Merge branch 'i915fb' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/intelf...
[linux-2.6] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
54
55 #if 0
56 #define POLL_WHILE_TRUE(_c) {                           \
57     do {                                                \
58     } while (_c);                                       \
59   }
60 #else
61 #define RELAX_SPIN_COUNT                                1000
62 #define POLL_WHILE_TRUE(_c) {                           \
63     do {                                                \
64         int _i;                                         \
65         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
66             cpu_relax();                                \
67         }                                               \
68         if (unlikely(_c)) yield();                      \
69         else break;                                     \
70     } while (_c);                                       \
71   }
72 #endif                          /* debug */
73
74 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
75
76 static inline void acquire_spu_lock(struct spu *spu)
77 {
78         /* Save, Step 1:
79          * Restore, Step 1:
80          *    Acquire SPU-specific mutual exclusion lock.
81          *    TBD.
82          */
83 }
84
85 static inline void release_spu_lock(struct spu *spu)
86 {
87         /* Restore, Step 76:
88          *    Release SPU-specific mutual exclusion lock.
89          *    TBD.
90          */
91 }
92
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94 {
95         struct spu_problem __iomem *prob = spu->problem;
96         u32 isolate_state;
97
98         /* Save, Step 2:
99          * Save, Step 6:
100          *     If SPU_Status[E,L,IS] any field is '1', this
101          *     SPU is in isolate state and cannot be context
102          *     saved at this time.
103          */
104         isolate_state = SPU_STATUS_ISOLATED_STATE |
105             SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
106         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
107 }
108
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110 {
111         /* Save, Step 3:
112          * Restore, Step 2:
113          *     Save INT_Mask_class0 in CSA.
114          *     Write INT_MASK_class0 with value of 0.
115          *     Save INT_Mask_class1 in CSA.
116          *     Write INT_MASK_class1 with value of 0.
117          *     Save INT_Mask_class2 in CSA.
118          *     Write INT_MASK_class2 with value of 0.
119          */
120         spin_lock_irq(&spu->register_lock);
121         if (csa) {
122                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
125         }
126         spu_int_mask_set(spu, 0, 0ul);
127         spu_int_mask_set(spu, 1, 0ul);
128         spu_int_mask_set(spu, 2, 0ul);
129         eieio();
130         spin_unlock_irq(&spu->register_lock);
131 }
132
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
134 {
135         /* Save, Step 4:
136          * Restore, Step 25.
137          *    Set a software watchdog timer, which specifies the
138          *    maximum allowable time for a context save sequence.
139          *
140          *    For present, this implementation will not set a global
141          *    watchdog timer, as virtualization & variable system load
142          *    may cause unpredictable execution times.
143          */
144 }
145
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
147 {
148         /* Save, Step 5:
149          * Restore, Step 3:
150          *     Inhibit user-space access (if provided) to this
151          *     SPU by unmapping the virtual pages assigned to
152          *     the SPU memory-mapped I/O (MMIO) for problem
153          *     state. TBD.
154          */
155 }
156
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
158 {
159         /* Save, Step 7:
160          * Restore, Step 5:
161          *     Set a software context switch pending flag.
162          */
163         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
164         mb();
165 }
166
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 {
169         struct spu_priv2 __iomem *priv2 = spu->priv2;
170
171         /* Save, Step 8:
172          *     Suspend DMA and save MFC_CNTL.
173          */
174         switch (in_be64(&priv2->mfc_control_RW) &
175                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176         case MFC_CNTL_SUSPEND_IN_PROGRESS:
177                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179                                  MFC_CNTL_SUSPEND_COMPLETE);
180                 /* fall through */
181         case MFC_CNTL_SUSPEND_COMPLETE:
182                 if (csa) {
183                         csa->priv2.mfc_control_RW =
184                                 in_be64(&priv2->mfc_control_RW) |
185                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
186                 }
187                 break;
188         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192                                  MFC_CNTL_SUSPEND_COMPLETE);
193                 if (csa) {
194                         csa->priv2.mfc_control_RW =
195                                 in_be64(&priv2->mfc_control_RW) &
196                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
197                 }
198                 break;
199         }
200 }
201
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
203 {
204         struct spu_problem __iomem *prob = spu->problem;
205
206         /* Save, Step 9:
207          *     Save SPU_Runcntl in the CSA.  This value contains
208          *     the "Application Desired State".
209          */
210         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
211 }
212
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
214 {
215         /* Save, Step 10:
216          *     Save MFC_SR1 in the CSA.
217          */
218         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
219 }
220
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
222 {
223         struct spu_problem __iomem *prob = spu->problem;
224
225         /* Save, Step 11:
226          *     Read SPU_Status[R], and save to CSA.
227          */
228         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
230         } else {
231                 u32 stopped;
232
233                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
234                 eieio();
235                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
236                                 SPU_STATUS_RUNNING);
237                 stopped =
238                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
242                 else
243                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
244         }
245 }
246
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
248 {
249         struct spu_priv2 __iomem *priv2 = spu->priv2;
250
251         /* Save, Step 12:
252          *     Read MFC_CNTL[Ds].  Update saved copy of
253          *     CSA.MFC_CNTL[Ds].
254          */
255         if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256                 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257                 csa->suspend_time = get_cycles();
258                 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
259                 eieio();
260                 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
261                 eieio();
262         } else {
263                 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
264         }
265 }
266
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
268 {
269         struct spu_priv2 __iomem *priv2 = spu->priv2;
270
271         /* Save, Step 13:
272          *     Write MFC_CNTL[Dh] set to a '1' to halt
273          *     the decrementer.
274          */
275         out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
276         eieio();
277 }
278
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
280 {
281         /* Save, Step 14:
282          *    Read PPE Timebase High and Timebase low registers
283          *    and save in CSA.  TBD.
284          */
285         csa->suspend_time = get_cycles();
286 }
287
288 static inline void remove_other_spu_access(struct spu_state *csa,
289                                            struct spu *spu)
290 {
291         /* Save, Step 15:
292          *     Remove other SPU access to this SPU by unmapping
293          *     this SPU's pages from their address space.  TBD.
294          */
295 }
296
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
298 {
299         struct spu_problem __iomem *prob = spu->problem;
300
301         /* Save, Step 16:
302          * Restore, Step 11.
303          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
304          *     for a value of 0.
305          */
306         out_be64(&prob->spc_mssync_RW, 1UL);
307         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
308 }
309
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
311 {
312         /* Save, Step 17:
313          * Restore, Step 12.
314          * Restore, Step 48.
315          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316          *     Then issue a PPE sync instruction.
317          */
318         spu_tlb_invalidate(spu);
319         mb();
320 }
321
322 static inline void handle_pending_interrupts(struct spu_state *csa,
323                                              struct spu *spu)
324 {
325         /* Save, Step 18:
326          *     Handle any pending interrupts from this SPU
327          *     here.  This is OS or hypervisor specific.  One
328          *     option is to re-enable interrupts to handle any
329          *     pending interrupts, with the interrupt handlers
330          *     recognizing the software Context Switch Pending
331          *     flag, to ensure the SPU execution or MFC command
332          *     queue is not restarted.  TBD.
333          */
334 }
335
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
337 {
338         struct spu_priv2 __iomem *priv2 = spu->priv2;
339         int i;
340
341         /* Save, Step 19:
342          *     If MFC_Cntl[Se]=0 then save
343          *     MFC command queues.
344          */
345         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346                 for (i = 0; i < 8; i++) {
347                         csa->priv2.puq[i].mfc_cq_data0_RW =
348                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349                         csa->priv2.puq[i].mfc_cq_data1_RW =
350                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351                         csa->priv2.puq[i].mfc_cq_data2_RW =
352                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353                         csa->priv2.puq[i].mfc_cq_data3_RW =
354                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
355                 }
356                 for (i = 0; i < 16; i++) {
357                         csa->priv2.spuq[i].mfc_cq_data0_RW =
358                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359                         csa->priv2.spuq[i].mfc_cq_data1_RW =
360                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361                         csa->priv2.spuq[i].mfc_cq_data2_RW =
362                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363                         csa->priv2.spuq[i].mfc_cq_data3_RW =
364                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
365                 }
366         }
367 }
368
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
370 {
371         struct spu_problem __iomem *prob = spu->problem;
372
373         /* Save, Step 20:
374          *     Save the PPU_QueryMask register
375          *     in the CSA.
376          */
377         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
378 }
379
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
381 {
382         struct spu_problem __iomem *prob = spu->problem;
383
384         /* Save, Step 21:
385          *     Save the PPU_QueryType register
386          *     in the CSA.
387          */
388         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
389 }
390
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
392 {
393         struct spu_priv2 __iomem *priv2 = spu->priv2;
394
395         /* Save, Step 22:
396          *     Save the MFC_CSR_TSQ register
397          *     in the LSCSA.
398          */
399         csa->priv2.spu_tag_status_query_RW =
400             in_be64(&priv2->spu_tag_status_query_RW);
401 }
402
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
404 {
405         struct spu_priv2 __iomem *priv2 = spu->priv2;
406
407         /* Save, Step 23:
408          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409          *     registers in the CSA.
410          */
411         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
413 }
414
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
416 {
417         struct spu_priv2 __iomem *priv2 = spu->priv2;
418
419         /* Save, Step 24:
420          *     Save the MFC_CSR_ATO register in
421          *     the CSA.
422          */
423         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
424 }
425
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
427 {
428         /* Save, Step 25:
429          *     Save the MFC_TCLASS_ID register in
430          *     the CSA.
431          */
432         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
433 }
434
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
436 {
437         /* Save, Step 26:
438          * Restore, Step 23.
439          *     Write the MFC_TCLASS_ID register with
440          *     the value 0x10000000.
441          */
442         spu_mfc_tclass_id_set(spu, 0x10000000);
443         eieio();
444 }
445
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
447 {
448         struct spu_priv2 __iomem *priv2 = spu->priv2;
449
450         /* Save, Step 27:
451          * Restore, Step 14.
452          *     Write MFC_CNTL[Pc]=1 (purge queue).
453          */
454         out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
455         eieio();
456 }
457
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
459 {
460         struct spu_priv2 __iomem *priv2 = spu->priv2;
461
462         /* Save, Step 28:
463          *     Poll MFC_CNTL[Ps] until value '11' is read
464          *     (purge complete).
465          */
466         POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
467                          MFC_CNTL_PURGE_DMA_COMPLETE);
468 }
469
470 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
471 {
472         struct spu_priv2 __iomem *priv2 = spu->priv2;
473         int i;
474
475         /* Save, Step 29:
476          *     If MFC_SR1[R]='1', save SLBs in CSA.
477          */
478         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
479                 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
480                 for (i = 0; i < 8; i++) {
481                         out_be64(&priv2->slb_index_W, i);
482                         eieio();
483                         csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
484                         csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
485                         eieio();
486                 }
487         }
488 }
489
490 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
491 {
492         /* Save, Step 30:
493          * Restore, Step 18:
494          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
495          *     MFC_SR1[TL,R,Pr,T] set correctly for the
496          *     OS specific environment.
497          *
498          *     Implementation note: The SPU-side code
499          *     for save/restore is privileged, so the
500          *     MFC_SR1[Pr] bit is not set.
501          *
502          */
503         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
504                               MFC_STATE1_RELOCATE_MASK |
505                               MFC_STATE1_BUS_TLBIE_MASK));
506 }
507
508 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
509 {
510         struct spu_problem __iomem *prob = spu->problem;
511
512         /* Save, Step 31:
513          *     Save SPU_NPC in the CSA.
514          */
515         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
516 }
517
518 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
519 {
520         struct spu_priv2 __iomem *priv2 = spu->priv2;
521
522         /* Save, Step 32:
523          *     Save SPU_PrivCntl in the CSA.
524          */
525         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
526 }
527
528 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
529 {
530         struct spu_priv2 __iomem *priv2 = spu->priv2;
531
532         /* Save, Step 33:
533          * Restore, Step 16:
534          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
535          */
536         out_be64(&priv2->spu_privcntl_RW, 0UL);
537         eieio();
538 }
539
540 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
541 {
542         struct spu_priv2 __iomem *priv2 = spu->priv2;
543
544         /* Save, Step 34:
545          *     Save SPU_LSLR in the CSA.
546          */
547         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
548 }
549
550 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
551 {
552         struct spu_priv2 __iomem *priv2 = spu->priv2;
553
554         /* Save, Step 35:
555          * Restore, Step 17.
556          *     Reset SPU_LSLR.
557          */
558         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
559         eieio();
560 }
561
562 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
563 {
564         struct spu_priv2 __iomem *priv2 = spu->priv2;
565
566         /* Save, Step 36:
567          *     Save SPU_Cfg in the CSA.
568          */
569         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
570 }
571
572 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
573 {
574         /* Save, Step 37:
575          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
576          *     Not performed by this implementation.
577          */
578 }
579
580 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
581 {
582         /* Save, Step 38:
583          *     Save RA_GROUP_ID register and the
584          *     RA_ENABLE reigster in the CSA.
585          */
586         csa->priv1.resource_allocation_groupID_RW =
587                 spu_resource_allocation_groupID_get(spu);
588         csa->priv1.resource_allocation_enable_RW =
589                 spu_resource_allocation_enable_get(spu);
590 }
591
592 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
593 {
594         struct spu_problem __iomem *prob = spu->problem;
595
596         /* Save, Step 39:
597          *     Save MB_Stat register in the CSA.
598          */
599         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
600 }
601
602 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
603 {
604         struct spu_problem __iomem *prob = spu->problem;
605
606         /* Save, Step 40:
607          *     Save the PPU_MB register in the CSA.
608          */
609         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
610 }
611
612 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
613 {
614         struct spu_priv2 __iomem *priv2 = spu->priv2;
615
616         /* Save, Step 41:
617          *     Save the PPUINT_MB register in the CSA.
618          */
619         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
620 }
621
622 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
623 {
624         struct spu_priv2 __iomem *priv2 = spu->priv2;
625         u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
626         int i;
627
628         /* Save, Step 42:
629          *     Save the following CH: [0,1,3,4,24,25,27]
630          */
631         for (i = 0; i < 7; i++) {
632                 idx = ch_indices[i];
633                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
634                 eieio();
635                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
636                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
637                 out_be64(&priv2->spu_chnldata_RW, 0UL);
638                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
639                 eieio();
640         }
641 }
642
643 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
644 {
645         struct spu_priv2 __iomem *priv2 = spu->priv2;
646         int i;
647
648         /* Save, Step 43:
649          *     Save SPU Read Mailbox Channel.
650          */
651         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
652         eieio();
653         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
654         for (i = 0; i < 4; i++) {
655                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
656         }
657         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
658         eieio();
659 }
660
661 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
662 {
663         struct spu_priv2 __iomem *priv2 = spu->priv2;
664
665         /* Save, Step 44:
666          *     Save MFC_CMD Channel.
667          */
668         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
669         eieio();
670         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
671         eieio();
672 }
673
674 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
675 {
676         struct spu_priv2 __iomem *priv2 = spu->priv2;
677         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
678         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
679         u64 idx;
680         int i;
681
682         /* Save, Step 45:
683          *     Reset the following CH: [21, 23, 28, 30]
684          */
685         for (i = 0; i < 4; i++) {
686                 idx = ch_indices[i];
687                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
688                 eieio();
689                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
690                 eieio();
691         }
692 }
693
694 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
695 {
696         struct spu_priv2 __iomem *priv2 = spu->priv2;
697
698         /* Save, Step 46:
699          * Restore, Step 25.
700          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
701          */
702         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
703 }
704
705 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
706 {
707         struct spu_priv2 __iomem *priv2 = spu->priv2;
708
709         /* Save, Step 45:
710          * Restore, Step 19:
711          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
712          */
713         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
714                 out_be64(&priv2->slb_invalidate_all_W, 0UL);
715                 eieio();
716         }
717 }
718
719 static inline void get_kernel_slb(u64 ea, u64 slb[2])
720 {
721         slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
722         slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
723
724         /* Large pages are used for kernel text/data, but not vmalloc.  */
725         if (cpu_has_feature(CPU_FTR_16M_PAGE)
726             && REGION_ID(ea) == KERNEL_REGION_ID)
727                 slb[0] |= SLB_VSID_L;
728 }
729
730 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
731 {
732         struct spu_priv2 __iomem *priv2 = spu->priv2;
733
734         out_be64(&priv2->slb_index_W, slbe);
735         eieio();
736         out_be64(&priv2->slb_vsid_RW, slb[0]);
737         out_be64(&priv2->slb_esid_RW, slb[1]);
738         eieio();
739 }
740
741 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
742 {
743         u64 code_slb[2];
744         u64 lscsa_slb[2];
745
746         /* Save, Step 47:
747          * Restore, Step 30.
748          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
749          *     register, then initialize SLB_VSID and SLB_ESID
750          *     to provide access to SPU context save code and
751          *     LSCSA.
752          *
753          *     This implementation places both the context
754          *     switch code and LSCSA in kernel address space.
755          *
756          *     Further this implementation assumes that the
757          *     MFC_SR1[R]=1 (in other words, assume that
758          *     translation is desired by OS environment).
759          */
760         invalidate_slbs(csa, spu);
761         get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
762         get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
763         load_mfc_slb(spu, code_slb, 0);
764         if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
765                 load_mfc_slb(spu, lscsa_slb, 1);
766 }
767
768 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
769 {
770         /* Save, Step 48:
771          * Restore, Step 23.
772          *     Change the software context switch pending flag
773          *     to context switch active.
774          */
775         set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
776         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
777         mb();
778 }
779
780 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
781 {
782         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
783             CLASS1_ENABLE_STORAGE_FAULT_INTR;
784
785         /* Save, Step 49:
786          * Restore, Step 22:
787          *     Reset and then enable interrupts, as
788          *     needed by OS.
789          *
790          *     This implementation enables only class1
791          *     (translation) interrupts.
792          */
793         spin_lock_irq(&spu->register_lock);
794         spu_int_stat_clear(spu, 0, ~0ul);
795         spu_int_stat_clear(spu, 1, ~0ul);
796         spu_int_stat_clear(spu, 2, ~0ul);
797         spu_int_mask_set(spu, 0, 0ul);
798         spu_int_mask_set(spu, 1, class1_mask);
799         spu_int_mask_set(spu, 2, 0ul);
800         spin_unlock_irq(&spu->register_lock);
801 }
802
803 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
804                                unsigned int ls_offset, unsigned int size,
805                                unsigned int tag, unsigned int rclass,
806                                unsigned int cmd)
807 {
808         struct spu_problem __iomem *prob = spu->problem;
809         union mfc_tag_size_class_cmd command;
810         unsigned int transfer_size;
811         volatile unsigned int status = 0x0;
812
813         while (size > 0) {
814                 transfer_size =
815                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
816                 command.u.mfc_size = transfer_size;
817                 command.u.mfc_tag = tag;
818                 command.u.mfc_rclassid = rclass;
819                 command.u.mfc_cmd = cmd;
820                 do {
821                         out_be32(&prob->mfc_lsa_W, ls_offset);
822                         out_be64(&prob->mfc_ea_W, ea);
823                         out_be64(&prob->mfc_union_W.all64, command.all64);
824                         status =
825                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
826                         if (unlikely(status & 0x2)) {
827                                 cpu_relax();
828                         }
829                 } while (status & 0x3);
830                 size -= transfer_size;
831                 ea += transfer_size;
832                 ls_offset += transfer_size;
833         }
834         return 0;
835 }
836
837 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
838 {
839         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
840         unsigned int ls_offset = 0x0;
841         unsigned int size = 16384;
842         unsigned int tag = 0;
843         unsigned int rclass = 0;
844         unsigned int cmd = MFC_PUT_CMD;
845
846         /* Save, Step 50:
847          *     Issue a DMA command to copy the first 16K bytes
848          *     of local storage to the CSA.
849          */
850         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
851 }
852
853 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
854 {
855         struct spu_problem __iomem *prob = spu->problem;
856
857         /* Save, Step 51:
858          * Restore, Step 31.
859          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
860          *     point address of context save code in local
861          *     storage.
862          *
863          *     This implementation uses SPU-side save/restore
864          *     programs with entry points at LSA of 0.
865          */
866         out_be32(&prob->spu_npc_RW, 0);
867         eieio();
868 }
869
870 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
871 {
872         struct spu_problem __iomem *prob = spu->problem;
873         union {
874                 u64 ull;
875                 u32 ui[2];
876         } addr64;
877
878         /* Save, Step 52:
879          * Restore, Step 32:
880          *    Write SPU_Sig_Notify_1 register with upper 32-bits
881          *    of the CSA.LSCSA effective address.
882          */
883         addr64.ull = (u64) csa->lscsa;
884         out_be32(&prob->signal_notify1, addr64.ui[0]);
885         eieio();
886 }
887
888 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
889 {
890         struct spu_problem __iomem *prob = spu->problem;
891         union {
892                 u64 ull;
893                 u32 ui[2];
894         } addr64;
895
896         /* Save, Step 53:
897          * Restore, Step 33:
898          *    Write SPU_Sig_Notify_2 register with lower 32-bits
899          *    of the CSA.LSCSA effective address.
900          */
901         addr64.ull = (u64) csa->lscsa;
902         out_be32(&prob->signal_notify2, addr64.ui[1]);
903         eieio();
904 }
905
906 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
907 {
908         unsigned long addr = (unsigned long)&spu_save_code[0];
909         unsigned int ls_offset = 0x0;
910         unsigned int size = sizeof(spu_save_code);
911         unsigned int tag = 0;
912         unsigned int rclass = 0;
913         unsigned int cmd = MFC_GETFS_CMD;
914
915         /* Save, Step 54:
916          *     Issue a DMA command to copy context save code
917          *     to local storage and start SPU.
918          */
919         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
920 }
921
922 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
923 {
924         struct spu_problem __iomem *prob = spu->problem;
925
926         /* Save, Step 55:
927          * Restore, Step 38.
928          *     Write PPU_QueryMask=1 (enable Tag Group 0)
929          *     and issue eieio instruction.
930          */
931         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
932         eieio();
933 }
934
935 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
936 {
937         struct spu_problem __iomem *prob = spu->problem;
938         u32 mask = MFC_TAGID_TO_TAGMASK(0);
939         unsigned long flags;
940
941         /* Save, Step 56:
942          * Restore, Step 39.
943          * Restore, Step 39.
944          * Restore, Step 46.
945          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
946          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
947          *     Complete Interrupt.  Write INT_Stat_Class0 or
948          *     INT_Stat_Class2 with value of 'handled'.
949          */
950         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
951
952         local_irq_save(flags);
953         spu_int_stat_clear(spu, 0, ~(0ul));
954         spu_int_stat_clear(spu, 2, ~(0ul));
955         local_irq_restore(flags);
956 }
957
958 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
959 {
960         struct spu_problem __iomem *prob = spu->problem;
961         unsigned long flags;
962
963         /* Save, Step 57:
964          * Restore, Step 40.
965          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
966          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
967          *     or INT_Stat_class2 with value of handled.
968          */
969         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
970
971         local_irq_save(flags);
972         spu_int_stat_clear(spu, 0, ~(0ul));
973         spu_int_stat_clear(spu, 2, ~(0ul));
974         local_irq_restore(flags);
975 }
976
977 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
978 {
979         struct spu_problem __iomem *prob = spu->problem;
980         u32 complete;
981
982         /* Save, Step 54:
983          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
984          *     context save succeeded, otherwise context save
985          *     failed.
986          */
987         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
988                     SPU_STATUS_STOPPED_BY_STOP);
989         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
990 }
991
992 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
993 {
994         /* Restore, Step 4:
995          *    If required, notify the "using application" that
996          *    the SPU task has been terminated.  TBD.
997          */
998 }
999
1000 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1001 {
1002         struct spu_priv2 __iomem *priv2 = spu->priv2;
1003
1004         /* Restore, Step 7:
1005          * Restore, Step 47.
1006          *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1007          *     the queue and halt the decrementer.
1008          */
1009         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1010                  MFC_CNTL_DECREMENTER_HALTED);
1011         eieio();
1012 }
1013
1014 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1015                                              struct spu *spu)
1016 {
1017         struct spu_priv2 __iomem *priv2 = spu->priv2;
1018
1019         /* Restore, Step 8:
1020          * Restore, Step 47.
1021          *     Poll MFC_CNTL[Ss] until 11 is returned.
1022          */
1023         POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1024                          MFC_CNTL_SUSPEND_COMPLETE);
1025 }
1026
1027 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1028 {
1029         struct spu_problem __iomem *prob = spu->problem;
1030
1031         /* Restore, Step 9:
1032          *    If SPU_Status[R]=1, stop SPU execution
1033          *    and wait for stop to complete.
1034          *
1035          *    Returns       1 if SPU_Status[R]=1 on entry.
1036          *                  0 otherwise
1037          */
1038         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1039                 if (in_be32(&prob->spu_status_R) &
1040                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1041                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1042                                         SPU_STATUS_RUNNING);
1043                 }
1044                 if ((in_be32(&prob->spu_status_R) &
1045                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1046                     || (in_be32(&prob->spu_status_R) &
1047                         SPU_STATUS_ISOLATED_STATE)) {
1048                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1049                         eieio();
1050                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1051                                         SPU_STATUS_RUNNING);
1052                         out_be32(&prob->spu_runcntl_RW, 0x2);
1053                         eieio();
1054                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055                                         SPU_STATUS_RUNNING);
1056                 }
1057                 if (in_be32(&prob->spu_status_R) &
1058                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1059                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1060                         eieio();
1061                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062                                         SPU_STATUS_RUNNING);
1063                 }
1064                 return 1;
1065         }
1066         return 0;
1067 }
1068
1069 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1070 {
1071         struct spu_problem __iomem *prob = spu->problem;
1072
1073         /* Restore, Step 10:
1074          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1075          *    release SPU from isolate state.
1076          */
1077         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1078                 if (in_be32(&prob->spu_status_R) &
1079                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1080                         spu_mfc_sr1_set(spu,
1081                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1082                         eieio();
1083                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1084                         eieio();
1085                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1086                                         SPU_STATUS_RUNNING);
1087                 }
1088                 if ((in_be32(&prob->spu_status_R) &
1089                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1090                     || (in_be32(&prob->spu_status_R) &
1091                         SPU_STATUS_ISOLATED_STATE)) {
1092                         spu_mfc_sr1_set(spu,
1093                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1094                         eieio();
1095                         out_be32(&prob->spu_runcntl_RW, 0x2);
1096                         eieio();
1097                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1098                                         SPU_STATUS_RUNNING);
1099                 }
1100         }
1101 }
1102
1103 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1104 {
1105         struct spu_priv2 __iomem *priv2 = spu->priv2;
1106         u64 ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1107         u64 idx;
1108         int i;
1109
1110         /* Restore, Step 20:
1111          *     Reset the following CH: [0,1,3,4,24,25,27]
1112          */
1113         for (i = 0; i < 7; i++) {
1114                 idx = ch_indices[i];
1115                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1116                 eieio();
1117                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1118                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1119                 eieio();
1120         }
1121 }
1122
1123 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1124 {
1125         struct spu_priv2 __iomem *priv2 = spu->priv2;
1126         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1127         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1128         u64 idx;
1129         int i;
1130
1131         /* Restore, Step 21:
1132          *     Reset the following CH: [21, 23, 28, 29, 30]
1133          */
1134         for (i = 0; i < 5; i++) {
1135                 idx = ch_indices[i];
1136                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1137                 eieio();
1138                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1139                 eieio();
1140         }
1141 }
1142
1143 static inline void setup_spu_status_part1(struct spu_state *csa,
1144                                           struct spu *spu)
1145 {
1146         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1147         u32 status_I = SPU_STATUS_INVALID_INSTR;
1148         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1149         u32 status_S = SPU_STATUS_SINGLE_STEP;
1150         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1151         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1152         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1153         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1154         u32 status_code;
1155
1156         /* Restore, Step 27:
1157          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1158          *     instruction sequence to the end of the SPU based restore
1159          *     code (after the "context restored" stop and signal) to
1160          *     restore the correct SPU status.
1161          *
1162          *     NOTE: Rather than modifying the SPU executable, we
1163          *     instead add a new 'stopped_status' field to the
1164          *     LSCSA.  The SPU-side restore reads this field and
1165          *     takes the appropriate action when exiting.
1166          */
1167
1168         status_code =
1169             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1170         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1171
1172                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1173                  * by Stop and Signal instruction, followed by 'br -4'.
1174                  *
1175                  */
1176                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1177                 csa->lscsa->stopped_status.slot[1] = status_code;
1178
1179         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1180
1181                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1182                  * by Stop and Signal instruction, followed by
1183                  * 'br -4'.
1184                  */
1185                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1186                 csa->lscsa->stopped_status.slot[1] = status_code;
1187
1188         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1189
1190                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1191                  * followed by 'br -4'.
1192                  */
1193                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1194                 csa->lscsa->stopped_status.slot[1] = status_code;
1195
1196         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1197
1198                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1199                  * by 'br -4'.
1200                  */
1201                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1202                 csa->lscsa->stopped_status.slot[1] = status_code;
1203
1204         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1205
1206                 /* SPU_Status[P]=1 - Stop and Signal instruction
1207                  * followed by 'br -4'.
1208                  */
1209                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1210                 csa->lscsa->stopped_status.slot[1] = status_code;
1211
1212         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1213
1214                 /* SPU_Status[H]=1 - Halt Conditional, followed
1215                  * by 'br -4'.
1216                  */
1217                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1218
1219         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1220
1221                 /* SPU_Status[S]=1 - Two nop instructions.
1222                  */
1223                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1224
1225         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1226
1227                 /* SPU_Status[I]=1 - Illegal instruction followed
1228                  * by 'br -4'.
1229                  */
1230                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1231
1232         }
1233 }
1234
1235 static inline void setup_spu_status_part2(struct spu_state *csa,
1236                                           struct spu *spu)
1237 {
1238         u32 mask;
1239
1240         /* Restore, Step 28:
1241          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1242          *     add a 'br *' instruction to the end of
1243          *     the SPU based restore code.
1244          *
1245          *     NOTE: Rather than modifying the SPU executable, we
1246          *     instead add a new 'stopped_status' field to the
1247          *     LSCSA.  The SPU-side restore reads this field and
1248          *     takes the appropriate action when exiting.
1249          */
1250         mask = SPU_STATUS_INVALID_INSTR |
1251             SPU_STATUS_SINGLE_STEP |
1252             SPU_STATUS_STOPPED_BY_HALT |
1253             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1254         if (!(csa->prob.spu_status_R & mask)) {
1255                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1256         }
1257 }
1258
1259 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1260 {
1261         /* Restore, Step 29:
1262          *     Restore RA_GROUP_ID register and the
1263          *     RA_ENABLE reigster from the CSA.
1264          */
1265         spu_resource_allocation_groupID_set(spu,
1266                         csa->priv1.resource_allocation_groupID_RW);
1267         spu_resource_allocation_enable_set(spu,
1268                         csa->priv1.resource_allocation_enable_RW);
1269 }
1270
1271 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1272 {
1273         unsigned long addr = (unsigned long)&spu_restore_code[0];
1274         unsigned int ls_offset = 0x0;
1275         unsigned int size = sizeof(spu_restore_code);
1276         unsigned int tag = 0;
1277         unsigned int rclass = 0;
1278         unsigned int cmd = MFC_GETFS_CMD;
1279
1280         /* Restore, Step 37:
1281          *     Issue MFC DMA command to copy context
1282          *     restore code to local storage.
1283          */
1284         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1285 }
1286
1287 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1288 {
1289         /* Restore, Step 34:
1290          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1291          *     running) then adjust decrementer, set
1292          *     decrementer running status in LSCSA,
1293          *     and set decrementer "wrapped" status
1294          *     in LSCSA.
1295          */
1296         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1297                 cycles_t resume_time = get_cycles();
1298                 cycles_t delta_time = resume_time - csa->suspend_time;
1299
1300                 csa->lscsa->decr.slot[0] -= delta_time;
1301         }
1302 }
1303
1304 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1305 {
1306         /* Restore, Step 35:
1307          *     Copy the CSA.PU_MB data into the LSCSA.
1308          */
1309         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1310 }
1311
1312 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1313 {
1314         /* Restore, Step 36:
1315          *     Copy the CSA.PUINT_MB data into the LSCSA.
1316          */
1317         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1318 }
1319
1320 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1321 {
1322         struct spu_problem __iomem *prob = spu->problem;
1323         u32 complete;
1324
1325         /* Restore, Step 40:
1326          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1327          *     context restore succeeded, otherwise context restore
1328          *     failed.
1329          */
1330         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1331                     SPU_STATUS_STOPPED_BY_STOP);
1332         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1333 }
1334
1335 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1336 {
1337         struct spu_priv2 __iomem *priv2 = spu->priv2;
1338
1339         /* Restore, Step 41:
1340          *     Restore SPU_PrivCntl from the CSA.
1341          */
1342         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1343         eieio();
1344 }
1345
1346 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1347 {
1348         struct spu_problem __iomem *prob = spu->problem;
1349         u32 mask;
1350
1351         /* Restore, Step 42:
1352          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1353          *     restore the error or single step state.
1354          */
1355         mask = SPU_STATUS_INVALID_INSTR |
1356             SPU_STATUS_SINGLE_STEP |
1357             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1358         if (csa->prob.spu_status_R & mask) {
1359                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1360                 eieio();
1361                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1362                                 SPU_STATUS_RUNNING);
1363         }
1364 }
1365
1366 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1367 {
1368         struct spu_problem __iomem *prob = spu->problem;
1369         u32 mask;
1370
1371         /* Restore, Step 43:
1372          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1373          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1374          *     then write '00' to SPU_RunCntl[R0R1] and wait
1375          *     for SPU_Status[R]=0.
1376          */
1377         mask = SPU_STATUS_INVALID_INSTR |
1378             SPU_STATUS_SINGLE_STEP |
1379             SPU_STATUS_STOPPED_BY_HALT |
1380             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1381         if (!(csa->prob.spu_status_R & mask)) {
1382                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1383                 eieio();
1384                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1385                                  SPU_STATUS_RUNNING);
1386                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1387                 eieio();
1388                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1389                                 SPU_STATUS_RUNNING);
1390         }
1391 }
1392
1393 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1394 {
1395         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1396         unsigned int ls_offset = 0x0;
1397         unsigned int size = 16384;
1398         unsigned int tag = 0;
1399         unsigned int rclass = 0;
1400         unsigned int cmd = MFC_GET_CMD;
1401
1402         /* Restore, Step 44:
1403          *     Issue a DMA command to restore the first
1404          *     16kb of local storage from CSA.
1405          */
1406         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1407 }
1408
1409 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1410 {
1411         /* Restore, Step 49:
1412          *     Write INT_MASK_class0 with value of 0.
1413          *     Write INT_MASK_class1 with value of 0.
1414          *     Write INT_MASK_class2 with value of 0.
1415          *     Write INT_STAT_class0 with value of -1.
1416          *     Write INT_STAT_class1 with value of -1.
1417          *     Write INT_STAT_class2 with value of -1.
1418          */
1419         spin_lock_irq(&spu->register_lock);
1420         spu_int_mask_set(spu, 0, 0ul);
1421         spu_int_mask_set(spu, 1, 0ul);
1422         spu_int_mask_set(spu, 2, 0ul);
1423         spu_int_stat_clear(spu, 0, ~0ul);
1424         spu_int_stat_clear(spu, 1, ~0ul);
1425         spu_int_stat_clear(spu, 2, ~0ul);
1426         spin_unlock_irq(&spu->register_lock);
1427 }
1428
1429 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1430 {
1431         struct spu_priv2 __iomem *priv2 = spu->priv2;
1432         int i;
1433
1434         /* Restore, Step 50:
1435          *     If MFC_Cntl[Se]!=0 then restore
1436          *     MFC command queues.
1437          */
1438         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1439                 for (i = 0; i < 8; i++) {
1440                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1441                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1442                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1443                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1444                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1445                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1446                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1447                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1448                 }
1449                 for (i = 0; i < 16; i++) {
1450                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1451                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1452                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1453                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1454                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1455                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1456                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1457                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1458                 }
1459         }
1460         eieio();
1461 }
1462
1463 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1464 {
1465         struct spu_problem __iomem *prob = spu->problem;
1466
1467         /* Restore, Step 51:
1468          *     Restore the PPU_QueryMask register from CSA.
1469          */
1470         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1471         eieio();
1472 }
1473
1474 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1475 {
1476         struct spu_problem __iomem *prob = spu->problem;
1477
1478         /* Restore, Step 52:
1479          *     Restore the PPU_QueryType register from CSA.
1480          */
1481         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1482         eieio();
1483 }
1484
1485 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1486 {
1487         struct spu_priv2 __iomem *priv2 = spu->priv2;
1488
1489         /* Restore, Step 53:
1490          *     Restore the MFC_CSR_TSQ register from CSA.
1491          */
1492         out_be64(&priv2->spu_tag_status_query_RW,
1493                  csa->priv2.spu_tag_status_query_RW);
1494         eieio();
1495 }
1496
1497 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1498 {
1499         struct spu_priv2 __iomem *priv2 = spu->priv2;
1500
1501         /* Restore, Step 54:
1502          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1503          *     registers from CSA.
1504          */
1505         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1506         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1507         eieio();
1508 }
1509
1510 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1511 {
1512         struct spu_priv2 __iomem *priv2 = spu->priv2;
1513
1514         /* Restore, Step 55:
1515          *     Restore the MFC_CSR_ATO register from CSA.
1516          */
1517         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1518 }
1519
1520 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1521 {
1522         /* Restore, Step 56:
1523          *     Restore the MFC_TCLASS_ID register from CSA.
1524          */
1525         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1526         eieio();
1527 }
1528
1529 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1530 {
1531         u64 ch0_cnt, ch0_data;
1532         u64 ch1_data;
1533
1534         /* Restore, Step 57:
1535          *    Set the Lock Line Reservation Lost Event by:
1536          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1537          *      2. If CSA.SPU_Channel_0_Count=0 and
1538          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1539          *         CSA.SPU_Event_Status[Lr]=0 then set
1540          *         CSA.SPU_Event_Status_Count=1.
1541          */
1542         ch0_cnt = csa->spu_chnlcnt_RW[0];
1543         ch0_data = csa->spu_chnldata_RW[0];
1544         ch1_data = csa->spu_chnldata_RW[1];
1545         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1546         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1547             (ch1_data & MFC_LLR_LOST_EVENT)) {
1548                 csa->spu_chnlcnt_RW[0] = 1;
1549         }
1550 }
1551
1552 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1553 {
1554         /* Restore, Step 58:
1555          *     If the status of the CSA software decrementer
1556          *     "wrapped" flag is set, OR in a '1' to
1557          *     CSA.SPU_Event_Status[Tm].
1558          */
1559         if (csa->lscsa->decr_status.slot[0] == 1) {
1560                 csa->spu_chnldata_RW[0] |= 0x20;
1561         }
1562         if ((csa->lscsa->decr_status.slot[0] == 1) &&
1563             (csa->spu_chnlcnt_RW[0] == 0 &&
1564              ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1565              ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1566                 csa->spu_chnlcnt_RW[0] = 1;
1567         }
1568 }
1569
1570 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1571 {
1572         struct spu_priv2 __iomem *priv2 = spu->priv2;
1573         u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1574         int i;
1575
1576         /* Restore, Step 59:
1577          *     Restore the following CH: [0,1,3,4,24,25,27]
1578          */
1579         for (i = 0; i < 7; i++) {
1580                 idx = ch_indices[i];
1581                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1582                 eieio();
1583                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1584                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1585                 eieio();
1586         }
1587 }
1588
1589 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1590 {
1591         struct spu_priv2 __iomem *priv2 = spu->priv2;
1592         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1593         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1594         u64 idx;
1595         int i;
1596
1597         /* Restore, Step 60:
1598          *     Restore the following CH: [9,21,23].
1599          */
1600         ch_counts[0] = 1UL;
1601         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1602         ch_counts[2] = 1UL;
1603         for (i = 0; i < 3; i++) {
1604                 idx = ch_indices[i];
1605                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1606                 eieio();
1607                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1608                 eieio();
1609         }
1610 }
1611
1612 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1613 {
1614         struct spu_priv2 __iomem *priv2 = spu->priv2;
1615
1616         /* Restore, Step 61:
1617          *     Restore the SPU_LSLR register from CSA.
1618          */
1619         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1620         eieio();
1621 }
1622
1623 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1624 {
1625         struct spu_priv2 __iomem *priv2 = spu->priv2;
1626
1627         /* Restore, Step 62:
1628          *     Restore the SPU_Cfg register from CSA.
1629          */
1630         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1631         eieio();
1632 }
1633
1634 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1635 {
1636         /* Restore, Step 63:
1637          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1638          *     Not performed by this implementation.
1639          */
1640 }
1641
1642 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1643 {
1644         struct spu_problem __iomem *prob = spu->problem;
1645
1646         /* Restore, Step 64:
1647          *     Restore SPU_NPC from CSA.
1648          */
1649         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1650         eieio();
1651 }
1652
1653 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1654 {
1655         struct spu_priv2 __iomem *priv2 = spu->priv2;
1656         int i;
1657
1658         /* Restore, Step 65:
1659          *     Restore MFC_RdSPU_MB from CSA.
1660          */
1661         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1662         eieio();
1663         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1664         for (i = 0; i < 4; i++) {
1665                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1666         }
1667         eieio();
1668 }
1669
1670 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1671 {
1672         struct spu_problem __iomem *prob = spu->problem;
1673         u32 dummy = 0;
1674
1675         /* Restore, Step 66:
1676          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1677          *     read from the PPU_MB register.
1678          */
1679         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1680                 dummy = in_be32(&prob->pu_mb_R);
1681                 eieio();
1682         }
1683 }
1684
1685 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1686 {
1687         struct spu_priv2 __iomem *priv2 = spu->priv2;
1688         u64 dummy = 0UL;
1689
1690         /* Restore, Step 66:
1691          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1692          *     read from the PPUINT_MB register.
1693          */
1694         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1695                 dummy = in_be64(&priv2->puint_mb_R);
1696                 eieio();
1697                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1698                 eieio();
1699         }
1700 }
1701
1702 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1703 {
1704         struct spu_priv2 __iomem *priv2 = spu->priv2;
1705         int i;
1706
1707         /* Restore, Step 68:
1708          *     If MFC_SR1[R]='1', restore SLBs from CSA.
1709          */
1710         if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1711                 for (i = 0; i < 8; i++) {
1712                         out_be64(&priv2->slb_index_W, i);
1713                         eieio();
1714                         out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1715                         out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1716                         eieio();
1717                 }
1718                 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1719                 eieio();
1720         }
1721 }
1722
1723 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1724 {
1725         /* Restore, Step 69:
1726          *     Restore the MFC_SR1 register from CSA.
1727          */
1728         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1729         eieio();
1730 }
1731
1732 static inline void restore_other_spu_access(struct spu_state *csa,
1733                                             struct spu *spu)
1734 {
1735         /* Restore, Step 70:
1736          *     Restore other SPU mappings to this SPU. TBD.
1737          */
1738 }
1739
1740 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1741 {
1742         struct spu_problem __iomem *prob = spu->problem;
1743
1744         /* Restore, Step 71:
1745          *     If CSA.SPU_Status[R]=1 then write
1746          *     SPU_RunCntl[R0R1]='01'.
1747          */
1748         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1749                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1750                 eieio();
1751         }
1752 }
1753
1754 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1755 {
1756         struct spu_priv2 __iomem *priv2 = spu->priv2;
1757
1758         /* Restore, Step 72:
1759          *    Restore the MFC_CNTL register for the CSA.
1760          */
1761         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1762         eieio();
1763 }
1764
1765 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1766 {
1767         /* Restore, Step 73:
1768          *     Enable user-space access (if provided) to this
1769          *     SPU by mapping the virtual pages assigned to
1770          *     the SPU memory-mapped I/O (MMIO) for problem
1771          *     state. TBD.
1772          */
1773 }
1774
1775 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1776 {
1777         /* Restore, Step 74:
1778          *     Reset the "context switch active" flag.
1779          */
1780         clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1781         mb();
1782 }
1783
1784 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1785 {
1786         /* Restore, Step 75:
1787          *     Re-enable SPU interrupts.
1788          */
1789         spin_lock_irq(&spu->register_lock);
1790         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1791         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1792         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1793         spin_unlock_irq(&spu->register_lock);
1794 }
1795
1796 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1797 {
1798         /*
1799          * Combined steps 2-18 of SPU context save sequence, which
1800          * quiesce the SPU state (disable SPU execution, MFC command
1801          * queues, decrementer, SPU interrupts, etc.).
1802          *
1803          * Returns      0 on success.
1804          *              2 if failed step 2.
1805          *              6 if failed step 6.
1806          */
1807
1808         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1809                 return 2;
1810         }
1811         disable_interrupts(prev, spu);          /* Step 3. */
1812         set_watchdog_timer(prev, spu);          /* Step 4. */
1813         inhibit_user_access(prev, spu);         /* Step 5. */
1814         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1815                 return 6;
1816         }
1817         set_switch_pending(prev, spu);          /* Step 7. */
1818         save_mfc_cntl(prev, spu);               /* Step 8. */
1819         save_spu_runcntl(prev, spu);            /* Step 9. */
1820         save_mfc_sr1(prev, spu);                /* Step 10. */
1821         save_spu_status(prev, spu);             /* Step 11. */
1822         save_mfc_decr(prev, spu);               /* Step 12. */
1823         halt_mfc_decr(prev, spu);               /* Step 13. */
1824         save_timebase(prev, spu);               /* Step 14. */
1825         remove_other_spu_access(prev, spu);     /* Step 15. */
1826         do_mfc_mssync(prev, spu);               /* Step 16. */
1827         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1828         handle_pending_interrupts(prev, spu);   /* Step 18. */
1829
1830         return 0;
1831 }
1832
1833 static void save_csa(struct spu_state *prev, struct spu *spu)
1834 {
1835         /*
1836          * Combine steps 19-44 of SPU context save sequence, which
1837          * save regions of the privileged & problem state areas.
1838          */
1839
1840         save_mfc_queues(prev, spu);     /* Step 19. */
1841         save_ppu_querymask(prev, spu);  /* Step 20. */
1842         save_ppu_querytype(prev, spu);  /* Step 21. */
1843         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1844         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1845         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1846         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1847         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1848         purge_mfc_queue(prev, spu);     /* Step 27. */
1849         wait_purge_complete(prev, spu); /* Step 28. */
1850         save_mfc_slbs(prev, spu);       /* Step 29. */
1851         setup_mfc_sr1(prev, spu);       /* Step 30. */
1852         save_spu_npc(prev, spu);        /* Step 31. */
1853         save_spu_privcntl(prev, spu);   /* Step 32. */
1854         reset_spu_privcntl(prev, spu);  /* Step 33. */
1855         save_spu_lslr(prev, spu);       /* Step 34. */
1856         reset_spu_lslr(prev, spu);      /* Step 35. */
1857         save_spu_cfg(prev, spu);        /* Step 36. */
1858         save_pm_trace(prev, spu);       /* Step 37. */
1859         save_mfc_rag(prev, spu);        /* Step 38. */
1860         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1861         save_ppu_mb(prev, spu);         /* Step 40. */
1862         save_ppuint_mb(prev, spu);      /* Step 41. */
1863         save_ch_part1(prev, spu);       /* Step 42. */
1864         save_spu_mb(prev, spu);         /* Step 43. */
1865         save_mfc_cmd(prev, spu);        /* Step 44. */
1866         reset_ch(prev, spu);            /* Step 45. */
1867 }
1868
1869 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1870 {
1871         /*
1872          * Perform steps 46-57 of SPU context save sequence,
1873          * which save regions of the local store and register
1874          * file.
1875          */
1876
1877         resume_mfc_queue(prev, spu);    /* Step 46. */
1878         setup_mfc_slbs(prev, spu);      /* Step 47. */
1879         set_switch_active(prev, spu);   /* Step 48. */
1880         enable_interrupts(prev, spu);   /* Step 49. */
1881         save_ls_16kb(prev, spu);        /* Step 50. */
1882         set_spu_npc(prev, spu);         /* Step 51. */
1883         set_signot1(prev, spu);         /* Step 52. */
1884         set_signot2(prev, spu);         /* Step 53. */
1885         send_save_code(prev, spu);      /* Step 54. */
1886         set_ppu_querymask(prev, spu);   /* Step 55. */
1887         wait_tag_complete(prev, spu);   /* Step 56. */
1888         wait_spu_stopped(prev, spu);    /* Step 57. */
1889 }
1890
1891 static void harvest(struct spu_state *prev, struct spu *spu)
1892 {
1893         /*
1894          * Perform steps 2-25 of SPU context restore sequence,
1895          * which resets an SPU either after a failed save, or
1896          * when using SPU for first time.
1897          */
1898
1899         disable_interrupts(prev, spu);          /* Step 2.  */
1900         inhibit_user_access(prev, spu);         /* Step 3.  */
1901         terminate_spu_app(prev, spu);           /* Step 4.  */
1902         set_switch_pending(prev, spu);          /* Step 5.  */
1903         remove_other_spu_access(prev, spu);     /* Step 6.  */
1904         suspend_mfc(prev, spu);                 /* Step 7.  */
1905         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1906         if (!suspend_spe(prev, spu))            /* Step 9.  */
1907                 clear_spu_status(prev, spu);    /* Step 10. */
1908         do_mfc_mssync(prev, spu);               /* Step 11. */
1909         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1910         handle_pending_interrupts(prev, spu);   /* Step 13. */
1911         purge_mfc_queue(prev, spu);             /* Step 14. */
1912         wait_purge_complete(prev, spu);         /* Step 15. */
1913         reset_spu_privcntl(prev, spu);          /* Step 16. */
1914         reset_spu_lslr(prev, spu);              /* Step 17. */
1915         setup_mfc_sr1(prev, spu);               /* Step 18. */
1916         invalidate_slbs(prev, spu);             /* Step 19. */
1917         reset_ch_part1(prev, spu);              /* Step 20. */
1918         reset_ch_part2(prev, spu);              /* Step 21. */
1919         enable_interrupts(prev, spu);           /* Step 22. */
1920         set_switch_active(prev, spu);           /* Step 23. */
1921         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1922         resume_mfc_queue(prev, spu);            /* Step 25. */
1923 }
1924
1925 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1926 {
1927         /*
1928          * Perform steps 26-40 of SPU context restore sequence,
1929          * which restores regions of the local store and register
1930          * file.
1931          */
1932
1933         set_watchdog_timer(next, spu);          /* Step 26. */
1934         setup_spu_status_part1(next, spu);      /* Step 27. */
1935         setup_spu_status_part2(next, spu);      /* Step 28. */
1936         restore_mfc_rag(next, spu);             /* Step 29. */
1937         setup_mfc_slbs(next, spu);              /* Step 30. */
1938         set_spu_npc(next, spu);                 /* Step 31. */
1939         set_signot1(next, spu);                 /* Step 32. */
1940         set_signot2(next, spu);                 /* Step 33. */
1941         setup_decr(next, spu);                  /* Step 34. */
1942         setup_ppu_mb(next, spu);                /* Step 35. */
1943         setup_ppuint_mb(next, spu);             /* Step 36. */
1944         send_restore_code(next, spu);           /* Step 37. */
1945         set_ppu_querymask(next, spu);           /* Step 38. */
1946         wait_tag_complete(next, spu);           /* Step 39. */
1947         wait_spu_stopped(next, spu);            /* Step 40. */
1948 }
1949
1950 static void restore_csa(struct spu_state *next, struct spu *spu)
1951 {
1952         /*
1953          * Combine steps 41-76 of SPU context restore sequence, which
1954          * restore regions of the privileged & problem state areas.
1955          */
1956
1957         restore_spu_privcntl(next, spu);        /* Step 41. */
1958         restore_status_part1(next, spu);        /* Step 42. */
1959         restore_status_part2(next, spu);        /* Step 43. */
1960         restore_ls_16kb(next, spu);             /* Step 44. */
1961         wait_tag_complete(next, spu);           /* Step 45. */
1962         suspend_mfc(next, spu);                 /* Step 46. */
1963         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1964         issue_mfc_tlbie(next, spu);             /* Step 48. */
1965         clear_interrupts(next, spu);            /* Step 49. */
1966         restore_mfc_queues(next, spu);          /* Step 50. */
1967         restore_ppu_querymask(next, spu);       /* Step 51. */
1968         restore_ppu_querytype(next, spu);       /* Step 52. */
1969         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1970         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
1971         restore_mfc_csr_ato(next, spu);         /* Step 55. */
1972         restore_mfc_tclass_id(next, spu);       /* Step 56. */
1973         set_llr_event(next, spu);               /* Step 57. */
1974         restore_decr_wrapped(next, spu);        /* Step 58. */
1975         restore_ch_part1(next, spu);            /* Step 59. */
1976         restore_ch_part2(next, spu);            /* Step 60. */
1977         restore_spu_lslr(next, spu);            /* Step 61. */
1978         restore_spu_cfg(next, spu);             /* Step 62. */
1979         restore_pm_trace(next, spu);            /* Step 63. */
1980         restore_spu_npc(next, spu);             /* Step 64. */
1981         restore_spu_mb(next, spu);              /* Step 65. */
1982         check_ppu_mb_stat(next, spu);           /* Step 66. */
1983         check_ppuint_mb_stat(next, spu);        /* Step 67. */
1984         restore_mfc_slbs(next, spu);            /* Step 68. */
1985         restore_mfc_sr1(next, spu);             /* Step 69. */
1986         restore_other_spu_access(next, spu);    /* Step 70. */
1987         restore_spu_runcntl(next, spu);         /* Step 71. */
1988         restore_mfc_cntl(next, spu);            /* Step 72. */
1989         enable_user_access(next, spu);          /* Step 73. */
1990         reset_switch_active(next, spu);         /* Step 74. */
1991         reenable_interrupts(next, spu);         /* Step 75. */
1992 }
1993
1994 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
1995 {
1996         int rc;
1997
1998         /*
1999          * SPU context save can be broken into three phases:
2000          *
2001          *     (a) quiesce [steps 2-16].
2002          *     (b) save of CSA, performed by PPE [steps 17-42]
2003          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2004          *
2005          * Returns      0 on success.
2006          *              2,6 if failed to quiece SPU
2007          *              53 if SPU-side of save failed.
2008          */
2009
2010         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2011         switch (rc) {
2012         default:
2013         case 2:
2014         case 6:
2015                 harvest(prev, spu);
2016                 return rc;
2017                 break;
2018         case 0:
2019                 break;
2020         }
2021         save_csa(prev, spu);                    /* Steps 17-43. */
2022         save_lscsa(prev, spu);                  /* Steps 44-53. */
2023         return check_save_status(prev, spu);    /* Step 54.     */
2024 }
2025
2026 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2027 {
2028         int rc;
2029
2030         /*
2031          * SPU context restore can be broken into three phases:
2032          *
2033          *    (a) harvest (or reset) SPU [steps 2-24].
2034          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2035          *    (c) restore CSA [steps 41-76], performed by PPE.
2036          *
2037          * The 'harvest' step is not performed here, but rather
2038          * as needed below.
2039          */
2040
2041         restore_lscsa(next, spu);               /* Steps 24-39. */
2042         rc = check_restore_status(next, spu);   /* Step 40.     */
2043         switch (rc) {
2044         default:
2045                 /* Failed. Return now. */
2046                 return rc;
2047                 break;
2048         case 0:
2049                 /* Fall through to next step. */
2050                 break;
2051         }
2052         restore_csa(next, spu);
2053
2054         return 0;
2055 }
2056
2057 /**
2058  * spu_save - SPU context save, with locking.
2059  * @prev: pointer to SPU context save area, to be saved.
2060  * @spu: pointer to SPU iomem structure.
2061  *
2062  * Acquire locks, perform the save operation then return.
2063  */
2064 int spu_save(struct spu_state *prev, struct spu *spu)
2065 {
2066         int rc;
2067
2068         acquire_spu_lock(spu);          /* Step 1.     */
2069         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2070         release_spu_lock(spu);
2071         if (rc) {
2072                 panic("%s failed on SPU[%d], rc=%d.\n",
2073                       __func__, spu->number, rc);
2074         }
2075         return rc;
2076 }
2077
2078 /**
2079  * spu_restore - SPU context restore, with harvest and locking.
2080  * @new: pointer to SPU context save area, to be restored.
2081  * @spu: pointer to SPU iomem structure.
2082  *
2083  * Perform harvest + restore, as we may not be coming
2084  * from a previous succesful save operation, and the
2085  * hardware state is unknown.
2086  */
2087 int spu_restore(struct spu_state *new, struct spu *spu)
2088 {
2089         int rc;
2090
2091         acquire_spu_lock(spu);
2092         harvest(NULL, spu);
2093         spu->stop_code = 0;
2094         spu->dar = 0;
2095         spu->dsisr = 0;
2096         spu->slb_replace = 0;
2097         spu->class_0_pending = 0;
2098         rc = __do_spu_restore(new, spu);
2099         release_spu_lock(spu);
2100         if (rc) {
2101                 panic("%s failed on SPU[%d] rc=%d.\n",
2102                        __func__, spu->number, rc);
2103         }
2104         return rc;
2105 }
2106
2107 /**
2108  * spu_harvest - SPU harvest (reset) operation
2109  * @spu: pointer to SPU iomem structure.
2110  *
2111  * Perform SPU harvest (reset) operation.
2112  */
2113 void spu_harvest(struct spu *spu)
2114 {
2115         acquire_spu_lock(spu);
2116         harvest(NULL, spu);
2117         release_spu_lock(spu);
2118 }
2119
2120 static void init_prob(struct spu_state *csa)
2121 {
2122         csa->spu_chnlcnt_RW[9] = 1;
2123         csa->spu_chnlcnt_RW[21] = 16;
2124         csa->spu_chnlcnt_RW[23] = 1;
2125         csa->spu_chnlcnt_RW[28] = 1;
2126         csa->spu_chnlcnt_RW[30] = 1;
2127         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2128 }
2129
2130 static void init_priv1(struct spu_state *csa)
2131 {
2132         /* Enable decode, relocate, tlbie response, master runcntl. */
2133         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2134             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2135             MFC_STATE1_PROBLEM_STATE_MASK |
2136             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2137
2138         /* Set storage description.  */
2139         csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2140
2141         /* Enable OS-specific set of interrupts. */
2142         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144             CLASS0_ENABLE_SPU_ERROR_INTR;
2145         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148             CLASS2_ENABLE_SPU_HALT_INTR |
2149             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159
2160 /**
2161  * spu_alloc_csa - allocate and initialize an SPU context save area.
2162  *
2163  * Allocate and initialize the contents of an SPU context save area.
2164  * This includes enabling address translation, interrupt masks, etc.,
2165  * as appropriate for the given OS environment.
2166  *
2167  * Note that storage for the 'lscsa' is allocated separately,
2168  * as it is by far the largest of the context save regions,
2169  * and may need to be pinned or otherwise specially aligned.
2170  */
2171 void spu_init_csa(struct spu_state *csa)
2172 {
2173         struct spu_lscsa *lscsa;
2174         unsigned char *p;
2175
2176         if (!csa)
2177                 return;
2178         memset(csa, 0, sizeof(struct spu_state));
2179
2180         lscsa = vmalloc(sizeof(struct spu_lscsa));
2181         if (!lscsa)
2182                 return;
2183
2184         memset(lscsa, 0, sizeof(struct spu_lscsa));
2185         csa->lscsa = lscsa;
2186         csa->register_lock = SPIN_LOCK_UNLOCKED;
2187
2188         /* Set LS pages reserved to allow for user-space mapping. */
2189         for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2190                 SetPageReserved(vmalloc_to_page(p));
2191
2192         init_prob(csa);
2193         init_priv1(csa);
2194         init_priv2(csa);
2195 }
2196
2197 void spu_fini_csa(struct spu_state *csa)
2198 {
2199         /* Clear reserved bit before vfree. */
2200         unsigned char *p;
2201         for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2202                 ClearPageReserved(vmalloc_to_page(p));
2203
2204         vfree(csa->lscsa);
2205 }