2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 struct workqueue_struct *ata_aux_wq;
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
107 * Inherited from caller.
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
129 fis[13] = tf->hob_nsect;
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
147 * Inherited from caller.
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
165 tf->hob_nsect = fis[13];
168 static const u8 ata_rw_cmds[] = {
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
195 ATA_CMD_WRITE_FUA_EXT
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
214 int index, fua, lba48, write;
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
228 tf->protocol = ATA_PROT_DMA;
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 static const struct ata_xfer_ent {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
308 * Matching XFER_* value, 0 if no match found.
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
325 * Return matching xfer_mask for @xfer_mode.
331 * Matching xfer_mask, 0 if no match found.
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
335 const struct ata_xfer_ent *ent;
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
347 * Return matching xfer_shift for @xfer_mode.
353 * Matching xfer_shift, -1 if no match found.
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
357 const struct ata_xfer_ent *ent;
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
379 static const char *ata_mode_string(unsigned int xfer_mask)
381 static const char * const xfer_mode_str[] = {
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
407 static const char *sata_spd_string(unsigned int spd)
409 static const char * const spd_str[] = {
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
416 return spd_str[spd - 1];
419 void ata_dev_disable(struct ata_device *dev)
421 if (ata_dev_enabled(dev)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
448 struct ata_ioports *ioaddr = &ap->ioaddr;
451 ap->ops->dev_select(ap, device);
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
468 return 0; /* nothing found */
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
492 struct ata_ioports *ioaddr = &ap->ioaddr;
495 ap->ops->dev_select(ap, device);
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
512 return 0; /* nothing found */
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
528 static unsigned int ata_devchk(struct ata_port *ap,
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
600 struct ata_taskfile tf;
604 ap->ops->dev_select(ap, device);
606 memset(&tf, 0, sizeof(tf));
608 ap->ops->tf_read(ap, &tf);
613 /* see if device passed diags */
616 else if ((device == 0) && (err == 0x81))
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
624 if (class == ATA_DEV_UNKNOWN)
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
686 ata_id_string(id, s, ofs, len - 1);
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
694 static u64 ata_id_n_sectors(const u16 *id)
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
700 return ata_id_u32(id, 60);
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
705 return id[1] * id[3] * id[6];
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
714 * This function performs no actual function.
716 * May be used as the dev_select() entry in ata_port_operations.
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
735 * May be used as the dev_select() entry in ata_port_operations.
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
746 tmp = ATA_DEVICE_OBS;
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
753 outb(tmp, ap->ioaddr.device_addr);
755 ata_pause(ap); /* needed; also flushes, for mmio */
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
786 ap->ops->dev_select(ap, device);
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
797 * @id: IDENTIFY DEVICE page to dump
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
806 static inline void ata_dump_id(const u16 *id)
808 DPRINTK("49==0x%04x "
818 DPRINTK("80==0x%04x "
828 DPRINTK("88==0x%04x "
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
841 * FIXME: pre IDE drive timing (do we care ?).
849 static unsigned int ata_id_xfermask(const u16 *id)
851 unsigned int pio_mask, mwdma_mask, udma_mask;
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
899 * Inherited from caller.
901 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
909 PREPARE_WORK(&ap->port_task, fn, data);
912 rc = queue_work(ata_wq, &ap->port_task);
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
916 /* rc == 0 means that another user is using port task */
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
928 * Kernel thread context (may sleep)
930 void ata_port_flush_task(struct ata_port *ap)
936 spin_lock_irqsave(&ap->host_set->lock, flags);
937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
953 spin_lock_irqsave(&ap->host_set->lock, flags);
954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
960 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
962 struct completion *waiting = qc->private_data;
968 * ata_exec_internal - execute libata internal command
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
971 * @cdb: CDB for packet command
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
983 * None. Should be called with kernel context, might sleep.
986 unsigned ata_exec_internal(struct ata_device *dev,
987 struct ata_taskfile *tf, const u8 *cdb,
988 int dma_dir, void *buf, unsigned int buflen)
990 struct ata_port *ap = dev->ap;
991 u8 command = tf->command;
992 struct ata_queued_cmd *qc;
993 unsigned int tag, preempted_tag;
994 u32 preempted_sactive, preempted_qc_active;
995 DECLARE_COMPLETION(wait);
997 unsigned int err_mask;
1000 spin_lock_irqsave(&ap->host_set->lock, flags);
1002 /* no internal command while frozen */
1003 if (ap->flags & ATA_FLAG_FROZEN) {
1004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1005 return AC_ERR_SYSTEM;
1008 /* initialize internal qc */
1010 /* XXX: Tag 0 is used for drivers with legacy EH as some
1011 * drivers choke if any other tag is given. This breaks
1012 * ata_tag_internal() test for those drivers. Don't use new
1013 * EH stuff without converting to it.
1015 if (ap->ops->error_handler)
1016 tag = ATA_TAG_INTERNAL;
1020 if (test_and_set_bit(tag, &ap->qc_allocated))
1022 qc = __ata_qc_from_tag(ap, tag);
1030 preempted_tag = ap->active_tag;
1031 preempted_sactive = ap->sactive;
1032 preempted_qc_active = ap->qc_active;
1033 ap->active_tag = ATA_TAG_POISON;
1037 /* prepare & issue qc */
1040 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1041 qc->flags |= ATA_QCFLAG_RESULT_TF;
1042 qc->dma_dir = dma_dir;
1043 if (dma_dir != DMA_NONE) {
1044 ata_sg_init_one(qc, buf, buflen);
1045 qc->nsect = buflen / ATA_SECT_SIZE;
1048 qc->private_data = &wait;
1049 qc->complete_fn = ata_qc_complete_internal;
1053 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1055 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1057 ata_port_flush_task(ap);
1060 spin_lock_irqsave(&ap->host_set->lock, flags);
1062 /* We're racing with irq here. If we lose, the
1063 * following test prevents us from completing the qc
1064 * twice. If we win, the port is frozen and will be
1065 * cleaned up by ->post_internal_cmd().
1067 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1068 qc->err_mask |= AC_ERR_TIMEOUT;
1070 if (ap->ops->error_handler)
1071 ata_port_freeze(ap);
1073 ata_qc_complete(qc);
1075 ata_dev_printk(dev, KERN_WARNING,
1076 "qc timeout (cmd 0x%x)\n", command);
1079 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1082 /* do post_internal_cmd */
1083 if (ap->ops->post_internal_cmd)
1084 ap->ops->post_internal_cmd(qc);
1086 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1087 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1088 "internal command, assuming AC_ERR_OTHER\n");
1089 qc->err_mask |= AC_ERR_OTHER;
1093 spin_lock_irqsave(&ap->host_set->lock, flags);
1095 *tf = qc->result_tf;
1096 err_mask = qc->err_mask;
1099 ap->active_tag = preempted_tag;
1100 ap->sactive = preempted_sactive;
1101 ap->qc_active = preempted_qc_active;
1103 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1104 * Until those drivers are fixed, we detect the condition
1105 * here, fail the command with AC_ERR_SYSTEM and reenable the
1108 * Note that this doesn't change any behavior as internal
1109 * command failure results in disabling the device in the
1110 * higher layer for LLDDs without new reset/EH callbacks.
1112 * Kill the following code as soon as those drivers are fixed.
1114 if (ap->flags & ATA_FLAG_DISABLED) {
1115 err_mask |= AC_ERR_SYSTEM;
1119 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1125 * ata_pio_need_iordy - check if iordy needed
1128 * Check if the current speed of the device requires IORDY. Used
1129 * by various controllers for chip configuration.
1132 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1135 int speed = adev->pio_mode - XFER_PIO_0;
1142 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1144 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1145 pio = adev->id[ATA_ID_EIDE_PIO];
1146 /* Is the speed faster than the drive allows non IORDY ? */
1148 /* This is cycle times not frequency - watch the logic! */
1149 if (pio > 240) /* PIO2 is 240nS per cycle */
1158 * ata_dev_read_id - Read ID data from the specified device
1159 * @dev: target device
1160 * @p_class: pointer to class of the target device (may be changed)
1161 * @post_reset: is this read ID post-reset?
1162 * @id: buffer to read IDENTIFY data into
1164 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1165 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1166 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1167 * for pre-ATA4 drives.
1170 * Kernel thread context (may sleep)
1173 * 0 on success, -errno otherwise.
1175 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1176 int post_reset, u16 *id)
1178 struct ata_port *ap = dev->ap;
1179 unsigned int class = *p_class;
1180 struct ata_taskfile tf;
1181 unsigned int err_mask = 0;
1185 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1187 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1190 ata_tf_init(dev, &tf);
1194 tf.command = ATA_CMD_ID_ATA;
1197 tf.command = ATA_CMD_ID_ATAPI;
1201 reason = "unsupported class";
1205 tf.protocol = ATA_PROT_PIO;
1207 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1208 id, sizeof(id[0]) * ATA_ID_WORDS);
1211 reason = "I/O error";
1215 swap_buf_le16(id, ATA_ID_WORDS);
1218 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1220 reason = "device reports illegal type";
1224 if (post_reset && class == ATA_DEV_ATA) {
1226 * The exact sequence expected by certain pre-ATA4 drives is:
1229 * INITIALIZE DEVICE PARAMETERS
1231 * Some drives were very specific about that exact sequence.
1233 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1234 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1237 reason = "INIT_DEV_PARAMS failed";
1241 /* current CHS translation info (id[53-58]) might be
1242 * changed. reread the identify device info.
1254 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1255 "(%s, err_mask=0x%x)\n", reason, err_mask);
1259 static inline u8 ata_dev_knobble(struct ata_device *dev)
1261 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1264 static void ata_dev_config_ncq(struct ata_device *dev,
1265 char *desc, size_t desc_sz)
1267 struct ata_port *ap = dev->ap;
1268 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1270 if (!ata_id_has_ncq(dev->id)) {
1275 if (ap->flags & ATA_FLAG_NCQ) {
1276 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1277 dev->flags |= ATA_DFLAG_NCQ;
1280 if (hdepth >= ddepth)
1281 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1283 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1287 * ata_dev_configure - Configure the specified ATA/ATAPI device
1288 * @dev: Target device to configure
1289 * @print_info: Enable device info printout
1291 * Configure @dev according to @dev->id. Generic and low-level
1292 * driver specific fixups are also applied.
1295 * Kernel thread context (may sleep)
1298 * 0 on success, -errno otherwise
1300 int ata_dev_configure(struct ata_device *dev, int print_info)
1302 struct ata_port *ap = dev->ap;
1303 const u16 *id = dev->id;
1304 unsigned int xfer_mask;
1307 if (!ata_dev_enabled(dev)) {
1308 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1309 ap->id, dev->devno);
1313 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1315 /* print device capabilities */
1317 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1318 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1319 id[49], id[82], id[83], id[84],
1320 id[85], id[86], id[87], id[88]);
1322 /* initialize to-be-configured parameters */
1323 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1324 dev->max_sectors = 0;
1332 * common ATA, ATAPI feature tests
1335 /* find max transfer mode; for printk only */
1336 xfer_mask = ata_id_xfermask(id);
1340 /* ATA-specific feature tests */
1341 if (dev->class == ATA_DEV_ATA) {
1342 dev->n_sectors = ata_id_n_sectors(id);
1344 if (ata_id_has_lba(id)) {
1345 const char *lba_desc;
1349 dev->flags |= ATA_DFLAG_LBA;
1350 if (ata_id_has_lba48(id)) {
1351 dev->flags |= ATA_DFLAG_LBA48;
1356 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1358 /* print device info to dmesg */
1360 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1361 "max %s, %Lu sectors: %s %s\n",
1362 ata_id_major_version(id),
1363 ata_mode_string(xfer_mask),
1364 (unsigned long long)dev->n_sectors,
1365 lba_desc, ncq_desc);
1369 /* Default translation */
1370 dev->cylinders = id[1];
1372 dev->sectors = id[6];
1374 if (ata_id_current_chs_valid(id)) {
1375 /* Current CHS translation is valid. */
1376 dev->cylinders = id[54];
1377 dev->heads = id[55];
1378 dev->sectors = id[56];
1381 /* print device info to dmesg */
1383 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1384 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1385 ata_id_major_version(id),
1386 ata_mode_string(xfer_mask),
1387 (unsigned long long)dev->n_sectors,
1388 dev->cylinders, dev->heads, dev->sectors);
1391 if (dev->id[59] & 0x100) {
1392 dev->multi_count = dev->id[59] & 0xff;
1393 DPRINTK("ata%u: dev %u multi count %u\n",
1394 ap->id, dev->devno, dev->multi_count);
1400 /* ATAPI-specific feature tests */
1401 else if (dev->class == ATA_DEV_ATAPI) {
1402 char *cdb_intr_string = "";
1404 rc = atapi_cdb_len(id);
1405 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1406 ata_dev_printk(dev, KERN_WARNING,
1407 "unsupported CDB len\n");
1411 dev->cdb_len = (unsigned int) rc;
1413 if (ata_id_cdb_intr(dev->id)) {
1414 dev->flags |= ATA_DFLAG_CDB_INTR;
1415 cdb_intr_string = ", CDB intr";
1418 /* print device info to dmesg */
1420 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1421 ata_mode_string(xfer_mask),
1425 ap->host->max_cmd_len = 0;
1426 for (i = 0; i < ATA_MAX_DEVICES; i++)
1427 ap->host->max_cmd_len = max_t(unsigned int,
1428 ap->host->max_cmd_len,
1429 ap->device[i].cdb_len);
1431 /* limit bridge transfers to udma5, 200 sectors */
1432 if (ata_dev_knobble(dev)) {
1434 ata_dev_printk(dev, KERN_INFO,
1435 "applying bridge limits\n");
1436 dev->udma_mask &= ATA_UDMA5;
1437 dev->max_sectors = ATA_MAX_SECTORS;
1440 if (ap->ops->dev_config)
1441 ap->ops->dev_config(ap, dev);
1443 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1447 DPRINTK("EXIT, err\n");
1452 * ata_bus_probe - Reset and probe ATA bus
1455 * Master ATA bus probing function. Initiates a hardware-dependent
1456 * bus reset, then attempts to identify any devices found on
1460 * PCI/etc. bus probe sem.
1463 * Zero on success, negative errno otherwise.
1466 static int ata_bus_probe(struct ata_port *ap)
1468 unsigned int classes[ATA_MAX_DEVICES];
1469 int tries[ATA_MAX_DEVICES];
1470 int i, rc, down_xfermask;
1471 struct ata_device *dev;
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 tries[i] = ATA_PROBE_MAX_TRIES;
1481 /* reset and determine device classes */
1482 for (i = 0; i < ATA_MAX_DEVICES; i++)
1483 classes[i] = ATA_DEV_UNKNOWN;
1485 if (ap->ops->probe_reset) {
1486 rc = ap->ops->probe_reset(ap, classes);
1488 ata_port_printk(ap, KERN_ERR,
1489 "reset failed (errno=%d)\n", rc);
1493 ap->ops->phy_reset(ap);
1495 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1496 if (!(ap->flags & ATA_FLAG_DISABLED))
1497 classes[i] = ap->device[i].class;
1498 ap->device[i].class = ATA_DEV_UNKNOWN;
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 if (classes[i] == ATA_DEV_UNKNOWN)
1506 classes[i] = ATA_DEV_NONE;
1508 /* after the reset the device state is PIO 0 and the controller
1509 state is undefined. Record the mode */
1511 for (i = 0; i < ATA_MAX_DEVICES; i++)
1512 ap->device[i].pio_mode = XFER_PIO_0;
1514 /* read IDENTIFY page and configure devices */
1515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1516 dev = &ap->device[i];
1519 dev->class = classes[i];
1521 if (!ata_dev_enabled(dev))
1524 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1528 rc = ata_dev_configure(dev, 1);
1533 /* configure transfer mode */
1534 rc = ata_set_mode(ap, &dev);
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 if (ata_dev_enabled(&ap->device[i]))
1544 /* no device present, disable port */
1545 ata_port_disable(ap);
1546 ap->ops->port_disable(ap);
1553 tries[dev->devno] = 0;
1556 sata_down_spd_limit(ap);
1559 tries[dev->devno]--;
1560 if (down_xfermask &&
1561 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1562 tries[dev->devno] = 0;
1565 if (!tries[dev->devno]) {
1566 ata_down_xfermask_limit(dev, 1);
1567 ata_dev_disable(dev);
1574 * ata_port_probe - Mark port as enabled
1575 * @ap: Port for which we indicate enablement
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is enabled.
1580 * LOCKING: host_set lock, or some other form of
1584 void ata_port_probe(struct ata_port *ap)
1586 ap->flags &= ~ATA_FLAG_DISABLED;
1590 * sata_print_link_status - Print SATA link status
1591 * @ap: SATA port to printk link status about
1593 * This function prints link speed and status of a SATA link.
1598 static void sata_print_link_status(struct ata_port *ap)
1600 u32 sstatus, scontrol, tmp;
1602 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1604 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1606 if (ata_port_online(ap)) {
1607 tmp = (sstatus >> 4) & 0xf;
1608 ata_port_printk(ap, KERN_INFO,
1609 "SATA link up %s (SStatus %X SControl %X)\n",
1610 sata_spd_string(tmp), sstatus, scontrol);
1612 ata_port_printk(ap, KERN_INFO,
1613 "SATA link down (SStatus %X SControl %X)\n",
1619 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1620 * @ap: SATA port associated with target SATA PHY.
1622 * This function issues commands to standard SATA Sxxx
1623 * PHY registers, to wake up the phy (and device), and
1624 * clear any reset condition.
1627 * PCI/etc. bus probe sem.
1630 void __sata_phy_reset(struct ata_port *ap)
1633 unsigned long timeout = jiffies + (HZ * 5);
1635 if (ap->flags & ATA_FLAG_SATA_RESET) {
1636 /* issue phy wake/reset */
1637 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1638 /* Couldn't find anything in SATA I/II specs, but
1639 * AHCI-1.1 10.4.2 says at least 1 ms. */
1642 /* phy wake/clear reset */
1643 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1645 /* wait for phy to become ready, if necessary */
1648 sata_scr_read(ap, SCR_STATUS, &sstatus);
1649 if ((sstatus & 0xf) != 1)
1651 } while (time_before(jiffies, timeout));
1653 /* print link status */
1654 sata_print_link_status(ap);
1656 /* TODO: phy layer with polling, timeouts, etc. */
1657 if (!ata_port_offline(ap))
1660 ata_port_disable(ap);
1662 if (ap->flags & ATA_FLAG_DISABLED)
1665 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1666 ata_port_disable(ap);
1670 ap->cbl = ATA_CBL_SATA;
1674 * sata_phy_reset - Reset SATA bus.
1675 * @ap: SATA port associated with target SATA PHY.
1677 * This function resets the SATA bus, and then probes
1678 * the bus for devices.
1681 * PCI/etc. bus probe sem.
1684 void sata_phy_reset(struct ata_port *ap)
1686 __sata_phy_reset(ap);
1687 if (ap->flags & ATA_FLAG_DISABLED)
1693 * ata_dev_pair - return other device on cable
1696 * Obtain the other device on the same cable, or if none is
1697 * present NULL is returned
1700 struct ata_device *ata_dev_pair(struct ata_device *adev)
1702 struct ata_port *ap = adev->ap;
1703 struct ata_device *pair = &ap->device[1 - adev->devno];
1704 if (!ata_dev_enabled(pair))
1710 * ata_port_disable - Disable port.
1711 * @ap: Port to be disabled.
1713 * Modify @ap data structure such that the system
1714 * thinks that the entire port is disabled, and should
1715 * never attempt to probe or communicate with devices
1718 * LOCKING: host_set lock, or some other form of
1722 void ata_port_disable(struct ata_port *ap)
1724 ap->device[0].class = ATA_DEV_NONE;
1725 ap->device[1].class = ATA_DEV_NONE;
1726 ap->flags |= ATA_FLAG_DISABLED;
1730 * sata_down_spd_limit - adjust SATA spd limit downward
1731 * @ap: Port to adjust SATA spd limit for
1733 * Adjust SATA spd limit of @ap downward. Note that this
1734 * function only adjusts the limit. The change must be applied
1735 * using sata_set_spd().
1738 * Inherited from caller.
1741 * 0 on success, negative errno on failure
1743 int sata_down_spd_limit(struct ata_port *ap)
1745 u32 sstatus, spd, mask;
1748 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1752 mask = ap->sata_spd_limit;
1755 highbit = fls(mask) - 1;
1756 mask &= ~(1 << highbit);
1758 spd = (sstatus >> 4) & 0xf;
1762 mask &= (1 << spd) - 1;
1766 ap->sata_spd_limit = mask;
1768 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1769 sata_spd_string(fls(mask)));
1774 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1778 if (ap->sata_spd_limit == UINT_MAX)
1781 limit = fls(ap->sata_spd_limit);
1783 spd = (*scontrol >> 4) & 0xf;
1784 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1786 return spd != limit;
1790 * sata_set_spd_needed - is SATA spd configuration needed
1791 * @ap: Port in question
1793 * Test whether the spd limit in SControl matches
1794 * @ap->sata_spd_limit. This function is used to determine
1795 * whether hardreset is necessary to apply SATA spd
1799 * Inherited from caller.
1802 * 1 if SATA spd configuration is needed, 0 otherwise.
1804 int sata_set_spd_needed(struct ata_port *ap)
1808 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1811 return __sata_set_spd_needed(ap, &scontrol);
1815 * sata_set_spd - set SATA spd according to spd limit
1816 * @ap: Port to set SATA spd for
1818 * Set SATA spd of @ap according to sata_spd_limit.
1821 * Inherited from caller.
1824 * 0 if spd doesn't need to be changed, 1 if spd has been
1825 * changed. Negative errno if SCR registers are inaccessible.
1827 int sata_set_spd(struct ata_port *ap)
1832 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1835 if (!__sata_set_spd_needed(ap, &scontrol))
1838 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1845 * This mode timing computation functionality is ported over from
1846 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1849 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1850 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1851 * for PIO 5, which is a nonstandard extension and UDMA6, which
1852 * is currently supported only by Maxtor drives.
1855 static const struct ata_timing ata_timing[] = {
1857 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1858 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1859 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1860 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1862 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1863 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1866 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1868 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1869 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1870 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1872 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1873 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1874 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1876 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1877 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1878 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1881 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1882 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1884 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1889 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1890 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1892 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1894 q->setup = EZ(t->setup * 1000, T);
1895 q->act8b = EZ(t->act8b * 1000, T);
1896 q->rec8b = EZ(t->rec8b * 1000, T);
1897 q->cyc8b = EZ(t->cyc8b * 1000, T);
1898 q->active = EZ(t->active * 1000, T);
1899 q->recover = EZ(t->recover * 1000, T);
1900 q->cycle = EZ(t->cycle * 1000, T);
1901 q->udma = EZ(t->udma * 1000, UT);
1904 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1905 struct ata_timing *m, unsigned int what)
1907 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1908 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1909 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1910 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1911 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1912 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1913 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1914 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1917 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1919 const struct ata_timing *t;
1921 for (t = ata_timing; t->mode != speed; t++)
1922 if (t->mode == 0xFF)
1927 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1928 struct ata_timing *t, int T, int UT)
1930 const struct ata_timing *s;
1931 struct ata_timing p;
1937 if (!(s = ata_timing_find_mode(speed)))
1940 memcpy(t, s, sizeof(*s));
1943 * If the drive is an EIDE drive, it can tell us it needs extended
1944 * PIO/MW_DMA cycle timing.
1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1948 memset(&p, 0, sizeof(p));
1949 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1950 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1951 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1952 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1953 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1955 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1959 * Convert the timing to bus clock counts.
1962 ata_timing_quantize(t, t, T, UT);
1965 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1966 * S.M.A.R.T * and some other commands. We have to ensure that the
1967 * DMA cycle timing is slower/equal than the fastest PIO timing.
1970 if (speed > XFER_PIO_4) {
1971 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1972 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1976 * Lengthen active & recovery time so that cycle time is correct.
1979 if (t->act8b + t->rec8b < t->cyc8b) {
1980 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1981 t->rec8b = t->cyc8b - t->act8b;
1984 if (t->active + t->recover < t->cycle) {
1985 t->active += (t->cycle - (t->active + t->recover)) / 2;
1986 t->recover = t->cycle - t->active;
1993 * ata_down_xfermask_limit - adjust dev xfer masks downward
1994 * @dev: Device to adjust xfer masks
1995 * @force_pio0: Force PIO0
1997 * Adjust xfer masks of @dev downward. Note that this function
1998 * does not apply the change. Invoking ata_set_mode() afterwards
1999 * will apply the limit.
2002 * Inherited from caller.
2005 * 0 on success, negative errno on failure
2007 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2009 unsigned long xfer_mask;
2012 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2017 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2018 if (xfer_mask & ATA_MASK_UDMA)
2019 xfer_mask &= ~ATA_MASK_MWDMA;
2021 highbit = fls(xfer_mask) - 1;
2022 xfer_mask &= ~(1 << highbit);
2024 xfer_mask &= 1 << ATA_SHIFT_PIO;
2028 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2031 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2032 ata_mode_string(xfer_mask));
2040 static int ata_dev_set_mode(struct ata_device *dev)
2042 unsigned int err_mask;
2045 dev->flags &= ~ATA_DFLAG_PIO;
2046 if (dev->xfer_shift == ATA_SHIFT_PIO)
2047 dev->flags |= ATA_DFLAG_PIO;
2049 err_mask = ata_dev_set_xfermode(dev);
2051 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2052 "(err_mask=0x%x)\n", err_mask);
2056 rc = ata_dev_revalidate(dev, 0);
2060 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2061 dev->xfer_shift, (int)dev->xfer_mode);
2063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2064 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2069 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2070 * @ap: port on which timings will be programmed
2071 * @r_failed_dev: out paramter for failed device
2073 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2074 * ata_set_mode() fails, pointer to the failing device is
2075 * returned in @r_failed_dev.
2078 * PCI/etc. bus probe sem.
2081 * 0 on success, negative errno otherwise
2083 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2085 struct ata_device *dev;
2086 int i, rc = 0, used_dma = 0, found = 0;
2088 /* has private set_mode? */
2089 if (ap->ops->set_mode) {
2090 /* FIXME: make ->set_mode handle no device case and
2091 * return error code and failing device on failure.
2093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2094 if (ata_dev_enabled(&ap->device[i])) {
2095 ap->ops->set_mode(ap);
2102 /* step 1: calculate xfer_mask */
2103 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2104 unsigned int pio_mask, dma_mask;
2106 dev = &ap->device[i];
2108 if (!ata_dev_enabled(dev))
2111 ata_dev_xfermask(dev);
2113 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2114 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2115 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2116 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2125 /* step 2: always set host PIO timings */
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
2128 if (!ata_dev_enabled(dev))
2131 if (!dev->pio_mode) {
2132 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2137 dev->xfer_mode = dev->pio_mode;
2138 dev->xfer_shift = ATA_SHIFT_PIO;
2139 if (ap->ops->set_piomode)
2140 ap->ops->set_piomode(ap, dev);
2143 /* step 3: set host DMA timings */
2144 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2145 dev = &ap->device[i];
2147 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2150 dev->xfer_mode = dev->dma_mode;
2151 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2152 if (ap->ops->set_dmamode)
2153 ap->ops->set_dmamode(ap, dev);
2156 /* step 4: update devices' xfer mode */
2157 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2158 dev = &ap->device[i];
2160 if (!ata_dev_enabled(dev))
2163 rc = ata_dev_set_mode(dev);
2168 /* Record simplex status. If we selected DMA then the other
2169 * host channels are not permitted to do so.
2171 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2172 ap->host_set->simplex_claimed = 1;
2174 /* step5: chip specific finalisation */
2175 if (ap->ops->post_set_mode)
2176 ap->ops->post_set_mode(ap);
2180 *r_failed_dev = dev;
2185 * ata_tf_to_host - issue ATA taskfile to host controller
2186 * @ap: port to which command is being issued
2187 * @tf: ATA taskfile register set
2189 * Issues ATA taskfile register set to ATA host controller,
2190 * with proper synchronization with interrupt handler and
2194 * spin_lock_irqsave(host_set lock)
2197 static inline void ata_tf_to_host(struct ata_port *ap,
2198 const struct ata_taskfile *tf)
2200 ap->ops->tf_load(ap, tf);
2201 ap->ops->exec_command(ap, tf);
2205 * ata_busy_sleep - sleep until BSY clears, or timeout
2206 * @ap: port containing status register to be polled
2207 * @tmout_pat: impatience timeout
2208 * @tmout: overall timeout
2210 * Sleep until ATA Status register bit BSY clears,
2211 * or a timeout occurs.
2216 unsigned int ata_busy_sleep (struct ata_port *ap,
2217 unsigned long tmout_pat, unsigned long tmout)
2219 unsigned long timer_start, timeout;
2222 status = ata_busy_wait(ap, ATA_BUSY, 300);
2223 timer_start = jiffies;
2224 timeout = timer_start + tmout_pat;
2225 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2227 status = ata_busy_wait(ap, ATA_BUSY, 3);
2230 if (status & ATA_BUSY)
2231 ata_port_printk(ap, KERN_WARNING,
2232 "port is slow to respond, please be patient\n");
2234 timeout = timer_start + tmout;
2235 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2237 status = ata_chk_status(ap);
2240 if (status & ATA_BUSY) {
2241 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2242 "(%lu secs)\n", tmout / HZ);
2249 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2251 struct ata_ioports *ioaddr = &ap->ioaddr;
2252 unsigned int dev0 = devmask & (1 << 0);
2253 unsigned int dev1 = devmask & (1 << 1);
2254 unsigned long timeout;
2256 /* if device 0 was found in ata_devchk, wait for its
2260 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2262 /* if device 1 was found in ata_devchk, wait for
2263 * register access, then wait for BSY to clear
2265 timeout = jiffies + ATA_TMOUT_BOOT;
2269 ap->ops->dev_select(ap, 1);
2270 if (ap->flags & ATA_FLAG_MMIO) {
2271 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2272 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2274 nsect = inb(ioaddr->nsect_addr);
2275 lbal = inb(ioaddr->lbal_addr);
2277 if ((nsect == 1) && (lbal == 1))
2279 if (time_after(jiffies, timeout)) {
2283 msleep(50); /* give drive a breather */
2286 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2288 /* is all this really necessary? */
2289 ap->ops->dev_select(ap, 0);
2291 ap->ops->dev_select(ap, 1);
2293 ap->ops->dev_select(ap, 0);
2296 static unsigned int ata_bus_softreset(struct ata_port *ap,
2297 unsigned int devmask)
2299 struct ata_ioports *ioaddr = &ap->ioaddr;
2301 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2303 /* software reset. causes dev0 to be selected */
2304 if (ap->flags & ATA_FLAG_MMIO) {
2305 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2306 udelay(20); /* FIXME: flush */
2307 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2308 udelay(20); /* FIXME: flush */
2309 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2311 outb(ap->ctl, ioaddr->ctl_addr);
2313 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2315 outb(ap->ctl, ioaddr->ctl_addr);
2318 /* spec mandates ">= 2ms" before checking status.
2319 * We wait 150ms, because that was the magic delay used for
2320 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2321 * between when the ATA command register is written, and then
2322 * status is checked. Because waiting for "a while" before
2323 * checking status is fine, post SRST, we perform this magic
2324 * delay here as well.
2326 * Old drivers/ide uses the 2mS rule and then waits for ready
2330 /* Before we perform post reset processing we want to see if
2331 * the bus shows 0xFF because the odd clown forgets the D7
2332 * pulldown resistor.
2334 if (ata_check_status(ap) == 0xFF) {
2335 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2336 return AC_ERR_OTHER;
2339 ata_bus_post_reset(ap, devmask);
2345 * ata_bus_reset - reset host port and associated ATA channel
2346 * @ap: port to reset
2348 * This is typically the first time we actually start issuing
2349 * commands to the ATA channel. We wait for BSY to clear, then
2350 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2351 * result. Determine what devices, if any, are on the channel
2352 * by looking at the device 0/1 error register. Look at the signature
2353 * stored in each device's taskfile registers, to determine if
2354 * the device is ATA or ATAPI.
2357 * PCI/etc. bus probe sem.
2358 * Obtains host_set lock.
2361 * Sets ATA_FLAG_DISABLED if bus reset fails.
2364 void ata_bus_reset(struct ata_port *ap)
2366 struct ata_ioports *ioaddr = &ap->ioaddr;
2367 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2369 unsigned int dev0, dev1 = 0, devmask = 0;
2371 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2373 /* determine if device 0/1 are present */
2374 if (ap->flags & ATA_FLAG_SATA_RESET)
2377 dev0 = ata_devchk(ap, 0);
2379 dev1 = ata_devchk(ap, 1);
2383 devmask |= (1 << 0);
2385 devmask |= (1 << 1);
2387 /* select device 0 again */
2388 ap->ops->dev_select(ap, 0);
2390 /* issue bus reset */
2391 if (ap->flags & ATA_FLAG_SRST)
2392 if (ata_bus_softreset(ap, devmask))
2396 * determine by signature whether we have ATA or ATAPI devices
2398 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2399 if ((slave_possible) && (err != 0x81))
2400 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2402 /* re-enable interrupts */
2403 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2406 /* is double-select really necessary? */
2407 if (ap->device[1].class != ATA_DEV_NONE)
2408 ap->ops->dev_select(ap, 1);
2409 if (ap->device[0].class != ATA_DEV_NONE)
2410 ap->ops->dev_select(ap, 0);
2412 /* if no devices were detected, disable this port */
2413 if ((ap->device[0].class == ATA_DEV_NONE) &&
2414 (ap->device[1].class == ATA_DEV_NONE))
2417 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2418 /* set up device control for ATA_FLAG_SATA_RESET */
2419 if (ap->flags & ATA_FLAG_MMIO)
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2422 outb(ap->ctl, ioaddr->ctl_addr);
2429 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2430 ap->ops->port_disable(ap);
2436 * sata_phy_debounce - debounce SATA phy status
2437 * @ap: ATA port to debounce SATA phy status for
2438 * @params: timing parameters { interval, duratinon, timeout } in msec
2440 * Make sure SStatus of @ap reaches stable state, determined by
2441 * holding the same value where DET is not 1 for @duration polled
2442 * every @interval, before @timeout. Timeout constraints the
2443 * beginning of the stable state. Because, after hot unplugging,
2444 * DET gets stuck at 1 on some controllers, this functions waits
2445 * until timeout then returns 0 if DET is stable at 1.
2448 * Kernel thread context (may sleep)
2451 * 0 on success, -errno on failure.
2453 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2455 unsigned long interval_msec = params[0];
2456 unsigned long duration = params[1] * HZ / 1000;
2457 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2458 unsigned long last_jiffies;
2462 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2467 last_jiffies = jiffies;
2470 msleep(interval_msec);
2471 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2477 if (cur == 1 && time_before(jiffies, timeout))
2479 if (time_after(jiffies, last_jiffies + duration))
2484 /* unstable, start over */
2486 last_jiffies = jiffies;
2489 if (time_after(jiffies, timeout))
2495 * sata_phy_resume - resume SATA phy
2496 * @ap: ATA port to resume SATA phy for
2497 * @params: timing parameters { interval, duratinon, timeout } in msec
2499 * Resume SATA phy of @ap and debounce it.
2502 * Kernel thread context (may sleep)
2505 * 0 on success, -errno on failure.
2507 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2512 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2515 scontrol = (scontrol & 0x0f0) | 0x300;
2517 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2520 /* Some PHYs react badly if SStatus is pounded immediately
2521 * after resuming. Delay 200ms before debouncing.
2525 return sata_phy_debounce(ap, params);
2529 * ata_std_probeinit - initialize probing
2530 * @ap: port to be probed
2532 * @ap is about to be probed. Initialize it. This function is
2533 * to be used as standard callback for ata_drive_probe_reset().
2535 * NOTE!!! Do not use this function as probeinit if a low level
2536 * driver implements only hardreset. Just pass NULL as probeinit
2537 * in that case. Using this function is probably okay but doing
2538 * so makes reset sequence different from the original
2539 * ->phy_reset implementation and Jeff nervous. :-P
2541 void ata_std_probeinit(struct ata_port *ap)
2543 static const unsigned long deb_timing[] = { 5, 100, 5000 };
2546 sata_phy_resume(ap, deb_timing);
2548 /* wait for device */
2549 if (ata_port_online(ap))
2550 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2554 * ata_std_softreset - reset host port via ATA SRST
2555 * @ap: port to reset
2556 * @classes: resulting classes of attached devices
2558 * Reset host port using ATA SRST. This function is to be used
2559 * as standard callback for ata_drive_*_reset() functions.
2562 * Kernel thread context (may sleep)
2565 * 0 on success, -errno otherwise.
2567 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2569 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2570 unsigned int devmask = 0, err_mask;
2575 if (ata_port_offline(ap)) {
2576 classes[0] = ATA_DEV_NONE;
2580 /* determine if device 0/1 are present */
2581 if (ata_devchk(ap, 0))
2582 devmask |= (1 << 0);
2583 if (slave_possible && ata_devchk(ap, 1))
2584 devmask |= (1 << 1);
2586 /* select device 0 again */
2587 ap->ops->dev_select(ap, 0);
2589 /* issue bus reset */
2590 DPRINTK("about to softreset, devmask=%x\n", devmask);
2591 err_mask = ata_bus_softreset(ap, devmask);
2593 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2598 /* determine by signature whether we have ATA or ATAPI devices */
2599 classes[0] = ata_dev_try_classify(ap, 0, &err);
2600 if (slave_possible && err != 0x81)
2601 classes[1] = ata_dev_try_classify(ap, 1, &err);
2604 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2609 * sata_std_hardreset - reset host port via SATA phy reset
2610 * @ap: port to reset
2611 * @class: resulting class of attached device
2613 * SATA phy-reset host port using DET bits of SControl register.
2614 * This function is to be used as standard callback for
2615 * ata_drive_*_reset().
2618 * Kernel thread context (may sleep)
2621 * 0 on success, -errno otherwise.
2623 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2630 if (sata_set_spd_needed(ap)) {
2631 /* SATA spec says nothing about how to reconfigure
2632 * spd. To be on the safe side, turn off phy during
2633 * reconfiguration. This works for at least ICH7 AHCI
2636 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2639 scontrol = (scontrol & 0x0f0) | 0x302;
2641 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2647 /* issue phy wake/reset */
2648 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2651 scontrol = (scontrol & 0x0f0) | 0x301;
2653 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2656 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2657 * 10.4.2 says at least 1 ms.
2661 /* bring phy back */
2662 sata_phy_resume(ap, sata_deb_timing_eh);
2664 /* TODO: phy layer with polling, timeouts, etc. */
2665 if (ata_port_offline(ap)) {
2666 *class = ATA_DEV_NONE;
2667 DPRINTK("EXIT, link offline\n");
2671 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2672 ata_port_printk(ap, KERN_ERR,
2673 "COMRESET failed (device not ready)\n");
2677 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2679 *class = ata_dev_try_classify(ap, 0, NULL);
2681 DPRINTK("EXIT, class=%u\n", *class);
2686 * ata_std_postreset - standard postreset callback
2687 * @ap: the target ata_port
2688 * @classes: classes of attached devices
2690 * This function is invoked after a successful reset. Note that
2691 * the device might have been reset more than once using
2692 * different reset methods before postreset is invoked.
2694 * This function is to be used as standard callback for
2695 * ata_drive_*_reset().
2698 * Kernel thread context (may sleep)
2700 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2706 /* print link status */
2707 sata_print_link_status(ap);
2710 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2711 sata_scr_write(ap, SCR_ERROR, serror);
2713 /* re-enable interrupts */
2714 if (!ap->ops->error_handler) {
2715 /* FIXME: hack. create a hook instead */
2716 if (ap->ioaddr.ctl_addr)
2720 /* is double-select really necessary? */
2721 if (classes[0] != ATA_DEV_NONE)
2722 ap->ops->dev_select(ap, 1);
2723 if (classes[1] != ATA_DEV_NONE)
2724 ap->ops->dev_select(ap, 0);
2726 /* bail out if no device is present */
2727 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2728 DPRINTK("EXIT, no device\n");
2732 /* set up device control */
2733 if (ap->ioaddr.ctl_addr) {
2734 if (ap->flags & ATA_FLAG_MMIO)
2735 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2737 outb(ap->ctl, ap->ioaddr.ctl_addr);
2744 * ata_std_probe_reset - standard probe reset method
2745 * @ap: prot to perform probe-reset
2746 * @classes: resulting classes of attached devices
2748 * The stock off-the-shelf ->probe_reset method.
2751 * Kernel thread context (may sleep)
2754 * 0 on success, -errno otherwise.
2756 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2758 ata_reset_fn_t hardreset;
2761 if (sata_scr_valid(ap))
2762 hardreset = sata_std_hardreset;
2764 return ata_drive_probe_reset(ap, ata_std_probeinit,
2765 ata_std_softreset, hardreset,
2766 ata_std_postreset, classes);
2769 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2770 unsigned int *classes)
2774 for (i = 0; i < ATA_MAX_DEVICES; i++)
2775 classes[i] = ATA_DEV_UNKNOWN;
2777 rc = reset(ap, classes);
2781 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2782 * is complete and convert all ATA_DEV_UNKNOWN to
2785 for (i = 0; i < ATA_MAX_DEVICES; i++)
2786 if (classes[i] != ATA_DEV_UNKNOWN)
2789 if (i < ATA_MAX_DEVICES)
2790 for (i = 0; i < ATA_MAX_DEVICES; i++)
2791 if (classes[i] == ATA_DEV_UNKNOWN)
2792 classes[i] = ATA_DEV_NONE;
2798 * ata_drive_probe_reset - Perform probe reset with given methods
2799 * @ap: port to reset
2800 * @probeinit: probeinit method (can be NULL)
2801 * @softreset: softreset method (can be NULL)
2802 * @hardreset: hardreset method (can be NULL)
2803 * @postreset: postreset method (can be NULL)
2804 * @classes: resulting classes of attached devices
2806 * Reset the specified port and classify attached devices using
2807 * given methods. This function prefers softreset but tries all
2808 * possible reset sequences to reset and classify devices. This
2809 * function is intended to be used for constructing ->probe_reset
2810 * callback by low level drivers.
2812 * Reset methods should follow the following rules.
2814 * - Return 0 on sucess, -errno on failure.
2815 * - If classification is supported, fill classes[] with
2816 * recognized class codes.
2817 * - If classification is not supported, leave classes[] alone.
2820 * Kernel thread context (may sleep)
2823 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2824 * if classification fails, and any error code from reset
2827 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2828 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2829 ata_postreset_fn_t postreset, unsigned int *classes)
2833 ata_eh_freeze_port(ap);
2838 if (softreset && !sata_set_spd_needed(ap)) {
2839 rc = ata_do_reset(ap, softreset, classes);
2840 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2842 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2843 "will try hardreset in 5 secs\n");
2851 rc = ata_do_reset(ap, hardreset, classes);
2853 if (classes[0] != ATA_DEV_UNKNOWN)
2858 if (sata_down_spd_limit(ap))
2861 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2862 "will retry in 5 secs\n");
2867 ata_port_printk(ap, KERN_INFO,
2868 "hardreset succeeded without classification, "
2869 "will retry softreset in 5 secs\n");
2872 rc = ata_do_reset(ap, softreset, classes);
2878 postreset(ap, classes);
2880 ata_eh_thaw_port(ap);
2882 if (classes[0] == ATA_DEV_UNKNOWN)
2889 * ata_dev_same_device - Determine whether new ID matches configured device
2890 * @dev: device to compare against
2891 * @new_class: class of the new device
2892 * @new_id: IDENTIFY page of the new device
2894 * Compare @new_class and @new_id against @dev and determine
2895 * whether @dev is the device indicated by @new_class and
2902 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2904 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2907 const u16 *old_id = dev->id;
2908 unsigned char model[2][41], serial[2][21];
2911 if (dev->class != new_class) {
2912 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2913 dev->class, new_class);
2917 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2918 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2919 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2920 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2921 new_n_sectors = ata_id_n_sectors(new_id);
2923 if (strcmp(model[0], model[1])) {
2924 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2925 "'%s' != '%s'\n", model[0], model[1]);
2929 if (strcmp(serial[0], serial[1])) {
2930 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2931 "'%s' != '%s'\n", serial[0], serial[1]);
2935 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2936 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2938 (unsigned long long)dev->n_sectors,
2939 (unsigned long long)new_n_sectors);
2947 * ata_dev_revalidate - Revalidate ATA device
2948 * @dev: device to revalidate
2949 * @post_reset: is this revalidation after reset?
2951 * Re-read IDENTIFY page and make sure @dev is still attached to
2955 * Kernel thread context (may sleep)
2958 * 0 on success, negative errno otherwise
2960 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2962 unsigned int class = dev->class;
2963 u16 *id = (void *)dev->ap->sector_buf;
2966 if (!ata_dev_enabled(dev)) {
2972 rc = ata_dev_read_id(dev, &class, post_reset, id);
2976 /* is the device still there? */
2977 if (!ata_dev_same_device(dev, class, id)) {
2982 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2984 /* configure device according to the new ID */
2985 rc = ata_dev_configure(dev, 0);
2990 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2994 static const char * const ata_dma_blacklist [] = {
2995 "WDC AC11000H", NULL,
2996 "WDC AC22100H", NULL,
2997 "WDC AC32500H", NULL,
2998 "WDC AC33100H", NULL,
2999 "WDC AC31600H", NULL,
3000 "WDC AC32100H", "24.09P07",
3001 "WDC AC23200L", "21.10N21",
3002 "Compaq CRD-8241B", NULL,
3007 "SanDisk SDP3B", NULL,
3008 "SanDisk SDP3B-64", NULL,
3009 "SANYO CD-ROM CRD", NULL,
3010 "HITACHI CDR-8", NULL,
3011 "HITACHI CDR-8335", NULL,
3012 "HITACHI CDR-8435", NULL,
3013 "Toshiba CD-ROM XM-6202B", NULL,
3014 "TOSHIBA CD-ROM XM-1702BC", NULL,
3016 "E-IDE CD-ROM CR-840", NULL,
3017 "CD-ROM Drive/F5A", NULL,
3018 "WPI CDD-820", NULL,
3019 "SAMSUNG CD-ROM SC-148C", NULL,
3020 "SAMSUNG CD-ROM SC", NULL,
3021 "SanDisk SDP3B-64", NULL,
3022 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3023 "_NEC DV5800A", NULL,
3024 "SAMSUNG CD-ROM SN-124", "N001"
3027 static int ata_strim(char *s, size_t len)
3029 len = strnlen(s, len);
3031 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3032 while ((len > 0) && (s[len - 1] == ' ')) {
3039 static int ata_dma_blacklisted(const struct ata_device *dev)
3041 unsigned char model_num[40];
3042 unsigned char model_rev[16];
3043 unsigned int nlen, rlen;
3046 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3048 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3050 nlen = ata_strim(model_num, sizeof(model_num));
3051 rlen = ata_strim(model_rev, sizeof(model_rev));
3053 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3054 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3055 if (ata_dma_blacklist[i+1] == NULL)
3057 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3065 * ata_dev_xfermask - Compute supported xfermask of the given device
3066 * @dev: Device to compute xfermask for
3068 * Compute supported xfermask of @dev and store it in
3069 * dev->*_mask. This function is responsible for applying all
3070 * known limits including host controller limits, device
3073 * FIXME: The current implementation limits all transfer modes to
3074 * the fastest of the lowested device on the port. This is not
3075 * required on most controllers.
3080 static void ata_dev_xfermask(struct ata_device *dev)
3082 struct ata_port *ap = dev->ap;
3083 struct ata_host_set *hs = ap->host_set;
3084 unsigned long xfer_mask;
3087 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3088 ap->mwdma_mask, ap->udma_mask);
3090 /* Apply cable rule here. Don't apply it early because when
3091 * we handle hot plug the cable type can itself change.
3093 if (ap->cbl == ATA_CBL_PATA40)
3094 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3096 /* FIXME: Use port-wide xfermask for now */
3097 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3098 struct ata_device *d = &ap->device[i];
3100 if (ata_dev_absent(d))
3103 if (ata_dev_disabled(d)) {
3104 /* to avoid violating device selection timing */
3105 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3106 UINT_MAX, UINT_MAX);
3110 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3111 d->mwdma_mask, d->udma_mask);
3112 xfer_mask &= ata_id_xfermask(d->id);
3113 if (ata_dma_blacklisted(d))
3114 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3117 if (ata_dma_blacklisted(dev))
3118 ata_dev_printk(dev, KERN_WARNING,
3119 "device is on DMA blacklist, disabling DMA\n");
3121 if (hs->flags & ATA_HOST_SIMPLEX) {
3122 if (hs->simplex_claimed)
3123 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3126 if (ap->ops->mode_filter)
3127 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3129 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3130 &dev->mwdma_mask, &dev->udma_mask);
3134 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3135 * @dev: Device to which command will be sent
3137 * Issue SET FEATURES - XFER MODE command to device @dev
3141 * PCI/etc. bus probe sem.
3144 * 0 on success, AC_ERR_* mask otherwise.
3147 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3149 struct ata_taskfile tf;
3150 unsigned int err_mask;
3152 /* set up set-features taskfile */
3153 DPRINTK("set features - xfer mode\n");
3155 ata_tf_init(dev, &tf);
3156 tf.command = ATA_CMD_SET_FEATURES;
3157 tf.feature = SETFEATURES_XFER;
3158 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3159 tf.protocol = ATA_PROT_NODATA;
3160 tf.nsect = dev->xfer_mode;
3162 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3164 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3169 * ata_dev_init_params - Issue INIT DEV PARAMS command
3170 * @dev: Device to which command will be sent
3171 * @heads: Number of heads (taskfile parameter)
3172 * @sectors: Number of sectors (taskfile parameter)
3175 * Kernel thread context (may sleep)
3178 * 0 on success, AC_ERR_* mask otherwise.
3180 static unsigned int ata_dev_init_params(struct ata_device *dev,
3181 u16 heads, u16 sectors)
3183 struct ata_taskfile tf;
3184 unsigned int err_mask;
3186 /* Number of sectors per track 1-255. Number of heads 1-16 */
3187 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3188 return AC_ERR_INVALID;
3190 /* set up init dev params taskfile */
3191 DPRINTK("init dev params \n");
3193 ata_tf_init(dev, &tf);
3194 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3195 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3196 tf.protocol = ATA_PROT_NODATA;
3198 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3202 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3207 * ata_sg_clean - Unmap DMA memory associated with command
3208 * @qc: Command containing DMA memory to be released
3210 * Unmap all mapped DMA memory associated with this command.
3213 * spin_lock_irqsave(host_set lock)
3216 static void ata_sg_clean(struct ata_queued_cmd *qc)
3218 struct ata_port *ap = qc->ap;
3219 struct scatterlist *sg = qc->__sg;
3220 int dir = qc->dma_dir;
3221 void *pad_buf = NULL;
3223 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3224 WARN_ON(sg == NULL);
3226 if (qc->flags & ATA_QCFLAG_SINGLE)
3227 WARN_ON(qc->n_elem > 1);
3229 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3231 /* if we padded the buffer out to 32-bit bound, and data
3232 * xfer direction is from-device, we must copy from the
3233 * pad buffer back into the supplied buffer
3235 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3236 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3238 if (qc->flags & ATA_QCFLAG_SG) {
3240 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3241 /* restore last sg */
3242 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3244 struct scatterlist *psg = &qc->pad_sgent;
3245 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3246 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3247 kunmap_atomic(addr, KM_IRQ0);
3251 dma_unmap_single(ap->dev,
3252 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3255 sg->length += qc->pad_len;
3257 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3258 pad_buf, qc->pad_len);
3261 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3266 * ata_fill_sg - Fill PCI IDE PRD table
3267 * @qc: Metadata associated with taskfile to be transferred
3269 * Fill PCI IDE PRD (scatter-gather) table with segments
3270 * associated with the current disk command.
3273 * spin_lock_irqsave(host_set lock)
3276 static void ata_fill_sg(struct ata_queued_cmd *qc)
3278 struct ata_port *ap = qc->ap;
3279 struct scatterlist *sg;
3282 WARN_ON(qc->__sg == NULL);
3283 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3286 ata_for_each_sg(sg, qc) {
3290 /* determine if physical DMA addr spans 64K boundary.
3291 * Note h/w doesn't support 64-bit, so we unconditionally
3292 * truncate dma_addr_t to u32.
3294 addr = (u32) sg_dma_address(sg);
3295 sg_len = sg_dma_len(sg);
3298 offset = addr & 0xffff;
3300 if ((offset + sg_len) > 0x10000)
3301 len = 0x10000 - offset;
3303 ap->prd[idx].addr = cpu_to_le32(addr);
3304 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3305 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3314 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3317 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3318 * @qc: Metadata associated with taskfile to check
3320 * Allow low-level driver to filter ATA PACKET commands, returning
3321 * a status indicating whether or not it is OK to use DMA for the
3322 * supplied PACKET command.
3325 * spin_lock_irqsave(host_set lock)
3327 * RETURNS: 0 when ATAPI DMA can be used
3330 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3332 struct ata_port *ap = qc->ap;
3333 int rc = 0; /* Assume ATAPI DMA is OK by default */
3335 if (ap->ops->check_atapi_dma)
3336 rc = ap->ops->check_atapi_dma(qc);
3338 /* We don't support polling DMA.
3339 * Use PIO if the LLDD handles only interrupts in
3340 * the HSM_ST_LAST state and the ATAPI device
3341 * generates CDB interrupts.
3343 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3344 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3350 * ata_qc_prep - Prepare taskfile for submission
3351 * @qc: Metadata associated with taskfile to be prepared
3353 * Prepare ATA taskfile for submission.
3356 * spin_lock_irqsave(host_set lock)
3358 void ata_qc_prep(struct ata_queued_cmd *qc)
3360 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3366 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3369 * ata_sg_init_one - Associate command with memory buffer
3370 * @qc: Command to be associated
3371 * @buf: Memory buffer
3372 * @buflen: Length of memory buffer, in bytes.
3374 * Initialize the data-related elements of queued_cmd @qc
3375 * to point to a single memory buffer, @buf of byte length @buflen.
3378 * spin_lock_irqsave(host_set lock)
3381 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3383 struct scatterlist *sg;
3385 qc->flags |= ATA_QCFLAG_SINGLE;
3387 memset(&qc->sgent, 0, sizeof(qc->sgent));
3388 qc->__sg = &qc->sgent;
3390 qc->orig_n_elem = 1;
3394 sg_init_one(sg, buf, buflen);
3398 * ata_sg_init - Associate command with scatter-gather table.
3399 * @qc: Command to be associated
3400 * @sg: Scatter-gather table.
3401 * @n_elem: Number of elements in s/g table.
3403 * Initialize the data-related elements of queued_cmd @qc
3404 * to point to a scatter-gather table @sg, containing @n_elem
3408 * spin_lock_irqsave(host_set lock)
3411 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3412 unsigned int n_elem)
3414 qc->flags |= ATA_QCFLAG_SG;
3416 qc->n_elem = n_elem;
3417 qc->orig_n_elem = n_elem;
3421 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3422 * @qc: Command with memory buffer to be mapped.
3424 * DMA-map the memory buffer associated with queued_cmd @qc.
3427 * spin_lock_irqsave(host_set lock)
3430 * Zero on success, negative on error.
3433 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3435 struct ata_port *ap = qc->ap;
3436 int dir = qc->dma_dir;
3437 struct scatterlist *sg = qc->__sg;
3438 dma_addr_t dma_address;
3441 /* we must lengthen transfers to end on a 32-bit boundary */
3442 qc->pad_len = sg->length & 3;
3444 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3445 struct scatterlist *psg = &qc->pad_sgent;
3447 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3449 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3451 if (qc->tf.flags & ATA_TFLAG_WRITE)
3452 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3455 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3456 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3458 sg->length -= qc->pad_len;
3459 if (sg->length == 0)
3462 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3463 sg->length, qc->pad_len);
3471 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3473 if (dma_mapping_error(dma_address)) {
3475 sg->length += qc->pad_len;
3479 sg_dma_address(sg) = dma_address;
3480 sg_dma_len(sg) = sg->length;
3483 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3484 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3490 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3491 * @qc: Command with scatter-gather table to be mapped.
3493 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3496 * spin_lock_irqsave(host_set lock)
3499 * Zero on success, negative on error.
3503 static int ata_sg_setup(struct ata_queued_cmd *qc)
3505 struct ata_port *ap = qc->ap;
3506 struct scatterlist *sg = qc->__sg;
3507 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3508 int n_elem, pre_n_elem, dir, trim_sg = 0;
3510 VPRINTK("ENTER, ata%u\n", ap->id);
3511 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3513 /* we must lengthen transfers to end on a 32-bit boundary */
3514 qc->pad_len = lsg->length & 3;
3516 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3517 struct scatterlist *psg = &qc->pad_sgent;
3518 unsigned int offset;
3520 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3522 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3525 * psg->page/offset are used to copy to-be-written
3526 * data in this function or read data in ata_sg_clean.
3528 offset = lsg->offset + lsg->length - qc->pad_len;
3529 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3530 psg->offset = offset_in_page(offset);
3532 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3533 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3534 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3535 kunmap_atomic(addr, KM_IRQ0);
3538 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3539 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3541 lsg->length -= qc->pad_len;
3542 if (lsg->length == 0)
3545 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3546 qc->n_elem - 1, lsg->length, qc->pad_len);
3549 pre_n_elem = qc->n_elem;
3550 if (trim_sg && pre_n_elem)
3559 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3561 /* restore last sg */
3562 lsg->length += qc->pad_len;
3566 DPRINTK("%d sg elements mapped\n", n_elem);
3569 qc->n_elem = n_elem;
3575 * swap_buf_le16 - swap halves of 16-bit words in place
3576 * @buf: Buffer to swap
3577 * @buf_words: Number of 16-bit words in buffer.
3579 * Swap halves of 16-bit words if needed to convert from
3580 * little-endian byte order to native cpu byte order, or
3584 * Inherited from caller.
3586 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3591 for (i = 0; i < buf_words; i++)
3592 buf[i] = le16_to_cpu(buf[i]);
3593 #endif /* __BIG_ENDIAN */
3597 * ata_mmio_data_xfer - Transfer data by MMIO
3598 * @dev: device for this I/O
3600 * @buflen: buffer length
3601 * @write_data: read/write
3603 * Transfer data from/to the device data register by MMIO.
3606 * Inherited from caller.
3609 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3610 unsigned int buflen, int write_data)
3612 struct ata_port *ap = adev->ap;
3614 unsigned int words = buflen >> 1;
3615 u16 *buf16 = (u16 *) buf;
3616 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3618 /* Transfer multiple of 2 bytes */
3620 for (i = 0; i < words; i++)
3621 writew(le16_to_cpu(buf16[i]), mmio);
3623 for (i = 0; i < words; i++)
3624 buf16[i] = cpu_to_le16(readw(mmio));
3627 /* Transfer trailing 1 byte, if any. */
3628 if (unlikely(buflen & 0x01)) {
3629 u16 align_buf[1] = { 0 };
3630 unsigned char *trailing_buf = buf + buflen - 1;
3633 memcpy(align_buf, trailing_buf, 1);
3634 writew(le16_to_cpu(align_buf[0]), mmio);
3636 align_buf[0] = cpu_to_le16(readw(mmio));
3637 memcpy(trailing_buf, align_buf, 1);
3643 * ata_pio_data_xfer - Transfer data by PIO
3644 * @adev: device to target
3646 * @buflen: buffer length
3647 * @write_data: read/write
3649 * Transfer data from/to the device data register by PIO.
3652 * Inherited from caller.
3655 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3656 unsigned int buflen, int write_data)
3658 struct ata_port *ap = adev->ap;
3659 unsigned int words = buflen >> 1;
3661 /* Transfer multiple of 2 bytes */
3663 outsw(ap->ioaddr.data_addr, buf, words);
3665 insw(ap->ioaddr.data_addr, buf, words);
3667 /* Transfer trailing 1 byte, if any. */
3668 if (unlikely(buflen & 0x01)) {
3669 u16 align_buf[1] = { 0 };
3670 unsigned char *trailing_buf = buf + buflen - 1;
3673 memcpy(align_buf, trailing_buf, 1);
3674 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3676 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3677 memcpy(trailing_buf, align_buf, 1);
3683 * ata_pio_data_xfer_noirq - Transfer data by PIO
3684 * @adev: device to target
3686 * @buflen: buffer length
3687 * @write_data: read/write
3689 * Transfer data from/to the device data register by PIO. Do the
3690 * transfer with interrupts disabled.
3693 * Inherited from caller.
3696 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3697 unsigned int buflen, int write_data)
3699 unsigned long flags;
3700 local_irq_save(flags);
3701 ata_pio_data_xfer(adev, buf, buflen, write_data);
3702 local_irq_restore(flags);
3707 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3708 * @qc: Command on going
3710 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3713 * Inherited from caller.
3716 static void ata_pio_sector(struct ata_queued_cmd *qc)
3718 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3719 struct scatterlist *sg = qc->__sg;
3720 struct ata_port *ap = qc->ap;
3722 unsigned int offset;
3725 if (qc->cursect == (qc->nsect - 1))
3726 ap->hsm_task_state = HSM_ST_LAST;
3728 page = sg[qc->cursg].page;
3729 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3731 /* get the current page and offset */
3732 page = nth_page(page, (offset >> PAGE_SHIFT));
3733 offset %= PAGE_SIZE;
3735 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3737 if (PageHighMem(page)) {
3738 unsigned long flags;
3740 /* FIXME: use a bounce buffer */
3741 local_irq_save(flags);
3742 buf = kmap_atomic(page, KM_IRQ0);
3744 /* do the actual data transfer */
3745 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3747 kunmap_atomic(buf, KM_IRQ0);
3748 local_irq_restore(flags);
3750 buf = page_address(page);
3751 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3757 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3764 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3765 * @qc: Command on going
3767 * Transfer one or many ATA_SECT_SIZE of data from/to the
3768 * ATA device for the DRQ request.
3771 * Inherited from caller.
3774 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3776 if (is_multi_taskfile(&qc->tf)) {
3777 /* READ/WRITE MULTIPLE */
3780 WARN_ON(qc->dev->multi_count == 0);
3782 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3790 * atapi_send_cdb - Write CDB bytes to hardware
3791 * @ap: Port to which ATAPI device is attached.
3792 * @qc: Taskfile currently active
3794 * When device has indicated its readiness to accept
3795 * a CDB, this function is called. Send the CDB.
3801 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3804 DPRINTK("send cdb\n");
3805 WARN_ON(qc->dev->cdb_len < 12);
3807 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3808 ata_altstatus(ap); /* flush */
3810 switch (qc->tf.protocol) {
3811 case ATA_PROT_ATAPI:
3812 ap->hsm_task_state = HSM_ST;
3814 case ATA_PROT_ATAPI_NODATA:
3815 ap->hsm_task_state = HSM_ST_LAST;
3817 case ATA_PROT_ATAPI_DMA:
3818 ap->hsm_task_state = HSM_ST_LAST;
3819 /* initiate bmdma */
3820 ap->ops->bmdma_start(qc);
3826 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3827 * @qc: Command on going
3828 * @bytes: number of bytes
3830 * Transfer Transfer data from/to the ATAPI device.
3833 * Inherited from caller.
3837 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3839 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3840 struct scatterlist *sg = qc->__sg;
3841 struct ata_port *ap = qc->ap;
3844 unsigned int offset, count;
3846 if (qc->curbytes + bytes >= qc->nbytes)
3847 ap->hsm_task_state = HSM_ST_LAST;
3850 if (unlikely(qc->cursg >= qc->n_elem)) {
3852 * The end of qc->sg is reached and the device expects
3853 * more data to transfer. In order not to overrun qc->sg
3854 * and fulfill length specified in the byte count register,
3855 * - for read case, discard trailing data from the device
3856 * - for write case, padding zero data to the device
3858 u16 pad_buf[1] = { 0 };
3859 unsigned int words = bytes >> 1;
3862 if (words) /* warning if bytes > 1 */
3863 ata_dev_printk(qc->dev, KERN_WARNING,
3864 "%u bytes trailing data\n", bytes);
3866 for (i = 0; i < words; i++)
3867 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3869 ap->hsm_task_state = HSM_ST_LAST;
3873 sg = &qc->__sg[qc->cursg];
3876 offset = sg->offset + qc->cursg_ofs;
3878 /* get the current page and offset */
3879 page = nth_page(page, (offset >> PAGE_SHIFT));
3880 offset %= PAGE_SIZE;
3882 /* don't overrun current sg */
3883 count = min(sg->length - qc->cursg_ofs, bytes);
3885 /* don't cross page boundaries */
3886 count = min(count, (unsigned int)PAGE_SIZE - offset);
3888 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3890 if (PageHighMem(page)) {
3891 unsigned long flags;
3893 /* FIXME: use bounce buffer */
3894 local_irq_save(flags);
3895 buf = kmap_atomic(page, KM_IRQ0);
3897 /* do the actual data transfer */
3898 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3900 kunmap_atomic(buf, KM_IRQ0);
3901 local_irq_restore(flags);
3903 buf = page_address(page);
3904 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3908 qc->curbytes += count;
3909 qc->cursg_ofs += count;
3911 if (qc->cursg_ofs == sg->length) {
3921 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3922 * @qc: Command on going
3924 * Transfer Transfer data from/to the ATAPI device.
3927 * Inherited from caller.
3930 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3932 struct ata_port *ap = qc->ap;
3933 struct ata_device *dev = qc->dev;
3934 unsigned int ireason, bc_lo, bc_hi, bytes;
3935 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3937 /* Abuse qc->result_tf for temp storage of intermediate TF
3938 * here to save some kernel stack usage.
3939 * For normal completion, qc->result_tf is not relevant. For
3940 * error, qc->result_tf is later overwritten by ata_qc_complete().
3941 * So, the correctness of qc->result_tf is not affected.
3943 ap->ops->tf_read(ap, &qc->result_tf);
3944 ireason = qc->result_tf.nsect;
3945 bc_lo = qc->result_tf.lbam;
3946 bc_hi = qc->result_tf.lbah;
3947 bytes = (bc_hi << 8) | bc_lo;
3949 /* shall be cleared to zero, indicating xfer of data */
3950 if (ireason & (1 << 0))
3953 /* make sure transfer direction matches expected */
3954 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3955 if (do_write != i_write)
3958 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3960 __atapi_pio_bytes(qc, bytes);
3965 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3966 qc->err_mask |= AC_ERR_HSM;
3967 ap->hsm_task_state = HSM_ST_ERR;
3971 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3972 * @ap: the target ata_port
3976 * 1 if ok in workqueue, 0 otherwise.
3979 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3981 if (qc->tf.flags & ATA_TFLAG_POLLING)
3984 if (ap->hsm_task_state == HSM_ST_FIRST) {
3985 if (qc->tf.protocol == ATA_PROT_PIO &&
3986 (qc->tf.flags & ATA_TFLAG_WRITE))
3989 if (is_atapi_taskfile(&qc->tf) &&
3990 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3998 * ata_hsm_qc_complete - finish a qc running on standard HSM
3999 * @qc: Command to complete
4000 * @in_wq: 1 if called from workqueue, 0 otherwise
4002 * Finish @qc which is running on standard HSM.
4005 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
4006 * Otherwise, none on entry and grabs host lock.
4008 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4010 struct ata_port *ap = qc->ap;
4011 unsigned long flags;
4013 if (ap->ops->error_handler) {
4015 spin_lock_irqsave(&ap->host_set->lock, flags);
4017 /* EH might have kicked in while host_set lock
4020 qc = ata_qc_from_tag(ap, qc->tag);
4022 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4024 ata_qc_complete(qc);
4026 ata_port_freeze(ap);
4029 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4031 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4032 ata_qc_complete(qc);
4034 ata_port_freeze(ap);
4038 spin_lock_irqsave(&ap->host_set->lock, flags);
4040 ata_qc_complete(qc);
4041 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4043 ata_qc_complete(qc);
4046 ata_altstatus(ap); /* flush */
4050 * ata_hsm_move - move the HSM to the next state.
4051 * @ap: the target ata_port
4053 * @status: current device status
4054 * @in_wq: 1 if called from workqueue, 0 otherwise
4057 * 1 when poll next status needed, 0 otherwise.
4060 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4061 u8 status, int in_wq)
4063 unsigned long flags = 0;
4066 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4068 /* Make sure ata_qc_issue_prot() does not throw things
4069 * like DMA polling into the workqueue. Notice that
4070 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4072 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4075 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4076 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4078 switch (ap->hsm_task_state) {
4080 /* Send first data block or PACKET CDB */
4082 /* If polling, we will stay in the work queue after
4083 * sending the data. Otherwise, interrupt handler
4084 * takes over after sending the data.
4086 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4088 /* check device status */
4089 if (unlikely((status & ATA_DRQ) == 0)) {
4090 /* handle BSY=0, DRQ=0 as error */
4091 if (likely(status & (ATA_ERR | ATA_DF)))
4092 /* device stops HSM for abort/error */
4093 qc->err_mask |= AC_ERR_DEV;
4095 /* HSM violation. Let EH handle this */
4096 qc->err_mask |= AC_ERR_HSM;
4098 ap->hsm_task_state = HSM_ST_ERR;
4102 /* Device should not ask for data transfer (DRQ=1)
4103 * when it finds something wrong.
4104 * We ignore DRQ here and stop the HSM by
4105 * changing hsm_task_state to HSM_ST_ERR and
4106 * let the EH abort the command or reset the device.
4108 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4109 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4111 qc->err_mask |= AC_ERR_HSM;
4112 ap->hsm_task_state = HSM_ST_ERR;
4116 /* Send the CDB (atapi) or the first data block (ata pio out).
4117 * During the state transition, interrupt handler shouldn't
4118 * be invoked before the data transfer is complete and
4119 * hsm_task_state is changed. Hence, the following locking.
4122 spin_lock_irqsave(&ap->host_set->lock, flags);
4124 if (qc->tf.protocol == ATA_PROT_PIO) {
4125 /* PIO data out protocol.
4126 * send first data block.
4129 /* ata_pio_sectors() might change the state
4130 * to HSM_ST_LAST. so, the state is changed here
4131 * before ata_pio_sectors().
4133 ap->hsm_task_state = HSM_ST;
4134 ata_pio_sectors(qc);
4135 ata_altstatus(ap); /* flush */
4138 atapi_send_cdb(ap, qc);
4141 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4143 /* if polling, ata_pio_task() handles the rest.
4144 * otherwise, interrupt handler takes over from here.
4149 /* complete command or read/write the data register */
4150 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4151 /* ATAPI PIO protocol */
4152 if ((status & ATA_DRQ) == 0) {
4153 /* No more data to transfer or device error.
4154 * Device error will be tagged in HSM_ST_LAST.
4156 ap->hsm_task_state = HSM_ST_LAST;
4160 /* Device should not ask for data transfer (DRQ=1)
4161 * when it finds something wrong.
4162 * We ignore DRQ here and stop the HSM by
4163 * changing hsm_task_state to HSM_ST_ERR and
4164 * let the EH abort the command or reset the device.
4166 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4167 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4169 qc->err_mask |= AC_ERR_HSM;
4170 ap->hsm_task_state = HSM_ST_ERR;
4174 atapi_pio_bytes(qc);
4176 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4177 /* bad ireason reported by device */
4181 /* ATA PIO protocol */
4182 if (unlikely((status & ATA_DRQ) == 0)) {
4183 /* handle BSY=0, DRQ=0 as error */
4184 if (likely(status & (ATA_ERR | ATA_DF)))
4185 /* device stops HSM for abort/error */
4186 qc->err_mask |= AC_ERR_DEV;
4188 /* HSM violation. Let EH handle this */
4189 qc->err_mask |= AC_ERR_HSM;
4191 ap->hsm_task_state = HSM_ST_ERR;
4195 /* For PIO reads, some devices may ask for
4196 * data transfer (DRQ=1) alone with ERR=1.
4197 * We respect DRQ here and transfer one
4198 * block of junk data before changing the
4199 * hsm_task_state to HSM_ST_ERR.
4201 * For PIO writes, ERR=1 DRQ=1 doesn't make
4202 * sense since the data block has been
4203 * transferred to the device.
4205 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4206 /* data might be corrputed */
4207 qc->err_mask |= AC_ERR_DEV;
4209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4210 ata_pio_sectors(qc);
4212 status = ata_wait_idle(ap);
4215 if (status & (ATA_BUSY | ATA_DRQ))
4216 qc->err_mask |= AC_ERR_HSM;
4218 /* ata_pio_sectors() might change the
4219 * state to HSM_ST_LAST. so, the state
4220 * is changed after ata_pio_sectors().
4222 ap->hsm_task_state = HSM_ST_ERR;
4226 ata_pio_sectors(qc);
4228 if (ap->hsm_task_state == HSM_ST_LAST &&
4229 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4232 status = ata_wait_idle(ap);
4237 ata_altstatus(ap); /* flush */
4242 if (unlikely(!ata_ok(status))) {
4243 qc->err_mask |= __ac_err_mask(status);
4244 ap->hsm_task_state = HSM_ST_ERR;
4248 /* no more data to transfer */
4249 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4250 ap->id, qc->dev->devno, status);
4252 WARN_ON(qc->err_mask);
4254 ap->hsm_task_state = HSM_ST_IDLE;
4256 /* complete taskfile transaction */
4257 ata_hsm_qc_complete(qc, in_wq);
4263 /* make sure qc->err_mask is available to
4264 * know what's wrong and recover
4266 WARN_ON(qc->err_mask == 0);
4268 ap->hsm_task_state = HSM_ST_IDLE;
4270 /* complete taskfile transaction */
4271 ata_hsm_qc_complete(qc, in_wq);
4283 static void ata_pio_task(void *_data)
4285 struct ata_queued_cmd *qc = _data;
4286 struct ata_port *ap = qc->ap;
4291 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4294 * This is purely heuristic. This is a fast path.
4295 * Sometimes when we enter, BSY will be cleared in
4296 * a chk-status or two. If not, the drive is probably seeking
4297 * or something. Snooze for a couple msecs, then
4298 * chk-status again. If still busy, queue delayed work.
4300 status = ata_busy_wait(ap, ATA_BUSY, 5);
4301 if (status & ATA_BUSY) {
4303 status = ata_busy_wait(ap, ATA_BUSY, 10);
4304 if (status & ATA_BUSY) {
4305 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4311 poll_next = ata_hsm_move(ap, qc, status, 1);
4313 /* another command or interrupt handler
4314 * may be running at this point.
4321 * ata_qc_new - Request an available ATA command, for queueing
4322 * @ap: Port associated with device @dev
4323 * @dev: Device from whom we request an available command structure
4329 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4331 struct ata_queued_cmd *qc = NULL;
4334 /* no command while frozen */
4335 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4338 /* the last tag is reserved for internal command. */
4339 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4340 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4341 qc = __ata_qc_from_tag(ap, i);
4352 * ata_qc_new_init - Request an available ATA command, and initialize it
4353 * @dev: Device from whom we request an available command structure
4359 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4361 struct ata_port *ap = dev->ap;
4362 struct ata_queued_cmd *qc;
4364 qc = ata_qc_new(ap);
4377 * ata_qc_free - free unused ata_queued_cmd
4378 * @qc: Command to complete
4380 * Designed to free unused ata_queued_cmd object
4381 * in case something prevents using it.
4384 * spin_lock_irqsave(host_set lock)
4386 void ata_qc_free(struct ata_queued_cmd *qc)
4388 struct ata_port *ap = qc->ap;
4391 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4395 if (likely(ata_tag_valid(tag))) {
4396 qc->tag = ATA_TAG_POISON;
4397 clear_bit(tag, &ap->qc_allocated);
4401 void __ata_qc_complete(struct ata_queued_cmd *qc)
4403 struct ata_port *ap = qc->ap;
4405 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4406 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4408 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4411 /* command should be marked inactive atomically with qc completion */
4412 if (qc->tf.protocol == ATA_PROT_NCQ)
4413 ap->sactive &= ~(1 << qc->tag);
4415 ap->active_tag = ATA_TAG_POISON;
4417 /* atapi: mark qc as inactive to prevent the interrupt handler
4418 * from completing the command twice later, before the error handler
4419 * is called. (when rc != 0 and atapi request sense is needed)
4421 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4422 ap->qc_active &= ~(1 << qc->tag);
4424 /* call completion callback */
4425 qc->complete_fn(qc);
4429 * ata_qc_complete - Complete an active ATA command
4430 * @qc: Command to complete
4431 * @err_mask: ATA Status register contents
4433 * Indicate to the mid and upper layers that an ATA
4434 * command has completed, with either an ok or not-ok status.
4437 * spin_lock_irqsave(host_set lock)
4439 void ata_qc_complete(struct ata_queued_cmd *qc)
4441 struct ata_port *ap = qc->ap;
4443 /* XXX: New EH and old EH use different mechanisms to
4444 * synchronize EH with regular execution path.
4446 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4447 * Normal execution path is responsible for not accessing a
4448 * failed qc. libata core enforces the rule by returning NULL
4449 * from ata_qc_from_tag() for failed qcs.
4451 * Old EH depends on ata_qc_complete() nullifying completion
4452 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4453 * not synchronize with interrupt handler. Only PIO task is
4456 if (ap->ops->error_handler) {
4457 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4459 if (unlikely(qc->err_mask))
4460 qc->flags |= ATA_QCFLAG_FAILED;
4462 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4463 if (!ata_tag_internal(qc->tag)) {
4464 /* always fill result TF for failed qc */
4465 ap->ops->tf_read(ap, &qc->result_tf);
4466 ata_qc_schedule_eh(qc);
4471 /* read result TF if requested */
4472 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4473 ap->ops->tf_read(ap, &qc->result_tf);
4475 __ata_qc_complete(qc);
4477 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4480 /* read result TF if failed or requested */
4481 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4482 ap->ops->tf_read(ap, &qc->result_tf);
4484 __ata_qc_complete(qc);
4489 * ata_qc_complete_multiple - Complete multiple qcs successfully
4490 * @ap: port in question
4491 * @qc_active: new qc_active mask
4492 * @finish_qc: LLDD callback invoked before completing a qc
4494 * Complete in-flight commands. This functions is meant to be
4495 * called from low-level driver's interrupt routine to complete
4496 * requests normally. ap->qc_active and @qc_active is compared
4497 * and commands are completed accordingly.
4500 * spin_lock_irqsave(host_set lock)
4503 * Number of completed commands on success, -errno otherwise.
4505 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4506 void (*finish_qc)(struct ata_queued_cmd *))
4512 done_mask = ap->qc_active ^ qc_active;
4514 if (unlikely(done_mask & qc_active)) {
4515 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4516 "(%08x->%08x)\n", ap->qc_active, qc_active);
4520 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4521 struct ata_queued_cmd *qc;
4523 if (!(done_mask & (1 << i)))
4526 if ((qc = ata_qc_from_tag(ap, i))) {
4529 ata_qc_complete(qc);
4537 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4539 struct ata_port *ap = qc->ap;
4541 switch (qc->tf.protocol) {
4544 case ATA_PROT_ATAPI_DMA:
4547 case ATA_PROT_ATAPI:
4549 if (ap->flags & ATA_FLAG_PIO_DMA)
4562 * ata_qc_issue - issue taskfile to device
4563 * @qc: command to issue to device
4565 * Prepare an ATA command to submission to device.
4566 * This includes mapping the data into a DMA-able
4567 * area, filling in the S/G table, and finally
4568 * writing the taskfile to hardware, starting the command.
4571 * spin_lock_irqsave(host_set lock)
4573 void ata_qc_issue(struct ata_queued_cmd *qc)
4575 struct ata_port *ap = qc->ap;
4577 /* Make sure only one non-NCQ command is outstanding. The
4578 * check is skipped for old EH because it reuses active qc to
4579 * request ATAPI sense.
4581 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4583 if (qc->tf.protocol == ATA_PROT_NCQ) {
4584 WARN_ON(ap->sactive & (1 << qc->tag));
4585 ap->sactive |= 1 << qc->tag;
4587 WARN_ON(ap->sactive);
4588 ap->active_tag = qc->tag;
4591 qc->flags |= ATA_QCFLAG_ACTIVE;
4592 ap->qc_active |= 1 << qc->tag;
4594 if (ata_should_dma_map(qc)) {
4595 if (qc->flags & ATA_QCFLAG_SG) {
4596 if (ata_sg_setup(qc))
4598 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4599 if (ata_sg_setup_one(qc))
4603 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4606 ap->ops->qc_prep(qc);
4608 qc->err_mask |= ap->ops->qc_issue(qc);
4609 if (unlikely(qc->err_mask))
4614 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 qc->err_mask |= AC_ERR_SYSTEM;
4617 ata_qc_complete(qc);
4621 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4622 * @qc: command to issue to device
4624 * Using various libata functions and hooks, this function
4625 * starts an ATA command. ATA commands are grouped into
4626 * classes called "protocols", and issuing each type of protocol
4627 * is slightly different.
4629 * May be used as the qc_issue() entry in ata_port_operations.
4632 * spin_lock_irqsave(host_set lock)
4635 * Zero on success, AC_ERR_* mask on failure
4638 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4640 struct ata_port *ap = qc->ap;
4642 /* Use polling pio if the LLD doesn't handle
4643 * interrupt driven pio and atapi CDB interrupt.
4645 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4646 switch (qc->tf.protocol) {
4648 case ATA_PROT_ATAPI:
4649 case ATA_PROT_ATAPI_NODATA:
4650 qc->tf.flags |= ATA_TFLAG_POLLING;
4652 case ATA_PROT_ATAPI_DMA:
4653 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4654 /* see ata_check_atapi_dma() */
4662 /* select the device */
4663 ata_dev_select(ap, qc->dev->devno, 1, 0);
4665 /* start the command */
4666 switch (qc->tf.protocol) {
4667 case ATA_PROT_NODATA:
4668 if (qc->tf.flags & ATA_TFLAG_POLLING)
4669 ata_qc_set_polling(qc);
4671 ata_tf_to_host(ap, &qc->tf);
4672 ap->hsm_task_state = HSM_ST_LAST;
4674 if (qc->tf.flags & ATA_TFLAG_POLLING)
4675 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4680 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4682 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4683 ap->ops->bmdma_setup(qc); /* set up bmdma */
4684 ap->ops->bmdma_start(qc); /* initiate bmdma */
4685 ap->hsm_task_state = HSM_ST_LAST;
4689 if (qc->tf.flags & ATA_TFLAG_POLLING)
4690 ata_qc_set_polling(qc);
4692 ata_tf_to_host(ap, &qc->tf);
4694 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4695 /* PIO data out protocol */
4696 ap->hsm_task_state = HSM_ST_FIRST;
4697 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4699 /* always send first data block using
4700 * the ata_pio_task() codepath.
4703 /* PIO data in protocol */
4704 ap->hsm_task_state = HSM_ST;
4706 if (qc->tf.flags & ATA_TFLAG_POLLING)
4707 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4709 /* if polling, ata_pio_task() handles the rest.
4710 * otherwise, interrupt handler takes over from here.
4716 case ATA_PROT_ATAPI:
4717 case ATA_PROT_ATAPI_NODATA:
4718 if (qc->tf.flags & ATA_TFLAG_POLLING)
4719 ata_qc_set_polling(qc);
4721 ata_tf_to_host(ap, &qc->tf);
4723 ap->hsm_task_state = HSM_ST_FIRST;
4725 /* send cdb by polling if no cdb interrupt */
4726 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4727 (qc->tf.flags & ATA_TFLAG_POLLING))
4728 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4731 case ATA_PROT_ATAPI_DMA:
4732 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4734 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4735 ap->ops->bmdma_setup(qc); /* set up bmdma */
4736 ap->hsm_task_state = HSM_ST_FIRST;
4738 /* send cdb by polling if no cdb interrupt */
4739 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4740 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4745 return AC_ERR_SYSTEM;
4752 * ata_host_intr - Handle host interrupt for given (port, task)
4753 * @ap: Port on which interrupt arrived (possibly...)
4754 * @qc: Taskfile currently active in engine
4756 * Handle host interrupt for given queued command. Currently,
4757 * only DMA interrupts are handled. All other commands are
4758 * handled via polling with interrupts disabled (nIEN bit).
4761 * spin_lock_irqsave(host_set lock)
4764 * One if interrupt was handled, zero if not (shared irq).
4767 inline unsigned int ata_host_intr (struct ata_port *ap,
4768 struct ata_queued_cmd *qc)
4770 u8 status, host_stat = 0;
4772 VPRINTK("ata%u: protocol %d task_state %d\n",
4773 ap->id, qc->tf.protocol, ap->hsm_task_state);
4775 /* Check whether we are expecting interrupt in this state */
4776 switch (ap->hsm_task_state) {
4778 /* Some pre-ATAPI-4 devices assert INTRQ
4779 * at this state when ready to receive CDB.
4782 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4783 * The flag was turned on only for atapi devices.
4784 * No need to check is_atapi_taskfile(&qc->tf) again.
4786 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4790 if (qc->tf.protocol == ATA_PROT_DMA ||
4791 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4792 /* check status of DMA engine */
4793 host_stat = ap->ops->bmdma_status(ap);
4794 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4796 /* if it's not our irq... */
4797 if (!(host_stat & ATA_DMA_INTR))
4800 /* before we do anything else, clear DMA-Start bit */
4801 ap->ops->bmdma_stop(qc);
4803 if (unlikely(host_stat & ATA_DMA_ERR)) {
4804 /* error when transfering data to/from memory */
4805 qc->err_mask |= AC_ERR_HOST_BUS;
4806 ap->hsm_task_state = HSM_ST_ERR;
4816 /* check altstatus */
4817 status = ata_altstatus(ap);
4818 if (status & ATA_BUSY)
4821 /* check main status, clearing INTRQ */
4822 status = ata_chk_status(ap);
4823 if (unlikely(status & ATA_BUSY))
4826 /* ack bmdma irq events */
4827 ap->ops->irq_clear(ap);
4829 ata_hsm_move(ap, qc, status, 0);
4830 return 1; /* irq handled */
4833 ap->stats.idle_irq++;
4836 if ((ap->stats.idle_irq % 1000) == 0) {
4837 ata_irq_ack(ap, 0); /* debug trap */
4838 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4842 return 0; /* irq not handled */
4846 * ata_interrupt - Default ATA host interrupt handler
4847 * @irq: irq line (unused)
4848 * @dev_instance: pointer to our ata_host_set information structure
4851 * Default interrupt handler for PCI IDE devices. Calls
4852 * ata_host_intr() for each port that is not disabled.
4855 * Obtains host_set lock during operation.
4858 * IRQ_NONE or IRQ_HANDLED.
4861 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4863 struct ata_host_set *host_set = dev_instance;
4865 unsigned int handled = 0;
4866 unsigned long flags;
4868 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4869 spin_lock_irqsave(&host_set->lock, flags);
4871 for (i = 0; i < host_set->n_ports; i++) {
4872 struct ata_port *ap;
4874 ap = host_set->ports[i];
4876 !(ap->flags & ATA_FLAG_DISABLED)) {
4877 struct ata_queued_cmd *qc;
4879 qc = ata_qc_from_tag(ap, ap->active_tag);
4880 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4881 (qc->flags & ATA_QCFLAG_ACTIVE))
4882 handled |= ata_host_intr(ap, qc);
4886 spin_unlock_irqrestore(&host_set->lock, flags);
4888 return IRQ_RETVAL(handled);
4892 * sata_scr_valid - test whether SCRs are accessible
4893 * @ap: ATA port to test SCR accessibility for
4895 * Test whether SCRs are accessible for @ap.
4901 * 1 if SCRs are accessible, 0 otherwise.
4903 int sata_scr_valid(struct ata_port *ap)
4905 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4909 * sata_scr_read - read SCR register of the specified port
4910 * @ap: ATA port to read SCR for
4912 * @val: Place to store read value
4914 * Read SCR register @reg of @ap into *@val. This function is
4915 * guaranteed to succeed if the cable type of the port is SATA
4916 * and the port implements ->scr_read.
4922 * 0 on success, negative errno on failure.
4924 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4926 if (sata_scr_valid(ap)) {
4927 *val = ap->ops->scr_read(ap, reg);
4934 * sata_scr_write - write SCR register of the specified port
4935 * @ap: ATA port to write SCR for
4936 * @reg: SCR to write
4937 * @val: value to write
4939 * Write @val to SCR register @reg of @ap. This function is
4940 * guaranteed to succeed if the cable type of the port is SATA
4941 * and the port implements ->scr_read.
4947 * 0 on success, negative errno on failure.
4949 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4951 if (sata_scr_valid(ap)) {
4952 ap->ops->scr_write(ap, reg, val);
4959 * sata_scr_write_flush - write SCR register of the specified port and flush
4960 * @ap: ATA port to write SCR for
4961 * @reg: SCR to write
4962 * @val: value to write
4964 * This function is identical to sata_scr_write() except that this
4965 * function performs flush after writing to the register.
4971 * 0 on success, negative errno on failure.
4973 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4975 if (sata_scr_valid(ap)) {
4976 ap->ops->scr_write(ap, reg, val);
4977 ap->ops->scr_read(ap, reg);
4984 * ata_port_online - test whether the given port is online
4985 * @ap: ATA port to test
4987 * Test whether @ap is online. Note that this function returns 0
4988 * if online status of @ap cannot be obtained, so
4989 * ata_port_online(ap) != !ata_port_offline(ap).
4995 * 1 if the port online status is available and online.
4997 int ata_port_online(struct ata_port *ap)
5001 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5007 * ata_port_offline - test whether the given port is offline
5008 * @ap: ATA port to test
5010 * Test whether @ap is offline. Note that this function returns
5011 * 0 if offline status of @ap cannot be obtained, so
5012 * ata_port_online(ap) != !ata_port_offline(ap).
5018 * 1 if the port offline status is available and offline.
5020 int ata_port_offline(struct ata_port *ap)
5024 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5030 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
5031 * without filling any other registers
5033 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
5035 struct ata_taskfile tf;
5038 ata_tf_init(dev, &tf);
5041 tf.flags |= ATA_TFLAG_DEVICE;
5042 tf.protocol = ATA_PROT_NODATA;
5044 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
5046 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
5052 static int ata_flush_cache(struct ata_device *dev)
5056 if (!ata_try_flush_cache(dev))
5059 if (ata_id_has_flush_ext(dev->id))
5060 cmd = ATA_CMD_FLUSH_EXT;
5062 cmd = ATA_CMD_FLUSH;
5064 return ata_do_simple_cmd(dev, cmd);
5067 static int ata_standby_drive(struct ata_device *dev)
5069 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5072 static int ata_start_drive(struct ata_device *dev)
5074 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5078 * ata_device_resume - wakeup a previously suspended devices
5079 * @dev: the device to resume
5081 * Kick the drive back into action, by sending it an idle immediate
5082 * command and making sure its transfer mode matches between drive
5086 int ata_device_resume(struct ata_device *dev)
5088 struct ata_port *ap = dev->ap;
5090 if (ap->flags & ATA_FLAG_SUSPENDED) {
5091 struct ata_device *failed_dev;
5093 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5095 ap->flags &= ~ATA_FLAG_SUSPENDED;
5096 while (ata_set_mode(ap, &failed_dev))
5097 ata_dev_disable(failed_dev);
5099 if (!ata_dev_enabled(dev))
5101 if (dev->class == ATA_DEV_ATA)
5102 ata_start_drive(dev);
5108 * ata_device_suspend - prepare a device for suspend
5109 * @dev: the device to suspend
5110 * @state: target power management state
5112 * Flush the cache on the drive, if appropriate, then issue a
5113 * standbynow command.
5115 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5117 struct ata_port *ap = dev->ap;
5119 if (!ata_dev_enabled(dev))
5121 if (dev->class == ATA_DEV_ATA)
5122 ata_flush_cache(dev);
5124 if (state.event != PM_EVENT_FREEZE)
5125 ata_standby_drive(dev);
5126 ap->flags |= ATA_FLAG_SUSPENDED;
5131 * ata_port_start - Set port up for dma.
5132 * @ap: Port to initialize
5134 * Called just after data structures for each port are
5135 * initialized. Allocates space for PRD table.
5137 * May be used as the port_start() entry in ata_port_operations.
5140 * Inherited from caller.
5143 int ata_port_start (struct ata_port *ap)
5145 struct device *dev = ap->dev;
5148 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5152 rc = ata_pad_alloc(ap, dev);
5154 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5158 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5165 * ata_port_stop - Undo ata_port_start()
5166 * @ap: Port to shut down
5168 * Frees the PRD table.
5170 * May be used as the port_stop() entry in ata_port_operations.
5173 * Inherited from caller.
5176 void ata_port_stop (struct ata_port *ap)
5178 struct device *dev = ap->dev;
5180 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5181 ata_pad_free(ap, dev);
5184 void ata_host_stop (struct ata_host_set *host_set)
5186 if (host_set->mmio_base)
5187 iounmap(host_set->mmio_base);
5192 * ata_host_remove - Unregister SCSI host structure with upper layers
5193 * @ap: Port to unregister
5194 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5197 * Inherited from caller.
5200 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5202 struct Scsi_Host *sh = ap->host;
5207 scsi_remove_host(sh);
5209 ap->ops->port_stop(ap);
5213 * ata_dev_init - Initialize an ata_device structure
5214 * @dev: Device structure to initialize
5216 * Initialize @dev in preparation for probing.
5219 * Inherited from caller.
5221 void ata_dev_init(struct ata_device *dev)
5223 struct ata_port *ap = dev->ap;
5224 unsigned long flags;
5226 /* SATA spd limit is bound to the first device */
5227 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5229 /* High bits of dev->flags are used to record warm plug
5230 * requests which occur asynchronously. Synchronize using
5233 spin_lock_irqsave(&ap->host_set->lock, flags);
5234 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5235 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5237 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5238 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5239 dev->pio_mask = UINT_MAX;
5240 dev->mwdma_mask = UINT_MAX;
5241 dev->udma_mask = UINT_MAX;
5245 * ata_host_init - Initialize an ata_port structure
5246 * @ap: Structure to initialize
5247 * @host: associated SCSI mid-layer structure
5248 * @host_set: Collection of hosts to which @ap belongs
5249 * @ent: Probe information provided by low-level driver
5250 * @port_no: Port number associated with this ata_port
5252 * Initialize a new ata_port structure, and its associated
5256 * Inherited from caller.
5258 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5259 struct ata_host_set *host_set,
5260 const struct ata_probe_ent *ent, unsigned int port_no)
5266 host->max_channel = 1;
5267 host->unique_id = ata_unique_id++;
5268 host->max_cmd_len = 12;
5270 ap->flags = ATA_FLAG_DISABLED;
5271 ap->id = host->unique_id;
5273 ap->ctl = ATA_DEVCTL_OBS;
5274 ap->host_set = host_set;
5276 ap->port_no = port_no;
5278 ent->legacy_mode ? ent->hard_port_no : port_no;
5279 ap->pio_mask = ent->pio_mask;
5280 ap->mwdma_mask = ent->mwdma_mask;
5281 ap->udma_mask = ent->udma_mask;
5282 ap->flags |= ent->host_flags;
5283 ap->ops = ent->port_ops;
5284 ap->hw_sata_spd_limit = UINT_MAX;
5285 ap->active_tag = ATA_TAG_POISON;
5286 ap->last_ctl = 0xFF;
5287 ap->msg_enable = ATA_MSG_DRV;
5289 INIT_WORK(&ap->port_task, NULL, NULL);
5290 INIT_LIST_HEAD(&ap->eh_done_q);
5291 init_waitqueue_head(&ap->eh_wait_q);
5293 /* set cable type */
5294 ap->cbl = ATA_CBL_NONE;
5295 if (ap->flags & ATA_FLAG_SATA)
5296 ap->cbl = ATA_CBL_SATA;
5298 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5299 struct ata_device *dev = &ap->device[i];
5306 ap->stats.unhandled_irq = 1;
5307 ap->stats.idle_irq = 1;
5310 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5314 * ata_host_add - Attach low-level ATA driver to system
5315 * @ent: Information provided by low-level driver
5316 * @host_set: Collections of ports to which we add
5317 * @port_no: Port number associated with this host
5319 * Attach low-level ATA driver to system.
5322 * PCI/etc. bus probe sem.
5325 * New ata_port on success, for NULL on error.
5328 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5329 struct ata_host_set *host_set,
5330 unsigned int port_no)
5332 struct Scsi_Host *host;
5333 struct ata_port *ap;
5338 if (!ent->port_ops->probe_reset &&
5339 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5340 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5345 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5349 host->transportt = &ata_scsi_transport_template;
5351 ap = ata_shost_to_port(host);
5353 ata_host_init(ap, host, host_set, ent, port_no);
5355 rc = ap->ops->port_start(ap);
5362 scsi_host_put(host);
5367 * ata_device_add - Register hardware device with ATA and SCSI layers
5368 * @ent: Probe information describing hardware device to be registered
5370 * This function processes the information provided in the probe
5371 * information struct @ent, allocates the necessary ATA and SCSI
5372 * host information structures, initializes them, and registers
5373 * everything with requisite kernel subsystems.
5375 * This function requests irqs, probes the ATA bus, and probes
5379 * PCI/etc. bus probe sem.
5382 * Number of ports registered. Zero on error (no ports registered).
5385 int ata_device_add(const struct ata_probe_ent *ent)
5387 unsigned int count = 0, i;
5388 struct device *dev = ent->dev;
5389 struct ata_host_set *host_set;
5392 /* alloc a container for our list of ATA ports (buses) */
5393 host_set = kzalloc(sizeof(struct ata_host_set) +
5394 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5397 spin_lock_init(&host_set->lock);
5399 host_set->dev = dev;
5400 host_set->n_ports = ent->n_ports;
5401 host_set->irq = ent->irq;
5402 host_set->mmio_base = ent->mmio_base;
5403 host_set->private_data = ent->private_data;
5404 host_set->ops = ent->port_ops;
5405 host_set->flags = ent->host_set_flags;
5407 /* register each port bound to this device */
5408 for (i = 0; i < ent->n_ports; i++) {
5409 struct ata_port *ap;
5410 unsigned long xfer_mode_mask;
5412 ap = ata_host_add(ent, host_set, i);
5416 host_set->ports[i] = ap;
5417 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5418 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5419 (ap->pio_mask << ATA_SHIFT_PIO);
5421 /* print per-port info to dmesg */
5422 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5423 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5424 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5425 ata_mode_string(xfer_mode_mask),
5426 ap->ioaddr.cmd_addr,
5427 ap->ioaddr.ctl_addr,
5428 ap->ioaddr.bmdma_addr,
5432 host_set->ops->irq_clear(ap);
5433 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5440 /* obtain irq, that is shared between channels */
5441 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5442 DRV_NAME, host_set))
5445 /* perform each probe synchronously */
5446 DPRINTK("probe begin\n");
5447 for (i = 0; i < count; i++) {
5448 struct ata_port *ap;
5452 ap = host_set->ports[i];
5454 /* init sata_spd_limit to the current value */
5455 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5456 int spd = (scontrol >> 4) & 0xf;
5457 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5459 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5461 DPRINTK("ata%u: bus probe begin\n", ap->id);
5462 rc = ata_bus_probe(ap);
5463 DPRINTK("ata%u: bus probe end\n", ap->id);
5466 /* FIXME: do something useful here?
5467 * Current libata behavior will
5468 * tear down everything when
5469 * the module is removed
5470 * or the h/w is unplugged.
5474 rc = scsi_add_host(ap->host, dev);
5476 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5477 /* FIXME: do something useful here */
5478 /* FIXME: handle unconditional calls to
5479 * scsi_scan_host and ata_host_remove, below,
5485 /* probes are done, now scan each port's disk(s) */
5486 DPRINTK("host probe begin\n");
5487 for (i = 0; i < count; i++) {
5488 struct ata_port *ap = host_set->ports[i];
5490 ata_scsi_scan_host(ap);
5493 dev_set_drvdata(dev, host_set);
5495 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5496 return ent->n_ports; /* success */
5499 for (i = 0; i < count; i++) {
5500 ata_host_remove(host_set->ports[i], 1);
5501 scsi_host_put(host_set->ports[i]->host);
5505 VPRINTK("EXIT, returning 0\n");
5510 * ata_host_set_remove - PCI layer callback for device removal
5511 * @host_set: ATA host set that was removed
5513 * Unregister all objects associated with this host set. Free those
5517 * Inherited from calling layer (may sleep).
5520 void ata_host_set_remove(struct ata_host_set *host_set)
5522 struct ata_port *ap;
5525 for (i = 0; i < host_set->n_ports; i++) {
5526 ap = host_set->ports[i];
5527 scsi_remove_host(ap->host);
5530 free_irq(host_set->irq, host_set);
5532 for (i = 0; i < host_set->n_ports; i++) {
5533 ap = host_set->ports[i];
5535 ata_scsi_release(ap->host);
5537 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5538 struct ata_ioports *ioaddr = &ap->ioaddr;
5540 if (ioaddr->cmd_addr == 0x1f0)
5541 release_region(0x1f0, 8);
5542 else if (ioaddr->cmd_addr == 0x170)
5543 release_region(0x170, 8);
5546 scsi_host_put(ap->host);
5549 if (host_set->ops->host_stop)
5550 host_set->ops->host_stop(host_set);
5556 * ata_scsi_release - SCSI layer callback hook for host unload
5557 * @host: libata host to be unloaded
5559 * Performs all duties necessary to shut down a libata port...
5560 * Kill port kthread, disable port, and release resources.
5563 * Inherited from SCSI layer.
5569 int ata_scsi_release(struct Scsi_Host *host)
5571 struct ata_port *ap = ata_shost_to_port(host);
5575 ap->ops->port_disable(ap);
5576 ata_host_remove(ap, 0);
5583 * ata_std_ports - initialize ioaddr with standard port offsets.
5584 * @ioaddr: IO address structure to be initialized
5586 * Utility function which initializes data_addr, error_addr,
5587 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5588 * device_addr, status_addr, and command_addr to standard offsets
5589 * relative to cmd_addr.
5591 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5594 void ata_std_ports(struct ata_ioports *ioaddr)
5596 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5597 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5598 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5599 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5600 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5601 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5602 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5603 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5604 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5605 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5611 void ata_pci_host_stop (struct ata_host_set *host_set)
5613 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5615 pci_iounmap(pdev, host_set->mmio_base);
5619 * ata_pci_remove_one - PCI layer callback for device removal
5620 * @pdev: PCI device that was removed
5622 * PCI layer indicates to libata via this hook that
5623 * hot-unplug or module unload event has occurred.
5624 * Handle this by unregistering all objects associated
5625 * with this PCI device. Free those objects. Then finally
5626 * release PCI resources and disable device.
5629 * Inherited from PCI layer (may sleep).
5632 void ata_pci_remove_one (struct pci_dev *pdev)
5634 struct device *dev = pci_dev_to_dev(pdev);
5635 struct ata_host_set *host_set = dev_get_drvdata(dev);
5637 ata_host_set_remove(host_set);
5638 pci_release_regions(pdev);
5639 pci_disable_device(pdev);
5640 dev_set_drvdata(dev, NULL);
5643 /* move to PCI subsystem */
5644 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5646 unsigned long tmp = 0;
5648 switch (bits->width) {
5651 pci_read_config_byte(pdev, bits->reg, &tmp8);
5657 pci_read_config_word(pdev, bits->reg, &tmp16);
5663 pci_read_config_dword(pdev, bits->reg, &tmp32);
5674 return (tmp == bits->val) ? 1 : 0;
5677 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5679 pci_save_state(pdev);
5680 pci_disable_device(pdev);
5681 pci_set_power_state(pdev, PCI_D3hot);
5685 int ata_pci_device_resume(struct pci_dev *pdev)
5687 pci_set_power_state(pdev, PCI_D0);
5688 pci_restore_state(pdev);
5689 pci_enable_device(pdev);
5690 pci_set_master(pdev);
5693 #endif /* CONFIG_PCI */
5696 static int __init ata_init(void)
5698 ata_wq = create_workqueue("ata");
5702 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5704 destroy_workqueue(ata_wq);
5708 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5712 static void __exit ata_exit(void)
5714 destroy_workqueue(ata_wq);
5715 destroy_workqueue(ata_aux_wq);
5718 module_init(ata_init);
5719 module_exit(ata_exit);
5721 static unsigned long ratelimit_time;
5722 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5724 int ata_ratelimit(void)
5727 unsigned long flags;
5729 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5731 if (time_after(jiffies, ratelimit_time)) {
5733 ratelimit_time = jiffies + (HZ/5);
5737 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5743 * ata_wait_register - wait until register value changes
5744 * @reg: IO-mapped register
5745 * @mask: Mask to apply to read register value
5746 * @val: Wait condition
5747 * @interval_msec: polling interval in milliseconds
5748 * @timeout_msec: timeout in milliseconds
5750 * Waiting for some bits of register to change is a common
5751 * operation for ATA controllers. This function reads 32bit LE
5752 * IO-mapped register @reg and tests for the following condition.
5754 * (*@reg & mask) != val
5756 * If the condition is met, it returns; otherwise, the process is
5757 * repeated after @interval_msec until timeout.
5760 * Kernel thread context (may sleep)
5763 * The final register value.
5765 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5766 unsigned long interval_msec,
5767 unsigned long timeout_msec)
5769 unsigned long timeout;
5772 tmp = ioread32(reg);
5774 /* Calculate timeout _after_ the first read to make sure
5775 * preceding writes reach the controller before starting to
5776 * eat away the timeout.
5778 timeout = jiffies + (timeout_msec * HZ) / 1000;
5780 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5781 msleep(interval_msec);
5782 tmp = ioread32(reg);
5789 * libata is essentially a library of internal helper functions for
5790 * low-level ATA host controller drivers. As such, the API/ABI is
5791 * likely to change as new drivers are added and updated.
5792 * Do not depend on ABI/API stability.
5795 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5796 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5797 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5798 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5799 EXPORT_SYMBOL_GPL(ata_std_ports);
5800 EXPORT_SYMBOL_GPL(ata_device_add);
5801 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5802 EXPORT_SYMBOL_GPL(ata_sg_init);
5803 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5804 EXPORT_SYMBOL_GPL(ata_qc_complete);
5805 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5806 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5807 EXPORT_SYMBOL_GPL(ata_tf_load);
5808 EXPORT_SYMBOL_GPL(ata_tf_read);
5809 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5810 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5811 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5812 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5813 EXPORT_SYMBOL_GPL(ata_check_status);
5814 EXPORT_SYMBOL_GPL(ata_altstatus);
5815 EXPORT_SYMBOL_GPL(ata_exec_command);
5816 EXPORT_SYMBOL_GPL(ata_port_start);
5817 EXPORT_SYMBOL_GPL(ata_port_stop);
5818 EXPORT_SYMBOL_GPL(ata_host_stop);
5819 EXPORT_SYMBOL_GPL(ata_interrupt);
5820 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5821 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5822 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5823 EXPORT_SYMBOL_GPL(ata_qc_prep);
5824 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5825 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5826 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5827 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5828 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5829 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5830 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5831 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5832 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5833 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5834 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5835 EXPORT_SYMBOL_GPL(ata_port_probe);
5836 EXPORT_SYMBOL_GPL(sata_set_spd);
5837 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5838 EXPORT_SYMBOL_GPL(sata_phy_resume);
5839 EXPORT_SYMBOL_GPL(sata_phy_reset);
5840 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5841 EXPORT_SYMBOL_GPL(ata_bus_reset);
5842 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5843 EXPORT_SYMBOL_GPL(ata_std_softreset);
5844 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5845 EXPORT_SYMBOL_GPL(ata_std_postreset);
5846 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5847 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5848 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5849 EXPORT_SYMBOL_GPL(ata_dev_classify);
5850 EXPORT_SYMBOL_GPL(ata_dev_pair);
5851 EXPORT_SYMBOL_GPL(ata_port_disable);
5852 EXPORT_SYMBOL_GPL(ata_ratelimit);
5853 EXPORT_SYMBOL_GPL(ata_wait_register);
5854 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5855 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5856 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5857 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5858 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5859 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5860 EXPORT_SYMBOL_GPL(ata_scsi_release);
5861 EXPORT_SYMBOL_GPL(ata_host_intr);
5862 EXPORT_SYMBOL_GPL(sata_scr_valid);
5863 EXPORT_SYMBOL_GPL(sata_scr_read);
5864 EXPORT_SYMBOL_GPL(sata_scr_write);
5865 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5866 EXPORT_SYMBOL_GPL(ata_port_online);
5867 EXPORT_SYMBOL_GPL(ata_port_offline);
5868 EXPORT_SYMBOL_GPL(ata_id_string);
5869 EXPORT_SYMBOL_GPL(ata_id_c_string);
5870 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5872 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5873 EXPORT_SYMBOL_GPL(ata_timing_compute);
5874 EXPORT_SYMBOL_GPL(ata_timing_merge);
5877 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5878 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5879 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5880 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5881 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5882 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5883 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5884 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5885 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5886 #endif /* CONFIG_PCI */
5888 EXPORT_SYMBOL_GPL(ata_device_suspend);
5889 EXPORT_SYMBOL_GPL(ata_device_resume);
5890 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5891 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5893 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5894 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5895 EXPORT_SYMBOL_GPL(ata_port_abort);
5896 EXPORT_SYMBOL_GPL(ata_port_freeze);
5897 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5898 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5899 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5900 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5901 EXPORT_SYMBOL_GPL(ata_do_eh);