x86: PAT: modify follow_phys to return phys_addr prot and return value
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97                                         1;
98 #else
99                                         2;
100 #endif
101
102 #ifndef track_pfn_vma_new
103 /*
104  * Interface that can be used by architecture code to keep track of
105  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
106  *
107  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
108  * for physical range indicated by pfn and size.
109  */
110 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot,
111                         unsigned long pfn, unsigned long size)
112 {
113         return 0;
114 }
115 #endif
116
117 #ifndef track_pfn_vma_copy
118 /*
119  * Interface that can be used by architecture code to keep track of
120  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
121  *
122  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
123  * copied through copy_page_range().
124  */
125 int track_pfn_vma_copy(struct vm_area_struct *vma)
126 {
127         return 0;
128 }
129 #endif
130
131 #ifndef untrack_pfn_vma
132 /*
133  * Interface that can be used by architecture code to keep track of
134  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
135  *
136  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
137  * untrack can be called for a specific region indicated by pfn and size or
138  * can be for the entire vma (in which case size can be zero).
139  */
140 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
141                         unsigned long size)
142 {
143 }
144 #endif
145
146 static int __init disable_randmaps(char *s)
147 {
148         randomize_va_space = 0;
149         return 1;
150 }
151 __setup("norandmaps", disable_randmaps);
152
153
154 /*
155  * If a p?d_bad entry is found while walking page tables, report
156  * the error, before resetting entry to p?d_none.  Usually (but
157  * very seldom) called out from the p?d_none_or_clear_bad macros.
158  */
159
160 void pgd_clear_bad(pgd_t *pgd)
161 {
162         pgd_ERROR(*pgd);
163         pgd_clear(pgd);
164 }
165
166 void pud_clear_bad(pud_t *pud)
167 {
168         pud_ERROR(*pud);
169         pud_clear(pud);
170 }
171
172 void pmd_clear_bad(pmd_t *pmd)
173 {
174         pmd_ERROR(*pmd);
175         pmd_clear(pmd);
176 }
177
178 /*
179  * Note: this doesn't free the actual pages themselves. That
180  * has been handled earlier when unmapping all the memory regions.
181  */
182 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
183 {
184         pgtable_t token = pmd_pgtable(*pmd);
185         pmd_clear(pmd);
186         pte_free_tlb(tlb, token);
187         tlb->mm->nr_ptes--;
188 }
189
190 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
191                                 unsigned long addr, unsigned long end,
192                                 unsigned long floor, unsigned long ceiling)
193 {
194         pmd_t *pmd;
195         unsigned long next;
196         unsigned long start;
197
198         start = addr;
199         pmd = pmd_offset(pud, addr);
200         do {
201                 next = pmd_addr_end(addr, end);
202                 if (pmd_none_or_clear_bad(pmd))
203                         continue;
204                 free_pte_range(tlb, pmd);
205         } while (pmd++, addr = next, addr != end);
206
207         start &= PUD_MASK;
208         if (start < floor)
209                 return;
210         if (ceiling) {
211                 ceiling &= PUD_MASK;
212                 if (!ceiling)
213                         return;
214         }
215         if (end - 1 > ceiling - 1)
216                 return;
217
218         pmd = pmd_offset(pud, start);
219         pud_clear(pud);
220         pmd_free_tlb(tlb, pmd);
221 }
222
223 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
224                                 unsigned long addr, unsigned long end,
225                                 unsigned long floor, unsigned long ceiling)
226 {
227         pud_t *pud;
228         unsigned long next;
229         unsigned long start;
230
231         start = addr;
232         pud = pud_offset(pgd, addr);
233         do {
234                 next = pud_addr_end(addr, end);
235                 if (pud_none_or_clear_bad(pud))
236                         continue;
237                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
238         } while (pud++, addr = next, addr != end);
239
240         start &= PGDIR_MASK;
241         if (start < floor)
242                 return;
243         if (ceiling) {
244                 ceiling &= PGDIR_MASK;
245                 if (!ceiling)
246                         return;
247         }
248         if (end - 1 > ceiling - 1)
249                 return;
250
251         pud = pud_offset(pgd, start);
252         pgd_clear(pgd);
253         pud_free_tlb(tlb, pud);
254 }
255
256 /*
257  * This function frees user-level page tables of a process.
258  *
259  * Must be called with pagetable lock held.
260  */
261 void free_pgd_range(struct mmu_gather *tlb,
262                         unsigned long addr, unsigned long end,
263                         unsigned long floor, unsigned long ceiling)
264 {
265         pgd_t *pgd;
266         unsigned long next;
267         unsigned long start;
268
269         /*
270          * The next few lines have given us lots of grief...
271          *
272          * Why are we testing PMD* at this top level?  Because often
273          * there will be no work to do at all, and we'd prefer not to
274          * go all the way down to the bottom just to discover that.
275          *
276          * Why all these "- 1"s?  Because 0 represents both the bottom
277          * of the address space and the top of it (using -1 for the
278          * top wouldn't help much: the masks would do the wrong thing).
279          * The rule is that addr 0 and floor 0 refer to the bottom of
280          * the address space, but end 0 and ceiling 0 refer to the top
281          * Comparisons need to use "end - 1" and "ceiling - 1" (though
282          * that end 0 case should be mythical).
283          *
284          * Wherever addr is brought up or ceiling brought down, we must
285          * be careful to reject "the opposite 0" before it confuses the
286          * subsequent tests.  But what about where end is brought down
287          * by PMD_SIZE below? no, end can't go down to 0 there.
288          *
289          * Whereas we round start (addr) and ceiling down, by different
290          * masks at different levels, in order to test whether a table
291          * now has no other vmas using it, so can be freed, we don't
292          * bother to round floor or end up - the tests don't need that.
293          */
294
295         addr &= PMD_MASK;
296         if (addr < floor) {
297                 addr += PMD_SIZE;
298                 if (!addr)
299                         return;
300         }
301         if (ceiling) {
302                 ceiling &= PMD_MASK;
303                 if (!ceiling)
304                         return;
305         }
306         if (end - 1 > ceiling - 1)
307                 end -= PMD_SIZE;
308         if (addr > end - 1)
309                 return;
310
311         start = addr;
312         pgd = pgd_offset(tlb->mm, addr);
313         do {
314                 next = pgd_addr_end(addr, end);
315                 if (pgd_none_or_clear_bad(pgd))
316                         continue;
317                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
318         } while (pgd++, addr = next, addr != end);
319 }
320
321 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
322                 unsigned long floor, unsigned long ceiling)
323 {
324         while (vma) {
325                 struct vm_area_struct *next = vma->vm_next;
326                 unsigned long addr = vma->vm_start;
327
328                 /*
329                  * Hide vma from rmap and vmtruncate before freeing pgtables
330                  */
331                 anon_vma_unlink(vma);
332                 unlink_file_vma(vma);
333
334                 if (is_vm_hugetlb_page(vma)) {
335                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
336                                 floor, next? next->vm_start: ceiling);
337                 } else {
338                         /*
339                          * Optimization: gather nearby vmas into one call down
340                          */
341                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
342                                && !is_vm_hugetlb_page(next)) {
343                                 vma = next;
344                                 next = vma->vm_next;
345                                 anon_vma_unlink(vma);
346                                 unlink_file_vma(vma);
347                         }
348                         free_pgd_range(tlb, addr, vma->vm_end,
349                                 floor, next? next->vm_start: ceiling);
350                 }
351                 vma = next;
352         }
353 }
354
355 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
356 {
357         pgtable_t new = pte_alloc_one(mm, address);
358         if (!new)
359                 return -ENOMEM;
360
361         /*
362          * Ensure all pte setup (eg. pte page lock and page clearing) are
363          * visible before the pte is made visible to other CPUs by being
364          * put into page tables.
365          *
366          * The other side of the story is the pointer chasing in the page
367          * table walking code (when walking the page table without locking;
368          * ie. most of the time). Fortunately, these data accesses consist
369          * of a chain of data-dependent loads, meaning most CPUs (alpha
370          * being the notable exception) will already guarantee loads are
371          * seen in-order. See the alpha page table accessors for the
372          * smp_read_barrier_depends() barriers in page table walking code.
373          */
374         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
375
376         spin_lock(&mm->page_table_lock);
377         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
378                 mm->nr_ptes++;
379                 pmd_populate(mm, pmd, new);
380                 new = NULL;
381         }
382         spin_unlock(&mm->page_table_lock);
383         if (new)
384                 pte_free(mm, new);
385         return 0;
386 }
387
388 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
389 {
390         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
391         if (!new)
392                 return -ENOMEM;
393
394         smp_wmb(); /* See comment in __pte_alloc */
395
396         spin_lock(&init_mm.page_table_lock);
397         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
398                 pmd_populate_kernel(&init_mm, pmd, new);
399                 new = NULL;
400         }
401         spin_unlock(&init_mm.page_table_lock);
402         if (new)
403                 pte_free_kernel(&init_mm, new);
404         return 0;
405 }
406
407 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
408 {
409         if (file_rss)
410                 add_mm_counter(mm, file_rss, file_rss);
411         if (anon_rss)
412                 add_mm_counter(mm, anon_rss, anon_rss);
413 }
414
415 /*
416  * This function is called to print an error when a bad pte
417  * is found. For example, we might have a PFN-mapped pte in
418  * a region that doesn't allow it.
419  *
420  * The calling function must still handle the error.
421  */
422 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
423                           unsigned long vaddr)
424 {
425         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
426                         "vm_flags = %lx, vaddr = %lx\n",
427                 (long long)pte_val(pte),
428                 (vma->vm_mm == current->mm ? current->comm : "???"),
429                 vma->vm_flags, vaddr);
430         dump_stack();
431 }
432
433 static inline int is_cow_mapping(unsigned int flags)
434 {
435         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
436 }
437
438 /*
439  * vm_normal_page -- This function gets the "struct page" associated with a pte.
440  *
441  * "Special" mappings do not wish to be associated with a "struct page" (either
442  * it doesn't exist, or it exists but they don't want to touch it). In this
443  * case, NULL is returned here. "Normal" mappings do have a struct page.
444  *
445  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
446  * pte bit, in which case this function is trivial. Secondly, an architecture
447  * may not have a spare pte bit, which requires a more complicated scheme,
448  * described below.
449  *
450  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
451  * special mapping (even if there are underlying and valid "struct pages").
452  * COWed pages of a VM_PFNMAP are always normal.
453  *
454  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
455  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
456  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
457  * mapping will always honor the rule
458  *
459  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
460  *
461  * And for normal mappings this is false.
462  *
463  * This restricts such mappings to be a linear translation from virtual address
464  * to pfn. To get around this restriction, we allow arbitrary mappings so long
465  * as the vma is not a COW mapping; in that case, we know that all ptes are
466  * special (because none can have been COWed).
467  *
468  *
469  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
470  *
471  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
472  * page" backing, however the difference is that _all_ pages with a struct
473  * page (that is, those where pfn_valid is true) are refcounted and considered
474  * normal pages by the VM. The disadvantage is that pages are refcounted
475  * (which can be slower and simply not an option for some PFNMAP users). The
476  * advantage is that we don't have to follow the strict linearity rule of
477  * PFNMAP mappings in order to support COWable mappings.
478  *
479  */
480 #ifdef __HAVE_ARCH_PTE_SPECIAL
481 # define HAVE_PTE_SPECIAL 1
482 #else
483 # define HAVE_PTE_SPECIAL 0
484 #endif
485 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
486                                 pte_t pte)
487 {
488         unsigned long pfn;
489
490         if (HAVE_PTE_SPECIAL) {
491                 if (likely(!pte_special(pte))) {
492                         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
493                         return pte_page(pte);
494                 }
495                 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
496                 return NULL;
497         }
498
499         /* !HAVE_PTE_SPECIAL case follows: */
500
501         pfn = pte_pfn(pte);
502
503         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
504                 if (vma->vm_flags & VM_MIXEDMAP) {
505                         if (!pfn_valid(pfn))
506                                 return NULL;
507                         goto out;
508                 } else {
509                         unsigned long off;
510                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
511                         if (pfn == vma->vm_pgoff + off)
512                                 return NULL;
513                         if (!is_cow_mapping(vma->vm_flags))
514                                 return NULL;
515                 }
516         }
517
518         VM_BUG_ON(!pfn_valid(pfn));
519
520         /*
521          * NOTE! We still have PageReserved() pages in the page tables.
522          *
523          * eg. VDSO mappings can cause them to exist.
524          */
525 out:
526         return pfn_to_page(pfn);
527 }
528
529 /*
530  * copy one vm_area from one task to the other. Assumes the page tables
531  * already present in the new task to be cleared in the whole range
532  * covered by this vma.
533  */
534
535 static inline void
536 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
538                 unsigned long addr, int *rss)
539 {
540         unsigned long vm_flags = vma->vm_flags;
541         pte_t pte = *src_pte;
542         struct page *page;
543
544         /* pte contains position in swap or file, so copy. */
545         if (unlikely(!pte_present(pte))) {
546                 if (!pte_file(pte)) {
547                         swp_entry_t entry = pte_to_swp_entry(pte);
548
549                         swap_duplicate(entry);
550                         /* make sure dst_mm is on swapoff's mmlist. */
551                         if (unlikely(list_empty(&dst_mm->mmlist))) {
552                                 spin_lock(&mmlist_lock);
553                                 if (list_empty(&dst_mm->mmlist))
554                                         list_add(&dst_mm->mmlist,
555                                                  &src_mm->mmlist);
556                                 spin_unlock(&mmlist_lock);
557                         }
558                         if (is_write_migration_entry(entry) &&
559                                         is_cow_mapping(vm_flags)) {
560                                 /*
561                                  * COW mappings require pages in both parent
562                                  * and child to be set to read.
563                                  */
564                                 make_migration_entry_read(&entry);
565                                 pte = swp_entry_to_pte(entry);
566                                 set_pte_at(src_mm, addr, src_pte, pte);
567                         }
568                 }
569                 goto out_set_pte;
570         }
571
572         /*
573          * If it's a COW mapping, write protect it both
574          * in the parent and the child
575          */
576         if (is_cow_mapping(vm_flags)) {
577                 ptep_set_wrprotect(src_mm, addr, src_pte);
578                 pte = pte_wrprotect(pte);
579         }
580
581         /*
582          * If it's a shared mapping, mark it clean in
583          * the child
584          */
585         if (vm_flags & VM_SHARED)
586                 pte = pte_mkclean(pte);
587         pte = pte_mkold(pte);
588
589         page = vm_normal_page(vma, addr, pte);
590         if (page) {
591                 get_page(page);
592                 page_dup_rmap(page, vma, addr);
593                 rss[!!PageAnon(page)]++;
594         }
595
596 out_set_pte:
597         set_pte_at(dst_mm, addr, dst_pte, pte);
598 }
599
600 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
601                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
602                 unsigned long addr, unsigned long end)
603 {
604         pte_t *src_pte, *dst_pte;
605         spinlock_t *src_ptl, *dst_ptl;
606         int progress = 0;
607         int rss[2];
608
609 again:
610         rss[1] = rss[0] = 0;
611         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
612         if (!dst_pte)
613                 return -ENOMEM;
614         src_pte = pte_offset_map_nested(src_pmd, addr);
615         src_ptl = pte_lockptr(src_mm, src_pmd);
616         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
617         arch_enter_lazy_mmu_mode();
618
619         do {
620                 /*
621                  * We are holding two locks at this point - either of them
622                  * could generate latencies in another task on another CPU.
623                  */
624                 if (progress >= 32) {
625                         progress = 0;
626                         if (need_resched() ||
627                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
628                                 break;
629                 }
630                 if (pte_none(*src_pte)) {
631                         progress++;
632                         continue;
633                 }
634                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
635                 progress += 8;
636         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
637
638         arch_leave_lazy_mmu_mode();
639         spin_unlock(src_ptl);
640         pte_unmap_nested(src_pte - 1);
641         add_mm_rss(dst_mm, rss[0], rss[1]);
642         pte_unmap_unlock(dst_pte - 1, dst_ptl);
643         cond_resched();
644         if (addr != end)
645                 goto again;
646         return 0;
647 }
648
649 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
651                 unsigned long addr, unsigned long end)
652 {
653         pmd_t *src_pmd, *dst_pmd;
654         unsigned long next;
655
656         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
657         if (!dst_pmd)
658                 return -ENOMEM;
659         src_pmd = pmd_offset(src_pud, addr);
660         do {
661                 next = pmd_addr_end(addr, end);
662                 if (pmd_none_or_clear_bad(src_pmd))
663                         continue;
664                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
665                                                 vma, addr, next))
666                         return -ENOMEM;
667         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
668         return 0;
669 }
670
671 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
673                 unsigned long addr, unsigned long end)
674 {
675         pud_t *src_pud, *dst_pud;
676         unsigned long next;
677
678         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
679         if (!dst_pud)
680                 return -ENOMEM;
681         src_pud = pud_offset(src_pgd, addr);
682         do {
683                 next = pud_addr_end(addr, end);
684                 if (pud_none_or_clear_bad(src_pud))
685                         continue;
686                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
687                                                 vma, addr, next))
688                         return -ENOMEM;
689         } while (dst_pud++, src_pud++, addr = next, addr != end);
690         return 0;
691 }
692
693 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694                 struct vm_area_struct *vma)
695 {
696         pgd_t *src_pgd, *dst_pgd;
697         unsigned long next;
698         unsigned long addr = vma->vm_start;
699         unsigned long end = vma->vm_end;
700         int ret;
701
702         /*
703          * Don't copy ptes where a page fault will fill them correctly.
704          * Fork becomes much lighter when there are big shared or private
705          * readonly mappings. The tradeoff is that copy_page_range is more
706          * efficient than faulting.
707          */
708         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
709                 if (!vma->anon_vma)
710                         return 0;
711         }
712
713         if (is_vm_hugetlb_page(vma))
714                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
715
716         if (is_pfn_mapping(vma)) {
717                 /*
718                  * We do not free on error cases below as remove_vma
719                  * gets called on error from higher level routine
720                  */
721                 ret = track_pfn_vma_copy(vma);
722                 if (ret)
723                         return ret;
724         }
725
726         /*
727          * We need to invalidate the secondary MMU mappings only when
728          * there could be a permission downgrade on the ptes of the
729          * parent mm. And a permission downgrade will only happen if
730          * is_cow_mapping() returns true.
731          */
732         if (is_cow_mapping(vma->vm_flags))
733                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
734
735         ret = 0;
736         dst_pgd = pgd_offset(dst_mm, addr);
737         src_pgd = pgd_offset(src_mm, addr);
738         do {
739                 next = pgd_addr_end(addr, end);
740                 if (pgd_none_or_clear_bad(src_pgd))
741                         continue;
742                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
743                                             vma, addr, next))) {
744                         ret = -ENOMEM;
745                         break;
746                 }
747         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
748
749         if (is_cow_mapping(vma->vm_flags))
750                 mmu_notifier_invalidate_range_end(src_mm,
751                                                   vma->vm_start, end);
752         return ret;
753 }
754
755 static unsigned long zap_pte_range(struct mmu_gather *tlb,
756                                 struct vm_area_struct *vma, pmd_t *pmd,
757                                 unsigned long addr, unsigned long end,
758                                 long *zap_work, struct zap_details *details)
759 {
760         struct mm_struct *mm = tlb->mm;
761         pte_t *pte;
762         spinlock_t *ptl;
763         int file_rss = 0;
764         int anon_rss = 0;
765
766         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
767         arch_enter_lazy_mmu_mode();
768         do {
769                 pte_t ptent = *pte;
770                 if (pte_none(ptent)) {
771                         (*zap_work)--;
772                         continue;
773                 }
774
775                 (*zap_work) -= PAGE_SIZE;
776
777                 if (pte_present(ptent)) {
778                         struct page *page;
779
780                         page = vm_normal_page(vma, addr, ptent);
781                         if (unlikely(details) && page) {
782                                 /*
783                                  * unmap_shared_mapping_pages() wants to
784                                  * invalidate cache without truncating:
785                                  * unmap shared but keep private pages.
786                                  */
787                                 if (details->check_mapping &&
788                                     details->check_mapping != page->mapping)
789                                         continue;
790                                 /*
791                                  * Each page->index must be checked when
792                                  * invalidating or truncating nonlinear.
793                                  */
794                                 if (details->nonlinear_vma &&
795                                     (page->index < details->first_index ||
796                                      page->index > details->last_index))
797                                         continue;
798                         }
799                         ptent = ptep_get_and_clear_full(mm, addr, pte,
800                                                         tlb->fullmm);
801                         tlb_remove_tlb_entry(tlb, pte, addr);
802                         if (unlikely(!page))
803                                 continue;
804                         if (unlikely(details) && details->nonlinear_vma
805                             && linear_page_index(details->nonlinear_vma,
806                                                 addr) != page->index)
807                                 set_pte_at(mm, addr, pte,
808                                            pgoff_to_pte(page->index));
809                         if (PageAnon(page))
810                                 anon_rss--;
811                         else {
812                                 if (pte_dirty(ptent))
813                                         set_page_dirty(page);
814                                 if (pte_young(ptent))
815                                         SetPageReferenced(page);
816                                 file_rss--;
817                         }
818                         page_remove_rmap(page, vma);
819                         tlb_remove_page(tlb, page);
820                         continue;
821                 }
822                 /*
823                  * If details->check_mapping, we leave swap entries;
824                  * if details->nonlinear_vma, we leave file entries.
825                  */
826                 if (unlikely(details))
827                         continue;
828                 if (!pte_file(ptent))
829                         free_swap_and_cache(pte_to_swp_entry(ptent));
830                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
831         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
832
833         add_mm_rss(mm, file_rss, anon_rss);
834         arch_leave_lazy_mmu_mode();
835         pte_unmap_unlock(pte - 1, ptl);
836
837         return addr;
838 }
839
840 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
841                                 struct vm_area_struct *vma, pud_t *pud,
842                                 unsigned long addr, unsigned long end,
843                                 long *zap_work, struct zap_details *details)
844 {
845         pmd_t *pmd;
846         unsigned long next;
847
848         pmd = pmd_offset(pud, addr);
849         do {
850                 next = pmd_addr_end(addr, end);
851                 if (pmd_none_or_clear_bad(pmd)) {
852                         (*zap_work)--;
853                         continue;
854                 }
855                 next = zap_pte_range(tlb, vma, pmd, addr, next,
856                                                 zap_work, details);
857         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
858
859         return addr;
860 }
861
862 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
863                                 struct vm_area_struct *vma, pgd_t *pgd,
864                                 unsigned long addr, unsigned long end,
865                                 long *zap_work, struct zap_details *details)
866 {
867         pud_t *pud;
868         unsigned long next;
869
870         pud = pud_offset(pgd, addr);
871         do {
872                 next = pud_addr_end(addr, end);
873                 if (pud_none_or_clear_bad(pud)) {
874                         (*zap_work)--;
875                         continue;
876                 }
877                 next = zap_pmd_range(tlb, vma, pud, addr, next,
878                                                 zap_work, details);
879         } while (pud++, addr = next, (addr != end && *zap_work > 0));
880
881         return addr;
882 }
883
884 static unsigned long unmap_page_range(struct mmu_gather *tlb,
885                                 struct vm_area_struct *vma,
886                                 unsigned long addr, unsigned long end,
887                                 long *zap_work, struct zap_details *details)
888 {
889         pgd_t *pgd;
890         unsigned long next;
891
892         if (details && !details->check_mapping && !details->nonlinear_vma)
893                 details = NULL;
894
895         BUG_ON(addr >= end);
896         tlb_start_vma(tlb, vma);
897         pgd = pgd_offset(vma->vm_mm, addr);
898         do {
899                 next = pgd_addr_end(addr, end);
900                 if (pgd_none_or_clear_bad(pgd)) {
901                         (*zap_work)--;
902                         continue;
903                 }
904                 next = zap_pud_range(tlb, vma, pgd, addr, next,
905                                                 zap_work, details);
906         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
907         tlb_end_vma(tlb, vma);
908
909         return addr;
910 }
911
912 #ifdef CONFIG_PREEMPT
913 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
914 #else
915 /* No preempt: go for improved straight-line efficiency */
916 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
917 #endif
918
919 /**
920  * unmap_vmas - unmap a range of memory covered by a list of vma's
921  * @tlbp: address of the caller's struct mmu_gather
922  * @vma: the starting vma
923  * @start_addr: virtual address at which to start unmapping
924  * @end_addr: virtual address at which to end unmapping
925  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
926  * @details: details of nonlinear truncation or shared cache invalidation
927  *
928  * Returns the end address of the unmapping (restart addr if interrupted).
929  *
930  * Unmap all pages in the vma list.
931  *
932  * We aim to not hold locks for too long (for scheduling latency reasons).
933  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
934  * return the ending mmu_gather to the caller.
935  *
936  * Only addresses between `start' and `end' will be unmapped.
937  *
938  * The VMA list must be sorted in ascending virtual address order.
939  *
940  * unmap_vmas() assumes that the caller will flush the whole unmapped address
941  * range after unmap_vmas() returns.  So the only responsibility here is to
942  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
943  * drops the lock and schedules.
944  */
945 unsigned long unmap_vmas(struct mmu_gather **tlbp,
946                 struct vm_area_struct *vma, unsigned long start_addr,
947                 unsigned long end_addr, unsigned long *nr_accounted,
948                 struct zap_details *details)
949 {
950         long zap_work = ZAP_BLOCK_SIZE;
951         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
952         int tlb_start_valid = 0;
953         unsigned long start = start_addr;
954         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
955         int fullmm = (*tlbp)->fullmm;
956         struct mm_struct *mm = vma->vm_mm;
957
958         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
959         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
960                 unsigned long end;
961
962                 start = max(vma->vm_start, start_addr);
963                 if (start >= vma->vm_end)
964                         continue;
965                 end = min(vma->vm_end, end_addr);
966                 if (end <= vma->vm_start)
967                         continue;
968
969                 if (vma->vm_flags & VM_ACCOUNT)
970                         *nr_accounted += (end - start) >> PAGE_SHIFT;
971
972                 if (is_pfn_mapping(vma))
973                         untrack_pfn_vma(vma, 0, 0);
974
975                 while (start != end) {
976                         if (!tlb_start_valid) {
977                                 tlb_start = start;
978                                 tlb_start_valid = 1;
979                         }
980
981                         if (unlikely(is_vm_hugetlb_page(vma))) {
982                                 /*
983                                  * It is undesirable to test vma->vm_file as it
984                                  * should be non-null for valid hugetlb area.
985                                  * However, vm_file will be NULL in the error
986                                  * cleanup path of do_mmap_pgoff. When
987                                  * hugetlbfs ->mmap method fails,
988                                  * do_mmap_pgoff() nullifies vma->vm_file
989                                  * before calling this function to clean up.
990                                  * Since no pte has actually been setup, it is
991                                  * safe to do nothing in this case.
992                                  */
993                                 if (vma->vm_file) {
994                                         unmap_hugepage_range(vma, start, end, NULL);
995                                         zap_work -= (end - start) /
996                                         pages_per_huge_page(hstate_vma(vma));
997                                 }
998
999                                 start = end;
1000                         } else
1001                                 start = unmap_page_range(*tlbp, vma,
1002                                                 start, end, &zap_work, details);
1003
1004                         if (zap_work > 0) {
1005                                 BUG_ON(start != end);
1006                                 break;
1007                         }
1008
1009                         tlb_finish_mmu(*tlbp, tlb_start, start);
1010
1011                         if (need_resched() ||
1012                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1013                                 if (i_mmap_lock) {
1014                                         *tlbp = NULL;
1015                                         goto out;
1016                                 }
1017                                 cond_resched();
1018                         }
1019
1020                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1021                         tlb_start_valid = 0;
1022                         zap_work = ZAP_BLOCK_SIZE;
1023                 }
1024         }
1025 out:
1026         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1027         return start;   /* which is now the end (or restart) address */
1028 }
1029
1030 /**
1031  * zap_page_range - remove user pages in a given range
1032  * @vma: vm_area_struct holding the applicable pages
1033  * @address: starting address of pages to zap
1034  * @size: number of bytes to zap
1035  * @details: details of nonlinear truncation or shared cache invalidation
1036  */
1037 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1038                 unsigned long size, struct zap_details *details)
1039 {
1040         struct mm_struct *mm = vma->vm_mm;
1041         struct mmu_gather *tlb;
1042         unsigned long end = address + size;
1043         unsigned long nr_accounted = 0;
1044
1045         lru_add_drain();
1046         tlb = tlb_gather_mmu(mm, 0);
1047         update_hiwater_rss(mm);
1048         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1049         if (tlb)
1050                 tlb_finish_mmu(tlb, address, end);
1051         return end;
1052 }
1053
1054 /**
1055  * zap_vma_ptes - remove ptes mapping the vma
1056  * @vma: vm_area_struct holding ptes to be zapped
1057  * @address: starting address of pages to zap
1058  * @size: number of bytes to zap
1059  *
1060  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1061  *
1062  * The entire address range must be fully contained within the vma.
1063  *
1064  * Returns 0 if successful.
1065  */
1066 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1067                 unsigned long size)
1068 {
1069         if (address < vma->vm_start || address + size > vma->vm_end ||
1070                         !(vma->vm_flags & VM_PFNMAP))
1071                 return -1;
1072         zap_page_range(vma, address, size, NULL);
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1076
1077 /*
1078  * Do a quick page-table lookup for a single page.
1079  */
1080 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1081                         unsigned int flags)
1082 {
1083         pgd_t *pgd;
1084         pud_t *pud;
1085         pmd_t *pmd;
1086         pte_t *ptep, pte;
1087         spinlock_t *ptl;
1088         struct page *page;
1089         struct mm_struct *mm = vma->vm_mm;
1090
1091         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1092         if (!IS_ERR(page)) {
1093                 BUG_ON(flags & FOLL_GET);
1094                 goto out;
1095         }
1096
1097         page = NULL;
1098         pgd = pgd_offset(mm, address);
1099         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1100                 goto no_page_table;
1101
1102         pud = pud_offset(pgd, address);
1103         if (pud_none(*pud))
1104                 goto no_page_table;
1105         if (pud_huge(*pud)) {
1106                 BUG_ON(flags & FOLL_GET);
1107                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1108                 goto out;
1109         }
1110         if (unlikely(pud_bad(*pud)))
1111                 goto no_page_table;
1112
1113         pmd = pmd_offset(pud, address);
1114         if (pmd_none(*pmd))
1115                 goto no_page_table;
1116         if (pmd_huge(*pmd)) {
1117                 BUG_ON(flags & FOLL_GET);
1118                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1119                 goto out;
1120         }
1121         if (unlikely(pmd_bad(*pmd)))
1122                 goto no_page_table;
1123
1124         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1125
1126         pte = *ptep;
1127         if (!pte_present(pte))
1128                 goto no_page;
1129         if ((flags & FOLL_WRITE) && !pte_write(pte))
1130                 goto unlock;
1131         page = vm_normal_page(vma, address, pte);
1132         if (unlikely(!page))
1133                 goto bad_page;
1134
1135         if (flags & FOLL_GET)
1136                 get_page(page);
1137         if (flags & FOLL_TOUCH) {
1138                 if ((flags & FOLL_WRITE) &&
1139                     !pte_dirty(pte) && !PageDirty(page))
1140                         set_page_dirty(page);
1141                 mark_page_accessed(page);
1142         }
1143 unlock:
1144         pte_unmap_unlock(ptep, ptl);
1145 out:
1146         return page;
1147
1148 bad_page:
1149         pte_unmap_unlock(ptep, ptl);
1150         return ERR_PTR(-EFAULT);
1151
1152 no_page:
1153         pte_unmap_unlock(ptep, ptl);
1154         if (!pte_none(pte))
1155                 return page;
1156         /* Fall through to ZERO_PAGE handling */
1157 no_page_table:
1158         /*
1159          * When core dumping an enormous anonymous area that nobody
1160          * has touched so far, we don't want to allocate page tables.
1161          */
1162         if (flags & FOLL_ANON) {
1163                 page = ZERO_PAGE(0);
1164                 if (flags & FOLL_GET)
1165                         get_page(page);
1166                 BUG_ON(flags & FOLL_WRITE);
1167         }
1168         return page;
1169 }
1170
1171 int follow_pfnmap_pte(struct vm_area_struct *vma, unsigned long address,
1172                         pte_t *ret_ptep)
1173 {
1174         pgd_t *pgd;
1175         pud_t *pud;
1176         pmd_t *pmd;
1177         pte_t *ptep, pte;
1178         spinlock_t *ptl;
1179         struct page *page;
1180         struct mm_struct *mm = vma->vm_mm;
1181
1182         if (!is_pfn_mapping(vma))
1183                 goto err;
1184
1185         page = NULL;
1186         pgd = pgd_offset(mm, address);
1187         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1188                 goto err;
1189
1190         pud = pud_offset(pgd, address);
1191         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
1192                 goto err;
1193
1194         pmd = pmd_offset(pud, address);
1195         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
1196                 goto err;
1197
1198         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1199
1200         pte = *ptep;
1201         if (!pte_present(pte))
1202                 goto err_unlock;
1203
1204         *ret_ptep = pte;
1205         pte_unmap_unlock(ptep, ptl);
1206         return 0;
1207
1208 err_unlock:
1209         pte_unmap_unlock(ptep, ptl);
1210 err:
1211         return -EINVAL;
1212 }
1213
1214 /* Can we do the FOLL_ANON optimization? */
1215 static inline int use_zero_page(struct vm_area_struct *vma)
1216 {
1217         /*
1218          * We don't want to optimize FOLL_ANON for make_pages_present()
1219          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1220          * we want to get the page from the page tables to make sure
1221          * that we serialize and update with any other user of that
1222          * mapping.
1223          */
1224         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1225                 return 0;
1226         /*
1227          * And if we have a fault routine, it's not an anonymous region.
1228          */
1229         return !vma->vm_ops || !vma->vm_ops->fault;
1230 }
1231
1232
1233
1234 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1235                      unsigned long start, int len, int flags,
1236                 struct page **pages, struct vm_area_struct **vmas)
1237 {
1238         int i;
1239         unsigned int vm_flags = 0;
1240         int write = !!(flags & GUP_FLAGS_WRITE);
1241         int force = !!(flags & GUP_FLAGS_FORCE);
1242         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1243
1244         if (len <= 0)
1245                 return 0;
1246         /* 
1247          * Require read or write permissions.
1248          * If 'force' is set, we only require the "MAY" flags.
1249          */
1250         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1251         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1252         i = 0;
1253
1254         do {
1255                 struct vm_area_struct *vma;
1256                 unsigned int foll_flags;
1257
1258                 vma = find_extend_vma(mm, start);
1259                 if (!vma && in_gate_area(tsk, start)) {
1260                         unsigned long pg = start & PAGE_MASK;
1261                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1262                         pgd_t *pgd;
1263                         pud_t *pud;
1264                         pmd_t *pmd;
1265                         pte_t *pte;
1266
1267                         /* user gate pages are read-only */
1268                         if (!ignore && write)
1269                                 return i ? : -EFAULT;
1270                         if (pg > TASK_SIZE)
1271                                 pgd = pgd_offset_k(pg);
1272                         else
1273                                 pgd = pgd_offset_gate(mm, pg);
1274                         BUG_ON(pgd_none(*pgd));
1275                         pud = pud_offset(pgd, pg);
1276                         BUG_ON(pud_none(*pud));
1277                         pmd = pmd_offset(pud, pg);
1278                         if (pmd_none(*pmd))
1279                                 return i ? : -EFAULT;
1280                         pte = pte_offset_map(pmd, pg);
1281                         if (pte_none(*pte)) {
1282                                 pte_unmap(pte);
1283                                 return i ? : -EFAULT;
1284                         }
1285                         if (pages) {
1286                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1287                                 pages[i] = page;
1288                                 if (page)
1289                                         get_page(page);
1290                         }
1291                         pte_unmap(pte);
1292                         if (vmas)
1293                                 vmas[i] = gate_vma;
1294                         i++;
1295                         start += PAGE_SIZE;
1296                         len--;
1297                         continue;
1298                 }
1299
1300                 if (!vma ||
1301                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1302                     (!ignore && !(vm_flags & vma->vm_flags)))
1303                         return i ? : -EFAULT;
1304
1305                 if (is_vm_hugetlb_page(vma)) {
1306                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1307                                                 &start, &len, i, write);
1308                         continue;
1309                 }
1310
1311                 foll_flags = FOLL_TOUCH;
1312                 if (pages)
1313                         foll_flags |= FOLL_GET;
1314                 if (!write && use_zero_page(vma))
1315                         foll_flags |= FOLL_ANON;
1316
1317                 do {
1318                         struct page *page;
1319
1320                         /*
1321                          * If tsk is ooming, cut off its access to large memory
1322                          * allocations. It has a pending SIGKILL, but it can't
1323                          * be processed until returning to user space.
1324                          */
1325                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1326                                 return i ? i : -ENOMEM;
1327
1328                         if (write)
1329                                 foll_flags |= FOLL_WRITE;
1330
1331                         cond_resched();
1332                         while (!(page = follow_page(vma, start, foll_flags))) {
1333                                 int ret;
1334                                 ret = handle_mm_fault(mm, vma, start,
1335                                                 foll_flags & FOLL_WRITE);
1336                                 if (ret & VM_FAULT_ERROR) {
1337                                         if (ret & VM_FAULT_OOM)
1338                                                 return i ? i : -ENOMEM;
1339                                         else if (ret & VM_FAULT_SIGBUS)
1340                                                 return i ? i : -EFAULT;
1341                                         BUG();
1342                                 }
1343                                 if (ret & VM_FAULT_MAJOR)
1344                                         tsk->maj_flt++;
1345                                 else
1346                                         tsk->min_flt++;
1347
1348                                 /*
1349                                  * The VM_FAULT_WRITE bit tells us that
1350                                  * do_wp_page has broken COW when necessary,
1351                                  * even if maybe_mkwrite decided not to set
1352                                  * pte_write. We can thus safely do subsequent
1353                                  * page lookups as if they were reads.
1354                                  */
1355                                 if (ret & VM_FAULT_WRITE)
1356                                         foll_flags &= ~FOLL_WRITE;
1357
1358                                 cond_resched();
1359                         }
1360                         if (IS_ERR(page))
1361                                 return i ? i : PTR_ERR(page);
1362                         if (pages) {
1363                                 pages[i] = page;
1364
1365                                 flush_anon_page(vma, page, start);
1366                                 flush_dcache_page(page);
1367                         }
1368                         if (vmas)
1369                                 vmas[i] = vma;
1370                         i++;
1371                         start += PAGE_SIZE;
1372                         len--;
1373                 } while (len && start < vma->vm_end);
1374         } while (len);
1375         return i;
1376 }
1377
1378 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1379                 unsigned long start, int len, int write, int force,
1380                 struct page **pages, struct vm_area_struct **vmas)
1381 {
1382         int flags = 0;
1383
1384         if (write)
1385                 flags |= GUP_FLAGS_WRITE;
1386         if (force)
1387                 flags |= GUP_FLAGS_FORCE;
1388
1389         return __get_user_pages(tsk, mm,
1390                                 start, len, flags,
1391                                 pages, vmas);
1392 }
1393
1394 EXPORT_SYMBOL(get_user_pages);
1395
1396 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1397                         spinlock_t **ptl)
1398 {
1399         pgd_t * pgd = pgd_offset(mm, addr);
1400         pud_t * pud = pud_alloc(mm, pgd, addr);
1401         if (pud) {
1402                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1403                 if (pmd)
1404                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1405         }
1406         return NULL;
1407 }
1408
1409 /*
1410  * This is the old fallback for page remapping.
1411  *
1412  * For historical reasons, it only allows reserved pages. Only
1413  * old drivers should use this, and they needed to mark their
1414  * pages reserved for the old functions anyway.
1415  */
1416 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1417                         struct page *page, pgprot_t prot)
1418 {
1419         struct mm_struct *mm = vma->vm_mm;
1420         int retval;
1421         pte_t *pte;
1422         spinlock_t *ptl;
1423
1424         retval = -EINVAL;
1425         if (PageAnon(page))
1426                 goto out;
1427         retval = -ENOMEM;
1428         flush_dcache_page(page);
1429         pte = get_locked_pte(mm, addr, &ptl);
1430         if (!pte)
1431                 goto out;
1432         retval = -EBUSY;
1433         if (!pte_none(*pte))
1434                 goto out_unlock;
1435
1436         /* Ok, finally just insert the thing.. */
1437         get_page(page);
1438         inc_mm_counter(mm, file_rss);
1439         page_add_file_rmap(page);
1440         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1441
1442         retval = 0;
1443         pte_unmap_unlock(pte, ptl);
1444         return retval;
1445 out_unlock:
1446         pte_unmap_unlock(pte, ptl);
1447 out:
1448         return retval;
1449 }
1450
1451 /**
1452  * vm_insert_page - insert single page into user vma
1453  * @vma: user vma to map to
1454  * @addr: target user address of this page
1455  * @page: source kernel page
1456  *
1457  * This allows drivers to insert individual pages they've allocated
1458  * into a user vma.
1459  *
1460  * The page has to be a nice clean _individual_ kernel allocation.
1461  * If you allocate a compound page, you need to have marked it as
1462  * such (__GFP_COMP), or manually just split the page up yourself
1463  * (see split_page()).
1464  *
1465  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1466  * took an arbitrary page protection parameter. This doesn't allow
1467  * that. Your vma protection will have to be set up correctly, which
1468  * means that if you want a shared writable mapping, you'd better
1469  * ask for a shared writable mapping!
1470  *
1471  * The page does not need to be reserved.
1472  */
1473 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1474                         struct page *page)
1475 {
1476         if (addr < vma->vm_start || addr >= vma->vm_end)
1477                 return -EFAULT;
1478         if (!page_count(page))
1479                 return -EINVAL;
1480         vma->vm_flags |= VM_INSERTPAGE;
1481         return insert_page(vma, addr, page, vma->vm_page_prot);
1482 }
1483 EXPORT_SYMBOL(vm_insert_page);
1484
1485 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1486                         unsigned long pfn, pgprot_t prot)
1487 {
1488         struct mm_struct *mm = vma->vm_mm;
1489         int retval;
1490         pte_t *pte, entry;
1491         spinlock_t *ptl;
1492
1493         retval = -ENOMEM;
1494         pte = get_locked_pte(mm, addr, &ptl);
1495         if (!pte)
1496                 goto out;
1497         retval = -EBUSY;
1498         if (!pte_none(*pte))
1499                 goto out_unlock;
1500
1501         /* Ok, finally just insert the thing.. */
1502         entry = pte_mkspecial(pfn_pte(pfn, prot));
1503         set_pte_at(mm, addr, pte, entry);
1504         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1505
1506         retval = 0;
1507 out_unlock:
1508         pte_unmap_unlock(pte, ptl);
1509 out:
1510         return retval;
1511 }
1512
1513 /**
1514  * vm_insert_pfn - insert single pfn into user vma
1515  * @vma: user vma to map to
1516  * @addr: target user address of this page
1517  * @pfn: source kernel pfn
1518  *
1519  * Similar to vm_inert_page, this allows drivers to insert individual pages
1520  * they've allocated into a user vma. Same comments apply.
1521  *
1522  * This function should only be called from a vm_ops->fault handler, and
1523  * in that case the handler should return NULL.
1524  *
1525  * vma cannot be a COW mapping.
1526  *
1527  * As this is called only for pages that do not currently exist, we
1528  * do not need to flush old virtual caches or the TLB.
1529  */
1530 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1531                         unsigned long pfn)
1532 {
1533         int ret;
1534         /*
1535          * Technically, architectures with pte_special can avoid all these
1536          * restrictions (same for remap_pfn_range).  However we would like
1537          * consistency in testing and feature parity among all, so we should
1538          * try to keep these invariants in place for everybody.
1539          */
1540         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1541         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1542                                                 (VM_PFNMAP|VM_MIXEDMAP));
1543         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1544         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1545
1546         if (addr < vma->vm_start || addr >= vma->vm_end)
1547                 return -EFAULT;
1548         if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1549                 return -EINVAL;
1550
1551         ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1552
1553         if (ret)
1554                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1555
1556         return ret;
1557 }
1558 EXPORT_SYMBOL(vm_insert_pfn);
1559
1560 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1561                         unsigned long pfn)
1562 {
1563         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1564
1565         if (addr < vma->vm_start || addr >= vma->vm_end)
1566                 return -EFAULT;
1567
1568         /*
1569          * If we don't have pte special, then we have to use the pfn_valid()
1570          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1571          * refcount the page if pfn_valid is true (hence insert_page rather
1572          * than insert_pfn).
1573          */
1574         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1575                 struct page *page;
1576
1577                 page = pfn_to_page(pfn);
1578                 return insert_page(vma, addr, page, vma->vm_page_prot);
1579         }
1580         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1581 }
1582 EXPORT_SYMBOL(vm_insert_mixed);
1583
1584 /*
1585  * maps a range of physical memory into the requested pages. the old
1586  * mappings are removed. any references to nonexistent pages results
1587  * in null mappings (currently treated as "copy-on-access")
1588  */
1589 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1590                         unsigned long addr, unsigned long end,
1591                         unsigned long pfn, pgprot_t prot)
1592 {
1593         pte_t *pte;
1594         spinlock_t *ptl;
1595
1596         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1597         if (!pte)
1598                 return -ENOMEM;
1599         arch_enter_lazy_mmu_mode();
1600         do {
1601                 BUG_ON(!pte_none(*pte));
1602                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1603                 pfn++;
1604         } while (pte++, addr += PAGE_SIZE, addr != end);
1605         arch_leave_lazy_mmu_mode();
1606         pte_unmap_unlock(pte - 1, ptl);
1607         return 0;
1608 }
1609
1610 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1611                         unsigned long addr, unsigned long end,
1612                         unsigned long pfn, pgprot_t prot)
1613 {
1614         pmd_t *pmd;
1615         unsigned long next;
1616
1617         pfn -= addr >> PAGE_SHIFT;
1618         pmd = pmd_alloc(mm, pud, addr);
1619         if (!pmd)
1620                 return -ENOMEM;
1621         do {
1622                 next = pmd_addr_end(addr, end);
1623                 if (remap_pte_range(mm, pmd, addr, next,
1624                                 pfn + (addr >> PAGE_SHIFT), prot))
1625                         return -ENOMEM;
1626         } while (pmd++, addr = next, addr != end);
1627         return 0;
1628 }
1629
1630 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1631                         unsigned long addr, unsigned long end,
1632                         unsigned long pfn, pgprot_t prot)
1633 {
1634         pud_t *pud;
1635         unsigned long next;
1636
1637         pfn -= addr >> PAGE_SHIFT;
1638         pud = pud_alloc(mm, pgd, addr);
1639         if (!pud)
1640                 return -ENOMEM;
1641         do {
1642                 next = pud_addr_end(addr, end);
1643                 if (remap_pmd_range(mm, pud, addr, next,
1644                                 pfn + (addr >> PAGE_SHIFT), prot))
1645                         return -ENOMEM;
1646         } while (pud++, addr = next, addr != end);
1647         return 0;
1648 }
1649
1650 /**
1651  * remap_pfn_range - remap kernel memory to userspace
1652  * @vma: user vma to map to
1653  * @addr: target user address to start at
1654  * @pfn: physical address of kernel memory
1655  * @size: size of map area
1656  * @prot: page protection flags for this mapping
1657  *
1658  *  Note: this is only safe if the mm semaphore is held when called.
1659  */
1660 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1661                     unsigned long pfn, unsigned long size, pgprot_t prot)
1662 {
1663         pgd_t *pgd;
1664         unsigned long next;
1665         unsigned long end = addr + PAGE_ALIGN(size);
1666         struct mm_struct *mm = vma->vm_mm;
1667         int err;
1668
1669         /*
1670          * Physically remapped pages are special. Tell the
1671          * rest of the world about it:
1672          *   VM_IO tells people not to look at these pages
1673          *      (accesses can have side effects).
1674          *   VM_RESERVED is specified all over the place, because
1675          *      in 2.4 it kept swapout's vma scan off this vma; but
1676          *      in 2.6 the LRU scan won't even find its pages, so this
1677          *      flag means no more than count its pages in reserved_vm,
1678          *      and omit it from core dump, even when VM_IO turned off.
1679          *   VM_PFNMAP tells the core MM that the base pages are just
1680          *      raw PFN mappings, and do not have a "struct page" associated
1681          *      with them.
1682          *
1683          * There's a horrible special case to handle copy-on-write
1684          * behaviour that some programs depend on. We mark the "original"
1685          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1686          */
1687         if (addr == vma->vm_start && end == vma->vm_end)
1688                 vma->vm_pgoff = pfn;
1689         else if (is_cow_mapping(vma->vm_flags))
1690                 return -EINVAL;
1691
1692         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1693
1694         err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1695         if (err)
1696                 return -EINVAL;
1697
1698         BUG_ON(addr >= end);
1699         pfn -= addr >> PAGE_SHIFT;
1700         pgd = pgd_offset(mm, addr);
1701         flush_cache_range(vma, addr, end);
1702         do {
1703                 next = pgd_addr_end(addr, end);
1704                 err = remap_pud_range(mm, pgd, addr, next,
1705                                 pfn + (addr >> PAGE_SHIFT), prot);
1706                 if (err)
1707                         break;
1708         } while (pgd++, addr = next, addr != end);
1709
1710         if (err)
1711                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1712
1713         return err;
1714 }
1715 EXPORT_SYMBOL(remap_pfn_range);
1716
1717 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1718                                      unsigned long addr, unsigned long end,
1719                                      pte_fn_t fn, void *data)
1720 {
1721         pte_t *pte;
1722         int err;
1723         pgtable_t token;
1724         spinlock_t *uninitialized_var(ptl);
1725
1726         pte = (mm == &init_mm) ?
1727                 pte_alloc_kernel(pmd, addr) :
1728                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1729         if (!pte)
1730                 return -ENOMEM;
1731
1732         BUG_ON(pmd_huge(*pmd));
1733
1734         token = pmd_pgtable(*pmd);
1735
1736         do {
1737                 err = fn(pte, token, addr, data);
1738                 if (err)
1739                         break;
1740         } while (pte++, addr += PAGE_SIZE, addr != end);
1741
1742         if (mm != &init_mm)
1743                 pte_unmap_unlock(pte-1, ptl);
1744         return err;
1745 }
1746
1747 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1748                                      unsigned long addr, unsigned long end,
1749                                      pte_fn_t fn, void *data)
1750 {
1751         pmd_t *pmd;
1752         unsigned long next;
1753         int err;
1754
1755         BUG_ON(pud_huge(*pud));
1756
1757         pmd = pmd_alloc(mm, pud, addr);
1758         if (!pmd)
1759                 return -ENOMEM;
1760         do {
1761                 next = pmd_addr_end(addr, end);
1762                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1763                 if (err)
1764                         break;
1765         } while (pmd++, addr = next, addr != end);
1766         return err;
1767 }
1768
1769 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1770                                      unsigned long addr, unsigned long end,
1771                                      pte_fn_t fn, void *data)
1772 {
1773         pud_t *pud;
1774         unsigned long next;
1775         int err;
1776
1777         pud = pud_alloc(mm, pgd, addr);
1778         if (!pud)
1779                 return -ENOMEM;
1780         do {
1781                 next = pud_addr_end(addr, end);
1782                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1783                 if (err)
1784                         break;
1785         } while (pud++, addr = next, addr != end);
1786         return err;
1787 }
1788
1789 /*
1790  * Scan a region of virtual memory, filling in page tables as necessary
1791  * and calling a provided function on each leaf page table.
1792  */
1793 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1794                         unsigned long size, pte_fn_t fn, void *data)
1795 {
1796         pgd_t *pgd;
1797         unsigned long next;
1798         unsigned long start = addr, end = addr + size;
1799         int err;
1800
1801         BUG_ON(addr >= end);
1802         mmu_notifier_invalidate_range_start(mm, start, end);
1803         pgd = pgd_offset(mm, addr);
1804         do {
1805                 next = pgd_addr_end(addr, end);
1806                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1807                 if (err)
1808                         break;
1809         } while (pgd++, addr = next, addr != end);
1810         mmu_notifier_invalidate_range_end(mm, start, end);
1811         return err;
1812 }
1813 EXPORT_SYMBOL_GPL(apply_to_page_range);
1814
1815 /*
1816  * handle_pte_fault chooses page fault handler according to an entry
1817  * which was read non-atomically.  Before making any commitment, on
1818  * those architectures or configurations (e.g. i386 with PAE) which
1819  * might give a mix of unmatched parts, do_swap_page and do_file_page
1820  * must check under lock before unmapping the pte and proceeding
1821  * (but do_wp_page is only called after already making such a check;
1822  * and do_anonymous_page and do_no_page can safely check later on).
1823  */
1824 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1825                                 pte_t *page_table, pte_t orig_pte)
1826 {
1827         int same = 1;
1828 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1829         if (sizeof(pte_t) > sizeof(unsigned long)) {
1830                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1831                 spin_lock(ptl);
1832                 same = pte_same(*page_table, orig_pte);
1833                 spin_unlock(ptl);
1834         }
1835 #endif
1836         pte_unmap(page_table);
1837         return same;
1838 }
1839
1840 /*
1841  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1842  * servicing faults for write access.  In the normal case, do always want
1843  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1844  * that do not have writing enabled, when used by access_process_vm.
1845  */
1846 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1847 {
1848         if (likely(vma->vm_flags & VM_WRITE))
1849                 pte = pte_mkwrite(pte);
1850         return pte;
1851 }
1852
1853 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1854 {
1855         /*
1856          * If the source page was a PFN mapping, we don't have
1857          * a "struct page" for it. We do a best-effort copy by
1858          * just copying from the original user address. If that
1859          * fails, we just zero-fill it. Live with it.
1860          */
1861         if (unlikely(!src)) {
1862                 void *kaddr = kmap_atomic(dst, KM_USER0);
1863                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1864
1865                 /*
1866                  * This really shouldn't fail, because the page is there
1867                  * in the page tables. But it might just be unreadable,
1868                  * in which case we just give up and fill the result with
1869                  * zeroes.
1870                  */
1871                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1872                         memset(kaddr, 0, PAGE_SIZE);
1873                 kunmap_atomic(kaddr, KM_USER0);
1874                 flush_dcache_page(dst);
1875         } else
1876                 copy_user_highpage(dst, src, va, vma);
1877 }
1878
1879 /*
1880  * This routine handles present pages, when users try to write
1881  * to a shared page. It is done by copying the page to a new address
1882  * and decrementing the shared-page counter for the old page.
1883  *
1884  * Note that this routine assumes that the protection checks have been
1885  * done by the caller (the low-level page fault routine in most cases).
1886  * Thus we can safely just mark it writable once we've done any necessary
1887  * COW.
1888  *
1889  * We also mark the page dirty at this point even though the page will
1890  * change only once the write actually happens. This avoids a few races,
1891  * and potentially makes it more efficient.
1892  *
1893  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1894  * but allow concurrent faults), with pte both mapped and locked.
1895  * We return with mmap_sem still held, but pte unmapped and unlocked.
1896  */
1897 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1898                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1899                 spinlock_t *ptl, pte_t orig_pte)
1900 {
1901         struct page *old_page, *new_page;
1902         pte_t entry;
1903         int reuse = 0, ret = 0;
1904         int page_mkwrite = 0;
1905         struct page *dirty_page = NULL;
1906
1907         old_page = vm_normal_page(vma, address, orig_pte);
1908         if (!old_page) {
1909                 /*
1910                  * VM_MIXEDMAP !pfn_valid() case
1911                  *
1912                  * We should not cow pages in a shared writeable mapping.
1913                  * Just mark the pages writable as we can't do any dirty
1914                  * accounting on raw pfn maps.
1915                  */
1916                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1917                                      (VM_WRITE|VM_SHARED))
1918                         goto reuse;
1919                 goto gotten;
1920         }
1921
1922         /*
1923          * Take out anonymous pages first, anonymous shared vmas are
1924          * not dirty accountable.
1925          */
1926         if (PageAnon(old_page)) {
1927                 if (trylock_page(old_page)) {
1928                         reuse = can_share_swap_page(old_page);
1929                         unlock_page(old_page);
1930                 }
1931         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1932                                         (VM_WRITE|VM_SHARED))) {
1933                 /*
1934                  * Only catch write-faults on shared writable pages,
1935                  * read-only shared pages can get COWed by
1936                  * get_user_pages(.write=1, .force=1).
1937                  */
1938                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1939                         /*
1940                          * Notify the address space that the page is about to
1941                          * become writable so that it can prohibit this or wait
1942                          * for the page to get into an appropriate state.
1943                          *
1944                          * We do this without the lock held, so that it can
1945                          * sleep if it needs to.
1946                          */
1947                         page_cache_get(old_page);
1948                         pte_unmap_unlock(page_table, ptl);
1949
1950                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1951                                 goto unwritable_page;
1952
1953                         /*
1954                          * Since we dropped the lock we need to revalidate
1955                          * the PTE as someone else may have changed it.  If
1956                          * they did, we just return, as we can count on the
1957                          * MMU to tell us if they didn't also make it writable.
1958                          */
1959                         page_table = pte_offset_map_lock(mm, pmd, address,
1960                                                          &ptl);
1961                         page_cache_release(old_page);
1962                         if (!pte_same(*page_table, orig_pte))
1963                                 goto unlock;
1964
1965                         page_mkwrite = 1;
1966                 }
1967                 dirty_page = old_page;
1968                 get_page(dirty_page);
1969                 reuse = 1;
1970         }
1971
1972         if (reuse) {
1973 reuse:
1974                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1975                 entry = pte_mkyoung(orig_pte);
1976                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1977                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1978                         update_mmu_cache(vma, address, entry);
1979                 ret |= VM_FAULT_WRITE;
1980                 goto unlock;
1981         }
1982
1983         /*
1984          * Ok, we need to copy. Oh, well..
1985          */
1986         page_cache_get(old_page);
1987 gotten:
1988         pte_unmap_unlock(page_table, ptl);
1989
1990         if (unlikely(anon_vma_prepare(vma)))
1991                 goto oom;
1992         VM_BUG_ON(old_page == ZERO_PAGE(0));
1993         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1994         if (!new_page)
1995                 goto oom;
1996         /*
1997          * Don't let another task, with possibly unlocked vma,
1998          * keep the mlocked page.
1999          */
2000         if (vma->vm_flags & VM_LOCKED) {
2001                 lock_page(old_page);    /* for LRU manipulation */
2002                 clear_page_mlock(old_page);
2003                 unlock_page(old_page);
2004         }
2005         cow_user_page(new_page, old_page, address, vma);
2006         __SetPageUptodate(new_page);
2007
2008         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2009                 goto oom_free_new;
2010
2011         /*
2012          * Re-check the pte - we dropped the lock
2013          */
2014         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2015         if (likely(pte_same(*page_table, orig_pte))) {
2016                 if (old_page) {
2017                         if (!PageAnon(old_page)) {
2018                                 dec_mm_counter(mm, file_rss);
2019                                 inc_mm_counter(mm, anon_rss);
2020                         }
2021                 } else
2022                         inc_mm_counter(mm, anon_rss);
2023                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2024                 entry = mk_pte(new_page, vma->vm_page_prot);
2025                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2026                 /*
2027                  * Clear the pte entry and flush it first, before updating the
2028                  * pte with the new entry. This will avoid a race condition
2029                  * seen in the presence of one thread doing SMC and another
2030                  * thread doing COW.
2031                  */
2032                 ptep_clear_flush_notify(vma, address, page_table);
2033                 SetPageSwapBacked(new_page);
2034                 lru_cache_add_active_or_unevictable(new_page, vma);
2035                 page_add_new_anon_rmap(new_page, vma, address);
2036
2037 //TODO:  is this safe?  do_anonymous_page() does it this way.
2038                 set_pte_at(mm, address, page_table, entry);
2039                 update_mmu_cache(vma, address, entry);
2040                 if (old_page) {
2041                         /*
2042                          * Only after switching the pte to the new page may
2043                          * we remove the mapcount here. Otherwise another
2044                          * process may come and find the rmap count decremented
2045                          * before the pte is switched to the new page, and
2046                          * "reuse" the old page writing into it while our pte
2047                          * here still points into it and can be read by other
2048                          * threads.
2049                          *
2050                          * The critical issue is to order this
2051                          * page_remove_rmap with the ptp_clear_flush above.
2052                          * Those stores are ordered by (if nothing else,)
2053                          * the barrier present in the atomic_add_negative
2054                          * in page_remove_rmap.
2055                          *
2056                          * Then the TLB flush in ptep_clear_flush ensures that
2057                          * no process can access the old page before the
2058                          * decremented mapcount is visible. And the old page
2059                          * cannot be reused until after the decremented
2060                          * mapcount is visible. So transitively, TLBs to
2061                          * old page will be flushed before it can be reused.
2062                          */
2063                         page_remove_rmap(old_page, vma);
2064                 }
2065
2066                 /* Free the old page.. */
2067                 new_page = old_page;
2068                 ret |= VM_FAULT_WRITE;
2069         } else
2070                 mem_cgroup_uncharge_page(new_page);
2071
2072         if (new_page)
2073                 page_cache_release(new_page);
2074         if (old_page)
2075                 page_cache_release(old_page);
2076 unlock:
2077         pte_unmap_unlock(page_table, ptl);
2078         if (dirty_page) {
2079                 if (vma->vm_file)
2080                         file_update_time(vma->vm_file);
2081
2082                 /*
2083                  * Yes, Virginia, this is actually required to prevent a race
2084                  * with clear_page_dirty_for_io() from clearing the page dirty
2085                  * bit after it clear all dirty ptes, but before a racing
2086                  * do_wp_page installs a dirty pte.
2087                  *
2088                  * do_no_page is protected similarly.
2089                  */
2090                 wait_on_page_locked(dirty_page);
2091                 set_page_dirty_balance(dirty_page, page_mkwrite);
2092                 put_page(dirty_page);
2093         }
2094         return ret;
2095 oom_free_new:
2096         page_cache_release(new_page);
2097 oom:
2098         if (old_page)
2099                 page_cache_release(old_page);
2100         return VM_FAULT_OOM;
2101
2102 unwritable_page:
2103         page_cache_release(old_page);
2104         return VM_FAULT_SIGBUS;
2105 }
2106
2107 /*
2108  * Helper functions for unmap_mapping_range().
2109  *
2110  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2111  *
2112  * We have to restart searching the prio_tree whenever we drop the lock,
2113  * since the iterator is only valid while the lock is held, and anyway
2114  * a later vma might be split and reinserted earlier while lock dropped.
2115  *
2116  * The list of nonlinear vmas could be handled more efficiently, using
2117  * a placeholder, but handle it in the same way until a need is shown.
2118  * It is important to search the prio_tree before nonlinear list: a vma
2119  * may become nonlinear and be shifted from prio_tree to nonlinear list
2120  * while the lock is dropped; but never shifted from list to prio_tree.
2121  *
2122  * In order to make forward progress despite restarting the search,
2123  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2124  * quickly skip it next time around.  Since the prio_tree search only
2125  * shows us those vmas affected by unmapping the range in question, we
2126  * can't efficiently keep all vmas in step with mapping->truncate_count:
2127  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2128  * mapping->truncate_count and vma->vm_truncate_count are protected by
2129  * i_mmap_lock.
2130  *
2131  * In order to make forward progress despite repeatedly restarting some
2132  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2133  * and restart from that address when we reach that vma again.  It might
2134  * have been split or merged, shrunk or extended, but never shifted: so
2135  * restart_addr remains valid so long as it remains in the vma's range.
2136  * unmap_mapping_range forces truncate_count to leap over page-aligned
2137  * values so we can save vma's restart_addr in its truncate_count field.
2138  */
2139 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2140
2141 static void reset_vma_truncate_counts(struct address_space *mapping)
2142 {
2143         struct vm_area_struct *vma;
2144         struct prio_tree_iter iter;
2145
2146         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2147                 vma->vm_truncate_count = 0;
2148         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2149                 vma->vm_truncate_count = 0;
2150 }
2151
2152 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2153                 unsigned long start_addr, unsigned long end_addr,
2154                 struct zap_details *details)
2155 {
2156         unsigned long restart_addr;
2157         int need_break;
2158
2159         /*
2160          * files that support invalidating or truncating portions of the
2161          * file from under mmaped areas must have their ->fault function
2162          * return a locked page (and set VM_FAULT_LOCKED in the return).
2163          * This provides synchronisation against concurrent unmapping here.
2164          */
2165
2166 again:
2167         restart_addr = vma->vm_truncate_count;
2168         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2169                 start_addr = restart_addr;
2170                 if (start_addr >= end_addr) {
2171                         /* Top of vma has been split off since last time */
2172                         vma->vm_truncate_count = details->truncate_count;
2173                         return 0;
2174                 }
2175         }
2176
2177         restart_addr = zap_page_range(vma, start_addr,
2178                                         end_addr - start_addr, details);
2179         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2180
2181         if (restart_addr >= end_addr) {
2182                 /* We have now completed this vma: mark it so */
2183                 vma->vm_truncate_count = details->truncate_count;
2184                 if (!need_break)
2185                         return 0;
2186         } else {
2187                 /* Note restart_addr in vma's truncate_count field */
2188                 vma->vm_truncate_count = restart_addr;
2189                 if (!need_break)
2190                         goto again;
2191         }
2192
2193         spin_unlock(details->i_mmap_lock);
2194         cond_resched();
2195         spin_lock(details->i_mmap_lock);
2196         return -EINTR;
2197 }
2198
2199 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2200                                             struct zap_details *details)
2201 {
2202         struct vm_area_struct *vma;
2203         struct prio_tree_iter iter;
2204         pgoff_t vba, vea, zba, zea;
2205
2206 restart:
2207         vma_prio_tree_foreach(vma, &iter, root,
2208                         details->first_index, details->last_index) {
2209                 /* Skip quickly over those we have already dealt with */
2210                 if (vma->vm_truncate_count == details->truncate_count)
2211                         continue;
2212
2213                 vba = vma->vm_pgoff;
2214                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2215                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2216                 zba = details->first_index;
2217                 if (zba < vba)
2218                         zba = vba;
2219                 zea = details->last_index;
2220                 if (zea > vea)
2221                         zea = vea;
2222
2223                 if (unmap_mapping_range_vma(vma,
2224                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2225                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2226                                 details) < 0)
2227                         goto restart;
2228         }
2229 }
2230
2231 static inline void unmap_mapping_range_list(struct list_head *head,
2232                                             struct zap_details *details)
2233 {
2234         struct vm_area_struct *vma;
2235
2236         /*
2237          * In nonlinear VMAs there is no correspondence between virtual address
2238          * offset and file offset.  So we must perform an exhaustive search
2239          * across *all* the pages in each nonlinear VMA, not just the pages
2240          * whose virtual address lies outside the file truncation point.
2241          */
2242 restart:
2243         list_for_each_entry(vma, head, shared.vm_set.list) {
2244                 /* Skip quickly over those we have already dealt with */
2245                 if (vma->vm_truncate_count == details->truncate_count)
2246                         continue;
2247                 details->nonlinear_vma = vma;
2248                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2249                                         vma->vm_end, details) < 0)
2250                         goto restart;
2251         }
2252 }
2253
2254 /**
2255  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2256  * @mapping: the address space containing mmaps to be unmapped.
2257  * @holebegin: byte in first page to unmap, relative to the start of
2258  * the underlying file.  This will be rounded down to a PAGE_SIZE
2259  * boundary.  Note that this is different from vmtruncate(), which
2260  * must keep the partial page.  In contrast, we must get rid of
2261  * partial pages.
2262  * @holelen: size of prospective hole in bytes.  This will be rounded
2263  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2264  * end of the file.
2265  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2266  * but 0 when invalidating pagecache, don't throw away private data.
2267  */
2268 void unmap_mapping_range(struct address_space *mapping,
2269                 loff_t const holebegin, loff_t const holelen, int even_cows)
2270 {
2271         struct zap_details details;
2272         pgoff_t hba = holebegin >> PAGE_SHIFT;
2273         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2274
2275         /* Check for overflow. */
2276         if (sizeof(holelen) > sizeof(hlen)) {
2277                 long long holeend =
2278                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279                 if (holeend & ~(long long)ULONG_MAX)
2280                         hlen = ULONG_MAX - hba + 1;
2281         }
2282
2283         details.check_mapping = even_cows? NULL: mapping;
2284         details.nonlinear_vma = NULL;
2285         details.first_index = hba;
2286         details.last_index = hba + hlen - 1;
2287         if (details.last_index < details.first_index)
2288                 details.last_index = ULONG_MAX;
2289         details.i_mmap_lock = &mapping->i_mmap_lock;
2290
2291         spin_lock(&mapping->i_mmap_lock);
2292
2293         /* Protect against endless unmapping loops */
2294         mapping->truncate_count++;
2295         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2296                 if (mapping->truncate_count == 0)
2297                         reset_vma_truncate_counts(mapping);
2298                 mapping->truncate_count++;
2299         }
2300         details.truncate_count = mapping->truncate_count;
2301
2302         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2303                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2304         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2305                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2306         spin_unlock(&mapping->i_mmap_lock);
2307 }
2308 EXPORT_SYMBOL(unmap_mapping_range);
2309
2310 /**
2311  * vmtruncate - unmap mappings "freed" by truncate() syscall
2312  * @inode: inode of the file used
2313  * @offset: file offset to start truncating
2314  *
2315  * NOTE! We have to be ready to update the memory sharing
2316  * between the file and the memory map for a potential last
2317  * incomplete page.  Ugly, but necessary.
2318  */
2319 int vmtruncate(struct inode * inode, loff_t offset)
2320 {
2321         if (inode->i_size < offset) {
2322                 unsigned long limit;
2323
2324                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2325                 if (limit != RLIM_INFINITY && offset > limit)
2326                         goto out_sig;
2327                 if (offset > inode->i_sb->s_maxbytes)
2328                         goto out_big;
2329                 i_size_write(inode, offset);
2330         } else {
2331                 struct address_space *mapping = inode->i_mapping;
2332
2333                 /*
2334                  * truncation of in-use swapfiles is disallowed - it would
2335                  * cause subsequent swapout to scribble on the now-freed
2336                  * blocks.
2337                  */
2338                 if (IS_SWAPFILE(inode))
2339                         return -ETXTBSY;
2340                 i_size_write(inode, offset);
2341
2342                 /*
2343                  * unmap_mapping_range is called twice, first simply for
2344                  * efficiency so that truncate_inode_pages does fewer
2345                  * single-page unmaps.  However after this first call, and
2346                  * before truncate_inode_pages finishes, it is possible for
2347                  * private pages to be COWed, which remain after
2348                  * truncate_inode_pages finishes, hence the second
2349                  * unmap_mapping_range call must be made for correctness.
2350                  */
2351                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2352                 truncate_inode_pages(mapping, offset);
2353                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2354         }
2355
2356         if (inode->i_op && inode->i_op->truncate)
2357                 inode->i_op->truncate(inode);
2358         return 0;
2359
2360 out_sig:
2361         send_sig(SIGXFSZ, current, 0);
2362 out_big:
2363         return -EFBIG;
2364 }
2365 EXPORT_SYMBOL(vmtruncate);
2366
2367 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2368 {
2369         struct address_space *mapping = inode->i_mapping;
2370
2371         /*
2372          * If the underlying filesystem is not going to provide
2373          * a way to truncate a range of blocks (punch a hole) -
2374          * we should return failure right now.
2375          */
2376         if (!inode->i_op || !inode->i_op->truncate_range)
2377                 return -ENOSYS;
2378
2379         mutex_lock(&inode->i_mutex);
2380         down_write(&inode->i_alloc_sem);
2381         unmap_mapping_range(mapping, offset, (end - offset), 1);
2382         truncate_inode_pages_range(mapping, offset, end);
2383         unmap_mapping_range(mapping, offset, (end - offset), 1);
2384         inode->i_op->truncate_range(inode, offset, end);
2385         up_write(&inode->i_alloc_sem);
2386         mutex_unlock(&inode->i_mutex);
2387
2388         return 0;
2389 }
2390
2391 /*
2392  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2393  * but allow concurrent faults), and pte mapped but not yet locked.
2394  * We return with mmap_sem still held, but pte unmapped and unlocked.
2395  */
2396 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2398                 int write_access, pte_t orig_pte)
2399 {
2400         spinlock_t *ptl;
2401         struct page *page;
2402         swp_entry_t entry;
2403         pte_t pte;
2404         int ret = 0;
2405
2406         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2407                 goto out;
2408
2409         entry = pte_to_swp_entry(orig_pte);
2410         if (is_migration_entry(entry)) {
2411                 migration_entry_wait(mm, pmd, address);
2412                 goto out;
2413         }
2414         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2415         page = lookup_swap_cache(entry);
2416         if (!page) {
2417                 grab_swap_token(); /* Contend for token _before_ read-in */
2418                 page = swapin_readahead(entry,
2419                                         GFP_HIGHUSER_MOVABLE, vma, address);
2420                 if (!page) {
2421                         /*
2422                          * Back out if somebody else faulted in this pte
2423                          * while we released the pte lock.
2424                          */
2425                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2426                         if (likely(pte_same(*page_table, orig_pte)))
2427                                 ret = VM_FAULT_OOM;
2428                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2429                         goto unlock;
2430                 }
2431
2432                 /* Had to read the page from swap area: Major fault */
2433                 ret = VM_FAULT_MAJOR;
2434                 count_vm_event(PGMAJFAULT);
2435         }
2436
2437         mark_page_accessed(page);
2438
2439         lock_page(page);
2440         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2441
2442         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2443                 ret = VM_FAULT_OOM;
2444                 unlock_page(page);
2445                 goto out;
2446         }
2447
2448         /*
2449          * Back out if somebody else already faulted in this pte.
2450          */
2451         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2452         if (unlikely(!pte_same(*page_table, orig_pte)))
2453                 goto out_nomap;
2454
2455         if (unlikely(!PageUptodate(page))) {
2456                 ret = VM_FAULT_SIGBUS;
2457                 goto out_nomap;
2458         }
2459
2460         /* The page isn't present yet, go ahead with the fault. */
2461
2462         inc_mm_counter(mm, anon_rss);
2463         pte = mk_pte(page, vma->vm_page_prot);
2464         if (write_access && can_share_swap_page(page)) {
2465                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2466                 write_access = 0;
2467         }
2468
2469         flush_icache_page(vma, page);
2470         set_pte_at(mm, address, page_table, pte);
2471         page_add_anon_rmap(page, vma, address);
2472
2473         swap_free(entry);
2474         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2475                 remove_exclusive_swap_page(page);
2476         unlock_page(page);
2477
2478         if (write_access) {
2479                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2480                 if (ret & VM_FAULT_ERROR)
2481                         ret &= VM_FAULT_ERROR;
2482                 goto out;
2483         }
2484
2485         /* No need to invalidate - it was non-present before */
2486         update_mmu_cache(vma, address, pte);
2487 unlock:
2488         pte_unmap_unlock(page_table, ptl);
2489 out:
2490         return ret;
2491 out_nomap:
2492         mem_cgroup_uncharge_page(page);
2493         pte_unmap_unlock(page_table, ptl);
2494         unlock_page(page);
2495         page_cache_release(page);
2496         return ret;
2497 }
2498
2499 /*
2500  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2501  * but allow concurrent faults), and pte mapped but not yet locked.
2502  * We return with mmap_sem still held, but pte unmapped and unlocked.
2503  */
2504 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2505                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2506                 int write_access)
2507 {
2508         struct page *page;
2509         spinlock_t *ptl;
2510         pte_t entry;
2511
2512         /* Allocate our own private page. */
2513         pte_unmap(page_table);
2514
2515         if (unlikely(anon_vma_prepare(vma)))
2516                 goto oom;
2517         page = alloc_zeroed_user_highpage_movable(vma, address);
2518         if (!page)
2519                 goto oom;
2520         __SetPageUptodate(page);
2521
2522         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2523                 goto oom_free_page;
2524
2525         entry = mk_pte(page, vma->vm_page_prot);
2526         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2527
2528         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2529         if (!pte_none(*page_table))
2530                 goto release;
2531         inc_mm_counter(mm, anon_rss);
2532         SetPageSwapBacked(page);
2533         lru_cache_add_active_or_unevictable(page, vma);
2534         page_add_new_anon_rmap(page, vma, address);
2535         set_pte_at(mm, address, page_table, entry);
2536
2537         /* No need to invalidate - it was non-present before */
2538         update_mmu_cache(vma, address, entry);
2539 unlock:
2540         pte_unmap_unlock(page_table, ptl);
2541         return 0;
2542 release:
2543         mem_cgroup_uncharge_page(page);
2544         page_cache_release(page);
2545         goto unlock;
2546 oom_free_page:
2547         page_cache_release(page);
2548 oom:
2549         return VM_FAULT_OOM;
2550 }
2551
2552 /*
2553  * __do_fault() tries to create a new page mapping. It aggressively
2554  * tries to share with existing pages, but makes a separate copy if
2555  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2556  * the next page fault.
2557  *
2558  * As this is called only for pages that do not currently exist, we
2559  * do not need to flush old virtual caches or the TLB.
2560  *
2561  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2562  * but allow concurrent faults), and pte neither mapped nor locked.
2563  * We return with mmap_sem still held, but pte unmapped and unlocked.
2564  */
2565 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2566                 unsigned long address, pmd_t *pmd,
2567                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2568 {
2569         pte_t *page_table;
2570         spinlock_t *ptl;
2571         struct page *page;
2572         pte_t entry;
2573         int anon = 0;
2574         int charged = 0;
2575         struct page *dirty_page = NULL;
2576         struct vm_fault vmf;
2577         int ret;
2578         int page_mkwrite = 0;
2579
2580         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2581         vmf.pgoff = pgoff;
2582         vmf.flags = flags;
2583         vmf.page = NULL;
2584
2585         ret = vma->vm_ops->fault(vma, &vmf);
2586         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2587                 return ret;
2588
2589         /*
2590          * For consistency in subsequent calls, make the faulted page always
2591          * locked.
2592          */
2593         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2594                 lock_page(vmf.page);
2595         else
2596                 VM_BUG_ON(!PageLocked(vmf.page));
2597
2598         /*
2599          * Should we do an early C-O-W break?
2600          */
2601         page = vmf.page;
2602         if (flags & FAULT_FLAG_WRITE) {
2603                 if (!(vma->vm_flags & VM_SHARED)) {
2604                         anon = 1;
2605                         if (unlikely(anon_vma_prepare(vma))) {
2606                                 ret = VM_FAULT_OOM;
2607                                 goto out;
2608                         }
2609                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2610                                                 vma, address);
2611                         if (!page) {
2612                                 ret = VM_FAULT_OOM;
2613                                 goto out;
2614                         }
2615                         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2616                                 ret = VM_FAULT_OOM;
2617                                 page_cache_release(page);
2618                                 goto out;
2619                         }
2620                         charged = 1;
2621                         /*
2622                          * Don't let another task, with possibly unlocked vma,
2623                          * keep the mlocked page.
2624                          */
2625                         if (vma->vm_flags & VM_LOCKED)
2626                                 clear_page_mlock(vmf.page);
2627                         copy_user_highpage(page, vmf.page, address, vma);
2628                         __SetPageUptodate(page);
2629                 } else {
2630                         /*
2631                          * If the page will be shareable, see if the backing
2632                          * address space wants to know that the page is about
2633                          * to become writable
2634                          */
2635                         if (vma->vm_ops->page_mkwrite) {
2636                                 unlock_page(page);
2637                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2638                                         ret = VM_FAULT_SIGBUS;
2639                                         anon = 1; /* no anon but release vmf.page */
2640                                         goto out_unlocked;
2641                                 }
2642                                 lock_page(page);
2643                                 /*
2644                                  * XXX: this is not quite right (racy vs
2645                                  * invalidate) to unlock and relock the page
2646                                  * like this, however a better fix requires
2647                                  * reworking page_mkwrite locking API, which
2648                                  * is better done later.
2649                                  */
2650                                 if (!page->mapping) {
2651                                         ret = 0;
2652                                         anon = 1; /* no anon but release vmf.page */
2653                                         goto out;
2654                                 }
2655                                 page_mkwrite = 1;
2656                         }
2657                 }
2658
2659         }
2660
2661         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2662
2663         /*
2664          * This silly early PAGE_DIRTY setting removes a race
2665          * due to the bad i386 page protection. But it's valid
2666          * for other architectures too.
2667          *
2668          * Note that if write_access is true, we either now have
2669          * an exclusive copy of the page, or this is a shared mapping,
2670          * so we can make it writable and dirty to avoid having to
2671          * handle that later.
2672          */
2673         /* Only go through if we didn't race with anybody else... */
2674         if (likely(pte_same(*page_table, orig_pte))) {
2675                 flush_icache_page(vma, page);
2676                 entry = mk_pte(page, vma->vm_page_prot);
2677                 if (flags & FAULT_FLAG_WRITE)
2678                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2679                 if (anon) {
2680                         inc_mm_counter(mm, anon_rss);
2681                         SetPageSwapBacked(page);
2682                         lru_cache_add_active_or_unevictable(page, vma);
2683                         page_add_new_anon_rmap(page, vma, address);
2684                 } else {
2685                         inc_mm_counter(mm, file_rss);
2686                         page_add_file_rmap(page);
2687                         if (flags & FAULT_FLAG_WRITE) {
2688                                 dirty_page = page;
2689                                 get_page(dirty_page);
2690                         }
2691                 }
2692 //TODO:  is this safe?  do_anonymous_page() does it this way.
2693                 set_pte_at(mm, address, page_table, entry);
2694
2695                 /* no need to invalidate: a not-present page won't be cached */
2696                 update_mmu_cache(vma, address, entry);
2697         } else {
2698                 if (charged)
2699                         mem_cgroup_uncharge_page(page);
2700                 if (anon)
2701                         page_cache_release(page);
2702                 else
2703                         anon = 1; /* no anon but release faulted_page */
2704         }
2705
2706         pte_unmap_unlock(page_table, ptl);
2707
2708 out:
2709         unlock_page(vmf.page);
2710 out_unlocked:
2711         if (anon)
2712                 page_cache_release(vmf.page);
2713         else if (dirty_page) {
2714                 if (vma->vm_file)
2715                         file_update_time(vma->vm_file);
2716
2717                 set_page_dirty_balance(dirty_page, page_mkwrite);
2718                 put_page(dirty_page);
2719         }
2720
2721         return ret;
2722 }
2723
2724 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2725                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2726                 int write_access, pte_t orig_pte)
2727 {
2728         pgoff_t pgoff = (((address & PAGE_MASK)
2729                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2730         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2731
2732         pte_unmap(page_table);
2733         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2734 }
2735
2736 /*
2737  * Fault of a previously existing named mapping. Repopulate the pte
2738  * from the encoded file_pte if possible. This enables swappable
2739  * nonlinear vmas.
2740  *
2741  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2742  * but allow concurrent faults), and pte mapped but not yet locked.
2743  * We return with mmap_sem still held, but pte unmapped and unlocked.
2744  */
2745 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2746                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2747                 int write_access, pte_t orig_pte)
2748 {
2749         unsigned int flags = FAULT_FLAG_NONLINEAR |
2750                                 (write_access ? FAULT_FLAG_WRITE : 0);
2751         pgoff_t pgoff;
2752
2753         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2754                 return 0;
2755
2756         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2757                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2758                 /*
2759                  * Page table corrupted: show pte and kill process.
2760                  */
2761                 print_bad_pte(vma, orig_pte, address);
2762                 return VM_FAULT_OOM;
2763         }
2764
2765         pgoff = pte_to_pgoff(orig_pte);
2766         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2767 }
2768
2769 /*
2770  * These routines also need to handle stuff like marking pages dirty
2771  * and/or accessed for architectures that don't do it in hardware (most
2772  * RISC architectures).  The early dirtying is also good on the i386.
2773  *
2774  * There is also a hook called "update_mmu_cache()" that architectures
2775  * with external mmu caches can use to update those (ie the Sparc or
2776  * PowerPC hashed page tables that act as extended TLBs).
2777  *
2778  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2779  * but allow concurrent faults), and pte mapped but not yet locked.
2780  * We return with mmap_sem still held, but pte unmapped and unlocked.
2781  */
2782 static inline int handle_pte_fault(struct mm_struct *mm,
2783                 struct vm_area_struct *vma, unsigned long address,
2784                 pte_t *pte, pmd_t *pmd, int write_access)
2785 {
2786         pte_t entry;
2787         spinlock_t *ptl;
2788
2789         entry = *pte;
2790         if (!pte_present(entry)) {
2791                 if (pte_none(entry)) {
2792                         if (vma->vm_ops) {
2793                                 if (likely(vma->vm_ops->fault))
2794                                         return do_linear_fault(mm, vma, address,
2795                                                 pte, pmd, write_access, entry);
2796                         }
2797                         return do_anonymous_page(mm, vma, address,
2798                                                  pte, pmd, write_access);
2799                 }
2800                 if (pte_file(entry))
2801                         return do_nonlinear_fault(mm, vma, address,
2802                                         pte, pmd, write_access, entry);
2803                 return do_swap_page(mm, vma, address,
2804                                         pte, pmd, write_access, entry);
2805         }
2806
2807         ptl = pte_lockptr(mm, pmd);
2808         spin_lock(ptl);
2809         if (unlikely(!pte_same(*pte, entry)))
2810                 goto unlock;
2811         if (write_access) {
2812                 if (!pte_write(entry))
2813                         return do_wp_page(mm, vma, address,
2814                                         pte, pmd, ptl, entry);
2815                 entry = pte_mkdirty(entry);
2816         }
2817         entry = pte_mkyoung(entry);
2818         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2819                 update_mmu_cache(vma, address, entry);
2820         } else {
2821                 /*
2822                  * This is needed only for protection faults but the arch code
2823                  * is not yet telling us if this is a protection fault or not.
2824                  * This still avoids useless tlb flushes for .text page faults
2825                  * with threads.
2826                  */
2827                 if (write_access)
2828                         flush_tlb_page(vma, address);
2829         }
2830 unlock:
2831         pte_unmap_unlock(pte, ptl);
2832         return 0;
2833 }
2834
2835 /*
2836  * By the time we get here, we already hold the mm semaphore
2837  */
2838 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2839                 unsigned long address, int write_access)
2840 {
2841         pgd_t *pgd;
2842         pud_t *pud;
2843         pmd_t *pmd;
2844         pte_t *pte;
2845
2846         __set_current_state(TASK_RUNNING);
2847
2848         count_vm_event(PGFAULT);
2849
2850         if (unlikely(is_vm_hugetlb_page(vma)))
2851                 return hugetlb_fault(mm, vma, address, write_access);
2852
2853         pgd = pgd_offset(mm, address);
2854         pud = pud_alloc(mm, pgd, address);
2855         if (!pud)
2856                 return VM_FAULT_OOM;
2857         pmd = pmd_alloc(mm, pud, address);
2858         if (!pmd)
2859                 return VM_FAULT_OOM;
2860         pte = pte_alloc_map(mm, pmd, address);
2861         if (!pte)
2862                 return VM_FAULT_OOM;
2863
2864         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2865 }
2866
2867 #ifndef __PAGETABLE_PUD_FOLDED
2868 /*
2869  * Allocate page upper directory.
2870  * We've already handled the fast-path in-line.
2871  */
2872 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2873 {
2874         pud_t *new = pud_alloc_one(mm, address);
2875         if (!new)
2876                 return -ENOMEM;
2877
2878         smp_wmb(); /* See comment in __pte_alloc */
2879
2880         spin_lock(&mm->page_table_lock);
2881         if (pgd_present(*pgd))          /* Another has populated it */
2882                 pud_free(mm, new);
2883         else
2884                 pgd_populate(mm, pgd, new);
2885         spin_unlock(&mm->page_table_lock);
2886         return 0;
2887 }
2888 #endif /* __PAGETABLE_PUD_FOLDED */
2889
2890 #ifndef __PAGETABLE_PMD_FOLDED
2891 /*
2892  * Allocate page middle directory.
2893  * We've already handled the fast-path in-line.
2894  */
2895 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2896 {
2897         pmd_t *new = pmd_alloc_one(mm, address);
2898         if (!new)
2899                 return -ENOMEM;
2900
2901         smp_wmb(); /* See comment in __pte_alloc */
2902
2903         spin_lock(&mm->page_table_lock);
2904 #ifndef __ARCH_HAS_4LEVEL_HACK
2905         if (pud_present(*pud))          /* Another has populated it */
2906                 pmd_free(mm, new);
2907         else
2908                 pud_populate(mm, pud, new);
2909 #else
2910         if (pgd_present(*pud))          /* Another has populated it */
2911                 pmd_free(mm, new);
2912         else
2913                 pgd_populate(mm, pud, new);
2914 #endif /* __ARCH_HAS_4LEVEL_HACK */
2915         spin_unlock(&mm->page_table_lock);
2916         return 0;
2917 }
2918 #endif /* __PAGETABLE_PMD_FOLDED */
2919
2920 int make_pages_present(unsigned long addr, unsigned long end)
2921 {
2922         int ret, len, write;
2923         struct vm_area_struct * vma;
2924
2925         vma = find_vma(current->mm, addr);
2926         if (!vma)
2927                 return -ENOMEM;
2928         write = (vma->vm_flags & VM_WRITE) != 0;
2929         BUG_ON(addr >= end);
2930         BUG_ON(end > vma->vm_end);
2931         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2932         ret = get_user_pages(current, current->mm, addr,
2933                         len, write, 0, NULL, NULL);
2934         if (ret < 0)
2935                 return ret;
2936         return ret == len ? 0 : -EFAULT;
2937 }
2938
2939 #if !defined(__HAVE_ARCH_GATE_AREA)
2940
2941 #if defined(AT_SYSINFO_EHDR)
2942 static struct vm_area_struct gate_vma;
2943
2944 static int __init gate_vma_init(void)
2945 {
2946         gate_vma.vm_mm = NULL;
2947         gate_vma.vm_start = FIXADDR_USER_START;
2948         gate_vma.vm_end = FIXADDR_USER_END;
2949         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2950         gate_vma.vm_page_prot = __P101;
2951         /*
2952          * Make sure the vDSO gets into every core dump.
2953          * Dumping its contents makes post-mortem fully interpretable later
2954          * without matching up the same kernel and hardware config to see
2955          * what PC values meant.
2956          */
2957         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2958         return 0;
2959 }
2960 __initcall(gate_vma_init);
2961 #endif
2962
2963 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2964 {
2965 #ifdef AT_SYSINFO_EHDR
2966         return &gate_vma;
2967 #else
2968         return NULL;
2969 #endif
2970 }
2971
2972 int in_gate_area_no_task(unsigned long addr)
2973 {
2974 #ifdef AT_SYSINFO_EHDR
2975         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2976                 return 1;
2977 #endif
2978         return 0;
2979 }
2980
2981 #endif  /* __HAVE_ARCH_GATE_AREA */
2982
2983 #ifdef CONFIG_HAVE_IOREMAP_PROT
2984 int follow_phys(struct vm_area_struct *vma,
2985                 unsigned long address, unsigned int flags,
2986                 unsigned long *prot, resource_size_t *phys)
2987 {
2988         pgd_t *pgd;
2989         pud_t *pud;
2990         pmd_t *pmd;
2991         pte_t *ptep, pte;
2992         spinlock_t *ptl;
2993         resource_size_t phys_addr = 0;
2994         struct mm_struct *mm = vma->vm_mm;
2995         int ret = -EINVAL;
2996
2997         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2998                 goto out;
2999
3000         pgd = pgd_offset(mm, address);
3001         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3002                 goto out;
3003
3004         pud = pud_offset(pgd, address);
3005         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3006                 goto out;
3007
3008         pmd = pmd_offset(pud, address);
3009         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3010                 goto out;
3011
3012         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3013         if (pmd_huge(*pmd))
3014                 goto out;
3015
3016         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3017         if (!ptep)
3018                 goto out;
3019
3020         pte = *ptep;
3021         if (!pte_present(pte))
3022                 goto unlock;
3023         if ((flags & FOLL_WRITE) && !pte_write(pte))
3024                 goto unlock;
3025         phys_addr = pte_pfn(pte);
3026         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3027
3028         *prot = pgprot_val(pte_pgprot(pte));
3029         *phys = phys_addr;
3030         ret = 0;
3031
3032 unlock:
3033         pte_unmap_unlock(ptep, ptl);
3034 out:
3035         return ret;
3036 }
3037
3038 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3039                         void *buf, int len, int write)
3040 {
3041         resource_size_t phys_addr;
3042         unsigned long prot = 0;
3043         void *maddr;
3044         int offset = addr & (PAGE_SIZE-1);
3045
3046         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3047                 return -EINVAL;
3048
3049         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3050         if (write)
3051                 memcpy_toio(maddr + offset, buf, len);
3052         else
3053                 memcpy_fromio(buf, maddr + offset, len);
3054         iounmap(maddr);
3055
3056         return len;
3057 }
3058 #endif
3059
3060 /*
3061  * Access another process' address space.
3062  * Source/target buffer must be kernel space,
3063  * Do not walk the page table directly, use get_user_pages
3064  */
3065 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3066 {
3067         struct mm_struct *mm;
3068         struct vm_area_struct *vma;
3069         void *old_buf = buf;
3070
3071         mm = get_task_mm(tsk);
3072         if (!mm)
3073                 return 0;
3074
3075         down_read(&mm->mmap_sem);
3076         /* ignore errors, just check how much was successfully transferred */
3077         while (len) {
3078                 int bytes, ret, offset;
3079                 void *maddr;
3080                 struct page *page = NULL;
3081
3082                 ret = get_user_pages(tsk, mm, addr, 1,
3083                                 write, 1, &page, &vma);
3084                 if (ret <= 0) {
3085                         /*
3086                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3087                          * we can access using slightly different code.
3088                          */
3089 #ifdef CONFIG_HAVE_IOREMAP_PROT
3090                         vma = find_vma(mm, addr);
3091                         if (!vma)
3092                                 break;
3093                         if (vma->vm_ops && vma->vm_ops->access)
3094                                 ret = vma->vm_ops->access(vma, addr, buf,
3095                                                           len, write);
3096                         if (ret <= 0)
3097 #endif
3098                                 break;
3099                         bytes = ret;
3100                 } else {
3101                         bytes = len;
3102                         offset = addr & (PAGE_SIZE-1);
3103                         if (bytes > PAGE_SIZE-offset)
3104                                 bytes = PAGE_SIZE-offset;
3105
3106                         maddr = kmap(page);
3107                         if (write) {
3108                                 copy_to_user_page(vma, page, addr,
3109                                                   maddr + offset, buf, bytes);
3110                                 set_page_dirty_lock(page);
3111                         } else {
3112                                 copy_from_user_page(vma, page, addr,
3113                                                     buf, maddr + offset, bytes);
3114                         }
3115                         kunmap(page);
3116                         page_cache_release(page);
3117                 }
3118                 len -= bytes;
3119                 buf += bytes;
3120                 addr += bytes;
3121         }
3122         up_read(&mm->mmap_sem);
3123         mmput(mm);
3124
3125         return buf - old_buf;
3126 }
3127
3128 /*
3129  * Print the name of a VMA.
3130  */
3131 void print_vma_addr(char *prefix, unsigned long ip)
3132 {
3133         struct mm_struct *mm = current->mm;
3134         struct vm_area_struct *vma;
3135
3136         /*
3137          * Do not print if we are in atomic
3138          * contexts (in exception stacks, etc.):
3139          */
3140         if (preempt_count())
3141                 return;
3142
3143         down_read(&mm->mmap_sem);
3144         vma = find_vma(mm, ip);
3145         if (vma && vma->vm_file) {
3146                 struct file *f = vma->vm_file;
3147                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3148                 if (buf) {
3149                         char *p, *s;
3150
3151                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3152                         if (IS_ERR(p))
3153                                 p = "?";
3154                         s = strrchr(p, '/');
3155                         if (s)
3156                                 p = s+1;
3157                         printk("%s%s[%lx+%lx]", prefix, p,
3158                                         vma->vm_start,
3159                                         vma->vm_end - vma->vm_start);
3160                         free_page((unsigned long)buf);
3161                 }
3162         }
3163         up_read(&current->mm->mmap_sem);
3164 }