2 * linux/fs/jbd/commit.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal commit routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
16 #include <linux/time.h>
18 #include <linux/jbd.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/bio.h>
26 * Default IO end handler for temporary BJ_IO buffer_heads.
28 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
32 set_buffer_uptodate(bh);
34 clear_buffer_uptodate(bh);
39 * When an ext3-ordered file is truncated, it is possible that many pages are
40 * not successfully freed, because they are attached to a committing transaction.
41 * After the transaction commits, these pages are left on the LRU, with no
42 * ->mapping, and with attached buffers. These pages are trivially reclaimable
43 * by the VM, but their apparent absence upsets the VM accounting, and it makes
44 * the numbers in /proc/meminfo look odd.
46 * So here, we have a buffer which has just come off the forget list. Look to
47 * see if we can strip all buffers from the backing page.
49 * Called under journal->j_list_lock. The caller provided us with a ref
50 * against the buffer, and we drop that here.
52 static void release_buffer_page(struct buffer_head *bh)
58 if (atomic_read(&bh->b_count) != 1)
66 /* OK, it's a truncated page */
67 if (!trylock_page(page))
72 try_to_free_buffers(page);
74 page_cache_release(page);
82 * Decrement reference counter for data buffer. If it has been marked
83 * 'BH_Freed', release it and the page to which it belongs if possible.
85 static void release_data_buffer(struct buffer_head *bh)
87 if (buffer_freed(bh)) {
88 clear_buffer_freed(bh);
89 release_buffer_page(bh);
95 * Try to acquire jbd_lock_bh_state() against the buffer, when j_list_lock is
96 * held. For ranking reasons we must trylock. If we lose, schedule away and
97 * return 0. j_list_lock is dropped in this case.
99 static int inverted_lock(journal_t *journal, struct buffer_head *bh)
101 if (!jbd_trylock_bh_state(bh)) {
102 spin_unlock(&journal->j_list_lock);
109 /* Done it all: now write the commit record. We should have
110 * cleaned up our previous buffers by now, so if we are in abort
111 * mode we can now just skip the rest of the journal write
114 * Returns 1 if the journal needs to be aborted or 0 on success
116 static int journal_write_commit_record(journal_t *journal,
117 transaction_t *commit_transaction)
119 struct journal_head *descriptor;
120 struct buffer_head *bh;
121 journal_header_t *header;
123 int barrier_done = 0;
125 if (is_journal_aborted(journal))
128 descriptor = journal_get_descriptor_buffer(journal);
132 bh = jh2bh(descriptor);
134 header = (journal_header_t *)(bh->b_data);
135 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
136 header->h_blocktype = cpu_to_be32(JFS_COMMIT_BLOCK);
137 header->h_sequence = cpu_to_be32(commit_transaction->t_tid);
139 JBUFFER_TRACE(descriptor, "write commit block");
140 set_buffer_dirty(bh);
141 if (journal->j_flags & JFS_BARRIER) {
142 set_buffer_ordered(bh);
145 ret = sync_dirty_buffer(bh);
147 clear_buffer_ordered(bh);
148 /* is it possible for another commit to fail at roughly
149 * the same time as this one? If so, we don't want to
150 * trust the barrier flag in the super, but instead want
151 * to remember if we sent a barrier request
153 if (ret == -EOPNOTSUPP && barrier_done) {
154 char b[BDEVNAME_SIZE];
157 "JBD: barrier-based sync failed on %s - "
158 "disabling barriers\n",
159 bdevname(journal->j_dev, b));
160 spin_lock(&journal->j_state_lock);
161 journal->j_flags &= ~JFS_BARRIER;
162 spin_unlock(&journal->j_state_lock);
164 /* And try again, without the barrier */
165 set_buffer_uptodate(bh);
166 set_buffer_dirty(bh);
167 ret = sync_dirty_buffer(bh);
169 put_bh(bh); /* One for getblk() */
170 journal_put_journal_head(descriptor);
172 return (ret == -EIO);
175 static void journal_do_submit_data(struct buffer_head **wbuf, int bufs,
180 for (i = 0; i < bufs; i++) {
181 wbuf[i]->b_end_io = end_buffer_write_sync;
182 /* We use-up our safety reference in submit_bh() */
183 submit_bh(write_op, wbuf[i]);
188 * Submit all the data buffers to disk
190 static int journal_submit_data_buffers(journal_t *journal,
191 transaction_t *commit_transaction,
194 struct journal_head *jh;
195 struct buffer_head *bh;
198 struct buffer_head **wbuf = journal->j_wbuf;
202 * Whenever we unlock the journal and sleep, things can get added
203 * onto ->t_sync_datalist, so we have to keep looping back to
204 * write_out_data until we *know* that the list is empty.
206 * Cleanup any flushed data buffers from the data list. Even in
207 * abort mode, we want to flush this out as soon as possible.
211 spin_lock(&journal->j_list_lock);
213 while (commit_transaction->t_sync_datalist) {
214 jh = commit_transaction->t_sync_datalist;
218 /* Get reference just to make sure buffer does not disappear
219 * when we are forced to drop various locks */
221 /* If the buffer is dirty, we need to submit IO and hence
222 * we need the buffer lock. We try to lock the buffer without
223 * blocking. If we fail, we need to drop j_list_lock and do
224 * blocking lock_buffer().
226 if (buffer_dirty(bh)) {
227 if (!trylock_buffer(bh)) {
228 BUFFER_TRACE(bh, "needs blocking lock");
229 spin_unlock(&journal->j_list_lock);
230 /* Write out all data to prevent deadlocks */
231 journal_do_submit_data(wbuf, bufs, write_op);
234 spin_lock(&journal->j_list_lock);
238 /* We have to get bh_state lock. Again out of order, sigh. */
239 if (!inverted_lock(journal, bh)) {
240 jbd_lock_bh_state(bh);
241 spin_lock(&journal->j_list_lock);
243 /* Someone already cleaned up the buffer? */
245 || jh->b_transaction != commit_transaction
246 || jh->b_jlist != BJ_SyncData) {
247 jbd_unlock_bh_state(bh);
250 BUFFER_TRACE(bh, "already cleaned up");
251 release_data_buffer(bh);
254 if (locked && test_clear_buffer_dirty(bh)) {
255 BUFFER_TRACE(bh, "needs writeout, adding to array");
257 __journal_file_buffer(jh, commit_transaction,
259 jbd_unlock_bh_state(bh);
260 if (bufs == journal->j_wbufsize) {
261 spin_unlock(&journal->j_list_lock);
262 journal_do_submit_data(wbuf, bufs, write_op);
266 } else if (!locked && buffer_locked(bh)) {
267 __journal_file_buffer(jh, commit_transaction,
269 jbd_unlock_bh_state(bh);
272 BUFFER_TRACE(bh, "writeout complete: unfile");
273 if (unlikely(!buffer_uptodate(bh)))
275 __journal_unfile_buffer(jh);
276 jbd_unlock_bh_state(bh);
279 journal_remove_journal_head(bh);
280 /* One for our safety reference, other for
281 * journal_remove_journal_head() */
283 release_data_buffer(bh);
286 if (need_resched() || spin_needbreak(&journal->j_list_lock)) {
287 spin_unlock(&journal->j_list_lock);
291 spin_unlock(&journal->j_list_lock);
292 journal_do_submit_data(wbuf, bufs, write_op);
298 * journal_commit_transaction
300 * The primary function for committing a transaction to the log. This
301 * function is called by the journal thread to begin a complete commit.
303 void journal_commit_transaction(journal_t *journal)
305 transaction_t *commit_transaction;
306 struct journal_head *jh, *new_jh, *descriptor;
307 struct buffer_head **wbuf = journal->j_wbuf;
311 unsigned long blocknr;
315 journal_header_t *header;
316 journal_block_tag_t *tag = NULL;
321 int write_op = WRITE;
324 * First job: lock down the current transaction and wait for
325 * all outstanding updates to complete.
329 spin_lock(&journal->j_list_lock);
330 summarise_journal_usage(journal);
331 spin_unlock(&journal->j_list_lock);
334 /* Do we need to erase the effects of a prior journal_flush? */
335 if (journal->j_flags & JFS_FLUSHED) {
336 jbd_debug(3, "super block updated\n");
337 journal_update_superblock(journal, 1);
339 jbd_debug(3, "superblock not updated\n");
342 J_ASSERT(journal->j_running_transaction != NULL);
343 J_ASSERT(journal->j_committing_transaction == NULL);
345 commit_transaction = journal->j_running_transaction;
346 J_ASSERT(commit_transaction->t_state == T_RUNNING);
348 jbd_debug(1, "JBD: starting commit of transaction %d\n",
349 commit_transaction->t_tid);
351 spin_lock(&journal->j_state_lock);
352 commit_transaction->t_state = T_LOCKED;
354 if (commit_transaction->t_synchronous_commit)
355 write_op = WRITE_SYNC;
356 spin_lock(&commit_transaction->t_handle_lock);
357 while (commit_transaction->t_updates) {
360 prepare_to_wait(&journal->j_wait_updates, &wait,
361 TASK_UNINTERRUPTIBLE);
362 if (commit_transaction->t_updates) {
363 spin_unlock(&commit_transaction->t_handle_lock);
364 spin_unlock(&journal->j_state_lock);
366 spin_lock(&journal->j_state_lock);
367 spin_lock(&commit_transaction->t_handle_lock);
369 finish_wait(&journal->j_wait_updates, &wait);
371 spin_unlock(&commit_transaction->t_handle_lock);
373 J_ASSERT (commit_transaction->t_outstanding_credits <=
374 journal->j_max_transaction_buffers);
377 * First thing we are allowed to do is to discard any remaining
378 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
379 * that there are no such buffers: if a large filesystem
380 * operation like a truncate needs to split itself over multiple
381 * transactions, then it may try to do a journal_restart() while
382 * there are still BJ_Reserved buffers outstanding. These must
383 * be released cleanly from the current transaction.
385 * In this case, the filesystem must still reserve write access
386 * again before modifying the buffer in the new transaction, but
387 * we do not require it to remember exactly which old buffers it
388 * has reserved. This is consistent with the existing behaviour
389 * that multiple journal_get_write_access() calls to the same
390 * buffer are perfectly permissable.
392 while (commit_transaction->t_reserved_list) {
393 jh = commit_transaction->t_reserved_list;
394 JBUFFER_TRACE(jh, "reserved, unused: refile");
396 * A journal_get_undo_access()+journal_release_buffer() may
397 * leave undo-committed data.
399 if (jh->b_committed_data) {
400 struct buffer_head *bh = jh2bh(jh);
402 jbd_lock_bh_state(bh);
403 jbd_free(jh->b_committed_data, bh->b_size);
404 jh->b_committed_data = NULL;
405 jbd_unlock_bh_state(bh);
407 journal_refile_buffer(journal, jh);
411 * Now try to drop any written-back buffers from the journal's
412 * checkpoint lists. We do this *before* commit because it potentially
415 spin_lock(&journal->j_list_lock);
416 __journal_clean_checkpoint_list(journal);
417 spin_unlock(&journal->j_list_lock);
419 jbd_debug (3, "JBD: commit phase 1\n");
422 * Switch to a new revoke table.
424 journal_switch_revoke_table(journal);
426 commit_transaction->t_state = T_FLUSH;
427 journal->j_committing_transaction = commit_transaction;
428 journal->j_running_transaction = NULL;
429 start_time = ktime_get();
430 commit_transaction->t_log_start = journal->j_head;
431 wake_up(&journal->j_wait_transaction_locked);
432 spin_unlock(&journal->j_state_lock);
434 jbd_debug (3, "JBD: commit phase 2\n");
437 * Now start flushing things to disk, in the order they appear
438 * on the transaction lists. Data blocks go first.
440 err = journal_submit_data_buffers(journal, commit_transaction,
444 * Wait for all previously submitted IO to complete.
446 spin_lock(&journal->j_list_lock);
447 while (commit_transaction->t_locked_list) {
448 struct buffer_head *bh;
450 jh = commit_transaction->t_locked_list->b_tprev;
453 if (buffer_locked(bh)) {
454 spin_unlock(&journal->j_list_lock);
456 spin_lock(&journal->j_list_lock);
458 if (unlikely(!buffer_uptodate(bh))) {
459 if (!trylock_page(bh->b_page)) {
460 spin_unlock(&journal->j_list_lock);
461 lock_page(bh->b_page);
462 spin_lock(&journal->j_list_lock);
464 if (bh->b_page->mapping)
465 set_bit(AS_EIO, &bh->b_page->mapping->flags);
467 unlock_page(bh->b_page);
468 SetPageError(bh->b_page);
471 if (!inverted_lock(journal, bh)) {
473 spin_lock(&journal->j_list_lock);
476 if (buffer_jbd(bh) && jh->b_jlist == BJ_Locked) {
477 __journal_unfile_buffer(jh);
478 jbd_unlock_bh_state(bh);
479 journal_remove_journal_head(bh);
482 jbd_unlock_bh_state(bh);
484 release_data_buffer(bh);
485 cond_resched_lock(&journal->j_list_lock);
487 spin_unlock(&journal->j_list_lock);
490 char b[BDEVNAME_SIZE];
493 "JBD: Detected IO errors while flushing file data "
494 "on %s\n", bdevname(journal->j_fs_dev, b));
495 if (journal->j_flags & JFS_ABORT_ON_SYNCDATA_ERR)
496 journal_abort(journal, err);
500 journal_write_revoke_records(journal, commit_transaction);
503 * If we found any dirty or locked buffers, then we should have
504 * looped back up to the write_out_data label. If there weren't
505 * any then journal_clean_data_list should have wiped the list
506 * clean by now, so check that it is in fact empty.
508 J_ASSERT (commit_transaction->t_sync_datalist == NULL);
510 jbd_debug (3, "JBD: commit phase 3\n");
513 * Way to go: we have now written out all of the data for a
514 * transaction! Now comes the tricky part: we need to write out
515 * metadata. Loop over the transaction's entire buffer list:
517 spin_lock(&journal->j_state_lock);
518 commit_transaction->t_state = T_COMMIT;
519 spin_unlock(&journal->j_state_lock);
521 J_ASSERT(commit_transaction->t_nr_buffers <=
522 commit_transaction->t_outstanding_credits);
526 while (commit_transaction->t_buffers) {
528 /* Find the next buffer to be journaled... */
530 jh = commit_transaction->t_buffers;
532 /* If we're in abort mode, we just un-journal the buffer and
535 if (is_journal_aborted(journal)) {
536 clear_buffer_jbddirty(jh2bh(jh));
537 JBUFFER_TRACE(jh, "journal is aborting: refile");
538 journal_refile_buffer(journal, jh);
539 /* If that was the last one, we need to clean up
540 * any descriptor buffers which may have been
541 * already allocated, even if we are now
543 if (!commit_transaction->t_buffers)
544 goto start_journal_io;
548 /* Make sure we have a descriptor block in which to
549 record the metadata buffer. */
552 struct buffer_head *bh;
554 J_ASSERT (bufs == 0);
556 jbd_debug(4, "JBD: get descriptor\n");
558 descriptor = journal_get_descriptor_buffer(journal);
560 journal_abort(journal, -EIO);
564 bh = jh2bh(descriptor);
565 jbd_debug(4, "JBD: got buffer %llu (%p)\n",
566 (unsigned long long)bh->b_blocknr, bh->b_data);
567 header = (journal_header_t *)&bh->b_data[0];
568 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
569 header->h_blocktype = cpu_to_be32(JFS_DESCRIPTOR_BLOCK);
570 header->h_sequence = cpu_to_be32(commit_transaction->t_tid);
572 tagp = &bh->b_data[sizeof(journal_header_t)];
573 space_left = bh->b_size - sizeof(journal_header_t);
575 set_buffer_jwrite(bh);
576 set_buffer_dirty(bh);
579 /* Record it so that we can wait for IO
581 BUFFER_TRACE(bh, "ph3: file as descriptor");
582 journal_file_buffer(descriptor, commit_transaction,
586 /* Where is the buffer to be written? */
588 err = journal_next_log_block(journal, &blocknr);
589 /* If the block mapping failed, just abandon the buffer
590 and repeat this loop: we'll fall into the
591 refile-on-abort condition above. */
593 journal_abort(journal, err);
598 * start_this_handle() uses t_outstanding_credits to determine
599 * the free space in the log, but this counter is changed
600 * by journal_next_log_block() also.
602 commit_transaction->t_outstanding_credits--;
604 /* Bump b_count to prevent truncate from stumbling over
605 the shadowed buffer! @@@ This can go if we ever get
606 rid of the BJ_IO/BJ_Shadow pairing of buffers. */
607 atomic_inc(&jh2bh(jh)->b_count);
609 /* Make a temporary IO buffer with which to write it out
610 (this will requeue both the metadata buffer and the
611 temporary IO buffer). new_bh goes on BJ_IO*/
613 set_bit(BH_JWrite, &jh2bh(jh)->b_state);
615 * akpm: journal_write_metadata_buffer() sets
616 * new_bh->b_transaction to commit_transaction.
617 * We need to clean this up before we release new_bh
618 * (which is of type BJ_IO)
620 JBUFFER_TRACE(jh, "ph3: write metadata");
621 flags = journal_write_metadata_buffer(commit_transaction,
622 jh, &new_jh, blocknr);
623 set_bit(BH_JWrite, &jh2bh(new_jh)->b_state);
624 wbuf[bufs++] = jh2bh(new_jh);
626 /* Record the new block's tag in the current descriptor
631 tag_flag |= JFS_FLAG_ESCAPE;
633 tag_flag |= JFS_FLAG_SAME_UUID;
635 tag = (journal_block_tag_t *) tagp;
636 tag->t_blocknr = cpu_to_be32(jh2bh(jh)->b_blocknr);
637 tag->t_flags = cpu_to_be32(tag_flag);
638 tagp += sizeof(journal_block_tag_t);
639 space_left -= sizeof(journal_block_tag_t);
642 memcpy (tagp, journal->j_uuid, 16);
648 /* If there's no more to do, or if the descriptor is full,
651 if (bufs == journal->j_wbufsize ||
652 commit_transaction->t_buffers == NULL ||
653 space_left < sizeof(journal_block_tag_t) + 16) {
655 jbd_debug(4, "JBD: Submit %d IOs\n", bufs);
657 /* Write an end-of-descriptor marker before
658 submitting the IOs. "tag" still points to
659 the last tag we set up. */
661 tag->t_flags |= cpu_to_be32(JFS_FLAG_LAST_TAG);
664 for (i = 0; i < bufs; i++) {
665 struct buffer_head *bh = wbuf[i];
667 clear_buffer_dirty(bh);
668 set_buffer_uptodate(bh);
669 bh->b_end_io = journal_end_buffer_io_sync;
670 submit_bh(write_op, bh);
674 /* Force a new descriptor to be generated next
675 time round the loop. */
681 /* Lo and behold: we have just managed to send a transaction to
682 the log. Before we can commit it, wait for the IO so far to
683 complete. Control buffers being written are on the
684 transaction's t_log_list queue, and metadata buffers are on
685 the t_iobuf_list queue.
687 Wait for the buffers in reverse order. That way we are
688 less likely to be woken up until all IOs have completed, and
689 so we incur less scheduling load.
692 jbd_debug(3, "JBD: commit phase 4\n");
695 * akpm: these are BJ_IO, and j_list_lock is not needed.
696 * See __journal_try_to_free_buffer.
699 while (commit_transaction->t_iobuf_list != NULL) {
700 struct buffer_head *bh;
702 jh = commit_transaction->t_iobuf_list->b_tprev;
704 if (buffer_locked(bh)) {
711 if (unlikely(!buffer_uptodate(bh)))
714 clear_buffer_jwrite(bh);
716 JBUFFER_TRACE(jh, "ph4: unfile after journal write");
717 journal_unfile_buffer(journal, jh);
720 * ->t_iobuf_list should contain only dummy buffer_heads
721 * which were created by journal_write_metadata_buffer().
723 BUFFER_TRACE(bh, "dumping temporary bh");
724 journal_put_journal_head(jh);
726 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
727 free_buffer_head(bh);
729 /* We also have to unlock and free the corresponding
731 jh = commit_transaction->t_shadow_list->b_tprev;
733 clear_bit(BH_JWrite, &bh->b_state);
734 J_ASSERT_BH(bh, buffer_jbddirty(bh));
736 /* The metadata is now released for reuse, but we need
737 to remember it against this transaction so that when
738 we finally commit, we can do any checkpointing
740 JBUFFER_TRACE(jh, "file as BJ_Forget");
741 journal_file_buffer(jh, commit_transaction, BJ_Forget);
742 /* Wake up any transactions which were waiting for this
744 wake_up_bit(&bh->b_state, BH_Unshadow);
745 JBUFFER_TRACE(jh, "brelse shadowed buffer");
749 J_ASSERT (commit_transaction->t_shadow_list == NULL);
751 jbd_debug(3, "JBD: commit phase 5\n");
753 /* Here we wait for the revoke record and descriptor record buffers */
755 while (commit_transaction->t_log_list != NULL) {
756 struct buffer_head *bh;
758 jh = commit_transaction->t_log_list->b_tprev;
760 if (buffer_locked(bh)) {
762 goto wait_for_ctlbuf;
765 goto wait_for_ctlbuf;
767 if (unlikely(!buffer_uptodate(bh)))
770 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
771 clear_buffer_jwrite(bh);
772 journal_unfile_buffer(journal, jh);
773 journal_put_journal_head(jh);
774 __brelse(bh); /* One for getblk */
775 /* AKPM: bforget here */
779 journal_abort(journal, err);
781 jbd_debug(3, "JBD: commit phase 6\n");
783 if (journal_write_commit_record(journal, commit_transaction))
787 journal_abort(journal, err);
789 /* End of a transaction! Finally, we can do checkpoint
790 processing: any buffers committed as a result of this
791 transaction can be removed from any checkpoint list it was on
794 jbd_debug(3, "JBD: commit phase 7\n");
796 J_ASSERT(commit_transaction->t_sync_datalist == NULL);
797 J_ASSERT(commit_transaction->t_buffers == NULL);
798 J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
799 J_ASSERT(commit_transaction->t_iobuf_list == NULL);
800 J_ASSERT(commit_transaction->t_shadow_list == NULL);
801 J_ASSERT(commit_transaction->t_log_list == NULL);
805 * As there are other places (journal_unmap_buffer()) adding buffers
806 * to this list we have to be careful and hold the j_list_lock.
808 spin_lock(&journal->j_list_lock);
809 while (commit_transaction->t_forget) {
810 transaction_t *cp_transaction;
811 struct buffer_head *bh;
813 jh = commit_transaction->t_forget;
814 spin_unlock(&journal->j_list_lock);
816 jbd_lock_bh_state(bh);
817 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction ||
818 jh->b_transaction == journal->j_running_transaction);
821 * If there is undo-protected committed data against
822 * this buffer, then we can remove it now. If it is a
823 * buffer needing such protection, the old frozen_data
824 * field now points to a committed version of the
825 * buffer, so rotate that field to the new committed
828 * Otherwise, we can just throw away the frozen data now.
830 if (jh->b_committed_data) {
831 jbd_free(jh->b_committed_data, bh->b_size);
832 jh->b_committed_data = NULL;
833 if (jh->b_frozen_data) {
834 jh->b_committed_data = jh->b_frozen_data;
835 jh->b_frozen_data = NULL;
837 } else if (jh->b_frozen_data) {
838 jbd_free(jh->b_frozen_data, bh->b_size);
839 jh->b_frozen_data = NULL;
842 spin_lock(&journal->j_list_lock);
843 cp_transaction = jh->b_cp_transaction;
844 if (cp_transaction) {
845 JBUFFER_TRACE(jh, "remove from old cp transaction");
846 __journal_remove_checkpoint(jh);
849 /* Only re-checkpoint the buffer_head if it is marked
850 * dirty. If the buffer was added to the BJ_Forget list
851 * by journal_forget, it may no longer be dirty and
852 * there's no point in keeping a checkpoint record for
855 /* A buffer which has been freed while still being
856 * journaled by a previous transaction may end up still
857 * being dirty here, but we want to avoid writing back
858 * that buffer in the future now that the last use has
859 * been committed. That's not only a performance gain,
860 * it also stops aliasing problems if the buffer is left
861 * behind for writeback and gets reallocated for another
862 * use in a different page. */
863 if (buffer_freed(bh)) {
864 clear_buffer_freed(bh);
865 clear_buffer_jbddirty(bh);
868 if (buffer_jbddirty(bh)) {
869 JBUFFER_TRACE(jh, "add to new checkpointing trans");
870 __journal_insert_checkpoint(jh, commit_transaction);
871 if (is_journal_aborted(journal))
872 clear_buffer_jbddirty(bh);
873 JBUFFER_TRACE(jh, "refile for checkpoint writeback");
874 __journal_refile_buffer(jh);
875 jbd_unlock_bh_state(bh);
877 J_ASSERT_BH(bh, !buffer_dirty(bh));
878 /* The buffer on BJ_Forget list and not jbddirty means
879 * it has been freed by this transaction and hence it
880 * could not have been reallocated until this
881 * transaction has committed. *BUT* it could be
882 * reallocated once we have written all the data to
883 * disk and before we process the buffer on BJ_Forget
885 JBUFFER_TRACE(jh, "refile or unfile freed buffer");
886 __journal_refile_buffer(jh);
887 if (!jh->b_transaction) {
888 jbd_unlock_bh_state(bh);
890 journal_remove_journal_head(bh);
891 release_buffer_page(bh);
893 jbd_unlock_bh_state(bh);
895 cond_resched_lock(&journal->j_list_lock);
897 spin_unlock(&journal->j_list_lock);
899 * This is a bit sleazy. We use j_list_lock to protect transition
900 * of a transaction into T_FINISHED state and calling
901 * __journal_drop_transaction(). Otherwise we could race with
902 * other checkpointing code processing the transaction...
904 spin_lock(&journal->j_state_lock);
905 spin_lock(&journal->j_list_lock);
907 * Now recheck if some buffers did not get attached to the transaction
908 * while the lock was dropped...
910 if (commit_transaction->t_forget) {
911 spin_unlock(&journal->j_list_lock);
912 spin_unlock(&journal->j_state_lock);
916 /* Done with this transaction! */
918 jbd_debug(3, "JBD: commit phase 8\n");
920 J_ASSERT(commit_transaction->t_state == T_COMMIT);
922 commit_transaction->t_state = T_FINISHED;
923 J_ASSERT(commit_transaction == journal->j_committing_transaction);
924 journal->j_commit_sequence = commit_transaction->t_tid;
925 journal->j_committing_transaction = NULL;
926 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
929 * weight the commit time higher than the average time so we don't
930 * react too strongly to vast changes in commit time
932 if (likely(journal->j_average_commit_time))
933 journal->j_average_commit_time = (commit_time*3 +
934 journal->j_average_commit_time) / 4;
936 journal->j_average_commit_time = commit_time;
938 spin_unlock(&journal->j_state_lock);
940 if (commit_transaction->t_checkpoint_list == NULL &&
941 commit_transaction->t_checkpoint_io_list == NULL) {
942 __journal_drop_transaction(journal, commit_transaction);
944 if (journal->j_checkpoint_transactions == NULL) {
945 journal->j_checkpoint_transactions = commit_transaction;
946 commit_transaction->t_cpnext = commit_transaction;
947 commit_transaction->t_cpprev = commit_transaction;
949 commit_transaction->t_cpnext =
950 journal->j_checkpoint_transactions;
951 commit_transaction->t_cpprev =
952 commit_transaction->t_cpnext->t_cpprev;
953 commit_transaction->t_cpnext->t_cpprev =
955 commit_transaction->t_cpprev->t_cpnext =
959 spin_unlock(&journal->j_list_lock);
961 jbd_debug(1, "JBD: commit %d complete, head %d\n",
962 journal->j_commit_sequence, journal->j_tail_sequence);
964 wake_up(&journal->j_wait_done_commit);