Merge branch 'x86/apic' into x86-v28-for-linus-phase4-B
[linux-2.6] / include / linux / slab.h
1 /*
2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  *      Cleaned up and restructured to ease the addition of alternative
6  *      implementations of SLAB allocators.
7  */
8
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14
15 /*
16  * Flags to pass to kmem_cache_create().
17  * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
18  */
19 #define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
20 #define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
21 #define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
22 #define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
23 #define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
24 #define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
25 #define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
26 #define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
27 #define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
28 #define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
29
30 /* Flag to prevent checks on free */
31 #ifdef CONFIG_DEBUG_OBJECTS
32 # define SLAB_DEBUG_OBJECTS     0x00400000UL
33 #else
34 # define SLAB_DEBUG_OBJECTS     0x00000000UL
35 #endif
36
37 /* The following flags affect the page allocator grouping pages by mobility */
38 #define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
39 #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
40 /*
41  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
42  *
43  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
44  *
45  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
46  * Both make kfree a no-op.
47  */
48 #define ZERO_SIZE_PTR ((void *)16)
49
50 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
51                                 (unsigned long)ZERO_SIZE_PTR)
52
53 /*
54  * struct kmem_cache related prototypes
55  */
56 void __init kmem_cache_init(void);
57 int slab_is_available(void);
58
59 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
60                         unsigned long,
61                         void (*)(void *));
62 void kmem_cache_destroy(struct kmem_cache *);
63 int kmem_cache_shrink(struct kmem_cache *);
64 void kmem_cache_free(struct kmem_cache *, void *);
65 unsigned int kmem_cache_size(struct kmem_cache *);
66 const char *kmem_cache_name(struct kmem_cache *);
67 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
68
69 /*
70  * Please use this macro to create slab caches. Simply specify the
71  * name of the structure and maybe some flags that are listed above.
72  *
73  * The alignment of the struct determines object alignment. If you
74  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
75  * then the objects will be properly aligned in SMP configurations.
76  */
77 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
78                 sizeof(struct __struct), __alignof__(struct __struct),\
79                 (__flags), NULL)
80
81 /*
82  * The largest kmalloc size supported by the slab allocators is
83  * 32 megabyte (2^25) or the maximum allocatable page order if that is
84  * less than 32 MB.
85  *
86  * WARNING: Its not easy to increase this value since the allocators have
87  * to do various tricks to work around compiler limitations in order to
88  * ensure proper constant folding.
89  */
90 #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
91                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
92
93 #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_HIGH)
94 #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
95
96 /*
97  * Common kmalloc functions provided by all allocators
98  */
99 void * __must_check __krealloc(const void *, size_t, gfp_t);
100 void * __must_check krealloc(const void *, size_t, gfp_t);
101 void kfree(const void *);
102 size_t ksize(const void *);
103
104 /*
105  * Allocator specific definitions. These are mainly used to establish optimized
106  * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
107  * selecting the appropriate general cache at compile time.
108  *
109  * Allocators must define at least:
110  *
111  *      kmem_cache_alloc()
112  *      __kmalloc()
113  *      kmalloc()
114  *
115  * Those wishing to support NUMA must also define:
116  *
117  *      kmem_cache_alloc_node()
118  *      kmalloc_node()
119  *
120  * See each allocator definition file for additional comments and
121  * implementation notes.
122  */
123 #ifdef CONFIG_SLUB
124 #include <linux/slub_def.h>
125 #elif defined(CONFIG_SLOB)
126 #include <linux/slob_def.h>
127 #else
128 #include <linux/slab_def.h>
129 #endif
130
131 /**
132  * kcalloc - allocate memory for an array. The memory is set to zero.
133  * @n: number of elements.
134  * @size: element size.
135  * @flags: the type of memory to allocate.
136  *
137  * The @flags argument may be one of:
138  *
139  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
140  *
141  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
142  *
143  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
144  *   For example, use this inside interrupt handlers.
145  *
146  * %GFP_HIGHUSER - Allocate pages from high memory.
147  *
148  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
149  *
150  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
151  *
152  * %GFP_NOWAIT - Allocation will not sleep.
153  *
154  * %GFP_THISNODE - Allocate node-local memory only.
155  *
156  * %GFP_DMA - Allocation suitable for DMA.
157  *   Should only be used for kmalloc() caches. Otherwise, use a
158  *   slab created with SLAB_DMA.
159  *
160  * Also it is possible to set different flags by OR'ing
161  * in one or more of the following additional @flags:
162  *
163  * %__GFP_COLD - Request cache-cold pages instead of
164  *   trying to return cache-warm pages.
165  *
166  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
167  *
168  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
169  *   (think twice before using).
170  *
171  * %__GFP_NORETRY - If memory is not immediately available,
172  *   then give up at once.
173  *
174  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
175  *
176  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
177  *
178  * There are other flags available as well, but these are not intended
179  * for general use, and so are not documented here. For a full list of
180  * potential flags, always refer to linux/gfp.h.
181  */
182 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
183 {
184         if (size != 0 && n > ULONG_MAX / size)
185                 return NULL;
186         return __kmalloc(n * size, flags | __GFP_ZERO);
187 }
188
189 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
190 /**
191  * kmalloc_node - allocate memory from a specific node
192  * @size: how many bytes of memory are required.
193  * @flags: the type of memory to allocate (see kcalloc).
194  * @node: node to allocate from.
195  *
196  * kmalloc() for non-local nodes, used to allocate from a specific node
197  * if available. Equivalent to kmalloc() in the non-NUMA single-node
198  * case.
199  */
200 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
201 {
202         return kmalloc(size, flags);
203 }
204
205 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
206 {
207         return __kmalloc(size, flags);
208 }
209
210 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
211
212 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
213                                         gfp_t flags, int node)
214 {
215         return kmem_cache_alloc(cachep, flags);
216 }
217 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
218
219 /*
220  * kmalloc_track_caller is a special version of kmalloc that records the
221  * calling function of the routine calling it for slab leak tracking instead
222  * of just the calling function (confusing, eh?).
223  * It's useful when the call to kmalloc comes from a widely-used standard
224  * allocator where we care about the real place the memory allocation
225  * request comes from.
226  */
227 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
228 extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
229 #define kmalloc_track_caller(size, flags) \
230         __kmalloc_track_caller(size, flags, __builtin_return_address(0))
231 #else
232 #define kmalloc_track_caller(size, flags) \
233         __kmalloc(size, flags)
234 #endif /* DEBUG_SLAB */
235
236 #ifdef CONFIG_NUMA
237 /*
238  * kmalloc_node_track_caller is a special version of kmalloc_node that
239  * records the calling function of the routine calling it for slab leak
240  * tracking instead of just the calling function (confusing, eh?).
241  * It's useful when the call to kmalloc_node comes from a widely-used
242  * standard allocator where we care about the real place the memory
243  * allocation request comes from.
244  */
245 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
246 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
247 #define kmalloc_node_track_caller(size, flags, node) \
248         __kmalloc_node_track_caller(size, flags, node, \
249                         __builtin_return_address(0))
250 #else
251 #define kmalloc_node_track_caller(size, flags, node) \
252         __kmalloc_node(size, flags, node)
253 #endif
254
255 #else /* CONFIG_NUMA */
256
257 #define kmalloc_node_track_caller(size, flags, node) \
258         kmalloc_track_caller(size, flags)
259
260 #endif /* DEBUG_SLAB */
261
262 /*
263  * Shortcuts
264  */
265 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
266 {
267         return kmem_cache_alloc(k, flags | __GFP_ZERO);
268 }
269
270 /**
271  * kzalloc - allocate memory. The memory is set to zero.
272  * @size: how many bytes of memory are required.
273  * @flags: the type of memory to allocate (see kmalloc).
274  */
275 static inline void *kzalloc(size_t size, gfp_t flags)
276 {
277         return kmalloc(size, flags | __GFP_ZERO);
278 }
279
280 /**
281  * kzalloc_node - allocate zeroed memory from a particular memory node.
282  * @size: how many bytes of memory are required.
283  * @flags: the type of memory to allocate (see kmalloc).
284  * @node: memory node from which to allocate
285  */
286 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
287 {
288         return kmalloc_node(size, flags | __GFP_ZERO, node);
289 }
290
291 #ifdef CONFIG_SLABINFO
292 extern const struct seq_operations slabinfo_op;
293 ssize_t slabinfo_write(struct file *, const char __user *, size_t, loff_t *);
294 #endif
295
296 #endif  /* _LINUX_SLAB_H */