KVM: MMU: Avoid calling gfn_to_page() in mmu_set_spte()
[linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x)                                                       \
65         if (!(x)) {                                                     \
66                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
67                        __FILE__, __LINE__, #x);                         \
68         }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141                         | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK    1
158 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
159 #define ACC_USER_MASK    PT_USER_MASK
160 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163         u64 *shadow_ptes[RMAP_EXT];
164         struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176         shadow_trap_nonpresent_pte = trap_pte;
177         shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183         return vcpu->arch.cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188         return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193         return vcpu->arch.shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198         return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203         pte &= ~PT_SHADOW_IO_MARK;
204         return pte != shadow_trap_nonpresent_pte
205                 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210         return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215         return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220         return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225         return pte != shadow_trap_nonpresent_pte
226                 && pte != shadow_notrap_nonpresent_pte;
227 }
228
229 static gfn_t pse36_gfn_delta(u32 gpte)
230 {
231         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
232
233         return (gpte & PT32_DIR_PSE36_MASK) << shift;
234 }
235
236 static void set_shadow_pte(u64 *sptep, u64 spte)
237 {
238 #ifdef CONFIG_X86_64
239         set_64bit((unsigned long *)sptep, spte);
240 #else
241         set_64bit((unsigned long long *)sptep, spte);
242 #endif
243 }
244
245 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246                                   struct kmem_cache *base_cache, int min)
247 {
248         void *obj;
249
250         if (cache->nobjs >= min)
251                 return 0;
252         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254                 if (!obj)
255                         return -ENOMEM;
256                 cache->objects[cache->nobjs++] = obj;
257         }
258         return 0;
259 }
260
261 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
262 {
263         while (mc->nobjs)
264                 kfree(mc->objects[--mc->nobjs]);
265 }
266
267 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268                                        int min)
269 {
270         struct page *page;
271
272         if (cache->nobjs >= min)
273                 return 0;
274         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275                 page = alloc_page(GFP_KERNEL);
276                 if (!page)
277                         return -ENOMEM;
278                 set_page_private(page, 0);
279                 cache->objects[cache->nobjs++] = page_address(page);
280         }
281         return 0;
282 }
283
284 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
285 {
286         while (mc->nobjs)
287                 free_page((unsigned long)mc->objects[--mc->nobjs]);
288 }
289
290 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
291 {
292         int r;
293
294         kvm_mmu_free_some_pages(vcpu);
295         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
296                                    pte_chain_cache, 4);
297         if (r)
298                 goto out;
299         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
300                                    rmap_desc_cache, 1);
301         if (r)
302                 goto out;
303         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
304         if (r)
305                 goto out;
306         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
307                                    mmu_page_header_cache, 4);
308 out:
309         return r;
310 }
311
312 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313 {
314         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
315         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
316         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
317         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
318 }
319
320 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
321                                     size_t size)
322 {
323         void *p;
324
325         BUG_ON(!mc->nobjs);
326         p = mc->objects[--mc->nobjs];
327         memset(p, 0, size);
328         return p;
329 }
330
331 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332 {
333         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
334                                       sizeof(struct kvm_pte_chain));
335 }
336
337 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338 {
339         kfree(pc);
340 }
341
342 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343 {
344         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
345                                       sizeof(struct kvm_rmap_desc));
346 }
347
348 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349 {
350         kfree(rd);
351 }
352
353 /*
354  * Take gfn and return the reverse mapping to it.
355  * Note: gfn must be unaliased before this function get called
356  */
357
358 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359 {
360         struct kvm_memory_slot *slot;
361
362         slot = gfn_to_memslot(kvm, gfn);
363         return &slot->rmap[gfn - slot->base_gfn];
364 }
365
366 /*
367  * Reverse mapping data structures:
368  *
369  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
370  * that points to page_address(page).
371  *
372  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
373  * containing more mappings.
374  */
375 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376 {
377         struct kvm_mmu_page *sp;
378         struct kvm_rmap_desc *desc;
379         unsigned long *rmapp;
380         int i;
381
382         if (!is_rmap_pte(*spte))
383                 return;
384         gfn = unalias_gfn(vcpu->kvm, gfn);
385         sp = page_header(__pa(spte));
386         sp->gfns[spte - sp->spt] = gfn;
387         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
388         if (!*rmapp) {
389                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
390                 *rmapp = (unsigned long)spte;
391         } else if (!(*rmapp & 1)) {
392                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
393                 desc = mmu_alloc_rmap_desc(vcpu);
394                 desc->shadow_ptes[0] = (u64 *)*rmapp;
395                 desc->shadow_ptes[1] = spte;
396                 *rmapp = (unsigned long)desc | 1;
397         } else {
398                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
399                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
400                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
401                         desc = desc->more;
402                 if (desc->shadow_ptes[RMAP_EXT-1]) {
403                         desc->more = mmu_alloc_rmap_desc(vcpu);
404                         desc = desc->more;
405                 }
406                 for (i = 0; desc->shadow_ptes[i]; ++i)
407                         ;
408                 desc->shadow_ptes[i] = spte;
409         }
410 }
411
412 static void rmap_desc_remove_entry(unsigned long *rmapp,
413                                    struct kvm_rmap_desc *desc,
414                                    int i,
415                                    struct kvm_rmap_desc *prev_desc)
416 {
417         int j;
418
419         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420                 ;
421         desc->shadow_ptes[i] = desc->shadow_ptes[j];
422         desc->shadow_ptes[j] = NULL;
423         if (j != 0)
424                 return;
425         if (!prev_desc && !desc->more)
426                 *rmapp = (unsigned long)desc->shadow_ptes[0];
427         else
428                 if (prev_desc)
429                         prev_desc->more = desc->more;
430                 else
431                         *rmapp = (unsigned long)desc->more | 1;
432         mmu_free_rmap_desc(desc);
433 }
434
435 static void rmap_remove(struct kvm *kvm, u64 *spte)
436 {
437         struct kvm_rmap_desc *desc;
438         struct kvm_rmap_desc *prev_desc;
439         struct kvm_mmu_page *sp;
440         struct page *page;
441         unsigned long *rmapp;
442         int i;
443
444         if (!is_rmap_pte(*spte))
445                 return;
446         sp = page_header(__pa(spte));
447         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
448         mark_page_accessed(page);
449         if (is_writeble_pte(*spte))
450                 kvm_release_page_dirty(page);
451         else
452                 kvm_release_page_clean(page);
453         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
454         if (!*rmapp) {
455                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
456                 BUG();
457         } else if (!(*rmapp & 1)) {
458                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
459                 if ((u64 *)*rmapp != spte) {
460                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
461                                spte, *spte);
462                         BUG();
463                 }
464                 *rmapp = 0;
465         } else {
466                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
467                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468                 prev_desc = NULL;
469                 while (desc) {
470                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
471                                 if (desc->shadow_ptes[i] == spte) {
472                                         rmap_desc_remove_entry(rmapp,
473                                                                desc, i,
474                                                                prev_desc);
475                                         return;
476                                 }
477                         prev_desc = desc;
478                         desc = desc->more;
479                 }
480                 BUG();
481         }
482 }
483
484 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485 {
486         struct kvm_rmap_desc *desc;
487         struct kvm_rmap_desc *prev_desc;
488         u64 *prev_spte;
489         int i;
490
491         if (!*rmapp)
492                 return NULL;
493         else if (!(*rmapp & 1)) {
494                 if (!spte)
495                         return (u64 *)*rmapp;
496                 return NULL;
497         }
498         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
499         prev_desc = NULL;
500         prev_spte = NULL;
501         while (desc) {
502                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
503                         if (prev_spte == spte)
504                                 return desc->shadow_ptes[i];
505                         prev_spte = desc->shadow_ptes[i];
506                 }
507                 desc = desc->more;
508         }
509         return NULL;
510 }
511
512 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513 {
514         unsigned long *rmapp;
515         u64 *spte;
516         int write_protected = 0;
517
518         gfn = unalias_gfn(kvm, gfn);
519         rmapp = gfn_to_rmap(kvm, gfn);
520
521         spte = rmap_next(kvm, rmapp, NULL);
522         while (spte) {
523                 BUG_ON(!spte);
524                 BUG_ON(!(*spte & PT_PRESENT_MASK));
525                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
526                 if (is_writeble_pte(*spte)) {
527                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
528                         write_protected = 1;
529                 }
530                 spte = rmap_next(kvm, rmapp, spte);
531         }
532         if (write_protected)
533                 kvm_flush_remote_tlbs(kvm);
534 }
535
536 #ifdef MMU_DEBUG
537 static int is_empty_shadow_page(u64 *spt)
538 {
539         u64 *pos;
540         u64 *end;
541
542         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
543                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
544                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
545                                pos, *pos);
546                         return 0;
547                 }
548         return 1;
549 }
550 #endif
551
552 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
553 {
554         ASSERT(is_empty_shadow_page(sp->spt));
555         list_del(&sp->link);
556         __free_page(virt_to_page(sp->spt));
557         __free_page(virt_to_page(sp->gfns));
558         kfree(sp);
559         ++kvm->arch.n_free_mmu_pages;
560 }
561
562 static unsigned kvm_page_table_hashfn(gfn_t gfn)
563 {
564         return gfn;
565 }
566
567 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
568                                                u64 *parent_pte)
569 {
570         struct kvm_mmu_page *sp;
571
572         if (!vcpu->kvm->arch.n_free_mmu_pages)
573                 return NULL;
574
575         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
576         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
577         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
578         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
579         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
580         ASSERT(is_empty_shadow_page(sp->spt));
581         sp->slot_bitmap = 0;
582         sp->multimapped = 0;
583         sp->parent_pte = parent_pte;
584         --vcpu->kvm->arch.n_free_mmu_pages;
585         return sp;
586 }
587
588 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
589                                     struct kvm_mmu_page *sp, u64 *parent_pte)
590 {
591         struct kvm_pte_chain *pte_chain;
592         struct hlist_node *node;
593         int i;
594
595         if (!parent_pte)
596                 return;
597         if (!sp->multimapped) {
598                 u64 *old = sp->parent_pte;
599
600                 if (!old) {
601                         sp->parent_pte = parent_pte;
602                         return;
603                 }
604                 sp->multimapped = 1;
605                 pte_chain = mmu_alloc_pte_chain(vcpu);
606                 INIT_HLIST_HEAD(&sp->parent_ptes);
607                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
608                 pte_chain->parent_ptes[0] = old;
609         }
610         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
611                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
612                         continue;
613                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
614                         if (!pte_chain->parent_ptes[i]) {
615                                 pte_chain->parent_ptes[i] = parent_pte;
616                                 return;
617                         }
618         }
619         pte_chain = mmu_alloc_pte_chain(vcpu);
620         BUG_ON(!pte_chain);
621         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
622         pte_chain->parent_ptes[0] = parent_pte;
623 }
624
625 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
626                                        u64 *parent_pte)
627 {
628         struct kvm_pte_chain *pte_chain;
629         struct hlist_node *node;
630         int i;
631
632         if (!sp->multimapped) {
633                 BUG_ON(sp->parent_pte != parent_pte);
634                 sp->parent_pte = NULL;
635                 return;
636         }
637         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
638                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
639                         if (!pte_chain->parent_ptes[i])
640                                 break;
641                         if (pte_chain->parent_ptes[i] != parent_pte)
642                                 continue;
643                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
644                                 && pte_chain->parent_ptes[i + 1]) {
645                                 pte_chain->parent_ptes[i]
646                                         = pte_chain->parent_ptes[i + 1];
647                                 ++i;
648                         }
649                         pte_chain->parent_ptes[i] = NULL;
650                         if (i == 0) {
651                                 hlist_del(&pte_chain->link);
652                                 mmu_free_pte_chain(pte_chain);
653                                 if (hlist_empty(&sp->parent_ptes)) {
654                                         sp->multimapped = 0;
655                                         sp->parent_pte = NULL;
656                                 }
657                         }
658                         return;
659                 }
660         BUG();
661 }
662
663 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
664 {
665         unsigned index;
666         struct hlist_head *bucket;
667         struct kvm_mmu_page *sp;
668         struct hlist_node *node;
669
670         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
671         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
672         bucket = &kvm->arch.mmu_page_hash[index];
673         hlist_for_each_entry(sp, node, bucket, hash_link)
674                 if (sp->gfn == gfn && !sp->role.metaphysical) {
675                         pgprintk("%s: found role %x\n",
676                                  __FUNCTION__, sp->role.word);
677                         return sp;
678                 }
679         return NULL;
680 }
681
682 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
683                                              gfn_t gfn,
684                                              gva_t gaddr,
685                                              unsigned level,
686                                              int metaphysical,
687                                              unsigned access,
688                                              u64 *parent_pte,
689                                              bool *new_page)
690 {
691         union kvm_mmu_page_role role;
692         unsigned index;
693         unsigned quadrant;
694         struct hlist_head *bucket;
695         struct kvm_mmu_page *sp;
696         struct hlist_node *node;
697
698         role.word = 0;
699         role.glevels = vcpu->arch.mmu.root_level;
700         role.level = level;
701         role.metaphysical = metaphysical;
702         role.access = access;
703         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
704                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
705                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
706                 role.quadrant = quadrant;
707         }
708         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
709                  gfn, role.word);
710         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
711         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
712         hlist_for_each_entry(sp, node, bucket, hash_link)
713                 if (sp->gfn == gfn && sp->role.word == role.word) {
714                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
715                         pgprintk("%s: found\n", __FUNCTION__);
716                         return sp;
717                 }
718         ++vcpu->kvm->stat.mmu_cache_miss;
719         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
720         if (!sp)
721                 return sp;
722         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
723         sp->gfn = gfn;
724         sp->role = role;
725         hlist_add_head(&sp->hash_link, bucket);
726         vcpu->arch.mmu.prefetch_page(vcpu, sp);
727         if (!metaphysical)
728                 rmap_write_protect(vcpu->kvm, gfn);
729         if (new_page)
730                 *new_page = 1;
731         return sp;
732 }
733
734 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
735                                          struct kvm_mmu_page *sp)
736 {
737         unsigned i;
738         u64 *pt;
739         u64 ent;
740
741         pt = sp->spt;
742
743         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
744                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
745                         if (is_shadow_present_pte(pt[i]))
746                                 rmap_remove(kvm, &pt[i]);
747                         pt[i] = shadow_trap_nonpresent_pte;
748                 }
749                 kvm_flush_remote_tlbs(kvm);
750                 return;
751         }
752
753         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
754                 ent = pt[i];
755
756                 pt[i] = shadow_trap_nonpresent_pte;
757                 if (!is_shadow_present_pte(ent))
758                         continue;
759                 ent &= PT64_BASE_ADDR_MASK;
760                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
761         }
762         kvm_flush_remote_tlbs(kvm);
763 }
764
765 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
766 {
767         mmu_page_remove_parent_pte(sp, parent_pte);
768 }
769
770 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
771 {
772         int i;
773
774         for (i = 0; i < KVM_MAX_VCPUS; ++i)
775                 if (kvm->vcpus[i])
776                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
777 }
778
779 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         u64 *parent_pte;
782
783         ++kvm->stat.mmu_shadow_zapped;
784         while (sp->multimapped || sp->parent_pte) {
785                 if (!sp->multimapped)
786                         parent_pte = sp->parent_pte;
787                 else {
788                         struct kvm_pte_chain *chain;
789
790                         chain = container_of(sp->parent_ptes.first,
791                                              struct kvm_pte_chain, link);
792                         parent_pte = chain->parent_ptes[0];
793                 }
794                 BUG_ON(!parent_pte);
795                 kvm_mmu_put_page(sp, parent_pte);
796                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
797         }
798         kvm_mmu_page_unlink_children(kvm, sp);
799         if (!sp->root_count) {
800                 hlist_del(&sp->hash_link);
801                 kvm_mmu_free_page(kvm, sp);
802         } else
803                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
804         kvm_mmu_reset_last_pte_updated(kvm);
805 }
806
807 /*
808  * Changing the number of mmu pages allocated to the vm
809  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
810  */
811 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
812 {
813         /*
814          * If we set the number of mmu pages to be smaller be than the
815          * number of actived pages , we must to free some mmu pages before we
816          * change the value
817          */
818
819         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
820             kvm_nr_mmu_pages) {
821                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
822                                        - kvm->arch.n_free_mmu_pages;
823
824                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
825                         struct kvm_mmu_page *page;
826
827                         page = container_of(kvm->arch.active_mmu_pages.prev,
828                                             struct kvm_mmu_page, link);
829                         kvm_mmu_zap_page(kvm, page);
830                         n_used_mmu_pages--;
831                 }
832                 kvm->arch.n_free_mmu_pages = 0;
833         }
834         else
835                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
836                                          - kvm->arch.n_alloc_mmu_pages;
837
838         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
839 }
840
841 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
842 {
843         unsigned index;
844         struct hlist_head *bucket;
845         struct kvm_mmu_page *sp;
846         struct hlist_node *node, *n;
847         int r;
848
849         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
850         r = 0;
851         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
852         bucket = &kvm->arch.mmu_page_hash[index];
853         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
854                 if (sp->gfn == gfn && !sp->role.metaphysical) {
855                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
856                                  sp->role.word);
857                         kvm_mmu_zap_page(kvm, sp);
858                         r = 1;
859                 }
860         return r;
861 }
862
863 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
864 {
865         struct kvm_mmu_page *sp;
866
867         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
868                 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
869                 kvm_mmu_zap_page(kvm, sp);
870         }
871 }
872
873 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
874 {
875         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
876         struct kvm_mmu_page *sp = page_header(__pa(pte));
877
878         __set_bit(slot, &sp->slot_bitmap);
879 }
880
881 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
882 {
883         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
884
885         if (gpa == UNMAPPED_GVA)
886                 return NULL;
887         return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
888 }
889
890 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
891                          unsigned pt_access, unsigned pte_access,
892                          int user_fault, int write_fault, int dirty,
893                          int *ptwrite, gfn_t gfn, struct page *page)
894 {
895         u64 spte;
896         int was_rmapped = is_rmap_pte(*shadow_pte);
897
898         pgprintk("%s: spte %llx access %x write_fault %d"
899                  " user_fault %d gfn %lx\n",
900                  __FUNCTION__, *shadow_pte, pt_access,
901                  write_fault, user_fault, gfn);
902
903         /*
904          * We don't set the accessed bit, since we sometimes want to see
905          * whether the guest actually used the pte (in order to detect
906          * demand paging).
907          */
908         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
909         if (!dirty)
910                 pte_access &= ~ACC_WRITE_MASK;
911         if (!(pte_access & ACC_EXEC_MASK))
912                 spte |= PT64_NX_MASK;
913
914         spte |= PT_PRESENT_MASK;
915         if (pte_access & ACC_USER_MASK)
916                 spte |= PT_USER_MASK;
917
918         if (is_error_page(page)) {
919                 set_shadow_pte(shadow_pte,
920                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
921                 kvm_release_page_clean(page);
922                 return;
923         }
924
925         spte |= page_to_phys(page);
926
927         if ((pte_access & ACC_WRITE_MASK)
928             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
929                 struct kvm_mmu_page *shadow;
930
931                 spte |= PT_WRITABLE_MASK;
932                 if (user_fault) {
933                         mmu_unshadow(vcpu->kvm, gfn);
934                         goto unshadowed;
935                 }
936
937                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
938                 if (shadow) {
939                         pgprintk("%s: found shadow page for %lx, marking ro\n",
940                                  __FUNCTION__, gfn);
941                         pte_access &= ~ACC_WRITE_MASK;
942                         if (is_writeble_pte(spte)) {
943                                 spte &= ~PT_WRITABLE_MASK;
944                                 kvm_x86_ops->tlb_flush(vcpu);
945                         }
946                         if (write_fault)
947                                 *ptwrite = 1;
948                 }
949         }
950
951 unshadowed:
952
953         if (pte_access & ACC_WRITE_MASK)
954                 mark_page_dirty(vcpu->kvm, gfn);
955
956         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
957         set_shadow_pte(shadow_pte, spte);
958         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
959         if (!was_rmapped) {
960                 rmap_add(vcpu, shadow_pte, gfn);
961                 if (!is_rmap_pte(*shadow_pte))
962                         kvm_release_page_clean(page);
963         }
964         else
965                 kvm_release_page_clean(page);
966         if (!ptwrite || !*ptwrite)
967                 vcpu->arch.last_pte_updated = shadow_pte;
968 }
969
970 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
971 {
972 }
973
974 static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
975 {
976         int level = PT32E_ROOT_LEVEL;
977         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
978         int pt_write = 0;
979         struct page *page;
980
981         down_read(&current->mm->mmap_sem);
982         page = gfn_to_page(vcpu->kvm, gfn);
983         up_read(&current->mm->mmap_sem);
984
985         for (; ; level--) {
986                 u32 index = PT64_INDEX(v, level);
987                 u64 *table;
988
989                 ASSERT(VALID_PAGE(table_addr));
990                 table = __va(table_addr);
991
992                 if (level == 1) {
993                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
994                                      0, write, 1, &pt_write, gfn, page);
995                         return pt_write || is_io_pte(table[index]);
996                 }
997
998                 if (table[index] == shadow_trap_nonpresent_pte) {
999                         struct kvm_mmu_page *new_table;
1000                         gfn_t pseudo_gfn;
1001
1002                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1003                                 >> PAGE_SHIFT;
1004                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1005                                                      v, level - 1,
1006                                                      1, ACC_ALL, &table[index],
1007                                                      NULL);
1008                         if (!new_table) {
1009                                 pgprintk("nonpaging_map: ENOMEM\n");
1010                                 kvm_release_page_clean(page);
1011                                 return -ENOMEM;
1012                         }
1013
1014                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1015                                 | PT_WRITABLE_MASK | PT_USER_MASK;
1016                 }
1017                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1018         }
1019 }
1020
1021 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1022 {
1023         int r;
1024
1025         mutex_lock(&vcpu->kvm->lock);
1026         r = __nonpaging_map(vcpu, v, write, gfn);
1027         mutex_unlock(&vcpu->kvm->lock);
1028         return r;
1029 }
1030
1031
1032 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1033                                     struct kvm_mmu_page *sp)
1034 {
1035         int i;
1036
1037         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1038                 sp->spt[i] = shadow_trap_nonpresent_pte;
1039 }
1040
1041 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1042 {
1043         int i;
1044         struct kvm_mmu_page *sp;
1045
1046         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1047                 return;
1048         mutex_lock(&vcpu->kvm->lock);
1049 #ifdef CONFIG_X86_64
1050         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1051                 hpa_t root = vcpu->arch.mmu.root_hpa;
1052
1053                 sp = page_header(root);
1054                 --sp->root_count;
1055                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1056                 mutex_unlock(&vcpu->kvm->lock);
1057                 return;
1058         }
1059 #endif
1060         for (i = 0; i < 4; ++i) {
1061                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1062
1063                 if (root) {
1064                         root &= PT64_BASE_ADDR_MASK;
1065                         sp = page_header(root);
1066                         --sp->root_count;
1067                 }
1068                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1069         }
1070         mutex_unlock(&vcpu->kvm->lock);
1071         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1072 }
1073
1074 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1075 {
1076         int i;
1077         gfn_t root_gfn;
1078         struct kvm_mmu_page *sp;
1079
1080         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1081
1082 #ifdef CONFIG_X86_64
1083         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1084                 hpa_t root = vcpu->arch.mmu.root_hpa;
1085
1086                 ASSERT(!VALID_PAGE(root));
1087                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1088                                       PT64_ROOT_LEVEL, 0, ACC_ALL, NULL, NULL);
1089                 root = __pa(sp->spt);
1090                 ++sp->root_count;
1091                 vcpu->arch.mmu.root_hpa = root;
1092                 return;
1093         }
1094 #endif
1095         for (i = 0; i < 4; ++i) {
1096                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1097
1098                 ASSERT(!VALID_PAGE(root));
1099                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1100                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1101                                 vcpu->arch.mmu.pae_root[i] = 0;
1102                                 continue;
1103                         }
1104                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1105                 } else if (vcpu->arch.mmu.root_level == 0)
1106                         root_gfn = 0;
1107                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1108                                       PT32_ROOT_LEVEL, !is_paging(vcpu),
1109                                       ACC_ALL, NULL, NULL);
1110                 root = __pa(sp->spt);
1111                 ++sp->root_count;
1112                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1113         }
1114         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1115 }
1116
1117 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1118 {
1119         return vaddr;
1120 }
1121
1122 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1123                                 u32 error_code)
1124 {
1125         gfn_t gfn;
1126         int r;
1127
1128         pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1129         r = mmu_topup_memory_caches(vcpu);
1130         if (r)
1131                 return r;
1132
1133         ASSERT(vcpu);
1134         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1135
1136         gfn = gva >> PAGE_SHIFT;
1137
1138         return nonpaging_map(vcpu, gva & PAGE_MASK,
1139                              error_code & PFERR_WRITE_MASK, gfn);
1140 }
1141
1142 static void nonpaging_free(struct kvm_vcpu *vcpu)
1143 {
1144         mmu_free_roots(vcpu);
1145 }
1146
1147 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1148 {
1149         struct kvm_mmu *context = &vcpu->arch.mmu;
1150
1151         context->new_cr3 = nonpaging_new_cr3;
1152         context->page_fault = nonpaging_page_fault;
1153         context->gva_to_gpa = nonpaging_gva_to_gpa;
1154         context->free = nonpaging_free;
1155         context->prefetch_page = nonpaging_prefetch_page;
1156         context->root_level = 0;
1157         context->shadow_root_level = PT32E_ROOT_LEVEL;
1158         context->root_hpa = INVALID_PAGE;
1159         return 0;
1160 }
1161
1162 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1163 {
1164         ++vcpu->stat.tlb_flush;
1165         kvm_x86_ops->tlb_flush(vcpu);
1166 }
1167
1168 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1169 {
1170         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1171         mmu_free_roots(vcpu);
1172 }
1173
1174 static void inject_page_fault(struct kvm_vcpu *vcpu,
1175                               u64 addr,
1176                               u32 err_code)
1177 {
1178         kvm_inject_page_fault(vcpu, addr, err_code);
1179 }
1180
1181 static void paging_free(struct kvm_vcpu *vcpu)
1182 {
1183         nonpaging_free(vcpu);
1184 }
1185
1186 #define PTTYPE 64
1187 #include "paging_tmpl.h"
1188 #undef PTTYPE
1189
1190 #define PTTYPE 32
1191 #include "paging_tmpl.h"
1192 #undef PTTYPE
1193
1194 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1195 {
1196         struct kvm_mmu *context = &vcpu->arch.mmu;
1197
1198         ASSERT(is_pae(vcpu));
1199         context->new_cr3 = paging_new_cr3;
1200         context->page_fault = paging64_page_fault;
1201         context->gva_to_gpa = paging64_gva_to_gpa;
1202         context->prefetch_page = paging64_prefetch_page;
1203         context->free = paging_free;
1204         context->root_level = level;
1205         context->shadow_root_level = level;
1206         context->root_hpa = INVALID_PAGE;
1207         return 0;
1208 }
1209
1210 static int paging64_init_context(struct kvm_vcpu *vcpu)
1211 {
1212         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1213 }
1214
1215 static int paging32_init_context(struct kvm_vcpu *vcpu)
1216 {
1217         struct kvm_mmu *context = &vcpu->arch.mmu;
1218
1219         context->new_cr3 = paging_new_cr3;
1220         context->page_fault = paging32_page_fault;
1221         context->gva_to_gpa = paging32_gva_to_gpa;
1222         context->free = paging_free;
1223         context->prefetch_page = paging32_prefetch_page;
1224         context->root_level = PT32_ROOT_LEVEL;
1225         context->shadow_root_level = PT32E_ROOT_LEVEL;
1226         context->root_hpa = INVALID_PAGE;
1227         return 0;
1228 }
1229
1230 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1231 {
1232         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1233 }
1234
1235 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1236 {
1237         ASSERT(vcpu);
1238         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1239
1240         if (!is_paging(vcpu))
1241                 return nonpaging_init_context(vcpu);
1242         else if (is_long_mode(vcpu))
1243                 return paging64_init_context(vcpu);
1244         else if (is_pae(vcpu))
1245                 return paging32E_init_context(vcpu);
1246         else
1247                 return paging32_init_context(vcpu);
1248 }
1249
1250 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1251 {
1252         ASSERT(vcpu);
1253         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1254                 vcpu->arch.mmu.free(vcpu);
1255                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1256         }
1257 }
1258
1259 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1260 {
1261         destroy_kvm_mmu(vcpu);
1262         return init_kvm_mmu(vcpu);
1263 }
1264 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1265
1266 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1267 {
1268         int r;
1269
1270         r = mmu_topup_memory_caches(vcpu);
1271         if (r)
1272                 goto out;
1273         mutex_lock(&vcpu->kvm->lock);
1274         mmu_alloc_roots(vcpu);
1275         mutex_unlock(&vcpu->kvm->lock);
1276         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1277         kvm_mmu_flush_tlb(vcpu);
1278 out:
1279         return r;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1282
1283 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1284 {
1285         mmu_free_roots(vcpu);
1286 }
1287
1288 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1289                                   struct kvm_mmu_page *sp,
1290                                   u64 *spte)
1291 {
1292         u64 pte;
1293         struct kvm_mmu_page *child;
1294
1295         pte = *spte;
1296         if (is_shadow_present_pte(pte)) {
1297                 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1298                         rmap_remove(vcpu->kvm, spte);
1299                 else {
1300                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1301                         mmu_page_remove_parent_pte(child, spte);
1302                 }
1303         }
1304         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1305 }
1306
1307 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1308                                   struct kvm_mmu_page *sp,
1309                                   u64 *spte,
1310                                   const void *new, int bytes,
1311                                   int offset_in_pte)
1312 {
1313         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1314                 ++vcpu->kvm->stat.mmu_pde_zapped;
1315                 return;
1316         }
1317
1318         ++vcpu->kvm->stat.mmu_pte_updated;
1319         if (sp->role.glevels == PT32_ROOT_LEVEL)
1320                 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1321         else
1322                 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1323 }
1324
1325 static bool need_remote_flush(u64 old, u64 new)
1326 {
1327         if (!is_shadow_present_pte(old))
1328                 return false;
1329         if (!is_shadow_present_pte(new))
1330                 return true;
1331         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1332                 return true;
1333         old ^= PT64_NX_MASK;
1334         new ^= PT64_NX_MASK;
1335         return (old & ~new & PT64_PERM_MASK) != 0;
1336 }
1337
1338 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1339 {
1340         if (need_remote_flush(old, new))
1341                 kvm_flush_remote_tlbs(vcpu->kvm);
1342         else
1343                 kvm_mmu_flush_tlb(vcpu);
1344 }
1345
1346 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1347 {
1348         u64 *spte = vcpu->arch.last_pte_updated;
1349
1350         return !!(spte && (*spte & PT_ACCESSED_MASK));
1351 }
1352
1353 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1354                                           const u8 *new, int bytes)
1355 {
1356         gfn_t gfn;
1357         int r;
1358         u64 gpte = 0;
1359
1360         if (bytes != 4 && bytes != 8)
1361                 return;
1362
1363         /*
1364          * Assume that the pte write on a page table of the same type
1365          * as the current vcpu paging mode.  This is nearly always true
1366          * (might be false while changing modes).  Note it is verified later
1367          * by update_pte().
1368          */
1369         if (is_pae(vcpu)) {
1370                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1371                 if ((bytes == 4) && (gpa % 4 == 0)) {
1372                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1373                         if (r)
1374                                 return;
1375                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1376                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1377                         memcpy((void *)&gpte, new, 8);
1378                 }
1379         } else {
1380                 if ((bytes == 4) && (gpa % 4 == 0))
1381                         memcpy((void *)&gpte, new, 4);
1382         }
1383         if (!is_present_pte(gpte))
1384                 return;
1385         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1386         vcpu->arch.update_pte.gfn = gfn;
1387         vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
1388 }
1389
1390 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1391                        const u8 *new, int bytes)
1392 {
1393         gfn_t gfn = gpa >> PAGE_SHIFT;
1394         struct kvm_mmu_page *sp;
1395         struct hlist_node *node, *n;
1396         struct hlist_head *bucket;
1397         unsigned index;
1398         u64 entry;
1399         u64 *spte;
1400         unsigned offset = offset_in_page(gpa);
1401         unsigned pte_size;
1402         unsigned page_offset;
1403         unsigned misaligned;
1404         unsigned quadrant;
1405         int level;
1406         int flooded = 0;
1407         int npte;
1408
1409         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1410         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1411         mutex_lock(&vcpu->kvm->lock);
1412         ++vcpu->kvm->stat.mmu_pte_write;
1413         kvm_mmu_audit(vcpu, "pre pte write");
1414         if (gfn == vcpu->arch.last_pt_write_gfn
1415             && !last_updated_pte_accessed(vcpu)) {
1416                 ++vcpu->arch.last_pt_write_count;
1417                 if (vcpu->arch.last_pt_write_count >= 3)
1418                         flooded = 1;
1419         } else {
1420                 vcpu->arch.last_pt_write_gfn = gfn;
1421                 vcpu->arch.last_pt_write_count = 1;
1422                 vcpu->arch.last_pte_updated = NULL;
1423         }
1424         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1425         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1426         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1427                 if (sp->gfn != gfn || sp->role.metaphysical)
1428                         continue;
1429                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1430                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1431                 misaligned |= bytes < 4;
1432                 if (misaligned || flooded) {
1433                         /*
1434                          * Misaligned accesses are too much trouble to fix
1435                          * up; also, they usually indicate a page is not used
1436                          * as a page table.
1437                          *
1438                          * If we're seeing too many writes to a page,
1439                          * it may no longer be a page table, or we may be
1440                          * forking, in which case it is better to unmap the
1441                          * page.
1442                          */
1443                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1444                                  gpa, bytes, sp->role.word);
1445                         kvm_mmu_zap_page(vcpu->kvm, sp);
1446                         ++vcpu->kvm->stat.mmu_flooded;
1447                         continue;
1448                 }
1449                 page_offset = offset;
1450                 level = sp->role.level;
1451                 npte = 1;
1452                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1453                         page_offset <<= 1;      /* 32->64 */
1454                         /*
1455                          * A 32-bit pde maps 4MB while the shadow pdes map
1456                          * only 2MB.  So we need to double the offset again
1457                          * and zap two pdes instead of one.
1458                          */
1459                         if (level == PT32_ROOT_LEVEL) {
1460                                 page_offset &= ~7; /* kill rounding error */
1461                                 page_offset <<= 1;
1462                                 npte = 2;
1463                         }
1464                         quadrant = page_offset >> PAGE_SHIFT;
1465                         page_offset &= ~PAGE_MASK;
1466                         if (quadrant != sp->role.quadrant)
1467                                 continue;
1468                 }
1469                 spte = &sp->spt[page_offset / sizeof(*spte)];
1470                 while (npte--) {
1471                         entry = *spte;
1472                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1473                         mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1474                                               page_offset & (pte_size - 1));
1475                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1476                         ++spte;
1477                 }
1478         }
1479         kvm_mmu_audit(vcpu, "post pte write");
1480         mutex_unlock(&vcpu->kvm->lock);
1481         if (vcpu->arch.update_pte.page) {
1482                 kvm_release_page_clean(vcpu->arch.update_pte.page);
1483                 vcpu->arch.update_pte.page = NULL;
1484         }
1485 }
1486
1487 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1488 {
1489         gpa_t gpa;
1490         int r;
1491
1492         down_read(&current->mm->mmap_sem);
1493         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1494         up_read(&current->mm->mmap_sem);
1495
1496         mutex_lock(&vcpu->kvm->lock);
1497         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1498         mutex_unlock(&vcpu->kvm->lock);
1499         return r;
1500 }
1501
1502 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1503 {
1504         mutex_lock(&vcpu->kvm->lock);
1505         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1506                 struct kvm_mmu_page *sp;
1507
1508                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1509                                   struct kvm_mmu_page, link);
1510                 kvm_mmu_zap_page(vcpu->kvm, sp);
1511                 ++vcpu->kvm->stat.mmu_recycled;
1512         }
1513         mutex_unlock(&vcpu->kvm->lock);
1514 }
1515
1516 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1517 {
1518         int r;
1519         enum emulation_result er;
1520
1521         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1522         if (r < 0)
1523                 goto out;
1524
1525         if (!r) {
1526                 r = 1;
1527                 goto out;
1528         }
1529
1530         r = mmu_topup_memory_caches(vcpu);
1531         if (r)
1532                 goto out;
1533
1534         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1535
1536         switch (er) {
1537         case EMULATE_DONE:
1538                 return 1;
1539         case EMULATE_DO_MMIO:
1540                 ++vcpu->stat.mmio_exits;
1541                 return 0;
1542         case EMULATE_FAIL:
1543                 kvm_report_emulation_failure(vcpu, "pagetable");
1544                 return 1;
1545         default:
1546                 BUG();
1547         }
1548 out:
1549         return r;
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1552
1553 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1554 {
1555         struct kvm_mmu_page *sp;
1556
1557         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1558                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1559                                   struct kvm_mmu_page, link);
1560                 kvm_mmu_zap_page(vcpu->kvm, sp);
1561         }
1562         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1563 }
1564
1565 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1566 {
1567         struct page *page;
1568         int i;
1569
1570         ASSERT(vcpu);
1571
1572         if (vcpu->kvm->arch.n_requested_mmu_pages)
1573                 vcpu->kvm->arch.n_free_mmu_pages =
1574                                         vcpu->kvm->arch.n_requested_mmu_pages;
1575         else
1576                 vcpu->kvm->arch.n_free_mmu_pages =
1577                                         vcpu->kvm->arch.n_alloc_mmu_pages;
1578         /*
1579          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1580          * Therefore we need to allocate shadow page tables in the first
1581          * 4GB of memory, which happens to fit the DMA32 zone.
1582          */
1583         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1584         if (!page)
1585                 goto error_1;
1586         vcpu->arch.mmu.pae_root = page_address(page);
1587         for (i = 0; i < 4; ++i)
1588                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1589
1590         return 0;
1591
1592 error_1:
1593         free_mmu_pages(vcpu);
1594         return -ENOMEM;
1595 }
1596
1597 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1598 {
1599         ASSERT(vcpu);
1600         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1601
1602         return alloc_mmu_pages(vcpu);
1603 }
1604
1605 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1606 {
1607         ASSERT(vcpu);
1608         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1609
1610         return init_kvm_mmu(vcpu);
1611 }
1612
1613 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1614 {
1615         ASSERT(vcpu);
1616
1617         destroy_kvm_mmu(vcpu);
1618         free_mmu_pages(vcpu);
1619         mmu_free_memory_caches(vcpu);
1620 }
1621
1622 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1623 {
1624         struct kvm_mmu_page *sp;
1625
1626         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1627                 int i;
1628                 u64 *pt;
1629
1630                 if (!test_bit(slot, &sp->slot_bitmap))
1631                         continue;
1632
1633                 pt = sp->spt;
1634                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1635                         /* avoid RMW */
1636                         if (pt[i] & PT_WRITABLE_MASK)
1637                                 pt[i] &= ~PT_WRITABLE_MASK;
1638         }
1639 }
1640
1641 void kvm_mmu_zap_all(struct kvm *kvm)
1642 {
1643         struct kvm_mmu_page *sp, *node;
1644
1645         mutex_lock(&kvm->lock);
1646         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1647                 kvm_mmu_zap_page(kvm, sp);
1648         mutex_unlock(&kvm->lock);
1649
1650         kvm_flush_remote_tlbs(kvm);
1651 }
1652
1653 void kvm_mmu_module_exit(void)
1654 {
1655         if (pte_chain_cache)
1656                 kmem_cache_destroy(pte_chain_cache);
1657         if (rmap_desc_cache)
1658                 kmem_cache_destroy(rmap_desc_cache);
1659         if (mmu_page_header_cache)
1660                 kmem_cache_destroy(mmu_page_header_cache);
1661 }
1662
1663 int kvm_mmu_module_init(void)
1664 {
1665         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1666                                             sizeof(struct kvm_pte_chain),
1667                                             0, 0, NULL);
1668         if (!pte_chain_cache)
1669                 goto nomem;
1670         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1671                                             sizeof(struct kvm_rmap_desc),
1672                                             0, 0, NULL);
1673         if (!rmap_desc_cache)
1674                 goto nomem;
1675
1676         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1677                                                   sizeof(struct kvm_mmu_page),
1678                                                   0, 0, NULL);
1679         if (!mmu_page_header_cache)
1680                 goto nomem;
1681
1682         return 0;
1683
1684 nomem:
1685         kvm_mmu_module_exit();
1686         return -ENOMEM;
1687 }
1688
1689 /*
1690  * Caculate mmu pages needed for kvm.
1691  */
1692 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1693 {
1694         int i;
1695         unsigned int nr_mmu_pages;
1696         unsigned int  nr_pages = 0;
1697
1698         for (i = 0; i < kvm->nmemslots; i++)
1699                 nr_pages += kvm->memslots[i].npages;
1700
1701         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1702         nr_mmu_pages = max(nr_mmu_pages,
1703                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1704
1705         return nr_mmu_pages;
1706 }
1707
1708 #ifdef AUDIT
1709
1710 static const char *audit_msg;
1711
1712 static gva_t canonicalize(gva_t gva)
1713 {
1714 #ifdef CONFIG_X86_64
1715         gva = (long long)(gva << 16) >> 16;
1716 #endif
1717         return gva;
1718 }
1719
1720 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1721                                 gva_t va, int level)
1722 {
1723         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1724         int i;
1725         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1726
1727         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1728                 u64 ent = pt[i];
1729
1730                 if (ent == shadow_trap_nonpresent_pte)
1731                         continue;
1732
1733                 va = canonicalize(va);
1734                 if (level > 1) {
1735                         if (ent == shadow_notrap_nonpresent_pte)
1736                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1737                                        " in nonleaf level: levels %d gva %lx"
1738                                        " level %d pte %llx\n", audit_msg,
1739                                        vcpu->arch.mmu.root_level, va, level, ent);
1740
1741                         audit_mappings_page(vcpu, ent, va, level - 1);
1742                 } else {
1743                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1744                         struct page *page = gpa_to_page(vcpu, gpa);
1745                         hpa_t hpa = page_to_phys(page);
1746
1747                         if (is_shadow_present_pte(ent)
1748                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1749                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1750                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1751                                        audit_msg, vcpu->arch.mmu.root_level,
1752                                        va, gpa, hpa, ent,
1753                                        is_shadow_present_pte(ent));
1754                         else if (ent == shadow_notrap_nonpresent_pte
1755                                  && !is_error_hpa(hpa))
1756                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1757                                        " valid guest gva %lx\n", audit_msg, va);
1758                         kvm_release_page_clean(page);
1759
1760                 }
1761         }
1762 }
1763
1764 static void audit_mappings(struct kvm_vcpu *vcpu)
1765 {
1766         unsigned i;
1767
1768         if (vcpu->arch.mmu.root_level == 4)
1769                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1770         else
1771                 for (i = 0; i < 4; ++i)
1772                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1773                                 audit_mappings_page(vcpu,
1774                                                     vcpu->arch.mmu.pae_root[i],
1775                                                     i << 30,
1776                                                     2);
1777 }
1778
1779 static int count_rmaps(struct kvm_vcpu *vcpu)
1780 {
1781         int nmaps = 0;
1782         int i, j, k;
1783
1784         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1785                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1786                 struct kvm_rmap_desc *d;
1787
1788                 for (j = 0; j < m->npages; ++j) {
1789                         unsigned long *rmapp = &m->rmap[j];
1790
1791                         if (!*rmapp)
1792                                 continue;
1793                         if (!(*rmapp & 1)) {
1794                                 ++nmaps;
1795                                 continue;
1796                         }
1797                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1798                         while (d) {
1799                                 for (k = 0; k < RMAP_EXT; ++k)
1800                                         if (d->shadow_ptes[k])
1801                                                 ++nmaps;
1802                                         else
1803                                                 break;
1804                                 d = d->more;
1805                         }
1806                 }
1807         }
1808         return nmaps;
1809 }
1810
1811 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1812 {
1813         int nmaps = 0;
1814         struct kvm_mmu_page *sp;
1815         int i;
1816
1817         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1818                 u64 *pt = sp->spt;
1819
1820                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1821                         continue;
1822
1823                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1824                         u64 ent = pt[i];
1825
1826                         if (!(ent & PT_PRESENT_MASK))
1827                                 continue;
1828                         if (!(ent & PT_WRITABLE_MASK))
1829                                 continue;
1830                         ++nmaps;
1831                 }
1832         }
1833         return nmaps;
1834 }
1835
1836 static void audit_rmap(struct kvm_vcpu *vcpu)
1837 {
1838         int n_rmap = count_rmaps(vcpu);
1839         int n_actual = count_writable_mappings(vcpu);
1840
1841         if (n_rmap != n_actual)
1842                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1843                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1844 }
1845
1846 static void audit_write_protection(struct kvm_vcpu *vcpu)
1847 {
1848         struct kvm_mmu_page *sp;
1849         struct kvm_memory_slot *slot;
1850         unsigned long *rmapp;
1851         gfn_t gfn;
1852
1853         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1854                 if (sp->role.metaphysical)
1855                         continue;
1856
1857                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1858                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1859                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1860                 if (*rmapp)
1861                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1862                                " mappings: gfn %lx role %x\n",
1863                                __FUNCTION__, audit_msg, sp->gfn,
1864                                sp->role.word);
1865         }
1866 }
1867
1868 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1869 {
1870         int olddbg = dbg;
1871
1872         dbg = 0;
1873         audit_msg = msg;
1874         audit_rmap(vcpu);
1875         audit_write_protection(vcpu);
1876         audit_mappings(vcpu);
1877         dbg = olddbg;
1878 }
1879
1880 #endif