.
224 The only exception is new SYN. We accept it, if it is
225 not old duplicate and we are not in danger to be killed
226 by delayed old duplicates. RFC check is that it has
227 newer sequence number works at rates <40Mbit/sec.
228 However, if paws works, it is reliable AND even more,
229 we even may relax silly seq space cutoff.
231 RED-PEN: we violate main RFC requirement, if this SYN will appear
232 old duplicate (i.e. we receive RST in reply to SYN-ACK),
233 we must return socket to time-wait state. It is not good,
237 if (th->syn && !th->rst && !th->ack && !paws_reject &&
238 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
239 (tmp_opt.saw_tstamp &&
240 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
241 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
244 TCP_SKB_CB(skb)->when = isn;
249 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
252 /* In this case we must reset the TIMEWAIT timer.
254 * If it is ACKless SYN it may be both old duplicate
255 * and new good SYN with random sequence number <rcv_nxt.
256 * Do not reschedule in the last case.
258 if (paws_reject || th->ack)
259 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
262 /* Send ACK. Note, we do not put the bucket,
263 * it will be released by caller.
268 return TCP_TW_SUCCESS;
272 * Move a socket to time-wait or dead fin-wait-2 state.
274 void tcp_time_wait(struct sock *sk, int state, int timeo)
276 struct inet_timewait_sock *tw = NULL;
277 const struct inet_connection_sock *icsk = inet_csk(sk);
278 const struct tcp_sock *tp = tcp_sk(sk);
281 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
282 recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
284 if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
285 tw = inet_twsk_alloc(sk, state);
288 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
289 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
291 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
292 tcptw->tw_rcv_nxt = tp->rcv_nxt;
293 tcptw->tw_snd_nxt = tp->snd_nxt;
294 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
295 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
296 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
298 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
299 if (tw->tw_family == PF_INET6) {
300 struct ipv6_pinfo *np = inet6_sk(sk);
301 struct inet6_timewait_sock *tw6;
303 tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
304 tw6 = inet6_twsk((struct sock *)tw);
305 ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
306 ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
307 tw->tw_ipv6only = np->ipv6only;
311 #ifdef CONFIG_TCP_MD5SIG
313 * The timewait bucket does not have the key DB from the
314 * sock structure. We just make a quick copy of the
315 * md5 key being used (if indeed we are using one)
316 * so the timewait ack generating code has the key.
319 struct tcp_md5sig_key *key;
320 memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
321 tcptw->tw_md5_keylen = 0;
322 key = tp->af_specific->md5_lookup(sk, sk);
324 memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
325 tcptw->tw_md5_keylen = key->keylen;
326 if (tcp_alloc_md5sig_pool() == NULL)
332 /* Linkage updates. */
333 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
335 /* Get the TIME_WAIT timeout firing. */
340 tw->tw_timeout = rto;
342 tw->tw_timeout = TCP_TIMEWAIT_LEN;
343 if (state == TCP_TIME_WAIT)
344 timeo = TCP_TIMEWAIT_LEN;
347 inet_twsk_schedule(tw, &tcp_death_row, timeo,
351 /* Sorry, if we're out of memory, just CLOSE this
352 * socket up. We've got bigger problems than
353 * non-graceful socket closings.
355 LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
358 tcp_update_metrics(sk);
362 void tcp_twsk_destructor(struct sock *sk)
364 #ifdef CONFIG_TCP_MD5SIG
365 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
366 if (twsk->tw_md5_keylen)
367 tcp_put_md5sig_pool();
371 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
373 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
374 struct request_sock *req)
376 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
379 /* This is not only more efficient than what we used to do, it eliminates
380 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
382 * Actually, we could lots of memory writes here. tp of listening
383 * socket contains all necessary default parameters.
385 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
387 struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
390 const struct inet_request_sock *ireq = inet_rsk(req);
391 struct tcp_request_sock *treq = tcp_rsk(req);
392 struct inet_connection_sock *newicsk = inet_csk(newsk);
393 struct tcp_sock *newtp;
395 /* Now setup tcp_sock */
396 newtp = tcp_sk(newsk);
397 newtp->pred_flags = 0;
398 newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
399 newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1;
401 tcp_prequeue_init(newtp);
403 tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
406 newtp->mdev = TCP_TIMEOUT_INIT;
407 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
409 newtp->packets_out = 0;
410 newtp->retrans_out = 0;
411 newtp->sacked_out = 0;
412 newtp->fackets_out = 0;
413 newtp->snd_ssthresh = 0x7fffffff;
415 /* So many TCP implementations out there (incorrectly) count the
416 * initial SYN frame in their delayed-ACK and congestion control
417 * algorithms that we must have the following bandaid to talk
418 * efficiently to them. -DaveM
421 newtp->snd_cwnd_cnt = 0;
422 newtp->bytes_acked = 0;
424 newtp->frto_counter = 0;
425 newtp->frto_highmark = 0;
427 newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
429 tcp_set_ca_state(newsk, TCP_CA_Open);
430 tcp_init_xmit_timers(newsk);
431 skb_queue_head_init(&newtp->out_of_order_queue);
432 newtp->write_seq = treq->snt_isn + 1;
433 newtp->pushed_seq = newtp->write_seq;
435 newtp->rx_opt.saw_tstamp = 0;
437 newtp->rx_opt.dsack = 0;
438 newtp->rx_opt.eff_sacks = 0;
440 newtp->rx_opt.num_sacks = 0;
443 if (sock_flag(newsk, SOCK_KEEPOPEN))
444 inet_csk_reset_keepalive_timer(newsk,
445 keepalive_time_when(newtp));
447 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
448 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
450 tcp_enable_fack(newtp);
452 newtp->window_clamp = req->window_clamp;
453 newtp->rcv_ssthresh = req->rcv_wnd;
454 newtp->rcv_wnd = req->rcv_wnd;
455 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
456 if (newtp->rx_opt.wscale_ok) {
457 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
458 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
460 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
461 newtp->window_clamp = min(newtp->window_clamp, 65535U);
463 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
464 newtp->rx_opt.snd_wscale);
465 newtp->max_window = newtp->snd_wnd;
467 if (newtp->rx_opt.tstamp_ok) {
468 newtp->rx_opt.ts_recent = req->ts_recent;
469 newtp->rx_opt.ts_recent_stamp = get_seconds();
470 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
472 newtp->rx_opt.ts_recent_stamp = 0;
473 newtp->tcp_header_len = sizeof(struct tcphdr);
475 #ifdef CONFIG_TCP_MD5SIG
476 newtp->md5sig_info = NULL; /*XXX*/
477 if (newtp->af_specific->md5_lookup(sk, newsk))
478 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
480 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
481 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
482 newtp->rx_opt.mss_clamp = req->mss;
483 TCP_ECN_openreq_child(newtp, req);
485 TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
491 * Process an incoming packet for SYN_RECV sockets represented
495 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
496 struct request_sock *req,
497 struct request_sock **prev)
499 const struct tcphdr *th = tcp_hdr(skb);
500 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
502 struct tcp_options_received tmp_opt;
505 tmp_opt.saw_tstamp = 0;
506 if (th->doff > (sizeof(struct tcphdr)>>2)) {
507 tcp_parse_options(skb, &tmp_opt, 0);
509 if (tmp_opt.saw_tstamp) {
510 tmp_opt.ts_recent = req->ts_recent;
511 /* We do not store true stamp, but it is not required,
512 * it can be estimated (approximately)
515 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
516 paws_reject = tcp_paws_check(&tmp_opt, th->rst);
520 /* Check for pure retransmitted SYN. */
521 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
522 flg == TCP_FLAG_SYN &&
525 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
526 * this case on figure 6 and figure 8, but formal
527 * protocol description says NOTHING.
528 * To be more exact, it says that we should send ACK,
529 * because this segment (at least, if it has no data)
532 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
533 * describe SYN-RECV state. All the description
534 * is wrong, we cannot believe to it and should
535 * rely only on common sense and implementation
538 * Enforce "SYN-ACK" according to figure 8, figure 6
539 * of RFC793, fixed by RFC1122.
541 req->rsk_ops->rtx_syn_ack(sk, req);
545 /* Further reproduces section "SEGMENT ARRIVES"
546 for state SYN-RECEIVED of RFC793.
547 It is broken, however, it does not work only
548 when SYNs are crossed.
550 You would think that SYN crossing is impossible here, since
551 we should have a SYN_SENT socket (from connect()) on our end,
552 but this is not true if the crossed SYNs were sent to both
553 ends by a malicious third party. We must defend against this,
554 and to do that we first verify the ACK (as per RFC793, page
555 36) and reset if it is invalid. Is this a true full defense?
556 To convince ourselves, let us consider a way in which the ACK
557 test can still pass in this 'malicious crossed SYNs' case.
558 Malicious sender sends identical SYNs (and thus identical sequence
559 numbers) to both A and B:
564 By our good fortune, both A and B select the same initial
565 send sequence number of seven :-)
567 A: sends SYN|ACK, seq=7, ack_seq=8
568 B: sends SYN|ACK, seq=7, ack_seq=8
570 So we are now A eating this SYN|ACK, ACK test passes. So
571 does sequence test, SYN is truncated, and thus we consider
574 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
575 bare ACK. Otherwise, we create an established connection. Both
576 ends (listening sockets) accept the new incoming connection and try
577 to talk to each other. 8-)
579 Note: This case is both harmless, and rare. Possibility is about the
580 same as us discovering intelligent life on another plant tomorrow.
582 But generally, we should (RFC lies!) to accept ACK
583 from SYNACK both here and in tcp_rcv_state_process().
584 tcp_rcv_state_process() does not, hence, we do not too.
586 Note that the case is absolutely generic:
587 we cannot optimize anything here without
588 violating protocol. All the checks must be made
589 before attempt to create socket.
592 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
593 * and the incoming segment acknowledges something not yet
594 * sent (the segment carries an unacceptable ACK) ...
597 * Invalid ACK: reset will be sent by listening socket
599 if ((flg & TCP_FLAG_ACK) &&
600 (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
603 /* Also, it would be not so bad idea to check rcv_tsecr, which
604 * is essentially ACK extension and too early or too late values
605 * should cause reset in unsynchronized states.
608 /* RFC793: "first check sequence number". */
610 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
611 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
612 /* Out of window: send ACK and drop. */
613 if (!(flg & TCP_FLAG_RST))
614 req->rsk_ops->send_ack(skb, req);
616 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
620 /* In sequence, PAWS is OK. */
622 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
623 req->ts_recent = tmp_opt.rcv_tsval;
625 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
626 /* Truncate SYN, it is out of window starting
627 at tcp_rsk(req)->rcv_isn + 1. */
628 flg &= ~TCP_FLAG_SYN;
631 /* RFC793: "second check the RST bit" and
632 * "fourth, check the SYN bit"
634 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
635 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
636 goto embryonic_reset;
639 /* ACK sequence verified above, just make sure ACK is
640 * set. If ACK not set, just silently drop the packet.
642 if (!(flg & TCP_FLAG_ACK))
645 /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
646 if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
647 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
648 inet_rsk(req)->acked = 1;
652 /* OK, ACK is valid, create big socket and
653 * feed this segment to it. It will repeat all
654 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
655 * ESTABLISHED STATE. If it will be dropped after
656 * socket is created, wait for troubles.
658 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
661 goto listen_overflow;
662 #ifdef CONFIG_TCP_MD5SIG
664 /* Copy over the MD5 key from the original socket */
665 struct tcp_md5sig_key *key;
666 struct tcp_sock *tp = tcp_sk(sk);
667 key = tp->af_specific->md5_lookup(sk, child);
670 * We're using one, so create a matching key on the
671 * newsk structure. If we fail to get memory then we
672 * end up not copying the key across. Shucks.
674 char *newkey = kmemdup(key->key, key->keylen,
677 if (!tcp_alloc_md5sig_pool())
679 tp->af_specific->md5_add(child, child,
687 inet_csk_reqsk_queue_unlink(sk, req, prev);
688 inet_csk_reqsk_queue_removed(sk, req);
690 inet_csk_reqsk_queue_add(sk, req, child);
694 if (!sysctl_tcp_abort_on_overflow) {
695 inet_rsk(req)->acked = 1;
700 NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
701 if (!(flg & TCP_FLAG_RST))
702 req->rsk_ops->send_reset(sk, skb);
704 inet_csk_reqsk_queue_drop(sk, req, prev);
709 * Queue segment on the new socket if the new socket is active,
710 * otherwise we just shortcircuit this and continue with
714 int tcp_child_process(struct sock *parent, struct sock *child,
718 int state = child->sk_state;
720 if (!sock_owned_by_user(child)) {
721 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
723 /* Wakeup parent, send SIGIO */
724 if (state == TCP_SYN_RECV && child->sk_state != state)
725 parent->sk_data_ready(parent, 0);
727 /* Alas, it is possible again, because we do lookup
728 * in main socket hash table and lock on listening
729 * socket does not protect us more.
731 sk_add_backlog(child, skb);
734 bh_unlock_sock(child);
739 EXPORT_SYMBOL(tcp_check_req);
740 EXPORT_SYMBOL(tcp_child_process);
741 EXPORT_SYMBOL(tcp_create_openreq_child);
742 EXPORT_SYMBOL(tcp_timewait_state_process);