2 * ramdisk.c - Multiple RAM disk driver - gzip-loading version - v. 0.8 beta.
4 * (C) Chad Page, Theodore Ts'o, et. al, 1995.
6 * This RAM disk is designed to have filesystems created on it and mounted
7 * just like a regular floppy disk.
9 * It also does something suggested by Linus: use the buffer cache as the
10 * RAM disk data. This makes it possible to dynamically allocate the RAM disk
11 * buffer - with some consequences I have to deal with as I write this.
13 * This code is based on the original ramdisk.c, written mostly by
14 * Theodore Ts'o (TYT) in 1991. The code was largely rewritten by
15 * Chad Page to use the buffer cache to store the RAM disk data in
16 * 1995; Theodore then took over the driver again, and cleaned it up
17 * for inclusion in the mainline kernel.
19 * The original CRAMDISK code was written by Richard Lyons, and
20 * adapted by Chad Page to use the new RAM disk interface. Theodore
21 * Ts'o rewrote it so that both the compressed RAM disk loader and the
22 * kernel decompressor uses the same inflate.c codebase. The RAM disk
23 * loader now also loads into a dynamic (buffer cache based) RAM disk,
24 * not the old static RAM disk. Support for the old static RAM disk has
25 * been completely removed.
27 * Loadable module support added by Tom Dyas.
29 * Further cleanups by Chad Page (page0588@sundance.sjsu.edu):
30 * Cosmetic changes in #ifdef MODULE, code movement, etc.
31 * When the RAM disk module is removed, free the protected buffers
32 * Default RAM disk size changed to 2.88 MB
34 * Added initrd: Werner Almesberger & Hans Lermen, Feb '96
36 * 4/25/96 : Made RAM disk size a parameter (default is now 4 MB)
39 * Add support for fs images split across >1 disk, Paul Gortmaker, Mar '98
41 * Make block size and block size shift for RAM disks a global macro
42 * and set blk_size for -ENOSPC, Werner Fink <werner@suse.de>, Apr '99
45 #include <linux/config.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <asm/atomic.h>
49 #include <linux/bio.h>
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/init.h>
53 #include <linux/devfs_fs_kernel.h>
54 #include <linux/pagemap.h>
55 #include <linux/blkdev.h>
56 #include <linux/genhd.h>
57 #include <linux/buffer_head.h> /* for invalidate_bdev() */
58 #include <linux/backing-dev.h>
59 #include <linux/blkpg.h>
60 #include <linux/writeback.h>
62 #include <asm/uaccess.h>
64 /* Various static variables go here. Most are used only in the RAM disk code.
67 static struct gendisk *rd_disks[CONFIG_BLK_DEV_RAM_COUNT];
68 static struct block_device *rd_bdev[CONFIG_BLK_DEV_RAM_COUNT];/* Protected device data */
69 static struct request_queue *rd_queue[CONFIG_BLK_DEV_RAM_COUNT];
72 * Parameters for the boot-loading of the RAM disk. These are set by
73 * init/main.c (from arguments to the kernel command line) or from the
74 * architecture-specific setup routine (from the stored boot sector
77 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; /* Size of the RAM disks */
79 * It would be very desirable to have a soft-blocksize (that in the case
80 * of the ramdisk driver is also the hardblocksize ;) of PAGE_SIZE because
81 * doing that we'll achieve a far better MM footprint. Using a rd_blocksize of
82 * BLOCK_SIZE in the worst case we'll make PAGE_SIZE/BLOCK_SIZE buffer-pages
83 * unfreeable. With a rd_blocksize of PAGE_SIZE instead we are sure that only
84 * 1 page will be protected. Depending on the size of the ramdisk you
85 * may want to change the ramdisk blocksize to achieve a better or worse MM
86 * behaviour. The default is still BLOCK_SIZE (needed by rd_load_image that
87 * supposes the filesystem in the image uses a BLOCK_SIZE blocksize).
89 static int rd_blocksize = BLOCK_SIZE; /* blocksize of the RAM disks */
92 * Copyright (C) 2000 Linus Torvalds.
93 * 2000 Transmeta Corp.
94 * aops copied from ramfs.
98 * If a ramdisk page has buffers, some may be uptodate and some may be not.
99 * To bring the page uptodate we zero out the non-uptodate buffers. The
100 * page must be locked.
102 static void make_page_uptodate(struct page *page)
104 if (page_has_buffers(page)) {
105 struct buffer_head *bh = page_buffers(page);
106 struct buffer_head *head = bh;
109 if (!buffer_uptodate(bh)) {
110 memset(bh->b_data, 0, bh->b_size);
112 * akpm: I'm totally undecided about this. The
113 * buffer has just been magically brought "up to
114 * date", but nobody should want to be reading
115 * it anyway, because it hasn't been used for
116 * anything yet. It is still in a "not read
117 * from disk yet" state.
119 * But non-uptodate buffers against an uptodate
120 * page are against the rules. So do it anyway.
122 set_buffer_uptodate(bh);
124 } while ((bh = bh->b_this_page) != head);
126 memset(page_address(page), 0, PAGE_CACHE_SIZE);
128 flush_dcache_page(page);
129 SetPageUptodate(page);
132 static int ramdisk_readpage(struct file *file, struct page *page)
134 if (!PageUptodate(page))
135 make_page_uptodate(page);
140 static int ramdisk_prepare_write(struct file *file, struct page *page,
141 unsigned offset, unsigned to)
143 if (!PageUptodate(page))
144 make_page_uptodate(page);
148 static int ramdisk_commit_write(struct file *file, struct page *page,
149 unsigned offset, unsigned to)
151 set_page_dirty(page);
156 * ->writepage to the the blockdev's mapping has to redirty the page so that the
157 * VM doesn't go and steal it. We return AOP_WRITEPAGE_ACTIVATE so that the VM
158 * won't try to (pointlessly) write the page again for a while.
160 * Really, these pages should not be on the LRU at all.
162 static int ramdisk_writepage(struct page *page, struct writeback_control *wbc)
164 if (!PageUptodate(page))
165 make_page_uptodate(page);
167 if (wbc->for_reclaim)
168 return AOP_WRITEPAGE_ACTIVATE;
174 * This is a little speedup thing: short-circuit attempts to write back the
175 * ramdisk blockdev inode to its non-existent backing store.
177 static int ramdisk_writepages(struct address_space *mapping,
178 struct writeback_control *wbc)
184 * ramdisk blockdev pages have their own ->set_page_dirty() because we don't
185 * want them to contribute to dirty memory accounting.
187 static int ramdisk_set_page_dirty(struct page *page)
189 if (!TestSetPageDirty(page))
194 static const struct address_space_operations ramdisk_aops = {
195 .readpage = ramdisk_readpage,
196 .prepare_write = ramdisk_prepare_write,
197 .commit_write = ramdisk_commit_write,
198 .writepage = ramdisk_writepage,
199 .set_page_dirty = ramdisk_set_page_dirty,
200 .writepages = ramdisk_writepages,
203 static int rd_blkdev_pagecache_IO(int rw, struct bio_vec *vec, sector_t sector,
204 struct address_space *mapping)
206 pgoff_t index = sector >> (PAGE_CACHE_SHIFT - 9);
207 unsigned int vec_offset = vec->bv_offset;
208 int offset = (sector << 9) & ~PAGE_CACHE_MASK;
209 int size = vec->bv_len;
218 count = PAGE_CACHE_SIZE - offset;
223 page = grab_cache_page(mapping, index);
229 if (!PageUptodate(page))
230 make_page_uptodate(page);
235 src = kmap_atomic(page, KM_USER0) + offset;
236 dst = kmap_atomic(vec->bv_page, KM_USER1) + vec_offset;
238 src = kmap_atomic(vec->bv_page, KM_USER0) + vec_offset;
239 dst = kmap_atomic(page, KM_USER1) + offset;
244 memcpy(dst, src, count);
246 kunmap_atomic(src, KM_USER0);
247 kunmap_atomic(dst, KM_USER1);
250 flush_dcache_page(vec->bv_page);
252 set_page_dirty(page);
262 * Basically, my strategy here is to set up a buffer-head which can't be
263 * deleted, and make that my Ramdisk. If the request is outside of the
264 * allocated size, we must get rid of it...
266 * 19-JAN-1998 Richard Gooch <rgooch@atnf.csiro.au> Added devfs support
269 static int rd_make_request(request_queue_t *q, struct bio *bio)
271 struct block_device *bdev = bio->bi_bdev;
272 struct address_space * mapping = bdev->bd_inode->i_mapping;
273 sector_t sector = bio->bi_sector;
274 unsigned long len = bio->bi_size >> 9;
275 int rw = bio_data_dir(bio);
276 struct bio_vec *bvec;
279 if (sector + len > get_capacity(bdev->bd_disk))
285 bio_for_each_segment(bvec, bio, i) {
286 ret |= rd_blkdev_pagecache_IO(rw, bvec, sector, mapping);
287 sector += bvec->bv_len >> 9;
292 bio_endio(bio, bio->bi_size, 0);
295 bio_io_error(bio, bio->bi_size);
299 static int rd_ioctl(struct inode *inode, struct file *file,
300 unsigned int cmd, unsigned long arg)
303 struct block_device *bdev = inode->i_bdev;
305 if (cmd != BLKFLSBUF)
309 * special: we want to release the ramdisk memory, it's not like with
310 * the other blockdevices where this ioctl only flushes away the buffer
314 mutex_lock(&bdev->bd_mutex);
315 if (bdev->bd_openers <= 2) {
316 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
319 mutex_unlock(&bdev->bd_mutex);
324 * This is the backing_dev_info for the blockdev inode itself. It doesn't need
325 * writeback and it does not contribute to dirty memory accounting.
327 static struct backing_dev_info rd_backing_dev_info = {
328 .ra_pages = 0, /* No readahead */
329 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK | BDI_CAP_MAP_COPY,
330 .unplug_io_fn = default_unplug_io_fn,
334 * This is the backing_dev_info for the files which live atop the ramdisk
335 * "device". These files do need writeback and they do contribute to dirty
338 static struct backing_dev_info rd_file_backing_dev_info = {
339 .ra_pages = 0, /* No readahead */
340 .capabilities = BDI_CAP_MAP_COPY, /* Does contribute to dirty memory */
341 .unplug_io_fn = default_unplug_io_fn,
344 static int rd_open(struct inode *inode, struct file *filp)
346 unsigned unit = iminor(inode);
348 if (rd_bdev[unit] == NULL) {
349 struct block_device *bdev = inode->i_bdev;
350 struct address_space *mapping;
354 inode = igrab(bdev->bd_inode);
355 rd_bdev[unit] = bdev;
357 bsize = bdev_hardsect_size(bdev);
358 bdev->bd_block_size = bsize;
359 inode->i_blkbits = blksize_bits(bsize);
360 inode->i_size = get_capacity(bdev->bd_disk)<<9;
362 mapping = inode->i_mapping;
363 mapping->a_ops = &ramdisk_aops;
364 mapping->backing_dev_info = &rd_backing_dev_info;
365 bdev->bd_inode_backing_dev_info = &rd_file_backing_dev_info;
368 * Deep badness. rd_blkdev_pagecache_IO() needs to allocate
369 * pagecache pages within a request_fn. We cannot recur back
370 * into the filesytem which is mounted atop the ramdisk, because
371 * that would deadlock on fs locks. And we really don't want
372 * to reenter rd_blkdev_pagecache_IO when we're already within
375 * So we turn off __GFP_FS and __GFP_IO.
377 * And to give this thing a hope of working, turn on __GFP_HIGH.
378 * Hopefully, there's enough regular memory allocation going on
379 * for the page allocator emergency pools to keep the ramdisk
382 gfp_mask = mapping_gfp_mask(mapping);
383 gfp_mask &= ~(__GFP_FS|__GFP_IO);
384 gfp_mask |= __GFP_HIGH;
385 mapping_set_gfp_mask(mapping, gfp_mask);
391 static struct block_device_operations rd_bd_op = {
392 .owner = THIS_MODULE,
398 * Before freeing the module, invalidate all of the protected buffers!
400 static void __exit rd_cleanup(void)
404 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
405 struct block_device *bdev = rd_bdev[i];
408 invalidate_bdev(bdev, 1);
411 del_gendisk(rd_disks[i]);
412 put_disk(rd_disks[i]);
413 blk_cleanup_queue(rd_queue[i]);
416 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
420 * This is the registration and initialization section of the RAM disk driver
422 static int __init rd_init(void)
427 if (rd_blocksize > PAGE_SIZE || rd_blocksize < 512 ||
428 (rd_blocksize & (rd_blocksize-1))) {
429 printk("RAMDISK: wrong blocksize %d, reverting to defaults\n",
431 rd_blocksize = BLOCK_SIZE;
434 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
435 rd_disks[i] = alloc_disk(1);
440 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) {
447 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
448 struct gendisk *disk = rd_disks[i];
450 rd_queue[i] = blk_alloc_queue(GFP_KERNEL);
454 blk_queue_make_request(rd_queue[i], &rd_make_request);
455 blk_queue_hardsect_size(rd_queue[i], rd_blocksize);
457 /* rd_size is given in kB */
458 disk->major = RAMDISK_MAJOR;
459 disk->first_minor = i;
460 disk->fops = &rd_bd_op;
461 disk->queue = rd_queue[i];
462 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
463 sprintf(disk->disk_name, "ram%d", i);
464 sprintf(disk->devfs_name, "rd/%d", i);
465 set_capacity(disk, rd_size * 2);
466 add_disk(rd_disks[i]);
469 /* rd_size is given in kB */
470 printk("RAMDISK driver initialized: "
471 "%d RAM disks of %dK size %d blocksize\n",
472 CONFIG_BLK_DEV_RAM_COUNT, rd_size, rd_blocksize);
476 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
479 put_disk(rd_disks[i]);
480 blk_cleanup_queue(rd_queue[i]);
485 module_init(rd_init);
486 module_exit(rd_cleanup);
488 /* options - nonmodular */
490 static int __init ramdisk_size(char *str)
492 rd_size = simple_strtol(str,NULL,0);
495 static int __init ramdisk_size2(char *str) /* kludge */
497 return ramdisk_size(str);
499 static int __init ramdisk_blocksize(char *str)
501 rd_blocksize = simple_strtol(str,NULL,0);
504 __setup("ramdisk=", ramdisk_size);
505 __setup("ramdisk_size=", ramdisk_size2);
506 __setup("ramdisk_blocksize=", ramdisk_blocksize);
509 /* options - modular */
510 module_param(rd_size, int, 0);
511 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
512 module_param(rd_blocksize, int, 0);
513 MODULE_PARM_DESC(rd_blocksize, "Blocksize of each RAM disk in bytes.");
514 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
516 MODULE_LICENSE("GPL");