2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/smp_lock.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mount.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/swap.h>
36 #include <linux/writeback.h>
37 #include <linux/statfs.h>
38 #include <linux/compat.h>
39 #include <linux/bit_spinlock.h>
40 #include <linux/security.h>
41 #include <linux/version.h>
42 #include <linux/xattr.h>
43 #include <linux/vmalloc.h>
46 #include "transaction.h"
47 #include "btrfs_inode.h"
49 #include "print-tree.h"
55 static noinline int create_subvol(struct btrfs_root *root,
56 struct dentry *dentry,
57 char *name, int namelen)
59 struct btrfs_trans_handle *trans;
61 struct btrfs_root_item root_item;
62 struct btrfs_inode_item *inode_item;
63 struct extent_buffer *leaf;
64 struct btrfs_root *new_root = root;
69 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
72 ret = btrfs_check_free_space(root, 1, 0);
76 trans = btrfs_start_transaction(root, 1);
79 ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
84 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
85 objectid, trans->transid, 0, 0, 0);
91 btrfs_set_header_nritems(leaf, 0);
92 btrfs_set_header_level(leaf, 0);
93 btrfs_set_header_bytenr(leaf, leaf->start);
94 btrfs_set_header_generation(leaf, trans->transid);
95 btrfs_set_header_owner(leaf, objectid);
97 write_extent_buffer(leaf, root->fs_info->fsid,
98 (unsigned long)btrfs_header_fsid(leaf),
100 btrfs_mark_buffer_dirty(leaf);
102 inode_item = &root_item.inode;
103 memset(inode_item, 0, sizeof(*inode_item));
104 inode_item->generation = cpu_to_le64(1);
105 inode_item->size = cpu_to_le64(3);
106 inode_item->nlink = cpu_to_le32(1);
107 inode_item->nbytes = cpu_to_le64(root->leafsize);
108 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
110 btrfs_set_root_bytenr(&root_item, leaf->start);
111 btrfs_set_root_generation(&root_item, trans->transid);
112 btrfs_set_root_level(&root_item, 0);
113 btrfs_set_root_refs(&root_item, 1);
114 btrfs_set_root_used(&root_item, 0);
115 btrfs_set_root_last_snapshot(&root_item, 0);
117 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
118 root_item.drop_level = 0;
120 btrfs_tree_unlock(leaf);
121 free_extent_buffer(leaf);
124 btrfs_set_root_dirid(&root_item, new_dirid);
126 key.objectid = objectid;
128 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
129 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
135 * insert the directory item
137 key.offset = (u64)-1;
138 dir = root->fs_info->sb->s_root->d_inode;
139 ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
140 name, namelen, dir->i_ino, &key,
145 ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
146 name, namelen, objectid,
147 root->fs_info->sb->s_root->d_inode->i_ino, 0);
151 ret = btrfs_commit_transaction(trans, root);
155 new_root = btrfs_read_fs_root(root->fs_info, &key, name, namelen);
158 trans = btrfs_start_transaction(new_root, 1);
161 ret = btrfs_create_subvol_root(new_root, dentry, trans, new_dirid,
162 BTRFS_I(dir)->block_group);
167 nr = trans->blocks_used;
168 err = btrfs_commit_transaction(trans, new_root);
172 btrfs_btree_balance_dirty(root, nr);
176 static int create_snapshot(struct btrfs_root *root, char *name, int namelen)
178 struct btrfs_pending_snapshot *pending_snapshot;
179 struct btrfs_trans_handle *trans;
182 unsigned long nr = 0;
187 ret = btrfs_check_free_space(root, 1, 0);
191 pending_snapshot = kmalloc(sizeof(*pending_snapshot), GFP_NOFS);
192 if (!pending_snapshot) {
196 pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS);
197 if (!pending_snapshot->name) {
199 kfree(pending_snapshot);
202 memcpy(pending_snapshot->name, name, namelen);
203 pending_snapshot->name[namelen] = '\0';
204 trans = btrfs_start_transaction(root, 1);
206 pending_snapshot->root = root;
207 list_add(&pending_snapshot->list,
208 &trans->transaction->pending_snapshots);
209 ret = btrfs_update_inode(trans, root, root->inode);
210 err = btrfs_commit_transaction(trans, root);
213 btrfs_btree_balance_dirty(root, nr);
217 /* copy of may_create in fs/namei.c() */
218 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
224 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
228 * Create a new subvolume below @parent. This is largely modeled after
229 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
230 * inside this filesystem so it's quite a bit simpler.
232 static noinline int btrfs_mksubvol(struct path *parent, char *name,
233 int mode, int namelen)
235 struct dentry *dentry;
238 mutex_lock_nested(&parent->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
240 dentry = lookup_one_len(name, parent->dentry, namelen);
241 error = PTR_ERR(dentry);
249 if (!IS_POSIXACL(parent->dentry->d_inode))
250 mode &= ~current->fs->umask;
251 error = mnt_want_write(parent->mnt);
255 error = btrfs_may_create(parent->dentry->d_inode, dentry);
260 * Actually perform the low-level subvolume creation after all
263 * Eventually we want to pass in an inode under which we create this
264 * subvolume, but for now all are under the filesystem root.
266 * Also we should pass on the mode eventually to allow creating new
267 * subvolume with specific mode bits.
269 error = create_subvol(BTRFS_I(parent->dentry->d_inode)->root, dentry,
274 fsnotify_mkdir(parent->dentry->d_inode, dentry);
276 mnt_drop_write(parent->mnt);
280 mutex_unlock(&parent->dentry->d_inode->i_mutex);
285 int btrfs_defrag_file(struct file *file)
287 struct inode *inode = fdentry(file)->d_inode;
288 struct btrfs_root *root = BTRFS_I(inode)->root;
289 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
290 struct btrfs_ordered_extent *ordered;
292 unsigned long last_index;
293 unsigned long ra_pages = root->fs_info->bdi.ra_pages;
294 unsigned long total_read = 0;
300 ret = btrfs_check_free_space(root, inode->i_size, 0);
304 mutex_lock(&inode->i_mutex);
305 last_index = inode->i_size >> PAGE_CACHE_SHIFT;
306 for (i = 0; i <= last_index; i++) {
307 if (total_read % ra_pages == 0) {
308 btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
309 min(last_index, i + ra_pages - 1));
313 page = grab_cache_page(inode->i_mapping, i);
316 if (!PageUptodate(page)) {
317 btrfs_readpage(NULL, page);
319 if (!PageUptodate(page)) {
321 page_cache_release(page);
326 wait_on_page_writeback(page);
328 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
329 page_end = page_start + PAGE_CACHE_SIZE - 1;
330 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
332 ordered = btrfs_lookup_ordered_extent(inode, page_start);
334 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
336 page_cache_release(page);
337 btrfs_start_ordered_extent(inode, ordered, 1);
338 btrfs_put_ordered_extent(ordered);
341 set_page_extent_mapped(page);
344 * this makes sure page_mkwrite is called on the
345 * page if it is dirtied again later
347 clear_page_dirty_for_io(page);
349 btrfs_set_extent_delalloc(inode, page_start, page_end);
351 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
352 set_page_dirty(page);
354 page_cache_release(page);
355 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
359 mutex_unlock(&inode->i_mutex);
364 * Called inside transaction, so use GFP_NOFS
367 static int btrfs_ioctl_resize(struct btrfs_root *root, void __user *arg)
372 struct btrfs_ioctl_vol_args *vol_args;
373 struct btrfs_trans_handle *trans;
374 struct btrfs_device *device = NULL;
381 vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
386 if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
391 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
392 namelen = strlen(vol_args->name);
394 mutex_lock(&root->fs_info->volume_mutex);
395 sizestr = vol_args->name;
396 devstr = strchr(sizestr, ':');
399 sizestr = devstr + 1;
401 devstr = vol_args->name;
402 devid = simple_strtoull(devstr, &end, 10);
403 printk(KERN_INFO "resizing devid %llu\n", devid);
405 device = btrfs_find_device(root, devid, NULL);
407 printk(KERN_INFO "resizer unable to find device %llu\n", devid);
411 if (!strcmp(sizestr, "max"))
412 new_size = device->bdev->bd_inode->i_size;
414 if (sizestr[0] == '-') {
417 } else if (sizestr[0] == '+') {
421 new_size = btrfs_parse_size(sizestr);
428 old_size = device->total_bytes;
431 if (new_size > old_size) {
435 new_size = old_size - new_size;
436 } else if (mod > 0) {
437 new_size = old_size + new_size;
440 if (new_size < 256 * 1024 * 1024) {
444 if (new_size > device->bdev->bd_inode->i_size) {
449 do_div(new_size, root->sectorsize);
450 new_size *= root->sectorsize;
452 printk(KERN_INFO "new size for %s is %llu\n",
453 device->name, (unsigned long long)new_size);
455 if (new_size > old_size) {
456 trans = btrfs_start_transaction(root, 1);
457 ret = btrfs_grow_device(trans, device, new_size);
458 btrfs_commit_transaction(trans, root);
460 ret = btrfs_shrink_device(device, new_size);
464 mutex_unlock(&root->fs_info->volume_mutex);
470 static noinline int btrfs_ioctl_snap_create(struct file *file,
473 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
474 struct btrfs_ioctl_vol_args *vol_args;
475 struct btrfs_dir_item *di;
476 struct btrfs_path *path;
481 vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
486 if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
491 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
492 namelen = strlen(vol_args->name);
493 if (strchr(vol_args->name, '/')) {
498 path = btrfs_alloc_path();
504 root_dirid = root->fs_info->sb->s_root->d_inode->i_ino,
505 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root,
507 vol_args->name, namelen, 0);
508 btrfs_free_path(path);
510 if (di && !IS_ERR(di)) {
520 if (root == root->fs_info->tree_root) {
521 ret = btrfs_mksubvol(&file->f_path, vol_args->name,
522 file->f_path.dentry->d_inode->i_mode,
525 ret = create_snapshot(root, vol_args->name, namelen);
533 static int btrfs_ioctl_defrag(struct file *file)
535 struct inode *inode = fdentry(file)->d_inode;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
538 switch (inode->i_mode & S_IFMT) {
540 btrfs_defrag_root(root, 0);
541 btrfs_defrag_root(root->fs_info->extent_root, 0);
544 btrfs_defrag_file(file);
551 long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
553 struct btrfs_ioctl_vol_args *vol_args;
556 vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
561 if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
565 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
566 ret = btrfs_init_new_device(root, vol_args->name);
573 long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
575 struct btrfs_ioctl_vol_args *vol_args;
578 vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
583 if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
587 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
588 ret = btrfs_rm_device(root, vol_args->name);
595 long btrfs_ioctl_clone(struct file *file, unsigned long src_fd)
597 struct inode *inode = fdentry(file)->d_inode;
598 struct btrfs_root *root = BTRFS_I(inode)->root;
599 struct file *src_file;
601 struct btrfs_trans_handle *trans;
602 struct btrfs_path *path;
603 struct extent_buffer *leaf;
605 struct btrfs_key key;
610 src_file = fget(src_fd);
613 src = src_file->f_dentry->d_inode;
616 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
620 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
624 buf = vmalloc(btrfs_level_size(root, 0));
628 path = btrfs_alloc_path();
636 mutex_lock(&inode->i_mutex);
637 mutex_lock(&src->i_mutex);
639 mutex_lock(&src->i_mutex);
640 mutex_lock(&inode->i_mutex);
647 /* do any pending delalloc/csum calc on src, one way or
648 another, and lock file content */
650 struct btrfs_ordered_extent *ordered;
651 lock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS);
652 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
653 if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
655 unlock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS);
657 btrfs_put_ordered_extent(ordered);
658 btrfs_wait_ordered_range(src, 0, (u64)-1);
661 trans = btrfs_start_transaction(root, 1);
664 key.objectid = src->i_ino;
665 key.type = BTRFS_EXTENT_DATA_KEY;
670 * note the key will change type as we walk through the
673 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
677 nritems = btrfs_header_nritems(path->nodes[0]);
678 if (path->slots[0] >= nritems) {
679 ret = btrfs_next_leaf(root, path);
684 nritems = btrfs_header_nritems(path->nodes[0]);
686 leaf = path->nodes[0];
687 slot = path->slots[0];
689 btrfs_item_key_to_cpu(leaf, &key, slot);
690 if (btrfs_key_type(&key) > BTRFS_CSUM_ITEM_KEY ||
691 key.objectid != src->i_ino)
694 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY ||
695 btrfs_key_type(&key) == BTRFS_CSUM_ITEM_KEY) {
697 struct btrfs_key new_key;
699 size = btrfs_item_size_nr(leaf, slot);
700 read_extent_buffer(leaf, buf,
701 btrfs_item_ptr_offset(leaf, slot),
703 btrfs_release_path(root, path);
705 memcpy(&new_key, &key, sizeof(new_key));
706 new_key.objectid = inode->i_ino;
707 ret = btrfs_insert_empty_item(trans, root, path,
712 leaf = path->nodes[0];
713 slot = path->slots[0];
714 write_extent_buffer(leaf, buf,
715 btrfs_item_ptr_offset(leaf, slot),
717 btrfs_mark_buffer_dirty(leaf);
720 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
721 struct btrfs_file_extent_item *extent;
724 extent = btrfs_item_ptr(leaf, slot,
725 struct btrfs_file_extent_item);
726 found_type = btrfs_file_extent_type(leaf, extent);
727 if (found_type == BTRFS_FILE_EXTENT_REG ||
728 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
729 u64 ds = btrfs_file_extent_disk_bytenr(leaf,
731 u64 dl = btrfs_file_extent_disk_num_bytes(leaf,
733 /* ds == 0 means there's a hole */
735 ret = btrfs_inc_extent_ref(trans, root,
737 root->root_key.objectid,
744 btrfs_release_path(root, path);
749 btrfs_release_path(root, path);
751 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
752 inode_set_bytes(inode, inode_get_bytes(src));
753 btrfs_i_size_write(inode, src->i_size);
754 BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
755 ret = btrfs_update_inode(trans, root, inode);
757 btrfs_end_transaction(trans, root);
758 unlock_extent(&BTRFS_I(src)->io_tree, 0, (u64)-1, GFP_NOFS);
760 vmtruncate(inode, 0);
762 mutex_unlock(&src->i_mutex);
763 mutex_unlock(&inode->i_mutex);
765 btrfs_free_path(path);
772 * there are many ways the trans_start and trans_end ioctls can lead
773 * to deadlocks. They should only be used by applications that
774 * basically own the machine, and have a very in depth understanding
775 * of all the possible deadlocks and enospc problems.
777 long btrfs_ioctl_trans_start(struct file *file)
779 struct inode *inode = fdentry(file)->d_inode;
780 struct btrfs_root *root = BTRFS_I(inode)->root;
781 struct btrfs_trans_handle *trans;
784 if (!capable(CAP_SYS_ADMIN))
787 if (file->private_data) {
792 mutex_lock(&root->fs_info->trans_mutex);
793 root->fs_info->open_ioctl_trans++;
794 mutex_unlock(&root->fs_info->trans_mutex);
796 trans = btrfs_start_ioctl_transaction(root, 0);
798 file->private_data = trans;
801 /*printk(KERN_INFO "btrfs_ioctl_trans_start on %p\n", file);*/
807 * there are many ways the trans_start and trans_end ioctls can lead
808 * to deadlocks. They should only be used by applications that
809 * basically own the machine, and have a very in depth understanding
810 * of all the possible deadlocks and enospc problems.
812 long btrfs_ioctl_trans_end(struct file *file)
814 struct inode *inode = fdentry(file)->d_inode;
815 struct btrfs_root *root = BTRFS_I(inode)->root;
816 struct btrfs_trans_handle *trans;
819 trans = file->private_data;
824 btrfs_end_transaction(trans, root);
825 file->private_data = NULL;
827 mutex_lock(&root->fs_info->trans_mutex);
828 root->fs_info->open_ioctl_trans--;
829 mutex_unlock(&root->fs_info->trans_mutex);
835 long btrfs_ioctl(struct file *file, unsigned int
836 cmd, unsigned long arg)
838 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
841 case BTRFS_IOC_SNAP_CREATE:
842 return btrfs_ioctl_snap_create(file, (void __user *)arg);
843 case BTRFS_IOC_DEFRAG:
844 return btrfs_ioctl_defrag(file);
845 case BTRFS_IOC_RESIZE:
846 return btrfs_ioctl_resize(root, (void __user *)arg);
847 case BTRFS_IOC_ADD_DEV:
848 return btrfs_ioctl_add_dev(root, (void __user *)arg);
849 case BTRFS_IOC_RM_DEV:
850 return btrfs_ioctl_rm_dev(root, (void __user *)arg);
851 case BTRFS_IOC_BALANCE:
852 return btrfs_balance(root->fs_info->dev_root);
853 case BTRFS_IOC_CLONE:
854 return btrfs_ioctl_clone(file, arg);
855 case BTRFS_IOC_TRANS_START:
856 return btrfs_ioctl_trans_start(file);
857 case BTRFS_IOC_TRANS_END:
858 return btrfs_ioctl_trans_end(file);
860 btrfs_start_delalloc_inodes(root);
861 btrfs_sync_fs(file->f_dentry->d_sb, 1);