Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[linux-2.6] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66
67 static const struct net_device_ops rr_netdev_ops = {
68         .ndo_open               = rr_open,
69         .ndo_stop               = rr_close,
70         .ndo_do_ioctl           = rr_ioctl,
71         .ndo_start_xmit         = rr_start_xmit,
72         .ndo_change_mtu         = hippi_change_mtu,
73         .ndo_set_mac_address    = hippi_mac_addr,
74 };
75
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90
91 static int __devinit rr_init_one(struct pci_dev *pdev,
92         const struct pci_device_id *ent)
93 {
94         struct net_device *dev;
95         static int version_disp;
96         u8 pci_latency;
97         struct rr_private *rrpriv;
98         void *tmpptr;
99         dma_addr_t ring_dma;
100         int ret = -ENOMEM;
101
102         dev = alloc_hippi_dev(sizeof(struct rr_private));
103         if (!dev)
104                 goto out3;
105
106         ret = pci_enable_device(pdev);
107         if (ret) {
108                 ret = -ENODEV;
109                 goto out2;
110         }
111
112         rrpriv = netdev_priv(dev);
113
114         SET_NETDEV_DEV(dev, &pdev->dev);
115
116         if (pci_request_regions(pdev, "rrunner")) {
117                 ret = -EIO;
118                 goto out;
119         }
120
121         pci_set_drvdata(pdev, dev);
122
123         rrpriv->pci_dev = pdev;
124
125         spin_lock_init(&rrpriv->lock);
126
127         dev->irq = pdev->irq;
128         dev->netdev_ops = &rr_netdev_ops;
129
130         dev->base_addr = pci_resource_start(pdev, 0);
131
132         /* display version info if adapter is found */
133         if (!version_disp) {
134                 /* set display flag to TRUE so that */
135                 /* we only display this string ONCE */
136                 version_disp = 1;
137                 printk(version);
138         }
139
140         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
141         if (pci_latency <= 0x58){
142                 pci_latency = 0x58;
143                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
144         }
145
146         pci_set_master(pdev);
147
148         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
149                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
150                dev->base_addr, dev->irq, pci_latency);
151
152         /*
153          * Remap the regs into kernel space.
154          */
155
156         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
157
158         if (!rrpriv->regs){
159                 printk(KERN_ERR "%s:  Unable to map I/O register, "
160                         "RoadRunner will be disabled.\n", dev->name);
161                 ret = -EIO;
162                 goto out;
163         }
164
165         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
166         rrpriv->tx_ring = tmpptr;
167         rrpriv->tx_ring_dma = ring_dma;
168
169         if (!tmpptr) {
170                 ret = -ENOMEM;
171                 goto out;
172         }
173
174         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
175         rrpriv->rx_ring = tmpptr;
176         rrpriv->rx_ring_dma = ring_dma;
177
178         if (!tmpptr) {
179                 ret = -ENOMEM;
180                 goto out;
181         }
182
183         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
184         rrpriv->evt_ring = tmpptr;
185         rrpriv->evt_ring_dma = ring_dma;
186
187         if (!tmpptr) {
188                 ret = -ENOMEM;
189                 goto out;
190         }
191
192         /*
193          * Don't access any register before this point!
194          */
195 #ifdef __BIG_ENDIAN
196         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
197                 &rrpriv->regs->HostCtrl);
198 #endif
199         /*
200          * Need to add a case for little-endian 64-bit hosts here.
201          */
202
203         rr_init(dev);
204
205         dev->base_addr = 0;
206
207         ret = register_netdev(dev);
208         if (ret)
209                 goto out;
210         return 0;
211
212  out:
213         if (rrpriv->rx_ring)
214                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
215                                     rrpriv->rx_ring_dma);
216         if (rrpriv->tx_ring)
217                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
218                                     rrpriv->tx_ring_dma);
219         if (rrpriv->regs)
220                 iounmap(rrpriv->regs);
221         if (pdev) {
222                 pci_release_regions(pdev);
223                 pci_set_drvdata(pdev, NULL);
224         }
225  out2:
226         free_netdev(dev);
227  out3:
228         return ret;
229 }
230
231 static void __devexit rr_remove_one (struct pci_dev *pdev)
232 {
233         struct net_device *dev = pci_get_drvdata(pdev);
234
235         if (dev) {
236                 struct rr_private *rr = netdev_priv(dev);
237
238                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
239                         printk(KERN_ERR "%s: trying to unload running NIC\n",
240                                dev->name);
241                         writel(HALT_NIC, &rr->regs->HostCtrl);
242                 }
243
244                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
245                                     rr->evt_ring_dma);
246                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
247                                     rr->rx_ring_dma);
248                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
249                                     rr->tx_ring_dma);
250                 unregister_netdev(dev);
251                 iounmap(rr->regs);
252                 free_netdev(dev);
253                 pci_release_regions(pdev);
254                 pci_disable_device(pdev);
255                 pci_set_drvdata(pdev, NULL);
256         }
257 }
258
259
260 /*
261  * Commands are considered to be slow, thus there is no reason to
262  * inline this.
263  */
264 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
265 {
266         struct rr_regs __iomem *regs;
267         u32 idx;
268
269         regs = rrpriv->regs;
270         /*
271          * This is temporary - it will go away in the final version.
272          * We probably also want to make this function inline.
273          */
274         if (readl(&regs->HostCtrl) & NIC_HALTED){
275                 printk("issuing command for halted NIC, code 0x%x, "
276                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
277                 if (readl(&regs->Mode) & FATAL_ERR)
278                         printk("error codes Fail1 %02x, Fail2 %02x\n",
279                                readl(&regs->Fail1), readl(&regs->Fail2));
280         }
281
282         idx = rrpriv->info->cmd_ctrl.pi;
283
284         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
285         wmb();
286
287         idx = (idx - 1) % CMD_RING_ENTRIES;
288         rrpriv->info->cmd_ctrl.pi = idx;
289         wmb();
290
291         if (readl(&regs->Mode) & FATAL_ERR)
292                 printk("error code %02x\n", readl(&regs->Fail1));
293 }
294
295
296 /*
297  * Reset the board in a sensible manner. The NIC is already halted
298  * when we get here and a spin-lock is held.
299  */
300 static int rr_reset(struct net_device *dev)
301 {
302         struct rr_private *rrpriv;
303         struct rr_regs __iomem *regs;
304         u32 start_pc;
305         int i;
306
307         rrpriv = netdev_priv(dev);
308         regs = rrpriv->regs;
309
310         rr_load_firmware(dev);
311
312         writel(0x01000000, &regs->TX_state);
313         writel(0xff800000, &regs->RX_state);
314         writel(0, &regs->AssistState);
315         writel(CLEAR_INTA, &regs->LocalCtrl);
316         writel(0x01, &regs->BrkPt);
317         writel(0, &regs->Timer);
318         writel(0, &regs->TimerRef);
319         writel(RESET_DMA, &regs->DmaReadState);
320         writel(RESET_DMA, &regs->DmaWriteState);
321         writel(0, &regs->DmaWriteHostHi);
322         writel(0, &regs->DmaWriteHostLo);
323         writel(0, &regs->DmaReadHostHi);
324         writel(0, &regs->DmaReadHostLo);
325         writel(0, &regs->DmaReadLen);
326         writel(0, &regs->DmaWriteLen);
327         writel(0, &regs->DmaWriteLcl);
328         writel(0, &regs->DmaWriteIPchecksum);
329         writel(0, &regs->DmaReadLcl);
330         writel(0, &regs->DmaReadIPchecksum);
331         writel(0, &regs->PciState);
332 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
333         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
334 #elif (BITS_PER_LONG == 64)
335         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
336 #else
337         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
338 #endif
339
340 #if 0
341         /*
342          * Don't worry, this is just black magic.
343          */
344         writel(0xdf000, &regs->RxBase);
345         writel(0xdf000, &regs->RxPrd);
346         writel(0xdf000, &regs->RxCon);
347         writel(0xce000, &regs->TxBase);
348         writel(0xce000, &regs->TxPrd);
349         writel(0xce000, &regs->TxCon);
350         writel(0, &regs->RxIndPro);
351         writel(0, &regs->RxIndCon);
352         writel(0, &regs->RxIndRef);
353         writel(0, &regs->TxIndPro);
354         writel(0, &regs->TxIndCon);
355         writel(0, &regs->TxIndRef);
356         writel(0xcc000, &regs->pad10[0]);
357         writel(0, &regs->DrCmndPro);
358         writel(0, &regs->DrCmndCon);
359         writel(0, &regs->DwCmndPro);
360         writel(0, &regs->DwCmndCon);
361         writel(0, &regs->DwCmndRef);
362         writel(0, &regs->DrDataPro);
363         writel(0, &regs->DrDataCon);
364         writel(0, &regs->DrDataRef);
365         writel(0, &regs->DwDataPro);
366         writel(0, &regs->DwDataCon);
367         writel(0, &regs->DwDataRef);
368 #endif
369
370         writel(0xffffffff, &regs->MbEvent);
371         writel(0, &regs->Event);
372
373         writel(0, &regs->TxPi);
374         writel(0, &regs->IpRxPi);
375
376         writel(0, &regs->EvtCon);
377         writel(0, &regs->EvtPrd);
378
379         rrpriv->info->evt_ctrl.pi = 0;
380
381         for (i = 0; i < CMD_RING_ENTRIES; i++)
382                 writel(0, &regs->CmdRing[i]);
383
384 /*
385  * Why 32 ? is this not cache line size dependent?
386  */
387         writel(RBURST_64|WBURST_64, &regs->PciState);
388         wmb();
389
390         start_pc = rr_read_eeprom_word(rrpriv,
391                         offsetof(struct eeprom, rncd_info.FwStart));
392
393 #if (DEBUG > 1)
394         printk("%s: Executing firmware at address 0x%06x\n",
395                dev->name, start_pc);
396 #endif
397
398         writel(start_pc + 0x800, &regs->Pc);
399         wmb();
400         udelay(5);
401
402         writel(start_pc, &regs->Pc);
403         wmb();
404
405         return 0;
406 }
407
408
409 /*
410  * Read a string from the EEPROM.
411  */
412 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
413                                 unsigned long offset,
414                                 unsigned char *buf,
415                                 unsigned long length)
416 {
417         struct rr_regs __iomem *regs = rrpriv->regs;
418         u32 misc, io, host, i;
419
420         io = readl(&regs->ExtIo);
421         writel(0, &regs->ExtIo);
422         misc = readl(&regs->LocalCtrl);
423         writel(0, &regs->LocalCtrl);
424         host = readl(&regs->HostCtrl);
425         writel(host | HALT_NIC, &regs->HostCtrl);
426         mb();
427
428         for (i = 0; i < length; i++){
429                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
430                 mb();
431                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
432                 mb();
433         }
434
435         writel(host, &regs->HostCtrl);
436         writel(misc, &regs->LocalCtrl);
437         writel(io, &regs->ExtIo);
438         mb();
439         return i;
440 }
441
442
443 /*
444  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
445  * it to our CPU byte-order.
446  */
447 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
448                             size_t offset)
449 {
450         __be32 word;
451
452         if ((rr_read_eeprom(rrpriv, offset,
453                             (unsigned char *)&word, 4) == 4))
454                 return be32_to_cpu(word);
455         return 0;
456 }
457
458
459 /*
460  * Write a string to the EEPROM.
461  *
462  * This is only called when the firmware is not running.
463  */
464 static unsigned int write_eeprom(struct rr_private *rrpriv,
465                                  unsigned long offset,
466                                  unsigned char *buf,
467                                  unsigned long length)
468 {
469         struct rr_regs __iomem *regs = rrpriv->regs;
470         u32 misc, io, data, i, j, ready, error = 0;
471
472         io = readl(&regs->ExtIo);
473         writel(0, &regs->ExtIo);
474         misc = readl(&regs->LocalCtrl);
475         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
476         mb();
477
478         for (i = 0; i < length; i++){
479                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
480                 mb();
481                 data = buf[i] << 24;
482                 /*
483                  * Only try to write the data if it is not the same
484                  * value already.
485                  */
486                 if ((readl(&regs->WinData) & 0xff000000) != data){
487                         writel(data, &regs->WinData);
488                         ready = 0;
489                         j = 0;
490                         mb();
491                         while(!ready){
492                                 udelay(20);
493                                 if ((readl(&regs->WinData) & 0xff000000) ==
494                                     data)
495                                         ready = 1;
496                                 mb();
497                                 if (j++ > 5000){
498                                         printk("data mismatch: %08x, "
499                                                "WinData %08x\n", data,
500                                                readl(&regs->WinData));
501                                         ready = 1;
502                                         error = 1;
503                                 }
504                         }
505                 }
506         }
507
508         writel(misc, &regs->LocalCtrl);
509         writel(io, &regs->ExtIo);
510         mb();
511
512         return error;
513 }
514
515
516 static int __devinit rr_init(struct net_device *dev)
517 {
518         struct rr_private *rrpriv;
519         struct rr_regs __iomem *regs;
520         u32 sram_size, rev;
521
522         rrpriv = netdev_priv(dev);
523         regs = rrpriv->regs;
524
525         rev = readl(&regs->FwRev);
526         rrpriv->fw_rev = rev;
527         if (rev > 0x00020024)
528                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
529                        ((rev >> 8) & 0xff), (rev & 0xff));
530         else if (rev >= 0x00020000) {
531                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
532                        "later is recommended)\n", (rev >> 16),
533                        ((rev >> 8) & 0xff), (rev & 0xff));
534         }else{
535                 printk("  Firmware revision too old: %i.%i.%i, please "
536                        "upgrade to 2.0.37 or later.\n",
537                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
538         }
539
540 #if (DEBUG > 2)
541         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
542 #endif
543
544         /*
545          * Read the hardware address from the eeprom.  The HW address
546          * is not really necessary for HIPPI but awfully convenient.
547          * The pointer arithmetic to put it in dev_addr is ugly, but
548          * Donald Becker does it this way for the GigE version of this
549          * card and it's shorter and more portable than any
550          * other method I've seen.  -VAL
551          */
552
553         *(__be16 *)(dev->dev_addr) =
554           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
555         *(__be32 *)(dev->dev_addr+2) =
556           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
557
558         printk("  MAC: %pM\n", dev->dev_addr);
559
560         sram_size = rr_read_eeprom_word(rrpriv, 8);
561         printk("  SRAM size 0x%06x\n", sram_size);
562
563         return 0;
564 }
565
566
567 static int rr_init1(struct net_device *dev)
568 {
569         struct rr_private *rrpriv;
570         struct rr_regs __iomem *regs;
571         unsigned long myjif, flags;
572         struct cmd cmd;
573         u32 hostctrl;
574         int ecode = 0;
575         short i;
576
577         rrpriv = netdev_priv(dev);
578         regs = rrpriv->regs;
579
580         spin_lock_irqsave(&rrpriv->lock, flags);
581
582         hostctrl = readl(&regs->HostCtrl);
583         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
584         wmb();
585
586         if (hostctrl & PARITY_ERR){
587                 printk("%s: Parity error halting NIC - this is serious!\n",
588                        dev->name);
589                 spin_unlock_irqrestore(&rrpriv->lock, flags);
590                 ecode = -EFAULT;
591                 goto error;
592         }
593
594         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
595         set_infoaddr(regs, rrpriv->info_dma);
596
597         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
598         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
599         rrpriv->info->evt_ctrl.mode = 0;
600         rrpriv->info->evt_ctrl.pi = 0;
601         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
602
603         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
604         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
605         rrpriv->info->cmd_ctrl.mode = 0;
606         rrpriv->info->cmd_ctrl.pi = 15;
607
608         for (i = 0; i < CMD_RING_ENTRIES; i++) {
609                 writel(0, &regs->CmdRing[i]);
610         }
611
612         for (i = 0; i < TX_RING_ENTRIES; i++) {
613                 rrpriv->tx_ring[i].size = 0;
614                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
615                 rrpriv->tx_skbuff[i] = NULL;
616         }
617         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
618         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
619         rrpriv->info->tx_ctrl.mode = 0;
620         rrpriv->info->tx_ctrl.pi = 0;
621         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
622
623         /*
624          * Set dirty_tx before we start receiving interrupts, otherwise
625          * the interrupt handler might think it is supposed to process
626          * tx ints before we are up and running, which may cause a null
627          * pointer access in the int handler.
628          */
629         rrpriv->tx_full = 0;
630         rrpriv->cur_rx = 0;
631         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
632
633         rr_reset(dev);
634
635         /* Tuning values */
636         writel(0x5000, &regs->ConRetry);
637         writel(0x100, &regs->ConRetryTmr);
638         writel(0x500000, &regs->ConTmout);
639         writel(0x60, &regs->IntrTmr);
640         writel(0x500000, &regs->TxDataMvTimeout);
641         writel(0x200000, &regs->RxDataMvTimeout);
642         writel(0x80, &regs->WriteDmaThresh);
643         writel(0x80, &regs->ReadDmaThresh);
644
645         rrpriv->fw_running = 0;
646         wmb();
647
648         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
649         writel(hostctrl, &regs->HostCtrl);
650         wmb();
651
652         spin_unlock_irqrestore(&rrpriv->lock, flags);
653
654         for (i = 0; i < RX_RING_ENTRIES; i++) {
655                 struct sk_buff *skb;
656                 dma_addr_t addr;
657
658                 rrpriv->rx_ring[i].mode = 0;
659                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
660                 if (!skb) {
661                         printk(KERN_WARNING "%s: Unable to allocate memory "
662                                "for receive ring - halting NIC\n", dev->name);
663                         ecode = -ENOMEM;
664                         goto error;
665                 }
666                 rrpriv->rx_skbuff[i] = skb;
667                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
668                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
669                 /*
670                  * Sanity test to see if we conflict with the DMA
671                  * limitations of the Roadrunner.
672                  */
673                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
674                         printk("skb alloc error\n");
675
676                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
677                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
678         }
679
680         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
681         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
682         rrpriv->rx_ctrl[4].mode = 8;
683         rrpriv->rx_ctrl[4].pi = 0;
684         wmb();
685         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
686
687         udelay(1000);
688
689         /*
690          * Now start the FirmWare.
691          */
692         cmd.code = C_START_FW;
693         cmd.ring = 0;
694         cmd.index = 0;
695
696         rr_issue_cmd(rrpriv, &cmd);
697
698         /*
699          * Give the FirmWare time to chew on the `get running' command.
700          */
701         myjif = jiffies + 5 * HZ;
702         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
703                 cpu_relax();
704
705         netif_start_queue(dev);
706
707         return ecode;
708
709  error:
710         /*
711          * We might have gotten here because we are out of memory,
712          * make sure we release everything we allocated before failing
713          */
714         for (i = 0; i < RX_RING_ENTRIES; i++) {
715                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
716
717                 if (skb) {
718                         pci_unmap_single(rrpriv->pci_dev,
719                                          rrpriv->rx_ring[i].addr.addrlo,
720                                          dev->mtu + HIPPI_HLEN,
721                                          PCI_DMA_FROMDEVICE);
722                         rrpriv->rx_ring[i].size = 0;
723                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
724                         dev_kfree_skb(skb);
725                         rrpriv->rx_skbuff[i] = NULL;
726                 }
727         }
728         return ecode;
729 }
730
731
732 /*
733  * All events are considered to be slow (RX/TX ints do not generate
734  * events) and are handled here, outside the main interrupt handler,
735  * to reduce the size of the handler.
736  */
737 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
738 {
739         struct rr_private *rrpriv;
740         struct rr_regs __iomem *regs;
741         u32 tmp;
742
743         rrpriv = netdev_priv(dev);
744         regs = rrpriv->regs;
745
746         while (prodidx != eidx){
747                 switch (rrpriv->evt_ring[eidx].code){
748                 case E_NIC_UP:
749                         tmp = readl(&regs->FwRev);
750                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
751                                "up and running\n", dev->name,
752                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
753                         rrpriv->fw_running = 1;
754                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
755                         wmb();
756                         break;
757                 case E_LINK_ON:
758                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
759                         break;
760                 case E_LINK_OFF:
761                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
762                         break;
763                 case E_RX_IDLE:
764                         printk(KERN_WARNING "%s: RX data not moving\n",
765                                dev->name);
766                         goto drop;
767                 case E_WATCHDOG:
768                         printk(KERN_INFO "%s: The watchdog is here to see "
769                                "us\n", dev->name);
770                         break;
771                 case E_INTERN_ERR:
772                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
773                                dev->name);
774                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
775                                &regs->HostCtrl);
776                         wmb();
777                         break;
778                 case E_HOST_ERR:
779                         printk(KERN_ERR "%s: Host software error\n",
780                                dev->name);
781                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
782                                &regs->HostCtrl);
783                         wmb();
784                         break;
785                 /*
786                  * TX events.
787                  */
788                 case E_CON_REJ:
789                         printk(KERN_WARNING "%s: Connection rejected\n",
790                                dev->name);
791                         dev->stats.tx_aborted_errors++;
792                         break;
793                 case E_CON_TMOUT:
794                         printk(KERN_WARNING "%s: Connection timeout\n",
795                                dev->name);
796                         break;
797                 case E_DISC_ERR:
798                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
799                                dev->name);
800                         dev->stats.tx_aborted_errors++;
801                         break;
802                 case E_INT_PRTY:
803                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
804                                dev->name);
805                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
806                                &regs->HostCtrl);
807                         wmb();
808                         break;
809                 case E_TX_IDLE:
810                         printk(KERN_WARNING "%s: Transmitter idle\n",
811                                dev->name);
812                         break;
813                 case E_TX_LINK_DROP:
814                         printk(KERN_WARNING "%s: Link lost during transmit\n",
815                                dev->name);
816                         dev->stats.tx_aborted_errors++;
817                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
818                                &regs->HostCtrl);
819                         wmb();
820                         break;
821                 case E_TX_INV_RNG:
822                         printk(KERN_ERR "%s: Invalid send ring block\n",
823                                dev->name);
824                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
825                                &regs->HostCtrl);
826                         wmb();
827                         break;
828                 case E_TX_INV_BUF:
829                         printk(KERN_ERR "%s: Invalid send buffer address\n",
830                                dev->name);
831                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
832                                &regs->HostCtrl);
833                         wmb();
834                         break;
835                 case E_TX_INV_DSC:
836                         printk(KERN_ERR "%s: Invalid descriptor address\n",
837                                dev->name);
838                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
839                                &regs->HostCtrl);
840                         wmb();
841                         break;
842                 /*
843                  * RX events.
844                  */
845                 case E_RX_RNG_OUT:
846                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
847                         break;
848
849                 case E_RX_PAR_ERR:
850                         printk(KERN_WARNING "%s: Receive parity error\n",
851                                dev->name);
852                         goto drop;
853                 case E_RX_LLRC_ERR:
854                         printk(KERN_WARNING "%s: Receive LLRC error\n",
855                                dev->name);
856                         goto drop;
857                 case E_PKT_LN_ERR:
858                         printk(KERN_WARNING "%s: Receive packet length "
859                                "error\n", dev->name);
860                         goto drop;
861                 case E_DTA_CKSM_ERR:
862                         printk(KERN_WARNING "%s: Data checksum error\n",
863                                dev->name);
864                         goto drop;
865                 case E_SHT_BST:
866                         printk(KERN_WARNING "%s: Unexpected short burst "
867                                "error\n", dev->name);
868                         goto drop;
869                 case E_STATE_ERR:
870                         printk(KERN_WARNING "%s: Recv. state transition"
871                                " error\n", dev->name);
872                         goto drop;
873                 case E_UNEXP_DATA:
874                         printk(KERN_WARNING "%s: Unexpected data error\n",
875                                dev->name);
876                         goto drop;
877                 case E_LST_LNK_ERR:
878                         printk(KERN_WARNING "%s: Link lost error\n",
879                                dev->name);
880                         goto drop;
881                 case E_FRM_ERR:
882                         printk(KERN_WARNING "%s: Framming Error\n",
883                                dev->name);
884                         goto drop;
885                 case E_FLG_SYN_ERR:
886                         printk(KERN_WARNING "%s: Flag sync. lost during "
887                                "packet\n", dev->name);
888                         goto drop;
889                 case E_RX_INV_BUF:
890                         printk(KERN_ERR "%s: Invalid receive buffer "
891                                "address\n", dev->name);
892                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
893                                &regs->HostCtrl);
894                         wmb();
895                         break;
896                 case E_RX_INV_DSC:
897                         printk(KERN_ERR "%s: Invalid receive descriptor "
898                                "address\n", dev->name);
899                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
900                                &regs->HostCtrl);
901                         wmb();
902                         break;
903                 case E_RNG_BLK:
904                         printk(KERN_ERR "%s: Invalid ring block\n",
905                                dev->name);
906                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
907                                &regs->HostCtrl);
908                         wmb();
909                         break;
910                 drop:
911                         /* Label packet to be dropped.
912                          * Actual dropping occurs in rx
913                          * handling.
914                          *
915                          * The index of packet we get to drop is
916                          * the index of the packet following
917                          * the bad packet. -kbf
918                          */
919                         {
920                                 u16 index = rrpriv->evt_ring[eidx].index;
921                                 index = (index + (RX_RING_ENTRIES - 1)) %
922                                         RX_RING_ENTRIES;
923                                 rrpriv->rx_ring[index].mode |=
924                                         (PACKET_BAD | PACKET_END);
925                         }
926                         break;
927                 default:
928                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
929                                dev->name, rrpriv->evt_ring[eidx].code);
930                 }
931                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
932         }
933
934         rrpriv->info->evt_ctrl.pi = eidx;
935         wmb();
936         return eidx;
937 }
938
939
940 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
941 {
942         struct rr_private *rrpriv = netdev_priv(dev);
943         struct rr_regs __iomem *regs = rrpriv->regs;
944
945         do {
946                 struct rx_desc *desc;
947                 u32 pkt_len;
948
949                 desc = &(rrpriv->rx_ring[index]);
950                 pkt_len = desc->size;
951 #if (DEBUG > 2)
952                 printk("index %i, rxlimit %i\n", index, rxlimit);
953                 printk("len %x, mode %x\n", pkt_len, desc->mode);
954 #endif
955                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
956                         dev->stats.rx_dropped++;
957                         goto defer;
958                 }
959
960                 if (pkt_len > 0){
961                         struct sk_buff *skb, *rx_skb;
962
963                         rx_skb = rrpriv->rx_skbuff[index];
964
965                         if (pkt_len < PKT_COPY_THRESHOLD) {
966                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
967                                 if (skb == NULL){
968                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
969                                         dev->stats.rx_dropped++;
970                                         goto defer;
971                                 } else {
972                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
973                                                                     desc->addr.addrlo,
974                                                                     pkt_len,
975                                                                     PCI_DMA_FROMDEVICE);
976
977                                         memcpy(skb_put(skb, pkt_len),
978                                                rx_skb->data, pkt_len);
979
980                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
981                                                                        desc->addr.addrlo,
982                                                                        pkt_len,
983                                                                        PCI_DMA_FROMDEVICE);
984                                 }
985                         }else{
986                                 struct sk_buff *newskb;
987
988                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
989                                         GFP_ATOMIC);
990                                 if (newskb){
991                                         dma_addr_t addr;
992
993                                         pci_unmap_single(rrpriv->pci_dev,
994                                                 desc->addr.addrlo, dev->mtu +
995                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
996                                         skb = rx_skb;
997                                         skb_put(skb, pkt_len);
998                                         rrpriv->rx_skbuff[index] = newskb;
999                                         addr = pci_map_single(rrpriv->pci_dev,
1000                                                 newskb->data,
1001                                                 dev->mtu + HIPPI_HLEN,
1002                                                 PCI_DMA_FROMDEVICE);
1003                                         set_rraddr(&desc->addr, addr);
1004                                 } else {
1005                                         printk("%s: Out of memory, deferring "
1006                                                "packet\n", dev->name);
1007                                         dev->stats.rx_dropped++;
1008                                         goto defer;
1009                                 }
1010                         }
1011                         skb->protocol = hippi_type_trans(skb, dev);
1012
1013                         netif_rx(skb);          /* send it up */
1014
1015                         dev->stats.rx_packets++;
1016                         dev->stats.rx_bytes += pkt_len;
1017                 }
1018         defer:
1019                 desc->mode = 0;
1020                 desc->size = dev->mtu + HIPPI_HLEN;
1021
1022                 if ((index & 7) == 7)
1023                         writel(index, &regs->IpRxPi);
1024
1025                 index = (index + 1) % RX_RING_ENTRIES;
1026         } while(index != rxlimit);
1027
1028         rrpriv->cur_rx = index;
1029         wmb();
1030 }
1031
1032
1033 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1034 {
1035         struct rr_private *rrpriv;
1036         struct rr_regs __iomem *regs;
1037         struct net_device *dev = (struct net_device *)dev_id;
1038         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1039
1040         rrpriv = netdev_priv(dev);
1041         regs = rrpriv->regs;
1042
1043         if (!(readl(&regs->HostCtrl) & RR_INT))
1044                 return IRQ_NONE;
1045
1046         spin_lock(&rrpriv->lock);
1047
1048         prodidx = readl(&regs->EvtPrd);
1049         txcsmr = (prodidx >> 8) & 0xff;
1050         rxlimit = (prodidx >> 16) & 0xff;
1051         prodidx &= 0xff;
1052
1053 #if (DEBUG > 2)
1054         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1055                prodidx, rrpriv->info->evt_ctrl.pi);
1056 #endif
1057         /*
1058          * Order here is important.  We must handle events
1059          * before doing anything else in order to catch
1060          * such things as LLRC errors, etc -kbf
1061          */
1062
1063         eidx = rrpriv->info->evt_ctrl.pi;
1064         if (prodidx != eidx)
1065                 eidx = rr_handle_event(dev, prodidx, eidx);
1066
1067         rxindex = rrpriv->cur_rx;
1068         if (rxindex != rxlimit)
1069                 rx_int(dev, rxlimit, rxindex);
1070
1071         txcon = rrpriv->dirty_tx;
1072         if (txcsmr != txcon) {
1073                 do {
1074                         /* Due to occational firmware TX producer/consumer out
1075                          * of sync. error need to check entry in ring -kbf
1076                          */
1077                         if(rrpriv->tx_skbuff[txcon]){
1078                                 struct tx_desc *desc;
1079                                 struct sk_buff *skb;
1080
1081                                 desc = &(rrpriv->tx_ring[txcon]);
1082                                 skb = rrpriv->tx_skbuff[txcon];
1083
1084                                 dev->stats.tx_packets++;
1085                                 dev->stats.tx_bytes += skb->len;
1086
1087                                 pci_unmap_single(rrpriv->pci_dev,
1088                                                  desc->addr.addrlo, skb->len,
1089                                                  PCI_DMA_TODEVICE);
1090                                 dev_kfree_skb_irq(skb);
1091
1092                                 rrpriv->tx_skbuff[txcon] = NULL;
1093                                 desc->size = 0;
1094                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1095                                 desc->mode = 0;
1096                         }
1097                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1098                 } while (txcsmr != txcon);
1099                 wmb();
1100
1101                 rrpriv->dirty_tx = txcon;
1102                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1103                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1104                      != rrpriv->dirty_tx)){
1105                         rrpriv->tx_full = 0;
1106                         netif_wake_queue(dev);
1107                 }
1108         }
1109
1110         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1111         writel(eidx, &regs->EvtCon);
1112         wmb();
1113
1114         spin_unlock(&rrpriv->lock);
1115         return IRQ_HANDLED;
1116 }
1117
1118 static inline void rr_raz_tx(struct rr_private *rrpriv,
1119                              struct net_device *dev)
1120 {
1121         int i;
1122
1123         for (i = 0; i < TX_RING_ENTRIES; i++) {
1124                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1125
1126                 if (skb) {
1127                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1128
1129                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1130                                 skb->len, PCI_DMA_TODEVICE);
1131                         desc->size = 0;
1132                         set_rraddr(&desc->addr, 0);
1133                         dev_kfree_skb(skb);
1134                         rrpriv->tx_skbuff[i] = NULL;
1135                 }
1136         }
1137 }
1138
1139
1140 static inline void rr_raz_rx(struct rr_private *rrpriv,
1141                              struct net_device *dev)
1142 {
1143         int i;
1144
1145         for (i = 0; i < RX_RING_ENTRIES; i++) {
1146                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1147
1148                 if (skb) {
1149                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1150
1151                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1152                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1153                         desc->size = 0;
1154                         set_rraddr(&desc->addr, 0);
1155                         dev_kfree_skb(skb);
1156                         rrpriv->rx_skbuff[i] = NULL;
1157                 }
1158         }
1159 }
1160
1161 static void rr_timer(unsigned long data)
1162 {
1163         struct net_device *dev = (struct net_device *)data;
1164         struct rr_private *rrpriv = netdev_priv(dev);
1165         struct rr_regs __iomem *regs = rrpriv->regs;
1166         unsigned long flags;
1167
1168         if (readl(&regs->HostCtrl) & NIC_HALTED){
1169                 printk("%s: Restarting nic\n", dev->name);
1170                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1171                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1172                 wmb();
1173
1174                 rr_raz_tx(rrpriv, dev);
1175                 rr_raz_rx(rrpriv, dev);
1176
1177                 if (rr_init1(dev)) {
1178                         spin_lock_irqsave(&rrpriv->lock, flags);
1179                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1180                                &regs->HostCtrl);
1181                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1182                 }
1183         }
1184         rrpriv->timer.expires = RUN_AT(5*HZ);
1185         add_timer(&rrpriv->timer);
1186 }
1187
1188
1189 static int rr_open(struct net_device *dev)
1190 {
1191         struct rr_private *rrpriv = netdev_priv(dev);
1192         struct pci_dev *pdev = rrpriv->pci_dev;
1193         struct rr_regs __iomem *regs;
1194         int ecode = 0;
1195         unsigned long flags;
1196         dma_addr_t dma_addr;
1197
1198         regs = rrpriv->regs;
1199
1200         if (rrpriv->fw_rev < 0x00020000) {
1201                 printk(KERN_WARNING "%s: trying to configure device with "
1202                        "obsolete firmware\n", dev->name);
1203                 ecode = -EBUSY;
1204                 goto error;
1205         }
1206
1207         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1208                                                256 * sizeof(struct ring_ctrl),
1209                                                &dma_addr);
1210         if (!rrpriv->rx_ctrl) {
1211                 ecode = -ENOMEM;
1212                 goto error;
1213         }
1214         rrpriv->rx_ctrl_dma = dma_addr;
1215         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1216
1217         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1218                                             &dma_addr);
1219         if (!rrpriv->info) {
1220                 ecode = -ENOMEM;
1221                 goto error;
1222         }
1223         rrpriv->info_dma = dma_addr;
1224         memset(rrpriv->info, 0, sizeof(struct rr_info));
1225         wmb();
1226
1227         spin_lock_irqsave(&rrpriv->lock, flags);
1228         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1229         readl(&regs->HostCtrl);
1230         spin_unlock_irqrestore(&rrpriv->lock, flags);
1231
1232         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1233                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1234                        dev->name, dev->irq);
1235                 ecode = -EAGAIN;
1236                 goto error;
1237         }
1238
1239         if ((ecode = rr_init1(dev)))
1240                 goto error;
1241
1242         /* Set the timer to switch to check for link beat and perhaps switch
1243            to an alternate media type. */
1244         init_timer(&rrpriv->timer);
1245         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1246         rrpriv->timer.data = (unsigned long)dev;
1247         rrpriv->timer.function = &rr_timer;               /* timer handler */
1248         add_timer(&rrpriv->timer);
1249
1250         netif_start_queue(dev);
1251
1252         return ecode;
1253
1254  error:
1255         spin_lock_irqsave(&rrpriv->lock, flags);
1256         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1257         spin_unlock_irqrestore(&rrpriv->lock, flags);
1258
1259         if (rrpriv->info) {
1260                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1261                                     rrpriv->info_dma);
1262                 rrpriv->info = NULL;
1263         }
1264         if (rrpriv->rx_ctrl) {
1265                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1266                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1267                 rrpriv->rx_ctrl = NULL;
1268         }
1269
1270         netif_stop_queue(dev);
1271
1272         return ecode;
1273 }
1274
1275
1276 static void rr_dump(struct net_device *dev)
1277 {
1278         struct rr_private *rrpriv;
1279         struct rr_regs __iomem *regs;
1280         u32 index, cons;
1281         short i;
1282         int len;
1283
1284         rrpriv = netdev_priv(dev);
1285         regs = rrpriv->regs;
1286
1287         printk("%s: dumping NIC TX rings\n", dev->name);
1288
1289         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1290                readl(&regs->RxPrd), readl(&regs->TxPrd),
1291                readl(&regs->EvtPrd), readl(&regs->TxPi),
1292                rrpriv->info->tx_ctrl.pi);
1293
1294         printk("Error code 0x%x\n", readl(&regs->Fail1));
1295
1296         index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1297         cons = rrpriv->dirty_tx;
1298         printk("TX ring index %i, TX consumer %i\n",
1299                index, cons);
1300
1301         if (rrpriv->tx_skbuff[index]){
1302                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1303                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1304                 for (i = 0; i < len; i++){
1305                         if (!(i & 7))
1306                                 printk("\n");
1307                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1308                 }
1309                 printk("\n");
1310         }
1311
1312         if (rrpriv->tx_skbuff[cons]){
1313                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1314                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1315                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1316                        rrpriv->tx_ring[cons].mode,
1317                        rrpriv->tx_ring[cons].size,
1318                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1319                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1320                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1321                 for (i = 0; i < len; i++){
1322                         if (!(i & 7))
1323                                 printk("\n");
1324                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1325                 }
1326                 printk("\n");
1327         }
1328
1329         printk("dumping TX ring info:\n");
1330         for (i = 0; i < TX_RING_ENTRIES; i++)
1331                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1332                        rrpriv->tx_ring[i].mode,
1333                        rrpriv->tx_ring[i].size,
1334                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1335
1336 }
1337
1338
1339 static int rr_close(struct net_device *dev)
1340 {
1341         struct rr_private *rrpriv;
1342         struct rr_regs __iomem *regs;
1343         unsigned long flags;
1344         u32 tmp;
1345         short i;
1346
1347         netif_stop_queue(dev);
1348
1349         rrpriv = netdev_priv(dev);
1350         regs = rrpriv->regs;
1351
1352         /*
1353          * Lock to make sure we are not cleaning up while another CPU
1354          * is handling interrupts.
1355          */
1356         spin_lock_irqsave(&rrpriv->lock, flags);
1357
1358         tmp = readl(&regs->HostCtrl);
1359         if (tmp & NIC_HALTED){
1360                 printk("%s: NIC already halted\n", dev->name);
1361                 rr_dump(dev);
1362         }else{
1363                 tmp |= HALT_NIC | RR_CLEAR_INT;
1364                 writel(tmp, &regs->HostCtrl);
1365                 readl(&regs->HostCtrl);
1366         }
1367
1368         rrpriv->fw_running = 0;
1369
1370         del_timer_sync(&rrpriv->timer);
1371
1372         writel(0, &regs->TxPi);
1373         writel(0, &regs->IpRxPi);
1374
1375         writel(0, &regs->EvtCon);
1376         writel(0, &regs->EvtPrd);
1377
1378         for (i = 0; i < CMD_RING_ENTRIES; i++)
1379                 writel(0, &regs->CmdRing[i]);
1380
1381         rrpriv->info->tx_ctrl.entries = 0;
1382         rrpriv->info->cmd_ctrl.pi = 0;
1383         rrpriv->info->evt_ctrl.pi = 0;
1384         rrpriv->rx_ctrl[4].entries = 0;
1385
1386         rr_raz_tx(rrpriv, dev);
1387         rr_raz_rx(rrpriv, dev);
1388
1389         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1390                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1391         rrpriv->rx_ctrl = NULL;
1392
1393         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1394                             rrpriv->info, rrpriv->info_dma);
1395         rrpriv->info = NULL;
1396
1397         free_irq(dev->irq, dev);
1398         spin_unlock_irqrestore(&rrpriv->lock, flags);
1399
1400         return 0;
1401 }
1402
1403
1404 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1405 {
1406         struct rr_private *rrpriv = netdev_priv(dev);
1407         struct rr_regs __iomem *regs = rrpriv->regs;
1408         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1409         struct ring_ctrl *txctrl;
1410         unsigned long flags;
1411         u32 index, len = skb->len;
1412         u32 *ifield;
1413         struct sk_buff *new_skb;
1414
1415         if (readl(&regs->Mode) & FATAL_ERR)
1416                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1417                        readl(&regs->Fail1), readl(&regs->Fail2));
1418
1419         /*
1420          * We probably need to deal with tbusy here to prevent overruns.
1421          */
1422
1423         if (skb_headroom(skb) < 8){
1424                 printk("incoming skb too small - reallocating\n");
1425                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1426                         dev_kfree_skb(skb);
1427                         netif_wake_queue(dev);
1428                         return -EBUSY;
1429                 }
1430                 skb_reserve(new_skb, 8);
1431                 skb_put(new_skb, len);
1432                 skb_copy_from_linear_data(skb, new_skb->data, len);
1433                 dev_kfree_skb(skb);
1434                 skb = new_skb;
1435         }
1436
1437         ifield = (u32 *)skb_push(skb, 8);
1438
1439         ifield[0] = 0;
1440         ifield[1] = hcb->ifield;
1441
1442         /*
1443          * We don't need the lock before we are actually going to start
1444          * fiddling with the control blocks.
1445          */
1446         spin_lock_irqsave(&rrpriv->lock, flags);
1447
1448         txctrl = &rrpriv->info->tx_ctrl;
1449
1450         index = txctrl->pi;
1451
1452         rrpriv->tx_skbuff[index] = skb;
1453         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1454                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1455         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1456         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1457         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1458         wmb();
1459         writel(txctrl->pi, &regs->TxPi);
1460
1461         if (txctrl->pi == rrpriv->dirty_tx){
1462                 rrpriv->tx_full = 1;
1463                 netif_stop_queue(dev);
1464         }
1465
1466         spin_unlock_irqrestore(&rrpriv->lock, flags);
1467
1468         dev->trans_start = jiffies;
1469         return 0;
1470 }
1471
1472
1473 /*
1474  * Read the firmware out of the EEPROM and put it into the SRAM
1475  * (or from user space - later)
1476  *
1477  * This operation requires the NIC to be halted and is performed with
1478  * interrupts disabled and with the spinlock hold.
1479  */
1480 static int rr_load_firmware(struct net_device *dev)
1481 {
1482         struct rr_private *rrpriv;
1483         struct rr_regs __iomem *regs;
1484         size_t eptr, segptr;
1485         int i, j;
1486         u32 localctrl, sptr, len, tmp;
1487         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1488
1489         rrpriv = netdev_priv(dev);
1490         regs = rrpriv->regs;
1491
1492         if (dev->flags & IFF_UP)
1493                 return -EBUSY;
1494
1495         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1496                 printk("%s: Trying to load firmware to a running NIC.\n",
1497                        dev->name);
1498                 return -EBUSY;
1499         }
1500
1501         localctrl = readl(&regs->LocalCtrl);
1502         writel(0, &regs->LocalCtrl);
1503
1504         writel(0, &regs->EvtPrd);
1505         writel(0, &regs->RxPrd);
1506         writel(0, &regs->TxPrd);
1507
1508         /*
1509          * First wipe the entire SRAM, otherwise we might run into all
1510          * kinds of trouble ... sigh, this took almost all afternoon
1511          * to track down ;-(
1512          */
1513         io = readl(&regs->ExtIo);
1514         writel(0, &regs->ExtIo);
1515         sram_size = rr_read_eeprom_word(rrpriv, 8);
1516
1517         for (i = 200; i < sram_size / 4; i++){
1518                 writel(i * 4, &regs->WinBase);
1519                 mb();
1520                 writel(0, &regs->WinData);
1521                 mb();
1522         }
1523         writel(io, &regs->ExtIo);
1524         mb();
1525
1526         eptr = rr_read_eeprom_word(rrpriv,
1527                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1528         eptr = ((eptr & 0x1fffff) >> 3);
1529
1530         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1531         p2len = (p2len << 2);
1532         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1533         p2size = ((p2size & 0x1fffff) >> 3);
1534
1535         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1536                 printk("%s: eptr is invalid\n", dev->name);
1537                 goto out;
1538         }
1539
1540         revision = rr_read_eeprom_word(rrpriv,
1541                         offsetof(struct eeprom, manf.HeaderFmt));
1542
1543         if (revision != 1){
1544                 printk("%s: invalid firmware format (%i)\n",
1545                        dev->name, revision);
1546                 goto out;
1547         }
1548
1549         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1550         eptr +=4;
1551 #if (DEBUG > 1)
1552         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1553 #endif
1554
1555         for (i = 0; i < nr_seg; i++){
1556                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1557                 eptr += 4;
1558                 len = rr_read_eeprom_word(rrpriv, eptr);
1559                 eptr += 4;
1560                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1561                 segptr = ((segptr & 0x1fffff) >> 3);
1562                 eptr += 4;
1563 #if (DEBUG > 1)
1564                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1565                        dev->name, i, sptr, len, segptr);
1566 #endif
1567                 for (j = 0; j < len; j++){
1568                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1569                         writel(sptr, &regs->WinBase);
1570                         mb();
1571                         writel(tmp, &regs->WinData);
1572                         mb();
1573                         segptr += 4;
1574                         sptr += 4;
1575                 }
1576         }
1577
1578 out:
1579         writel(localctrl, &regs->LocalCtrl);
1580         mb();
1581         return 0;
1582 }
1583
1584
1585 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1586 {
1587         struct rr_private *rrpriv;
1588         unsigned char *image, *oldimage;
1589         unsigned long flags;
1590         unsigned int i;
1591         int error = -EOPNOTSUPP;
1592
1593         rrpriv = netdev_priv(dev);
1594
1595         switch(cmd){
1596         case SIOCRRGFW:
1597                 if (!capable(CAP_SYS_RAWIO)){
1598                         return -EPERM;
1599                 }
1600
1601                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1602                 if (!image){
1603                         printk(KERN_ERR "%s: Unable to allocate memory "
1604                                "for EEPROM image\n", dev->name);
1605                         return -ENOMEM;
1606                 }
1607
1608
1609                 if (rrpriv->fw_running){
1610                         printk("%s: Firmware already running\n", dev->name);
1611                         error = -EPERM;
1612                         goto gf_out;
1613                 }
1614
1615                 spin_lock_irqsave(&rrpriv->lock, flags);
1616                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1617                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1618                 if (i != EEPROM_BYTES){
1619                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1620                                dev->name);
1621                         error = -EFAULT;
1622                         goto gf_out;
1623                 }
1624                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1625                 if (error)
1626                         error = -EFAULT;
1627         gf_out:
1628                 kfree(image);
1629                 return error;
1630
1631         case SIOCRRPFW:
1632                 if (!capable(CAP_SYS_RAWIO)){
1633                         return -EPERM;
1634                 }
1635
1636                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1637                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1638                 if (!image || !oldimage) {
1639                         printk(KERN_ERR "%s: Unable to allocate memory "
1640                                "for EEPROM image\n", dev->name);
1641                         error = -ENOMEM;
1642                         goto wf_out;
1643                 }
1644
1645                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1646                 if (error) {
1647                         error = -EFAULT;
1648                         goto wf_out;
1649                 }
1650
1651                 if (rrpriv->fw_running){
1652                         printk("%s: Firmware already running\n", dev->name);
1653                         error = -EPERM;
1654                         goto wf_out;
1655                 }
1656
1657                 printk("%s: Updating EEPROM firmware\n", dev->name);
1658
1659                 spin_lock_irqsave(&rrpriv->lock, flags);
1660                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1661                 if (error)
1662                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1663                                dev->name);
1664
1665                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1666                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1667
1668                 if (i != EEPROM_BYTES)
1669                         printk(KERN_ERR "%s: Error reading back EEPROM "
1670                                "image\n", dev->name);
1671
1672                 error = memcmp(image, oldimage, EEPROM_BYTES);
1673                 if (error){
1674                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1675                                dev->name);
1676                         error = -EFAULT;
1677                 }
1678         wf_out:
1679                 kfree(oldimage);
1680                 kfree(image);
1681                 return error;
1682
1683         case SIOCRRID:
1684                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1685         default:
1686                 return error;
1687         }
1688 }
1689
1690 static struct pci_device_id rr_pci_tbl[] = {
1691         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1692                 PCI_ANY_ID, PCI_ANY_ID, },
1693         { 0,}
1694 };
1695 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1696
1697 static struct pci_driver rr_driver = {
1698         .name           = "rrunner",
1699         .id_table       = rr_pci_tbl,
1700         .probe          = rr_init_one,
1701         .remove         = __devexit_p(rr_remove_one),
1702 };
1703
1704 static int __init rr_init_module(void)
1705 {
1706         return pci_register_driver(&rr_driver);
1707 }
1708
1709 static void __exit rr_cleanup_module(void)
1710 {
1711         pci_unregister_driver(&rr_driver);
1712 }
1713
1714 module_init(rr_init_module);
1715 module_exit(rr_cleanup_module);