KVM: Don't bother the mmu if cr3 load doesn't change cr3
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22 #include "x86.h"
23
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29
30 #include <asm/page.h>
31 #include <asm/cmpxchg.h>
32
33 #undef MMU_DEBUG
34
35 #undef AUDIT
36
37 #ifdef AUDIT
38 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
39 #else
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
41 #endif
42
43 #ifdef MMU_DEBUG
44
45 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
46 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
47
48 #else
49
50 #define pgprintk(x...) do { } while (0)
51 #define rmap_printk(x...) do { } while (0)
52
53 #endif
54
55 #if defined(MMU_DEBUG) || defined(AUDIT)
56 static int dbg = 1;
57 #endif
58
59 #ifndef MMU_DEBUG
60 #define ASSERT(x) do { } while (0)
61 #else
62 #define ASSERT(x)                                                       \
63         if (!(x)) {                                                     \
64                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
65                        __FILE__, __LINE__, #x);                         \
66         }
67 #endif
68
69 #define PT64_PT_BITS 9
70 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
71 #define PT32_PT_BITS 10
72 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
73
74 #define PT_WRITABLE_SHIFT 1
75
76 #define PT_PRESENT_MASK (1ULL << 0)
77 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
78 #define PT_USER_MASK (1ULL << 2)
79 #define PT_PWT_MASK (1ULL << 3)
80 #define PT_PCD_MASK (1ULL << 4)
81 #define PT_ACCESSED_MASK (1ULL << 5)
82 #define PT_DIRTY_MASK (1ULL << 6)
83 #define PT_PAGE_SIZE_MASK (1ULL << 7)
84 #define PT_PAT_MASK (1ULL << 7)
85 #define PT_GLOBAL_MASK (1ULL << 8)
86 #define PT64_NX_MASK (1ULL << 63)
87
88 #define PT_PAT_SHIFT 7
89 #define PT_DIR_PAT_SHIFT 12
90 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
91
92 #define PT32_DIR_PSE36_SIZE 4
93 #define PT32_DIR_PSE36_SHIFT 13
94 #define PT32_DIR_PSE36_MASK \
95         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
96
97
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102
103 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
104
105 #define PT64_LEVEL_BITS 9
106
107 #define PT64_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
109
110 #define PT64_LEVEL_MASK(level) \
111                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
112
113 #define PT64_INDEX(address, level)\
114         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117 #define PT32_LEVEL_BITS 10
118
119 #define PT32_LEVEL_SHIFT(level) \
120                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121
122 #define PT32_LEVEL_MASK(level) \
123                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
130 #define PT64_DIR_BASE_ADDR_MASK \
131         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
132
133 #define PT32_BASE_ADDR_MASK PAGE_MASK
134 #define PT32_DIR_BASE_ADDR_MASK \
135         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
136
137 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
138                         | PT64_NX_MASK)
139
140 #define PFERR_PRESENT_MASK (1U << 0)
141 #define PFERR_WRITE_MASK (1U << 1)
142 #define PFERR_USER_MASK (1U << 2)
143 #define PFERR_FETCH_MASK (1U << 4)
144
145 #define PT64_ROOT_LEVEL 4
146 #define PT32_ROOT_LEVEL 2
147 #define PT32E_ROOT_LEVEL 3
148
149 #define PT_DIRECTORY_LEVEL 2
150 #define PT_PAGE_TABLE_LEVEL 1
151
152 #define RMAP_EXT 4
153
154 struct kvm_rmap_desc {
155         u64 *shadow_ptes[RMAP_EXT];
156         struct kvm_rmap_desc *more;
157 };
158
159 static struct kmem_cache *pte_chain_cache;
160 static struct kmem_cache *rmap_desc_cache;
161 static struct kmem_cache *mmu_page_header_cache;
162
163 static u64 __read_mostly shadow_trap_nonpresent_pte;
164 static u64 __read_mostly shadow_notrap_nonpresent_pte;
165
166 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
167 {
168         shadow_trap_nonpresent_pte = trap_pte;
169         shadow_notrap_nonpresent_pte = notrap_pte;
170 }
171 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
172
173 static int is_write_protection(struct kvm_vcpu *vcpu)
174 {
175         return vcpu->cr0 & X86_CR0_WP;
176 }
177
178 static int is_cpuid_PSE36(void)
179 {
180         return 1;
181 }
182
183 static int is_nx(struct kvm_vcpu *vcpu)
184 {
185         return vcpu->shadow_efer & EFER_NX;
186 }
187
188 static int is_present_pte(unsigned long pte)
189 {
190         return pte & PT_PRESENT_MASK;
191 }
192
193 static int is_shadow_present_pte(u64 pte)
194 {
195         pte &= ~PT_SHADOW_IO_MARK;
196         return pte != shadow_trap_nonpresent_pte
197                 && pte != shadow_notrap_nonpresent_pte;
198 }
199
200 static int is_writeble_pte(unsigned long pte)
201 {
202         return pte & PT_WRITABLE_MASK;
203 }
204
205 static int is_dirty_pte(unsigned long pte)
206 {
207         return pte & PT_DIRTY_MASK;
208 }
209
210 static int is_io_pte(unsigned long pte)
211 {
212         return pte & PT_SHADOW_IO_MARK;
213 }
214
215 static int is_rmap_pte(u64 pte)
216 {
217         return pte != shadow_trap_nonpresent_pte
218                 && pte != shadow_notrap_nonpresent_pte;
219 }
220
221 static void set_shadow_pte(u64 *sptep, u64 spte)
222 {
223 #ifdef CONFIG_X86_64
224         set_64bit((unsigned long *)sptep, spte);
225 #else
226         set_64bit((unsigned long long *)sptep, spte);
227 #endif
228 }
229
230 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
231                                   struct kmem_cache *base_cache, int min)
232 {
233         void *obj;
234
235         if (cache->nobjs >= min)
236                 return 0;
237         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
238                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
239                 if (!obj)
240                         return -ENOMEM;
241                 cache->objects[cache->nobjs++] = obj;
242         }
243         return 0;
244 }
245
246 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
247 {
248         while (mc->nobjs)
249                 kfree(mc->objects[--mc->nobjs]);
250 }
251
252 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
253                                        int min)
254 {
255         struct page *page;
256
257         if (cache->nobjs >= min)
258                 return 0;
259         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
260                 page = alloc_page(GFP_KERNEL);
261                 if (!page)
262                         return -ENOMEM;
263                 set_page_private(page, 0);
264                 cache->objects[cache->nobjs++] = page_address(page);
265         }
266         return 0;
267 }
268
269 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
270 {
271         while (mc->nobjs)
272                 free_page((unsigned long)mc->objects[--mc->nobjs]);
273 }
274
275 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
276 {
277         int r;
278
279         kvm_mmu_free_some_pages(vcpu);
280         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
281                                    pte_chain_cache, 4);
282         if (r)
283                 goto out;
284         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
285                                    rmap_desc_cache, 1);
286         if (r)
287                 goto out;
288         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
289         if (r)
290                 goto out;
291         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
292                                    mmu_page_header_cache, 4);
293 out:
294         return r;
295 }
296
297 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
298 {
299         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
300         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
301         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
302         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
303 }
304
305 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
306                                     size_t size)
307 {
308         void *p;
309
310         BUG_ON(!mc->nobjs);
311         p = mc->objects[--mc->nobjs];
312         memset(p, 0, size);
313         return p;
314 }
315
316 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
317 {
318         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
319                                       sizeof(struct kvm_pte_chain));
320 }
321
322 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
323 {
324         kfree(pc);
325 }
326
327 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
328 {
329         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
330                                       sizeof(struct kvm_rmap_desc));
331 }
332
333 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
334 {
335         kfree(rd);
336 }
337
338 /*
339  * Take gfn and return the reverse mapping to it.
340  * Note: gfn must be unaliased before this function get called
341  */
342
343 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
344 {
345         struct kvm_memory_slot *slot;
346
347         slot = gfn_to_memslot(kvm, gfn);
348         return &slot->rmap[gfn - slot->base_gfn];
349 }
350
351 /*
352  * Reverse mapping data structures:
353  *
354  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
355  * that points to page_address(page).
356  *
357  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
358  * containing more mappings.
359  */
360 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
361 {
362         struct kvm_mmu_page *page;
363         struct kvm_rmap_desc *desc;
364         unsigned long *rmapp;
365         int i;
366
367         if (!is_rmap_pte(*spte))
368                 return;
369         gfn = unalias_gfn(vcpu->kvm, gfn);
370         page = page_header(__pa(spte));
371         page->gfns[spte - page->spt] = gfn;
372         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
373         if (!*rmapp) {
374                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
375                 *rmapp = (unsigned long)spte;
376         } else if (!(*rmapp & 1)) {
377                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
378                 desc = mmu_alloc_rmap_desc(vcpu);
379                 desc->shadow_ptes[0] = (u64 *)*rmapp;
380                 desc->shadow_ptes[1] = spte;
381                 *rmapp = (unsigned long)desc | 1;
382         } else {
383                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
384                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
385                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
386                         desc = desc->more;
387                 if (desc->shadow_ptes[RMAP_EXT-1]) {
388                         desc->more = mmu_alloc_rmap_desc(vcpu);
389                         desc = desc->more;
390                 }
391                 for (i = 0; desc->shadow_ptes[i]; ++i)
392                         ;
393                 desc->shadow_ptes[i] = spte;
394         }
395 }
396
397 static void rmap_desc_remove_entry(unsigned long *rmapp,
398                                    struct kvm_rmap_desc *desc,
399                                    int i,
400                                    struct kvm_rmap_desc *prev_desc)
401 {
402         int j;
403
404         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
405                 ;
406         desc->shadow_ptes[i] = desc->shadow_ptes[j];
407         desc->shadow_ptes[j] = NULL;
408         if (j != 0)
409                 return;
410         if (!prev_desc && !desc->more)
411                 *rmapp = (unsigned long)desc->shadow_ptes[0];
412         else
413                 if (prev_desc)
414                         prev_desc->more = desc->more;
415                 else
416                         *rmapp = (unsigned long)desc->more | 1;
417         mmu_free_rmap_desc(desc);
418 }
419
420 static void rmap_remove(struct kvm *kvm, u64 *spte)
421 {
422         struct kvm_rmap_desc *desc;
423         struct kvm_rmap_desc *prev_desc;
424         struct kvm_mmu_page *page;
425         struct page *release_page;
426         unsigned long *rmapp;
427         int i;
428
429         if (!is_rmap_pte(*spte))
430                 return;
431         page = page_header(__pa(spte));
432         release_page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
433         if (is_writeble_pte(*spte))
434                 kvm_release_page_dirty(release_page);
435         else
436                 kvm_release_page_clean(release_page);
437         rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
438         if (!*rmapp) {
439                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
440                 BUG();
441         } else if (!(*rmapp & 1)) {
442                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
443                 if ((u64 *)*rmapp != spte) {
444                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
445                                spte, *spte);
446                         BUG();
447                 }
448                 *rmapp = 0;
449         } else {
450                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
451                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
452                 prev_desc = NULL;
453                 while (desc) {
454                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
455                                 if (desc->shadow_ptes[i] == spte) {
456                                         rmap_desc_remove_entry(rmapp,
457                                                                desc, i,
458                                                                prev_desc);
459                                         return;
460                                 }
461                         prev_desc = desc;
462                         desc = desc->more;
463                 }
464                 BUG();
465         }
466 }
467
468 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
469 {
470         struct kvm_rmap_desc *desc;
471         struct kvm_rmap_desc *prev_desc;
472         u64 *prev_spte;
473         int i;
474
475         if (!*rmapp)
476                 return NULL;
477         else if (!(*rmapp & 1)) {
478                 if (!spte)
479                         return (u64 *)*rmapp;
480                 return NULL;
481         }
482         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
483         prev_desc = NULL;
484         prev_spte = NULL;
485         while (desc) {
486                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
487                         if (prev_spte == spte)
488                                 return desc->shadow_ptes[i];
489                         prev_spte = desc->shadow_ptes[i];
490                 }
491                 desc = desc->more;
492         }
493         return NULL;
494 }
495
496 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
497 {
498         unsigned long *rmapp;
499         u64 *spte;
500
501         gfn = unalias_gfn(kvm, gfn);
502         rmapp = gfn_to_rmap(kvm, gfn);
503
504         spte = rmap_next(kvm, rmapp, NULL);
505         while (spte) {
506                 BUG_ON(!spte);
507                 BUG_ON(!(*spte & PT_PRESENT_MASK));
508                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
509                 if (is_writeble_pte(*spte))
510                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
511                 kvm_flush_remote_tlbs(kvm);
512                 spte = rmap_next(kvm, rmapp, spte);
513         }
514 }
515
516 #ifdef MMU_DEBUG
517 static int is_empty_shadow_page(u64 *spt)
518 {
519         u64 *pos;
520         u64 *end;
521
522         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
523                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
524                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
525                                pos, *pos);
526                         return 0;
527                 }
528         return 1;
529 }
530 #endif
531
532 static void kvm_mmu_free_page(struct kvm *kvm,
533                               struct kvm_mmu_page *page_head)
534 {
535         ASSERT(is_empty_shadow_page(page_head->spt));
536         list_del(&page_head->link);
537         __free_page(virt_to_page(page_head->spt));
538         __free_page(virt_to_page(page_head->gfns));
539         kfree(page_head);
540         ++kvm->n_free_mmu_pages;
541 }
542
543 static unsigned kvm_page_table_hashfn(gfn_t gfn)
544 {
545         return gfn;
546 }
547
548 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
549                                                u64 *parent_pte)
550 {
551         struct kvm_mmu_page *page;
552
553         if (!vcpu->kvm->n_free_mmu_pages)
554                 return NULL;
555
556         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
557                                       sizeof *page);
558         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
559         page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
560         set_page_private(virt_to_page(page->spt), (unsigned long)page);
561         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
562         ASSERT(is_empty_shadow_page(page->spt));
563         page->slot_bitmap = 0;
564         page->multimapped = 0;
565         page->parent_pte = parent_pte;
566         --vcpu->kvm->n_free_mmu_pages;
567         return page;
568 }
569
570 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
571                                     struct kvm_mmu_page *page, u64 *parent_pte)
572 {
573         struct kvm_pte_chain *pte_chain;
574         struct hlist_node *node;
575         int i;
576
577         if (!parent_pte)
578                 return;
579         if (!page->multimapped) {
580                 u64 *old = page->parent_pte;
581
582                 if (!old) {
583                         page->parent_pte = parent_pte;
584                         return;
585                 }
586                 page->multimapped = 1;
587                 pte_chain = mmu_alloc_pte_chain(vcpu);
588                 INIT_HLIST_HEAD(&page->parent_ptes);
589                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
590                 pte_chain->parent_ptes[0] = old;
591         }
592         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
593                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
594                         continue;
595                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
596                         if (!pte_chain->parent_ptes[i]) {
597                                 pte_chain->parent_ptes[i] = parent_pte;
598                                 return;
599                         }
600         }
601         pte_chain = mmu_alloc_pte_chain(vcpu);
602         BUG_ON(!pte_chain);
603         hlist_add_head(&pte_chain->link, &page->parent_ptes);
604         pte_chain->parent_ptes[0] = parent_pte;
605 }
606
607 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
608                                        u64 *parent_pte)
609 {
610         struct kvm_pte_chain *pte_chain;
611         struct hlist_node *node;
612         int i;
613
614         if (!page->multimapped) {
615                 BUG_ON(page->parent_pte != parent_pte);
616                 page->parent_pte = NULL;
617                 return;
618         }
619         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
620                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
621                         if (!pte_chain->parent_ptes[i])
622                                 break;
623                         if (pte_chain->parent_ptes[i] != parent_pte)
624                                 continue;
625                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
626                                 && pte_chain->parent_ptes[i + 1]) {
627                                 pte_chain->parent_ptes[i]
628                                         = pte_chain->parent_ptes[i + 1];
629                                 ++i;
630                         }
631                         pte_chain->parent_ptes[i] = NULL;
632                         if (i == 0) {
633                                 hlist_del(&pte_chain->link);
634                                 mmu_free_pte_chain(pte_chain);
635                                 if (hlist_empty(&page->parent_ptes)) {
636                                         page->multimapped = 0;
637                                         page->parent_pte = NULL;
638                                 }
639                         }
640                         return;
641                 }
642         BUG();
643 }
644
645 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
646                                                 gfn_t gfn)
647 {
648         unsigned index;
649         struct hlist_head *bucket;
650         struct kvm_mmu_page *page;
651         struct hlist_node *node;
652
653         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
654         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
655         bucket = &kvm->mmu_page_hash[index];
656         hlist_for_each_entry(page, node, bucket, hash_link)
657                 if (page->gfn == gfn && !page->role.metaphysical) {
658                         pgprintk("%s: found role %x\n",
659                                  __FUNCTION__, page->role.word);
660                         return page;
661                 }
662         return NULL;
663 }
664
665 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
666                                              gfn_t gfn,
667                                              gva_t gaddr,
668                                              unsigned level,
669                                              int metaphysical,
670                                              unsigned hugepage_access,
671                                              u64 *parent_pte)
672 {
673         union kvm_mmu_page_role role;
674         unsigned index;
675         unsigned quadrant;
676         struct hlist_head *bucket;
677         struct kvm_mmu_page *page;
678         struct hlist_node *node;
679
680         role.word = 0;
681         role.glevels = vcpu->mmu.root_level;
682         role.level = level;
683         role.metaphysical = metaphysical;
684         role.hugepage_access = hugepage_access;
685         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
686                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
687                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
688                 role.quadrant = quadrant;
689         }
690         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
691                  gfn, role.word);
692         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
693         bucket = &vcpu->kvm->mmu_page_hash[index];
694         hlist_for_each_entry(page, node, bucket, hash_link)
695                 if (page->gfn == gfn && page->role.word == role.word) {
696                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
697                         pgprintk("%s: found\n", __FUNCTION__);
698                         return page;
699                 }
700         page = kvm_mmu_alloc_page(vcpu, parent_pte);
701         if (!page)
702                 return page;
703         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
704         page->gfn = gfn;
705         page->role = role;
706         hlist_add_head(&page->hash_link, bucket);
707         vcpu->mmu.prefetch_page(vcpu, page);
708         if (!metaphysical)
709                 rmap_write_protect(vcpu->kvm, gfn);
710         return page;
711 }
712
713 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
714                                          struct kvm_mmu_page *page)
715 {
716         unsigned i;
717         u64 *pt;
718         u64 ent;
719
720         pt = page->spt;
721
722         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
723                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
724                         if (is_shadow_present_pte(pt[i]))
725                                 rmap_remove(kvm, &pt[i]);
726                         pt[i] = shadow_trap_nonpresent_pte;
727                 }
728                 kvm_flush_remote_tlbs(kvm);
729                 return;
730         }
731
732         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
733                 ent = pt[i];
734
735                 pt[i] = shadow_trap_nonpresent_pte;
736                 if (!is_shadow_present_pte(ent))
737                         continue;
738                 ent &= PT64_BASE_ADDR_MASK;
739                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
740         }
741         kvm_flush_remote_tlbs(kvm);
742 }
743
744 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
745                              u64 *parent_pte)
746 {
747         mmu_page_remove_parent_pte(page, parent_pte);
748 }
749
750 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
751 {
752         int i;
753
754         for (i = 0; i < KVM_MAX_VCPUS; ++i)
755                 if (kvm->vcpus[i])
756                         kvm->vcpus[i]->last_pte_updated = NULL;
757 }
758
759 static void kvm_mmu_zap_page(struct kvm *kvm,
760                              struct kvm_mmu_page *page)
761 {
762         u64 *parent_pte;
763
764         ++kvm->stat.mmu_shadow_zapped;
765         while (page->multimapped || page->parent_pte) {
766                 if (!page->multimapped)
767                         parent_pte = page->parent_pte;
768                 else {
769                         struct kvm_pte_chain *chain;
770
771                         chain = container_of(page->parent_ptes.first,
772                                              struct kvm_pte_chain, link);
773                         parent_pte = chain->parent_ptes[0];
774                 }
775                 BUG_ON(!parent_pte);
776                 kvm_mmu_put_page(page, parent_pte);
777                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
778         }
779         kvm_mmu_page_unlink_children(kvm, page);
780         if (!page->root_count) {
781                 hlist_del(&page->hash_link);
782                 kvm_mmu_free_page(kvm, page);
783         } else
784                 list_move(&page->link, &kvm->active_mmu_pages);
785         kvm_mmu_reset_last_pte_updated(kvm);
786 }
787
788 /*
789  * Changing the number of mmu pages allocated to the vm
790  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
791  */
792 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
793 {
794         /*
795          * If we set the number of mmu pages to be smaller be than the
796          * number of actived pages , we must to free some mmu pages before we
797          * change the value
798          */
799
800         if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
801             kvm_nr_mmu_pages) {
802                 int n_used_mmu_pages = kvm->n_alloc_mmu_pages
803                                        - kvm->n_free_mmu_pages;
804
805                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
806                         struct kvm_mmu_page *page;
807
808                         page = container_of(kvm->active_mmu_pages.prev,
809                                             struct kvm_mmu_page, link);
810                         kvm_mmu_zap_page(kvm, page);
811                         n_used_mmu_pages--;
812                 }
813                 kvm->n_free_mmu_pages = 0;
814         }
815         else
816                 kvm->n_free_mmu_pages += kvm_nr_mmu_pages
817                                          - kvm->n_alloc_mmu_pages;
818
819         kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
820 }
821
822 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
823 {
824         unsigned index;
825         struct hlist_head *bucket;
826         struct kvm_mmu_page *page;
827         struct hlist_node *node, *n;
828         int r;
829
830         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
831         r = 0;
832         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
833         bucket = &kvm->mmu_page_hash[index];
834         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
835                 if (page->gfn == gfn && !page->role.metaphysical) {
836                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
837                                  page->role.word);
838                         kvm_mmu_zap_page(kvm, page);
839                         r = 1;
840                 }
841         return r;
842 }
843
844 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
845 {
846         struct kvm_mmu_page *page;
847
848         while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
849                 pgprintk("%s: zap %lx %x\n",
850                          __FUNCTION__, gfn, page->role.word);
851                 kvm_mmu_zap_page(kvm, page);
852         }
853 }
854
855 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
856 {
857         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
858         struct kvm_mmu_page *page_head = page_header(__pa(pte));
859
860         __set_bit(slot, &page_head->slot_bitmap);
861 }
862
863 hpa_t gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
864 {
865         struct page *page;
866         hpa_t hpa;
867
868         ASSERT((gpa & HPA_ERR_MASK) == 0);
869         page = gfn_to_page(kvm, gpa >> PAGE_SHIFT);
870         hpa = ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) | (gpa & (PAGE_SIZE-1));
871         if (is_error_page(page))
872                 return hpa | HPA_ERR_MASK;
873         return hpa;
874 }
875
876 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
877 {
878         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
879
880         if (gpa == UNMAPPED_GVA)
881                 return UNMAPPED_GVA;
882         return gpa_to_hpa(vcpu->kvm, gpa);
883 }
884
885 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
886 {
887         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
888
889         if (gpa == UNMAPPED_GVA)
890                 return NULL;
891         return pfn_to_page(gpa_to_hpa(vcpu->kvm, gpa) >> PAGE_SHIFT);
892 }
893
894 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
895 {
896 }
897
898 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
899 {
900         int level = PT32E_ROOT_LEVEL;
901         hpa_t table_addr = vcpu->mmu.root_hpa;
902         struct page *page;
903
904         page = pfn_to_page(p >> PAGE_SHIFT);
905         for (; ; level--) {
906                 u32 index = PT64_INDEX(v, level);
907                 u64 *table;
908                 u64 pte;
909
910                 ASSERT(VALID_PAGE(table_addr));
911                 table = __va(table_addr);
912
913                 if (level == 1) {
914                         int was_rmapped;
915
916                         pte = table[index];
917                         was_rmapped = is_rmap_pte(pte);
918                         if (is_shadow_present_pte(pte) && is_writeble_pte(pte)) {
919                                 kvm_release_page_clean(page);
920                                 return 0;
921                         }
922                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
923                         page_header_update_slot(vcpu->kvm, table, v);
924                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
925                                                                 PT_USER_MASK;
926                         if (!was_rmapped)
927                                 rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
928                         else
929                                 kvm_release_page_clean(page);
930
931                         return 0;
932                 }
933
934                 if (table[index] == shadow_trap_nonpresent_pte) {
935                         struct kvm_mmu_page *new_table;
936                         gfn_t pseudo_gfn;
937
938                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
939                                 >> PAGE_SHIFT;
940                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
941                                                      v, level - 1,
942                                                      1, 3, &table[index]);
943                         if (!new_table) {
944                                 pgprintk("nonpaging_map: ENOMEM\n");
945                                 kvm_release_page_clean(page);
946                                 return -ENOMEM;
947                         }
948
949                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
950                                 | PT_WRITABLE_MASK | PT_USER_MASK;
951                 }
952                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
953         }
954 }
955
956 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
957                                     struct kvm_mmu_page *sp)
958 {
959         int i;
960
961         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
962                 sp->spt[i] = shadow_trap_nonpresent_pte;
963 }
964
965 static void mmu_free_roots(struct kvm_vcpu *vcpu)
966 {
967         int i;
968         struct kvm_mmu_page *page;
969
970         if (!VALID_PAGE(vcpu->mmu.root_hpa))
971                 return;
972 #ifdef CONFIG_X86_64
973         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
974                 hpa_t root = vcpu->mmu.root_hpa;
975
976                 page = page_header(root);
977                 --page->root_count;
978                 vcpu->mmu.root_hpa = INVALID_PAGE;
979                 return;
980         }
981 #endif
982         for (i = 0; i < 4; ++i) {
983                 hpa_t root = vcpu->mmu.pae_root[i];
984
985                 if (root) {
986                         root &= PT64_BASE_ADDR_MASK;
987                         page = page_header(root);
988                         --page->root_count;
989                 }
990                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
991         }
992         vcpu->mmu.root_hpa = INVALID_PAGE;
993 }
994
995 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
996 {
997         int i;
998         gfn_t root_gfn;
999         struct kvm_mmu_page *page;
1000
1001         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
1002
1003 #ifdef CONFIG_X86_64
1004         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1005                 hpa_t root = vcpu->mmu.root_hpa;
1006
1007                 ASSERT(!VALID_PAGE(root));
1008                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
1009                                         PT64_ROOT_LEVEL, 0, 0, NULL);
1010                 root = __pa(page->spt);
1011                 ++page->root_count;
1012                 vcpu->mmu.root_hpa = root;
1013                 return;
1014         }
1015 #endif
1016         for (i = 0; i < 4; ++i) {
1017                 hpa_t root = vcpu->mmu.pae_root[i];
1018
1019                 ASSERT(!VALID_PAGE(root));
1020                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
1021                         if (!is_present_pte(vcpu->pdptrs[i])) {
1022                                 vcpu->mmu.pae_root[i] = 0;
1023                                 continue;
1024                         }
1025                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
1026                 } else if (vcpu->mmu.root_level == 0)
1027                         root_gfn = 0;
1028                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1029                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
1030                                         0, NULL);
1031                 root = __pa(page->spt);
1032                 ++page->root_count;
1033                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
1034         }
1035         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
1036 }
1037
1038 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1039 {
1040         return vaddr;
1041 }
1042
1043 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1044                                u32 error_code)
1045 {
1046         gpa_t addr = gva;
1047         hpa_t paddr;
1048         int r;
1049
1050         r = mmu_topup_memory_caches(vcpu);
1051         if (r)
1052                 return r;
1053
1054         ASSERT(vcpu);
1055         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
1056
1057
1058         paddr = gpa_to_hpa(vcpu->kvm, addr & PT64_BASE_ADDR_MASK);
1059
1060         if (is_error_hpa(paddr)) {
1061                 kvm_release_page_clean(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
1062                                        >> PAGE_SHIFT));
1063                 return 1;
1064         }
1065
1066         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
1067 }
1068
1069 static void nonpaging_free(struct kvm_vcpu *vcpu)
1070 {
1071         mmu_free_roots(vcpu);
1072 }
1073
1074 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1075 {
1076         struct kvm_mmu *context = &vcpu->mmu;
1077
1078         context->new_cr3 = nonpaging_new_cr3;
1079         context->page_fault = nonpaging_page_fault;
1080         context->gva_to_gpa = nonpaging_gva_to_gpa;
1081         context->free = nonpaging_free;
1082         context->prefetch_page = nonpaging_prefetch_page;
1083         context->root_level = 0;
1084         context->shadow_root_level = PT32E_ROOT_LEVEL;
1085         context->root_hpa = INVALID_PAGE;
1086         return 0;
1087 }
1088
1089 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1090 {
1091         ++vcpu->stat.tlb_flush;
1092         kvm_x86_ops->tlb_flush(vcpu);
1093 }
1094
1095 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1096 {
1097         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1098         mmu_free_roots(vcpu);
1099 }
1100
1101 static void inject_page_fault(struct kvm_vcpu *vcpu,
1102                               u64 addr,
1103                               u32 err_code)
1104 {
1105         kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
1106 }
1107
1108 static void paging_free(struct kvm_vcpu *vcpu)
1109 {
1110         nonpaging_free(vcpu);
1111 }
1112
1113 #define PTTYPE 64
1114 #include "paging_tmpl.h"
1115 #undef PTTYPE
1116
1117 #define PTTYPE 32
1118 #include "paging_tmpl.h"
1119 #undef PTTYPE
1120
1121 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1122 {
1123         struct kvm_mmu *context = &vcpu->mmu;
1124
1125         ASSERT(is_pae(vcpu));
1126         context->new_cr3 = paging_new_cr3;
1127         context->page_fault = paging64_page_fault;
1128         context->gva_to_gpa = paging64_gva_to_gpa;
1129         context->prefetch_page = paging64_prefetch_page;
1130         context->free = paging_free;
1131         context->root_level = level;
1132         context->shadow_root_level = level;
1133         context->root_hpa = INVALID_PAGE;
1134         return 0;
1135 }
1136
1137 static int paging64_init_context(struct kvm_vcpu *vcpu)
1138 {
1139         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1140 }
1141
1142 static int paging32_init_context(struct kvm_vcpu *vcpu)
1143 {
1144         struct kvm_mmu *context = &vcpu->mmu;
1145
1146         context->new_cr3 = paging_new_cr3;
1147         context->page_fault = paging32_page_fault;
1148         context->gva_to_gpa = paging32_gva_to_gpa;
1149         context->free = paging_free;
1150         context->prefetch_page = paging32_prefetch_page;
1151         context->root_level = PT32_ROOT_LEVEL;
1152         context->shadow_root_level = PT32E_ROOT_LEVEL;
1153         context->root_hpa = INVALID_PAGE;
1154         return 0;
1155 }
1156
1157 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1158 {
1159         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1160 }
1161
1162 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1163 {
1164         ASSERT(vcpu);
1165         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1166
1167         if (!is_paging(vcpu))
1168                 return nonpaging_init_context(vcpu);
1169         else if (is_long_mode(vcpu))
1170                 return paging64_init_context(vcpu);
1171         else if (is_pae(vcpu))
1172                 return paging32E_init_context(vcpu);
1173         else
1174                 return paging32_init_context(vcpu);
1175 }
1176
1177 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1178 {
1179         ASSERT(vcpu);
1180         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1181                 vcpu->mmu.free(vcpu);
1182                 vcpu->mmu.root_hpa = INVALID_PAGE;
1183         }
1184 }
1185
1186 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1187 {
1188         destroy_kvm_mmu(vcpu);
1189         return init_kvm_mmu(vcpu);
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1192
1193 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1194 {
1195         int r;
1196
1197         mutex_lock(&vcpu->kvm->lock);
1198         r = mmu_topup_memory_caches(vcpu);
1199         if (r)
1200                 goto out;
1201         mmu_alloc_roots(vcpu);
1202         kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1203         kvm_mmu_flush_tlb(vcpu);
1204 out:
1205         mutex_unlock(&vcpu->kvm->lock);
1206         return r;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1209
1210 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1211 {
1212         mmu_free_roots(vcpu);
1213 }
1214
1215 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1216                                   struct kvm_mmu_page *page,
1217                                   u64 *spte)
1218 {
1219         u64 pte;
1220         struct kvm_mmu_page *child;
1221
1222         pte = *spte;
1223         if (is_shadow_present_pte(pte)) {
1224                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1225                         rmap_remove(vcpu->kvm, spte);
1226                 else {
1227                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1228                         mmu_page_remove_parent_pte(child, spte);
1229                 }
1230         }
1231         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1232 }
1233
1234 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1235                                   struct kvm_mmu_page *page,
1236                                   u64 *spte,
1237                                   const void *new, int bytes,
1238                                   int offset_in_pte)
1239 {
1240         if (page->role.level != PT_PAGE_TABLE_LEVEL) {
1241                 ++vcpu->kvm->stat.mmu_pde_zapped;
1242                 return;
1243         }
1244
1245         ++vcpu->kvm->stat.mmu_pte_updated;
1246         if (page->role.glevels == PT32_ROOT_LEVEL)
1247                 paging32_update_pte(vcpu, page, spte, new, bytes,
1248                                     offset_in_pte);
1249         else
1250                 paging64_update_pte(vcpu, page, spte, new, bytes,
1251                                     offset_in_pte);
1252 }
1253
1254 static bool need_remote_flush(u64 old, u64 new)
1255 {
1256         if (!is_shadow_present_pte(old))
1257                 return false;
1258         if (!is_shadow_present_pte(new))
1259                 return true;
1260         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1261                 return true;
1262         old ^= PT64_NX_MASK;
1263         new ^= PT64_NX_MASK;
1264         return (old & ~new & PT64_PERM_MASK) != 0;
1265 }
1266
1267 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1268 {
1269         if (need_remote_flush(old, new))
1270                 kvm_flush_remote_tlbs(vcpu->kvm);
1271         else
1272                 kvm_mmu_flush_tlb(vcpu);
1273 }
1274
1275 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1276 {
1277         u64 *spte = vcpu->last_pte_updated;
1278
1279         return !!(spte && (*spte & PT_ACCESSED_MASK));
1280 }
1281
1282 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1283                        const u8 *new, int bytes)
1284 {
1285         gfn_t gfn = gpa >> PAGE_SHIFT;
1286         struct kvm_mmu_page *page;
1287         struct hlist_node *node, *n;
1288         struct hlist_head *bucket;
1289         unsigned index;
1290         u64 entry;
1291         u64 *spte;
1292         unsigned offset = offset_in_page(gpa);
1293         unsigned pte_size;
1294         unsigned page_offset;
1295         unsigned misaligned;
1296         unsigned quadrant;
1297         int level;
1298         int flooded = 0;
1299         int npte;
1300
1301         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1302         ++vcpu->kvm->stat.mmu_pte_write;
1303         kvm_mmu_audit(vcpu, "pre pte write");
1304         if (gfn == vcpu->last_pt_write_gfn
1305             && !last_updated_pte_accessed(vcpu)) {
1306                 ++vcpu->last_pt_write_count;
1307                 if (vcpu->last_pt_write_count >= 3)
1308                         flooded = 1;
1309         } else {
1310                 vcpu->last_pt_write_gfn = gfn;
1311                 vcpu->last_pt_write_count = 1;
1312                 vcpu->last_pte_updated = NULL;
1313         }
1314         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1315         bucket = &vcpu->kvm->mmu_page_hash[index];
1316         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1317                 if (page->gfn != gfn || page->role.metaphysical)
1318                         continue;
1319                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1320                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1321                 misaligned |= bytes < 4;
1322                 if (misaligned || flooded) {
1323                         /*
1324                          * Misaligned accesses are too much trouble to fix
1325                          * up; also, they usually indicate a page is not used
1326                          * as a page table.
1327                          *
1328                          * If we're seeing too many writes to a page,
1329                          * it may no longer be a page table, or we may be
1330                          * forking, in which case it is better to unmap the
1331                          * page.
1332                          */
1333                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1334                                  gpa, bytes, page->role.word);
1335                         kvm_mmu_zap_page(vcpu->kvm, page);
1336                         ++vcpu->kvm->stat.mmu_flooded;
1337                         continue;
1338                 }
1339                 page_offset = offset;
1340                 level = page->role.level;
1341                 npte = 1;
1342                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1343                         page_offset <<= 1;      /* 32->64 */
1344                         /*
1345                          * A 32-bit pde maps 4MB while the shadow pdes map
1346                          * only 2MB.  So we need to double the offset again
1347                          * and zap two pdes instead of one.
1348                          */
1349                         if (level == PT32_ROOT_LEVEL) {
1350                                 page_offset &= ~7; /* kill rounding error */
1351                                 page_offset <<= 1;
1352                                 npte = 2;
1353                         }
1354                         quadrant = page_offset >> PAGE_SHIFT;
1355                         page_offset &= ~PAGE_MASK;
1356                         if (quadrant != page->role.quadrant)
1357                                 continue;
1358                 }
1359                 spte = &page->spt[page_offset / sizeof(*spte)];
1360                 while (npte--) {
1361                         entry = *spte;
1362                         mmu_pte_write_zap_pte(vcpu, page, spte);
1363                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
1364                                               page_offset & (pte_size - 1));
1365                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1366                         ++spte;
1367                 }
1368         }
1369         kvm_mmu_audit(vcpu, "post pte write");
1370 }
1371
1372 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1373 {
1374         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1375
1376         return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1377 }
1378
1379 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1380 {
1381         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1382                 struct kvm_mmu_page *page;
1383
1384                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1385                                     struct kvm_mmu_page, link);
1386                 kvm_mmu_zap_page(vcpu->kvm, page);
1387                 ++vcpu->kvm->stat.mmu_recycled;
1388         }
1389 }
1390
1391 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1392 {
1393         int r;
1394         enum emulation_result er;
1395
1396         mutex_lock(&vcpu->kvm->lock);
1397         r = vcpu->mmu.page_fault(vcpu, cr2, error_code);
1398         if (r < 0)
1399                 goto out;
1400
1401         if (!r) {
1402                 r = 1;
1403                 goto out;
1404         }
1405
1406         r = mmu_topup_memory_caches(vcpu);
1407         if (r)
1408                 goto out;
1409
1410         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1411         mutex_unlock(&vcpu->kvm->lock);
1412
1413         switch (er) {
1414         case EMULATE_DONE:
1415                 return 1;
1416         case EMULATE_DO_MMIO:
1417                 ++vcpu->stat.mmio_exits;
1418                 return 0;
1419         case EMULATE_FAIL:
1420                 kvm_report_emulation_failure(vcpu, "pagetable");
1421                 return 1;
1422         default:
1423                 BUG();
1424         }
1425 out:
1426         mutex_unlock(&vcpu->kvm->lock);
1427         return r;
1428 }
1429 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1430
1431 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1432 {
1433         struct kvm_mmu_page *page;
1434
1435         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1436                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1437                                     struct kvm_mmu_page, link);
1438                 kvm_mmu_zap_page(vcpu->kvm, page);
1439         }
1440         free_page((unsigned long)vcpu->mmu.pae_root);
1441 }
1442
1443 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1444 {
1445         struct page *page;
1446         int i;
1447
1448         ASSERT(vcpu);
1449
1450         if (vcpu->kvm->n_requested_mmu_pages)
1451                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
1452         else
1453                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
1454         /*
1455          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1456          * Therefore we need to allocate shadow page tables in the first
1457          * 4GB of memory, which happens to fit the DMA32 zone.
1458          */
1459         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1460         if (!page)
1461                 goto error_1;
1462         vcpu->mmu.pae_root = page_address(page);
1463         for (i = 0; i < 4; ++i)
1464                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1465
1466         return 0;
1467
1468 error_1:
1469         free_mmu_pages(vcpu);
1470         return -ENOMEM;
1471 }
1472
1473 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1474 {
1475         ASSERT(vcpu);
1476         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1477
1478         return alloc_mmu_pages(vcpu);
1479 }
1480
1481 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1482 {
1483         ASSERT(vcpu);
1484         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1485
1486         return init_kvm_mmu(vcpu);
1487 }
1488
1489 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1490 {
1491         ASSERT(vcpu);
1492
1493         destroy_kvm_mmu(vcpu);
1494         free_mmu_pages(vcpu);
1495         mmu_free_memory_caches(vcpu);
1496 }
1497
1498 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1499 {
1500         struct kvm_mmu_page *page;
1501
1502         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1503                 int i;
1504                 u64 *pt;
1505
1506                 if (!test_bit(slot, &page->slot_bitmap))
1507                         continue;
1508
1509                 pt = page->spt;
1510                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1511                         /* avoid RMW */
1512                         if (pt[i] & PT_WRITABLE_MASK)
1513                                 pt[i] &= ~PT_WRITABLE_MASK;
1514         }
1515 }
1516
1517 void kvm_mmu_zap_all(struct kvm *kvm)
1518 {
1519         struct kvm_mmu_page *page, *node;
1520
1521         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1522                 kvm_mmu_zap_page(kvm, page);
1523
1524         kvm_flush_remote_tlbs(kvm);
1525 }
1526
1527 void kvm_mmu_module_exit(void)
1528 {
1529         if (pte_chain_cache)
1530                 kmem_cache_destroy(pte_chain_cache);
1531         if (rmap_desc_cache)
1532                 kmem_cache_destroy(rmap_desc_cache);
1533         if (mmu_page_header_cache)
1534                 kmem_cache_destroy(mmu_page_header_cache);
1535 }
1536
1537 int kvm_mmu_module_init(void)
1538 {
1539         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1540                                             sizeof(struct kvm_pte_chain),
1541                                             0, 0, NULL);
1542         if (!pte_chain_cache)
1543                 goto nomem;
1544         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1545                                             sizeof(struct kvm_rmap_desc),
1546                                             0, 0, NULL);
1547         if (!rmap_desc_cache)
1548                 goto nomem;
1549
1550         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1551                                                   sizeof(struct kvm_mmu_page),
1552                                                   0, 0, NULL);
1553         if (!mmu_page_header_cache)
1554                 goto nomem;
1555
1556         return 0;
1557
1558 nomem:
1559         kvm_mmu_module_exit();
1560         return -ENOMEM;
1561 }
1562
1563 /*
1564  * Caculate mmu pages needed for kvm.
1565  */
1566 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1567 {
1568         int i;
1569         unsigned int nr_mmu_pages;
1570         unsigned int  nr_pages = 0;
1571
1572         for (i = 0; i < kvm->nmemslots; i++)
1573                 nr_pages += kvm->memslots[i].npages;
1574
1575         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1576         nr_mmu_pages = max(nr_mmu_pages,
1577                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1578
1579         return nr_mmu_pages;
1580 }
1581
1582 #ifdef AUDIT
1583
1584 static const char *audit_msg;
1585
1586 static gva_t canonicalize(gva_t gva)
1587 {
1588 #ifdef CONFIG_X86_64
1589         gva = (long long)(gva << 16) >> 16;
1590 #endif
1591         return gva;
1592 }
1593
1594 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1595                                 gva_t va, int level)
1596 {
1597         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1598         int i;
1599         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1600
1601         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1602                 u64 ent = pt[i];
1603
1604                 if (ent == shadow_trap_nonpresent_pte)
1605                         continue;
1606
1607                 va = canonicalize(va);
1608                 if (level > 1) {
1609                         if (ent == shadow_notrap_nonpresent_pte)
1610                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1611                                        " in nonleaf level: levels %d gva %lx"
1612                                        " level %d pte %llx\n", audit_msg,
1613                                        vcpu->mmu.root_level, va, level, ent);
1614
1615                         audit_mappings_page(vcpu, ent, va, level - 1);
1616                 } else {
1617                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1618                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1619                         struct page *page;
1620
1621                         if (is_shadow_present_pte(ent)
1622                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1623                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1624                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1625                                        audit_msg, vcpu->mmu.root_level,
1626                                        va, gpa, hpa, ent,
1627                                        is_shadow_present_pte(ent));
1628                         else if (ent == shadow_notrap_nonpresent_pte
1629                                  && !is_error_hpa(hpa))
1630                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1631                                        " valid guest gva %lx\n", audit_msg, va);
1632                         page = pfn_to_page((gpa & PT64_BASE_ADDR_MASK)
1633                                            >> PAGE_SHIFT);
1634                         kvm_release_page_clean(page);
1635
1636                 }
1637         }
1638 }
1639
1640 static void audit_mappings(struct kvm_vcpu *vcpu)
1641 {
1642         unsigned i;
1643
1644         if (vcpu->mmu.root_level == 4)
1645                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1646         else
1647                 for (i = 0; i < 4; ++i)
1648                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1649                                 audit_mappings_page(vcpu,
1650                                                     vcpu->mmu.pae_root[i],
1651                                                     i << 30,
1652                                                     2);
1653 }
1654
1655 static int count_rmaps(struct kvm_vcpu *vcpu)
1656 {
1657         int nmaps = 0;
1658         int i, j, k;
1659
1660         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1661                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1662                 struct kvm_rmap_desc *d;
1663
1664                 for (j = 0; j < m->npages; ++j) {
1665                         unsigned long *rmapp = &m->rmap[j];
1666
1667                         if (!*rmapp)
1668                                 continue;
1669                         if (!(*rmapp & 1)) {
1670                                 ++nmaps;
1671                                 continue;
1672                         }
1673                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1674                         while (d) {
1675                                 for (k = 0; k < RMAP_EXT; ++k)
1676                                         if (d->shadow_ptes[k])
1677                                                 ++nmaps;
1678                                         else
1679                                                 break;
1680                                 d = d->more;
1681                         }
1682                 }
1683         }
1684         return nmaps;
1685 }
1686
1687 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1688 {
1689         int nmaps = 0;
1690         struct kvm_mmu_page *page;
1691         int i;
1692
1693         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1694                 u64 *pt = page->spt;
1695
1696                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1697                         continue;
1698
1699                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1700                         u64 ent = pt[i];
1701
1702                         if (!(ent & PT_PRESENT_MASK))
1703                                 continue;
1704                         if (!(ent & PT_WRITABLE_MASK))
1705                                 continue;
1706                         ++nmaps;
1707                 }
1708         }
1709         return nmaps;
1710 }
1711
1712 static void audit_rmap(struct kvm_vcpu *vcpu)
1713 {
1714         int n_rmap = count_rmaps(vcpu);
1715         int n_actual = count_writable_mappings(vcpu);
1716
1717         if (n_rmap != n_actual)
1718                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1719                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1720 }
1721
1722 static void audit_write_protection(struct kvm_vcpu *vcpu)
1723 {
1724         struct kvm_mmu_page *page;
1725         struct kvm_memory_slot *slot;
1726         unsigned long *rmapp;
1727         gfn_t gfn;
1728
1729         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1730                 if (page->role.metaphysical)
1731                         continue;
1732
1733                 slot = gfn_to_memslot(vcpu->kvm, page->gfn);
1734                 gfn = unalias_gfn(vcpu->kvm, page->gfn);
1735                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1736                 if (*rmapp)
1737                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1738                                " mappings: gfn %lx role %x\n",
1739                                __FUNCTION__, audit_msg, page->gfn,
1740                                page->role.word);
1741         }
1742 }
1743
1744 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1745 {
1746         int olddbg = dbg;
1747
1748         dbg = 0;
1749         audit_msg = msg;
1750         audit_rmap(vcpu);
1751         audit_write_protection(vcpu);
1752         audit_mappings(vcpu);
1753         dbg = olddbg;
1754 }
1755
1756 #endif