powerpc/86xx: Move gianfar mdio nodes under the ethernet nodes
[linux-2.6] / arch / blackfin / kernel / traps.c
1 /*
2  * File:         arch/blackfin/kernel/traps.c
3  * Based on:
4  * Author:       Hamish Macdonald
5  *
6  * Created:
7  * Description:  uses S/W interrupt 15 for the system calls
8  *
9  * Modified:
10  *               Copyright 2004-2006 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29
30 #include <linux/uaccess.h>
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/fs.h>
35 #include <linux/rbtree.h>
36 #include <asm/traps.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cplb.h>
39 #include <asm/blackfin.h>
40 #include <asm/irq_handler.h>
41 #include <linux/irq.h>
42 #include <asm/trace.h>
43 #include <asm/fixed_code.h>
44
45 #ifdef CONFIG_KGDB
46 # include <linux/kgdb.h>
47
48 # define CHK_DEBUGGER_TRAP() \
49         do { \
50                 kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
51         } while (0)
52 # define CHK_DEBUGGER_TRAP_MAYBE() \
53         do { \
54                 if (kgdb_connected) \
55                         CHK_DEBUGGER_TRAP(); \
56         } while (0)
57 #else
58 # define CHK_DEBUGGER_TRAP() do { } while (0)
59 # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
60 #endif
61
62
63 #ifdef CONFIG_DEBUG_VERBOSE
64 #define verbose_printk(fmt, arg...) \
65         printk(fmt, ##arg)
66 #else
67 #define verbose_printk(fmt, arg...) \
68         ({ if (0) printk(fmt, ##arg); 0; })
69 #endif
70
71 /* Initiate the event table handler */
72 void __init trap_init(void)
73 {
74         CSYNC();
75         bfin_write_EVT3(trap);
76         CSYNC();
77 }
78
79 static void decode_address(char *buf, unsigned long address)
80 {
81 #ifdef CONFIG_DEBUG_VERBOSE
82         struct vm_list_struct *vml;
83         struct task_struct *p;
84         struct mm_struct *mm;
85         unsigned long flags, offset;
86         unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
87         struct rb_node *n;
88
89 #ifdef CONFIG_KALLSYMS
90         unsigned long symsize;
91         const char *symname;
92         char *modname;
93         char *delim = ":";
94         char namebuf[128];
95
96         /* look up the address and see if we are in kernel space */
97         symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
98
99         if (symname) {
100                 /* yeah! kernel space! */
101                 if (!modname)
102                         modname = delim = "";
103                 sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
104                               (void *)address, delim, modname, delim, symname,
105                               (unsigned long)offset);
106                 return;
107
108         }
109 #endif
110
111         /* Problem in fixed code section? */
112         if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
113                 sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
114                 return;
115         }
116
117         /* Problem somewhere before the kernel start address */
118         if (address < CONFIG_BOOT_LOAD) {
119                 sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
120                 return;
121         }
122
123         /* looks like we're off in user-land, so let's walk all the
124          * mappings of all our processes and see if we can't be a whee
125          * bit more specific
126          */
127         write_lock_irqsave(&tasklist_lock, flags);
128         for_each_process(p) {
129                 mm = (in_atomic ? p->mm : get_task_mm(p));
130                 if (!mm)
131                         continue;
132
133                 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
134                         struct vm_area_struct *vma;
135
136                         vma = rb_entry(n, struct vm_area_struct, vm_rb);
137
138                         if (address >= vma->vm_start && address < vma->vm_end) {
139                                 char _tmpbuf[256];
140                                 char *name = p->comm;
141                                 struct file *file = vma->vm_file;
142
143                                 if (file) {
144                                         char *d_name = d_path(&file->f_path, _tmpbuf,
145                                                       sizeof(_tmpbuf));
146                                         if (!IS_ERR(d_name))
147                                                 name = d_name;
148                                 }
149
150                                 /* FLAT does not have its text aligned to the start of
151                                  * the map while FDPIC ELF does ...
152                                  */
153
154                                 /* before we can check flat/fdpic, we need to
155                                  * make sure current is valid
156                                  */
157                                 if ((unsigned long)current >= FIXED_CODE_START &&
158                                     !((unsigned long)current & 0x3)) {
159                                         if (current->mm &&
160                                             (address > current->mm->start_code) &&
161                                             (address < current->mm->end_code))
162                                                 offset = address - current->mm->start_code;
163                                         else
164                                                 offset = (address - vma->vm_start) +
165                                                          (vma->vm_pgoff << PAGE_SHIFT);
166
167                                         sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
168                                                 (void *)address, name, offset);
169                                 } else
170                                         sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
171                                                 (void *)address, name,
172                                                 vma->vm_start, vma->vm_end);
173
174                                 if (!in_atomic)
175                                         mmput(mm);
176
177                                 if (!strlen(buf))
178                                         sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
179
180                                 goto done;
181                         }
182                 }
183                 if (!in_atomic)
184                         mmput(mm);
185         }
186
187         /* we were unable to find this address anywhere */
188         sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
189
190 done:
191         write_unlock_irqrestore(&tasklist_lock, flags);
192 #else
193         sprintf(buf, " ");
194 #endif
195 }
196
197 asmlinkage void double_fault_c(struct pt_regs *fp)
198 {
199         console_verbose();
200         oops_in_progress = 1;
201 #ifdef CONFIG_DEBUG_VERBOSE
202         printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
203 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
204         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) == VEC_UNCOV) {
205                 unsigned int cpu = smp_processor_id();
206                 char buf[150];
207                 decode_address(buf, cpu_pda[cpu].retx);
208                 printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
209                         (unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
210                 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
211                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %s\n", buf);
212                 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
213                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %s\n", buf);
214
215                 decode_address(buf, fp->retx);
216                 printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
217         } else
218 #endif
219         {
220                 dump_bfin_process(fp);
221                 dump_bfin_mem(fp);
222                 show_regs(fp);
223         }
224 #endif
225         panic("Double Fault - unrecoverable event\n");
226
227 }
228
229 asmlinkage void trap_c(struct pt_regs *fp)
230 {
231 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
232         int j;
233 #endif
234 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
235         unsigned int cpu = smp_processor_id();
236 #endif
237         int sig = 0;
238         siginfo_t info;
239         unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
240
241         trace_buffer_save(j);
242
243         /* Important - be very careful dereferncing pointers - will lead to
244          * double faults if the stack has become corrupt
245          */
246
247         /* If the fault was caused by a kernel thread, or interrupt handler
248          * we will kernel panic, so the system reboots.
249          * If KGDB is enabled, don't set this for kernel breakpoints
250         */
251
252         /* TODO: check to see if we are in some sort of deferred HWERR
253          * that we should be able to recover from, not kernel panic
254          */
255         if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
256 #ifdef CONFIG_KGDB
257                 && (trapnr != VEC_EXCPT02)
258 #endif
259         ){
260                 console_verbose();
261                 oops_in_progress = 1;
262         } else if (current) {
263                 if (current->mm == NULL) {
264                         console_verbose();
265                         oops_in_progress = 1;
266                 }
267         }
268
269         /* trap_c() will be called for exceptions. During exceptions
270          * processing, the pc value should be set with retx value.
271          * With this change we can cleanup some code in signal.c- TODO
272          */
273         fp->orig_pc = fp->retx;
274         /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
275                 trapnr, fp->ipend, fp->pc, fp->retx); */
276
277         /* send the appropriate signal to the user program */
278         switch (trapnr) {
279
280         /* This table works in conjuction with the one in ./mach-common/entry.S
281          * Some exceptions are handled there (in assembly, in exception space)
282          * Some are handled here, (in C, in interrupt space)
283          * Some, like CPLB, are handled in both, where the normal path is
284          * handled in assembly/exception space, and the error path is handled
285          * here
286          */
287
288         /* 0x00 - Linux Syscall, getting here is an error */
289         /* 0x01 - userspace gdb breakpoint, handled here */
290         case VEC_EXCPT01:
291                 info.si_code = TRAP_ILLTRAP;
292                 sig = SIGTRAP;
293                 CHK_DEBUGGER_TRAP_MAYBE();
294                 /* Check if this is a breakpoint in kernel space */
295                 if (fp->ipend & 0xffc0)
296                         return;
297                 else
298                         break;
299         /* 0x03 - User Defined, userspace stack overflow */
300         case VEC_EXCPT03:
301                 info.si_code = SEGV_STACKFLOW;
302                 sig = SIGSEGV;
303                 verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
304                 CHK_DEBUGGER_TRAP_MAYBE();
305                 break;
306         /* 0x02 - KGDB initial connection and break signal trap */
307         case VEC_EXCPT02:
308 #ifdef CONFIG_KGDB
309                 info.si_code = TRAP_ILLTRAP;
310                 sig = SIGTRAP;
311                 CHK_DEBUGGER_TRAP();
312                 return;
313 #endif
314         /* 0x04 - User Defined */
315         /* 0x05 - User Defined */
316         /* 0x06 - User Defined */
317         /* 0x07 - User Defined */
318         /* 0x08 - User Defined */
319         /* 0x09 - User Defined */
320         /* 0x0A - User Defined */
321         /* 0x0B - User Defined */
322         /* 0x0C - User Defined */
323         /* 0x0D - User Defined */
324         /* 0x0E - User Defined */
325         /* 0x0F - User Defined */
326         /* If we got here, it is most likely that someone was trying to use a
327          * custom exception handler, and it is not actually installed properly
328          */
329         case VEC_EXCPT04 ... VEC_EXCPT15:
330                 info.si_code = ILL_ILLPARAOP;
331                 sig = SIGILL;
332                 verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
333                 CHK_DEBUGGER_TRAP_MAYBE();
334                 break;
335         /* 0x10 HW Single step, handled here */
336         case VEC_STEP:
337                 info.si_code = TRAP_STEP;
338                 sig = SIGTRAP;
339                 CHK_DEBUGGER_TRAP_MAYBE();
340                 /* Check if this is a single step in kernel space */
341                 if (fp->ipend & 0xffc0)
342                         return;
343                 else
344                         break;
345         /* 0x11 - Trace Buffer Full, handled here */
346         case VEC_OVFLOW:
347                 info.si_code = TRAP_TRACEFLOW;
348                 sig = SIGTRAP;
349                 verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
350                 CHK_DEBUGGER_TRAP_MAYBE();
351                 break;
352         /* 0x12 - Reserved, Caught by default */
353         /* 0x13 - Reserved, Caught by default */
354         /* 0x14 - Reserved, Caught by default */
355         /* 0x15 - Reserved, Caught by default */
356         /* 0x16 - Reserved, Caught by default */
357         /* 0x17 - Reserved, Caught by default */
358         /* 0x18 - Reserved, Caught by default */
359         /* 0x19 - Reserved, Caught by default */
360         /* 0x1A - Reserved, Caught by default */
361         /* 0x1B - Reserved, Caught by default */
362         /* 0x1C - Reserved, Caught by default */
363         /* 0x1D - Reserved, Caught by default */
364         /* 0x1E - Reserved, Caught by default */
365         /* 0x1F - Reserved, Caught by default */
366         /* 0x20 - Reserved, Caught by default */
367         /* 0x21 - Undefined Instruction, handled here */
368         case VEC_UNDEF_I:
369                 info.si_code = ILL_ILLOPC;
370                 sig = SIGILL;
371                 verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
372                 CHK_DEBUGGER_TRAP_MAYBE();
373                 break;
374         /* 0x22 - Illegal Instruction Combination, handled here */
375         case VEC_ILGAL_I:
376                 info.si_code = ILL_ILLPARAOP;
377                 sig = SIGILL;
378                 verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
379                 CHK_DEBUGGER_TRAP_MAYBE();
380                 break;
381         /* 0x23 - Data CPLB protection violation, handled here */
382         case VEC_CPLB_VL:
383                 info.si_code = ILL_CPLB_VI;
384                 sig = SIGBUS;
385                 verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
386                 CHK_DEBUGGER_TRAP_MAYBE();
387                 break;
388         /* 0x24 - Data access misaligned, handled here */
389         case VEC_MISALI_D:
390                 info.si_code = BUS_ADRALN;
391                 sig = SIGBUS;
392                 verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
393                 CHK_DEBUGGER_TRAP_MAYBE();
394                 break;
395         /* 0x25 - Unrecoverable Event, handled here */
396         case VEC_UNCOV:
397                 info.si_code = ILL_ILLEXCPT;
398                 sig = SIGILL;
399                 verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
400                 CHK_DEBUGGER_TRAP_MAYBE();
401                 break;
402         /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
403                 error case is handled here */
404         case VEC_CPLB_M:
405                 info.si_code = BUS_ADRALN;
406                 sig = SIGBUS;
407                 verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
408                 break;
409         /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
410         case VEC_CPLB_MHIT:
411                 info.si_code = ILL_CPLB_MULHIT;
412                 sig = SIGSEGV;
413 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
414                 if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
415                         verbose_printk(KERN_NOTICE "NULL pointer access\n");
416                 else
417 #endif
418                         verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
419                 CHK_DEBUGGER_TRAP_MAYBE();
420                 break;
421         /* 0x28 - Emulation Watchpoint, handled here */
422         case VEC_WATCH:
423                 info.si_code = TRAP_WATCHPT;
424                 sig = SIGTRAP;
425                 pr_debug(EXC_0x28(KERN_DEBUG));
426                 CHK_DEBUGGER_TRAP_MAYBE();
427                 /* Check if this is a watchpoint in kernel space */
428                 if (fp->ipend & 0xffc0)
429                         return;
430                 else
431                         break;
432 #ifdef CONFIG_BF535
433         /* 0x29 - Instruction fetch access error (535 only) */
434         case VEC_ISTRU_VL:      /* ADSP-BF535 only (MH) */
435                 info.si_code = BUS_OPFETCH;
436                 sig = SIGBUS;
437                 verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
438                 CHK_DEBUGGER_TRAP_MAYBE();
439                 break;
440 #else
441         /* 0x29 - Reserved, Caught by default */
442 #endif
443         /* 0x2A - Instruction fetch misaligned, handled here */
444         case VEC_MISALI_I:
445                 info.si_code = BUS_ADRALN;
446                 sig = SIGBUS;
447                 verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
448                 CHK_DEBUGGER_TRAP_MAYBE();
449                 break;
450         /* 0x2B - Instruction CPLB protection violation, handled here */
451         case VEC_CPLB_I_VL:
452                 info.si_code = ILL_CPLB_VI;
453                 sig = SIGBUS;
454                 verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
455                 CHK_DEBUGGER_TRAP_MAYBE();
456                 break;
457         /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
458         case VEC_CPLB_I_M:
459                 info.si_code = ILL_CPLB_MISS;
460                 sig = SIGBUS;
461                 verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
462                 break;
463         /* 0x2D - Instruction CPLB Multiple Hits, handled here */
464         case VEC_CPLB_I_MHIT:
465                 info.si_code = ILL_CPLB_MULHIT;
466                 sig = SIGSEGV;
467 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
468                 if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
469                         verbose_printk(KERN_NOTICE "Jump to NULL address\n");
470                 else
471 #endif
472                         verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
473                 CHK_DEBUGGER_TRAP_MAYBE();
474                 break;
475         /* 0x2E - Illegal use of Supervisor Resource, handled here */
476         case VEC_ILL_RES:
477                 info.si_code = ILL_PRVOPC;
478                 sig = SIGILL;
479                 verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
480                 CHK_DEBUGGER_TRAP_MAYBE();
481                 break;
482         /* 0x2F - Reserved, Caught by default */
483         /* 0x30 - Reserved, Caught by default */
484         /* 0x31 - Reserved, Caught by default */
485         /* 0x32 - Reserved, Caught by default */
486         /* 0x33 - Reserved, Caught by default */
487         /* 0x34 - Reserved, Caught by default */
488         /* 0x35 - Reserved, Caught by default */
489         /* 0x36 - Reserved, Caught by default */
490         /* 0x37 - Reserved, Caught by default */
491         /* 0x38 - Reserved, Caught by default */
492         /* 0x39 - Reserved, Caught by default */
493         /* 0x3A - Reserved, Caught by default */
494         /* 0x3B - Reserved, Caught by default */
495         /* 0x3C - Reserved, Caught by default */
496         /* 0x3D - Reserved, Caught by default */
497         /* 0x3E - Reserved, Caught by default */
498         /* 0x3F - Reserved, Caught by default */
499         case VEC_HWERR:
500                 info.si_code = BUS_ADRALN;
501                 sig = SIGBUS;
502                 switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
503                 /* System MMR Error */
504                 case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
505                         info.si_code = BUS_ADRALN;
506                         sig = SIGBUS;
507                         verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
508                         break;
509                 /* External Memory Addressing Error */
510                 case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
511                         info.si_code = BUS_ADRERR;
512                         sig = SIGBUS;
513                         verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
514                         break;
515                 /* Performance Monitor Overflow */
516                 case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
517                         verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
518                         break;
519                 /* RAISE 5 instruction */
520                 case (SEQSTAT_HWERRCAUSE_RAISE_5):
521                         printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
522                         break;
523                 default:        /* Reserved */
524                         printk(KERN_NOTICE HWC_default(KERN_NOTICE));
525                         break;
526                 }
527                 CHK_DEBUGGER_TRAP_MAYBE();
528                 break;
529         /*
530          * We should be handling all known exception types above,
531          * if we get here we hit a reserved one, so panic
532          */
533         default:
534                 oops_in_progress = 1;
535                 info.si_code = ILL_ILLPARAOP;
536                 sig = SIGILL;
537                 verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
538                         (fp->seqstat & SEQSTAT_EXCAUSE));
539                 CHK_DEBUGGER_TRAP_MAYBE();
540                 break;
541         }
542
543         BUG_ON(sig == 0);
544
545         if (sig != SIGTRAP) {
546                 dump_bfin_process(fp);
547                 dump_bfin_mem(fp);
548                 show_regs(fp);
549
550                 /* Print out the trace buffer if it makes sense */
551 #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
552                 if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
553                         verbose_printk(KERN_NOTICE "No trace since you do not have "
554                                 "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
555                                 KERN_NOTICE "\n");
556                 else
557 #endif
558                         dump_bfin_trace_buffer();
559
560                 if (oops_in_progress) {
561                         /* Dump the current kernel stack */
562                         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
563                         show_stack(current, NULL);
564                         print_modules();
565 #ifndef CONFIG_ACCESS_CHECK
566                         verbose_printk(KERN_EMERG "Please turn on "
567                                "CONFIG_ACCESS_CHECK\n");
568 #endif
569                         panic("Kernel exception");
570                 } else {
571 #ifdef CONFIG_DEBUG_VERBOSE
572                         unsigned long *stack;
573                         /* Dump the user space stack */
574                         stack = (unsigned long *)rdusp();
575                         verbose_printk(KERN_NOTICE "Userspace Stack\n");
576                         show_stack(NULL, stack);
577 #endif
578                 }
579         }
580
581 #ifdef CONFIG_IPIPE
582         if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
583 #endif
584         {
585                 info.si_signo = sig;
586                 info.si_errno = 0;
587                 info.si_addr = (void __user *)fp->pc;
588                 force_sig_info(sig, &info, current);
589         }
590
591         trace_buffer_restore(j);
592         return;
593 }
594
595 /* Typical exception handling routines  */
596
597 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
598
599 /*
600  * Similar to get_user, do some address checking, then dereference
601  * Return true on sucess, false on bad address
602  */
603 static bool get_instruction(unsigned short *val, unsigned short *address)
604 {
605
606         unsigned long addr;
607
608         addr = (unsigned long)address;
609
610         /* Check for odd addresses */
611         if (addr & 0x1)
612                 return false;
613
614         /* Check that things do not wrap around */
615         if (addr > (addr + 2))
616                 return false;
617
618         /*
619          * Since we are in exception context, we need to do a little address checking
620          * We need to make sure we are only accessing valid memory, and
621          * we don't read something in the async space that can hang forever
622          */
623         if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
624 #if L2_LENGTH != 0
625             (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
626 #endif
627             (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
628 #if L1_DATA_A_LENGTH != 0
629             (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
630 #endif
631 #if L1_DATA_B_LENGTH != 0
632             (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
633 #endif
634             (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
635             (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
636                addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
637             (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
638                addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
639             (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
640                addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
641             (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
642               addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
643                 *val = *address;
644                 return true;
645         }
646
647 #if L1_CODE_LENGTH != 0
648         if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
649                 isram_memcpy(val, address, 2);
650                 return true;
651         }
652 #endif
653
654
655         return false;
656 }
657
658 /*
659  * decode the instruction if we are printing out the trace, as it
660  * makes things easier to follow, without running it through objdump
661  * These are the normal instructions which cause change of flow, which
662  * would be at the source of the trace buffer
663  */
664 #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
665 static void decode_instruction(unsigned short *address)
666 {
667         unsigned short opcode;
668
669         if (get_instruction(&opcode, address)) {
670                 if (opcode == 0x0010)
671                         verbose_printk("RTS");
672                 else if (opcode == 0x0011)
673                         verbose_printk("RTI");
674                 else if (opcode == 0x0012)
675                         verbose_printk("RTX");
676                 else if (opcode == 0x0013)
677                         verbose_printk("RTN");
678                 else if (opcode == 0x0014)
679                         verbose_printk("RTE");
680                 else if (opcode == 0x0025)
681                         verbose_printk("EMUEXCPT");
682                 else if (opcode == 0x0040 && opcode <= 0x0047)
683                         verbose_printk("STI R%i", opcode & 7);
684                 else if (opcode >= 0x0050 && opcode <= 0x0057)
685                         verbose_printk("JUMP (P%i)", opcode & 7);
686                 else if (opcode >= 0x0060 && opcode <= 0x0067)
687                         verbose_printk("CALL (P%i)", opcode & 7);
688                 else if (opcode >= 0x0070 && opcode <= 0x0077)
689                         verbose_printk("CALL (PC+P%i)", opcode & 7);
690                 else if (opcode >= 0x0080 && opcode <= 0x0087)
691                         verbose_printk("JUMP (PC+P%i)", opcode & 7);
692                 else if (opcode >= 0x0090 && opcode <= 0x009F)
693                         verbose_printk("RAISE 0x%x", opcode & 0xF);
694                 else if (opcode >= 0x00A0 && opcode <= 0x00AF)
695                         verbose_printk("EXCPT 0x%x", opcode & 0xF);
696                 else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
697                         verbose_printk("IF !CC JUMP");
698                 else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
699                         verbose_printk("IF CC JUMP");
700                 else if (opcode >= 0x2000 && opcode <= 0x2fff)
701                         verbose_printk("JUMP.S");
702                 else if (opcode >= 0xe080 && opcode <= 0xe0ff)
703                         verbose_printk("LSETUP");
704                 else if (opcode >= 0xe200 && opcode <= 0xe2ff)
705                         verbose_printk("JUMP.L");
706                 else if (opcode >= 0xe300 && opcode <= 0xe3ff)
707                         verbose_printk("CALL pcrel");
708                 else
709                         verbose_printk("0x%04x", opcode);
710         }
711
712 }
713 #endif
714
715 void dump_bfin_trace_buffer(void)
716 {
717 #ifdef CONFIG_DEBUG_VERBOSE
718 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
719         int tflags, i = 0;
720         char buf[150];
721         unsigned short *addr;
722 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
723         int j, index;
724 #endif
725
726         trace_buffer_save(tflags);
727
728         printk(KERN_NOTICE "Hardware Trace:\n");
729
730 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
731         printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
732 #endif
733
734         if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
735                 for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
736                         decode_address(buf, (unsigned long)bfin_read_TBUF());
737                         printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
738                         addr = (unsigned short *)bfin_read_TBUF();
739                         decode_address(buf, (unsigned long)addr);
740                         printk(KERN_NOTICE "     Source : %s ", buf);
741                         decode_instruction(addr);
742                         printk("\n");
743                 }
744         }
745
746 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
747         if (trace_buff_offset)
748                 index = trace_buff_offset / 4;
749         else
750                 index = EXPAND_LEN;
751
752         j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
753         while (j) {
754                 decode_address(buf, software_trace_buff[index]);
755                 printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
756                 index -= 1;
757                 if (index < 0 )
758                         index = EXPAND_LEN;
759                 decode_address(buf, software_trace_buff[index]);
760                 printk(KERN_NOTICE "     Source : %s ", buf);
761                 decode_instruction((unsigned short *)software_trace_buff[index]);
762                 printk("\n");
763                 index -= 1;
764                 if (index < 0)
765                         index = EXPAND_LEN;
766                 j--;
767                 i++;
768         }
769 #endif
770
771         trace_buffer_restore(tflags);
772 #endif
773 #endif
774 }
775 EXPORT_SYMBOL(dump_bfin_trace_buffer);
776
777 /*
778  * Checks to see if the address pointed to is either a
779  * 16-bit CALL instruction, or a 32-bit CALL instruction
780  */
781 static bool is_bfin_call(unsigned short *addr)
782 {
783         unsigned short opcode = 0, *ins_addr;
784         ins_addr = (unsigned short *)addr;
785
786         if (!get_instruction(&opcode, ins_addr))
787                 return false;
788
789         if ((opcode >= 0x0060 && opcode <= 0x0067) ||
790             (opcode >= 0x0070 && opcode <= 0x0077))
791                 return true;
792
793         ins_addr--;
794         if (!get_instruction(&opcode, ins_addr))
795                 return false;
796
797         if (opcode >= 0xE300 && opcode <= 0xE3FF)
798                 return true;
799
800         return false;
801
802 }
803
804 void show_stack(struct task_struct *task, unsigned long *stack)
805 {
806 #ifdef CONFIG_PRINTK
807         unsigned int *addr, *endstack, *fp = 0, *frame;
808         unsigned short *ins_addr;
809         char buf[150];
810         unsigned int i, j, ret_addr, frame_no = 0;
811
812         /*
813          * If we have been passed a specific stack, use that one otherwise
814          *    if we have been passed a task structure, use that, otherwise
815          *    use the stack of where the variable "stack" exists
816          */
817
818         if (stack == NULL) {
819                 if (task) {
820                         /* We know this is a kernel stack, so this is the start/end */
821                         stack = (unsigned long *)task->thread.ksp;
822                         endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
823                 } else {
824                         /* print out the existing stack info */
825                         stack = (unsigned long *)&stack;
826                         endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
827                 }
828         } else
829                 endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
830
831         printk(KERN_NOTICE "Stack info:\n");
832         decode_address(buf, (unsigned int)stack);
833         printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
834
835         /* First thing is to look for a frame pointer */
836         for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) {
837                 if (*addr & 0x1)
838                         continue;
839                 ins_addr = (unsigned short *)*addr;
840                 ins_addr--;
841                 if (is_bfin_call(ins_addr))
842                         fp = addr - 1;
843
844                 if (fp) {
845                         /* Let's check to see if it is a frame pointer */
846                         while (fp >= (addr - 1) && fp < endstack
847                                && fp && ((unsigned int) fp & 0x3) == 0)
848                                 fp = (unsigned int *)*fp;
849                         if (fp == 0 || fp == endstack) {
850                                 fp = addr - 1;
851                                 break;
852                         }
853                         fp = 0;
854                 }
855         }
856         if (fp) {
857                 frame = fp;
858                 printk(KERN_NOTICE " FP: (0x%p)\n", fp);
859         } else
860                 frame = 0;
861
862         /*
863          * Now that we think we know where things are, we
864          * walk the stack again, this time printing things out
865          * incase there is no frame pointer, we still look for
866          * valid return addresses
867          */
868
869         /* First time print out data, next time, print out symbols */
870         for (j = 0; j <= 1; j++) {
871                 if (j)
872                         printk(KERN_NOTICE "Return addresses in stack:\n");
873                 else
874                         printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
875
876                 fp = frame;
877                 frame_no = 0;
878
879                 for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
880                      addr <= endstack; addr++, i++) {
881
882                         ret_addr = 0;
883                         if (!j && i % 8 == 0)
884                                 printk("\n" KERN_NOTICE "%p:",addr);
885
886                         /* if it is an odd address, or zero, just skip it */
887                         if (*addr & 0x1 || !*addr)
888                                 goto print;
889
890                         ins_addr = (unsigned short *)*addr;
891
892                         /* Go back one instruction, and see if it is a CALL */
893                         ins_addr--;
894                         ret_addr = is_bfin_call(ins_addr);
895  print:
896                         if (!j && stack == (unsigned long *)addr)
897                                 printk("[%08x]", *addr);
898                         else if (ret_addr)
899                                 if (j) {
900                                         decode_address(buf, (unsigned int)*addr);
901                                         if (frame == addr) {
902                                                 printk(KERN_NOTICE "   frame %2i : %s\n", frame_no, buf);
903                                                 continue;
904                                         }
905                                         printk(KERN_NOTICE "    address : %s\n", buf);
906                                 } else
907                                         printk("<%08x>", *addr);
908                         else if (fp == addr) {
909                                 if (j)
910                                         frame = addr+1;
911                                 else
912                                         printk("(%08x)", *addr);
913
914                                 fp = (unsigned int *)*addr;
915                                 frame_no++;
916
917                         } else if (!j)
918                                 printk(" %08x ", *addr);
919                 }
920                 if (!j)
921                         printk("\n");
922         }
923 #endif
924 }
925
926 void dump_stack(void)
927 {
928         unsigned long stack;
929 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
930         int tflags;
931 #endif
932         trace_buffer_save(tflags);
933         dump_bfin_trace_buffer();
934         show_stack(current, &stack);
935         trace_buffer_restore(tflags);
936 }
937 EXPORT_SYMBOL(dump_stack);
938
939 void dump_bfin_process(struct pt_regs *fp)
940 {
941 #ifdef CONFIG_DEBUG_VERBOSE
942         /* We should be able to look at fp->ipend, but we don't push it on the
943          * stack all the time, so do this until we fix that */
944         unsigned int context = bfin_read_IPEND();
945
946         if (oops_in_progress)
947                 verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
948
949         if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
950                 verbose_printk(KERN_NOTICE "HW Error context\n");
951         else if (context & 0x0020)
952                 verbose_printk(KERN_NOTICE "Deferred Exception context\n");
953         else if (context & 0x3FC0)
954                 verbose_printk(KERN_NOTICE "Interrupt context\n");
955         else if (context & 0x4000)
956                 verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
957         else if (context & 0x8000)
958                 verbose_printk(KERN_NOTICE "Kernel process context\n");
959
960         /* Because we are crashing, and pointers could be bad, we check things
961          * pretty closely before we use them
962          */
963         if ((unsigned long)current >= FIXED_CODE_START &&
964             !((unsigned long)current & 0x3) && current->pid) {
965                 verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
966                 if (current->comm >= (char *)FIXED_CODE_START)
967                         verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
968                                 current->comm, current->pid);
969                 else
970                         verbose_printk(KERN_NOTICE "COMM= invalid\n");
971
972                 printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
973                 if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
974                         verbose_printk(KERN_NOTICE  "TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n"
975                                 KERN_NOTICE " BSS = 0x%p-0x%p  USER-STACK = 0x%p\n"
976                                 KERN_NOTICE "\n",
977                                 (void *)current->mm->start_code,
978                                 (void *)current->mm->end_code,
979                                 (void *)current->mm->start_data,
980                                 (void *)current->mm->end_data,
981                                 (void *)current->mm->end_data,
982                                 (void *)current->mm->brk,
983                                 (void *)current->mm->start_stack);
984                 else
985                         verbose_printk(KERN_NOTICE "invalid mm\n");
986         } else
987                 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
988                      "No Valid process in current context\n");
989 #endif
990 }
991
992 void dump_bfin_mem(struct pt_regs *fp)
993 {
994 #ifdef CONFIG_DEBUG_VERBOSE
995         unsigned short *addr, *erraddr, val = 0, err = 0;
996         char sti = 0, buf[6];
997
998         erraddr = (void *)fp->pc;
999
1000         verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
1001
1002         for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
1003              addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
1004              addr++) {
1005                 if (!((unsigned long)addr & 0xF))
1006                         verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
1007
1008                 if (!get_instruction(&val, addr)) {
1009                                 val = 0;
1010                                 sprintf(buf, "????");
1011                 } else
1012                         sprintf(buf, "%04x", val);
1013
1014                 if (addr == erraddr) {
1015                         verbose_printk("[%s]", buf);
1016                         err = val;
1017                 } else
1018                         verbose_printk(" %s ", buf);
1019
1020                 /* Do any previous instructions turn on interrupts? */
1021                 if (addr <= erraddr &&                          /* in the past */
1022                     ((val >= 0x0040 && val <= 0x0047) ||        /* STI instruction */
1023                       val == 0x017b))                           /* [SP++] = RETI */
1024                         sti = 1;
1025         }
1026
1027         verbose_printk("\n");
1028
1029         /* Hardware error interrupts can be deferred */
1030         if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
1031             oops_in_progress)){
1032                 verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
1033 #ifndef CONFIG_DEBUG_HWERR
1034                 verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
1035                         KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
1036                          " better idea where it came from\n");
1037 #else
1038                 /* If we are handling only one peripheral interrupt
1039                  * and current mm and pid are valid, and the last error
1040                  * was in that user space process's text area
1041                  * print it out - because that is where the problem exists
1042                  */
1043                 if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
1044                      (current->pid && current->mm)) {
1045                         /* And the last RETI points to the current userspace context */
1046                         if ((fp + 1)->pc >= current->mm->start_code &&
1047                             (fp + 1)->pc <= current->mm->end_code) {
1048                                 verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
1049                                 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1050                                 show_regs(fp + 1);
1051                                 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1052                         }
1053                 }
1054 #endif
1055         }
1056 #endif
1057 }
1058
1059 void show_regs(struct pt_regs *fp)
1060 {
1061 #ifdef CONFIG_DEBUG_VERBOSE
1062         char buf [150];
1063         struct irqaction *action;
1064         unsigned int i;
1065         unsigned long flags = 0;
1066         unsigned int cpu = smp_processor_id();
1067         unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
1068
1069         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
1070         verbose_printk(KERN_NOTICE " SEQSTAT: %08lx  IPEND: %04lx  SYSCFG: %04lx\n",
1071                 (long)fp->seqstat, fp->ipend, fp->syscfg);
1072         if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
1073                 verbose_printk(KERN_NOTICE "  HWERRCAUSE: 0x%lx\n",
1074                         (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
1075 #ifdef EBIU_ERRMST
1076                 /* If the error was from the EBIU, print it out */
1077                 if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
1078                         verbose_printk(KERN_NOTICE "  EBIU Error Reason  : 0x%04x\n",
1079                                 bfin_read_EBIU_ERRMST());
1080                         verbose_printk(KERN_NOTICE "  EBIU Error Address : 0x%08x\n",
1081                                 bfin_read_EBIU_ERRADD());
1082                 }
1083 #endif
1084         }
1085         verbose_printk(KERN_NOTICE "  EXCAUSE   : 0x%lx\n",
1086                 fp->seqstat & SEQSTAT_EXCAUSE);
1087         for (i = 2; i <= 15 ; i++) {
1088                 if (fp->ipend & (1 << i)) {
1089                         if (i != 4) {
1090                                 decode_address(buf, bfin_read32(EVT0 + 4*i));
1091                                 verbose_printk(KERN_NOTICE "  physical IVG%i asserted : %s\n", i, buf);
1092                         } else
1093                                 verbose_printk(KERN_NOTICE "  interrupts disabled\n");
1094                 }
1095         }
1096
1097         /* if no interrupts are going off, don't print this out */
1098         if (fp->ipend & ~0x3F) {
1099                 for (i = 0; i < (NR_IRQS - 1); i++) {
1100                         if (!in_atomic)
1101                                 spin_lock_irqsave(&irq_desc[i].lock, flags);
1102
1103                         action = irq_desc[i].action;
1104                         if (!action)
1105                                 goto unlock;
1106
1107                         decode_address(buf, (unsigned int)action->handler);
1108                         verbose_printk(KERN_NOTICE "  logical irq %3d mapped  : %s", i, buf);
1109                         for (action = action->next; action; action = action->next) {
1110                                 decode_address(buf, (unsigned int)action->handler);
1111                                 verbose_printk(", %s", buf);
1112                         }
1113                         verbose_printk("\n");
1114 unlock:
1115                         if (!in_atomic)
1116                                 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
1117                 }
1118         }
1119
1120         decode_address(buf, fp->rete);
1121         verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
1122         decode_address(buf, fp->retn);
1123         verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
1124         decode_address(buf, fp->retx);
1125         verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
1126         decode_address(buf, fp->rets);
1127         verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
1128         decode_address(buf, fp->pc);
1129         verbose_printk(KERN_NOTICE " PC  : %s\n", buf);
1130
1131         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
1132             (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
1133                 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
1134                 verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
1135                 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
1136                 verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
1137         }
1138
1139         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
1140         verbose_printk(KERN_NOTICE " R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
1141                 fp->r0, fp->r1, fp->r2, fp->r3);
1142         verbose_printk(KERN_NOTICE " R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
1143                 fp->r4, fp->r5, fp->r6, fp->r7);
1144         verbose_printk(KERN_NOTICE " P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
1145                 fp->p0, fp->p1, fp->p2, fp->p3);
1146         verbose_printk(KERN_NOTICE " P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
1147                 fp->p4, fp->p5, fp->fp, (long)fp);
1148         verbose_printk(KERN_NOTICE " LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
1149                 fp->lb0, fp->lt0, fp->lc0);
1150         verbose_printk(KERN_NOTICE " LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
1151                 fp->lb1, fp->lt1, fp->lc1);
1152         verbose_printk(KERN_NOTICE " B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
1153                 fp->b0, fp->l0, fp->m0, fp->i0);
1154         verbose_printk(KERN_NOTICE " B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
1155                 fp->b1, fp->l1, fp->m1, fp->i1);
1156         verbose_printk(KERN_NOTICE " B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
1157                 fp->b2, fp->l2, fp->m2, fp->i2);
1158         verbose_printk(KERN_NOTICE " B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
1159                 fp->b3, fp->l3, fp->m3, fp->i3);
1160         verbose_printk(KERN_NOTICE "A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
1161                 fp->a0w, fp->a0x, fp->a1w, fp->a1x);
1162
1163         verbose_printk(KERN_NOTICE "USP : %08lx  ASTAT: %08lx\n",
1164                 rdusp(), fp->astat);
1165
1166         verbose_printk(KERN_NOTICE "\n");
1167 #endif
1168 }
1169
1170 #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
1171 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
1172 #endif
1173
1174 static DEFINE_SPINLOCK(bfin_spinlock_lock);
1175
1176 asmlinkage int sys_bfin_spinlock(int *p)
1177 {
1178         int ret, tmp = 0;
1179
1180         spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
1181         ret = get_user(tmp, p);
1182         if (likely(ret == 0)) {
1183                 if (unlikely(tmp))
1184                         ret = 1;
1185                 else
1186                         put_user(1, p);
1187         }
1188         spin_unlock(&bfin_spinlock_lock);
1189         return ret;
1190 }
1191
1192 int bfin_request_exception(unsigned int exception, void (*handler)(void))
1193 {
1194         void (*curr_handler)(void);
1195
1196         if (exception > 0x3F)
1197                 return -EINVAL;
1198
1199         curr_handler = ex_table[exception];
1200
1201         if (curr_handler != ex_replaceable)
1202                 return -EBUSY;
1203
1204         ex_table[exception] = handler;
1205
1206         return 0;
1207 }
1208 EXPORT_SYMBOL(bfin_request_exception);
1209
1210 int bfin_free_exception(unsigned int exception, void (*handler)(void))
1211 {
1212         void (*curr_handler)(void);
1213
1214         if (exception > 0x3F)
1215                 return -EINVAL;
1216
1217         curr_handler = ex_table[exception];
1218
1219         if (curr_handler != handler)
1220                 return -EBUSY;
1221
1222         ex_table[exception] = ex_replaceable;
1223
1224         return 0;
1225 }
1226 EXPORT_SYMBOL(bfin_free_exception);
1227
1228 void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
1229 {
1230         switch (cplb_panic) {
1231         case CPLB_NO_UNLOCKED:
1232                 printk(KERN_EMERG "All CPLBs are locked\n");
1233                 break;
1234         case CPLB_PROT_VIOL:
1235                 return;
1236         case CPLB_NO_ADDR_MATCH:
1237                 return;
1238         case CPLB_UNKNOWN_ERR:
1239                 printk(KERN_EMERG "Unknown CPLB Exception\n");
1240                 break;
1241         }
1242
1243         oops_in_progress = 1;
1244
1245         dump_bfin_process(fp);
1246         dump_bfin_mem(fp);
1247         show_regs(fp);
1248         dump_stack();
1249         panic("Unrecoverable event\n");
1250 }