Merge master.kernel.org:/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[linux-2.6] / drivers / net / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI EISA and PCI controller families.  Supported adapters include:
14  *
15  *              DEC FDDIcontroller/EISA (DEFEA)
16  *              DEC FDDIcontroller/PCI  (DEFPA)
17  *
18  * The original author:
19  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
20  *
21  * Maintainers:
22  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
23  *
24  * Credits:
25  *   I'd like to thank Patricia Cross for helping me get started with
26  *   Linux, David Davies for a lot of help upgrading and configuring
27  *   my development system and for answering many OS and driver
28  *   development questions, and Alan Cox for recommendations and
29  *   integration help on getting FDDI support into Linux.  LVS
30  *
31  * Driver Architecture:
32  *   The driver architecture is largely based on previous driver work
33  *   for other operating systems.  The upper edge interface and
34  *   functions were largely taken from existing Linux device drivers
35  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
36  *   driver.
37  *
38  *   Adapter Probe -
39  *              The driver scans for supported EISA adapters by reading the
40  *              SLOT ID register for each EISA slot and making a match
41  *              against the expected value.
42  *
43  *   Bus-Specific Initialization -
44  *              This driver currently supports both EISA and PCI controller
45  *              families.  While the custom DMA chip and FDDI logic is similar
46  *              or identical, the bus logic is very different.  After
47  *              initialization, the     only bus-specific differences is in how the
48  *              driver enables and disables interrupts.  Other than that, the
49  *              run-time critical code behaves the same on both families.
50  *              It's important to note that both adapter families are configured
51  *              to I/O map, rather than memory map, the adapter registers.
52  *
53  *   Driver Open/Close -
54  *              In the driver open routine, the driver ISR (interrupt service
55  *              routine) is registered and the adapter is brought to an
56  *              operational state.  In the driver close routine, the opposite
57  *              occurs; the driver ISR is deregistered and the adapter is
58  *              brought to a safe, but closed state.  Users may use consecutive
59  *              commands to bring the adapter up and down as in the following
60  *              example:
61  *                                      ifconfig fddi0 up
62  *                                      ifconfig fddi0 down
63  *                                      ifconfig fddi0 up
64  *
65  *   Driver Shutdown -
66  *              Apparently, there is no shutdown or halt routine support under
67  *              Linux.  This routine would be called during "reboot" or
68  *              "shutdown" to allow the driver to place the adapter in a safe
69  *              state before a warm reboot occurs.  To be really safe, the user
70  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
71  *              to ensure that the adapter DMA engine is taken off-line.  However,
72  *              the current driver code anticipates this problem and always issues
73  *              a soft reset of the adapter     at the beginning of driver initialization.
74  *              A future driver enhancement in this area may occur in 2.1.X where
75  *              Alan indicated that a shutdown handler may be implemented.
76  *
77  *   Interrupt Service Routine -
78  *              The driver supports shared interrupts, so the ISR is registered for
79  *              each board with the appropriate flag and the pointer to that board's
80  *              device structure.  This provides the context during interrupt
81  *              processing to support shared interrupts and multiple boards.
82  *
83  *              Interrupt enabling/disabling can occur at many levels.  At the host
84  *              end, you can disable system interrupts, or disable interrupts at the
85  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
86  *              have a bus-logic chip interrupt enable/disable as well as a DMA
87  *              controller interrupt enable/disable.
88  *
89  *              The driver currently enables and disables adapter interrupts at the
90  *              bus-logic chip and assumes that Linux will take care of clearing or
91  *              acknowledging any host-based interrupt chips.
92  *
93  *   Control Functions -
94  *              Control functions are those used to support functions such as adding
95  *              or deleting multicast addresses, enabling or disabling packet
96  *              reception filters, or other custom/proprietary commands.  Presently,
97  *              the driver supports the "get statistics", "set multicast list", and
98  *              "set mac address" functions defined by Linux.  A list of possible
99  *              enhancements include:
100  *
101  *                              - Custom ioctl interface for executing port interface commands
102  *                              - Custom ioctl interface for adding unicast addresses to
103  *                                adapter CAM (to support bridge functions).
104  *                              - Custom ioctl interface for supporting firmware upgrades.
105  *
106  *   Hardware (port interface) Support Routines -
107  *              The driver function names that start with "dfx_hw_" represent
108  *              low-level port interface routines that are called frequently.  They
109  *              include issuing a DMA or port control command to the adapter,
110  *              resetting the adapter, or reading the adapter state.  Since the
111  *              driver initialization and run-time code must make calls into the
112  *              port interface, these routines were written to be as generic and
113  *              usable as possible.
114  *
115  *   Receive Path -
116  *              The adapter DMA engine supports a 256 entry receive descriptor block
117  *              of which up to 255 entries can be used at any given time.  The
118  *              architecture is a standard producer, consumer, completion model in
119  *              which the driver "produces" receive buffers to the adapter, the
120  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
121  *              and the driver "completes" the receive buffers by servicing the
122  *              incoming packet, then "produces" a new buffer and starts the cycle
123  *              again.  Receive buffers can be fragmented in up to 16 fragments
124  *              (descriptor     entries).  For simplicity, this driver posts
125  *              single-fragment receive buffers of 4608 bytes, then allocates a
126  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
127  *              utilization, a better approach would be to pass up the receive
128  *              buffer (no extra copy) then allocate and post a replacement buffer.
129  *              This is a performance enhancement that should be looked into at
130  *              some point.
131  *
132  *   Transmit Path -
133  *              Like the receive path, the adapter DMA engine supports a 256 entry
134  *              transmit descriptor block of which up to 255 entries can be used at
135  *              any     given time.  Transmit buffers can be fragmented in up to 255
136  *              fragments (descriptor entries).  This driver always posts one
137  *              fragment per transmit packet request.
138  *
139  *              The fragment contains the entire packet from FC to end of data.
140  *              Before posting the buffer to the adapter, the driver sets a three-byte
141  *              packet request header (PRH) which is required by the Motorola MAC chip
142  *              used on the adapters.  The PRH tells the MAC the type of token to
143  *              receive/send, whether or not to generate and append the CRC, whether
144  *              synchronous or asynchronous framing is used, etc.  Since the PRH
145  *              definition is not necessarily consistent across all FDDI chipsets,
146  *              the driver, rather than the common FDDI packet handler routines,
147  *              sets these bytes.
148  *
149  *              To reduce the amount of descriptor fetches needed per transmit request,
150  *              the driver takes advantage of the fact that there are at least three
151  *              bytes available before the skb->data field on the outgoing transmit
152  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
153  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
154  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
155  *              bytes which we'll use to store the PRH.
156  *
157  *              There's a subtle advantage to adding these pad bytes to the
158  *              hard_header_len, it ensures that the data portion of the packet for
159  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
160  *              implementations may not need the extra padding and can start copying
161  *              or DMAing directly from the FC byte which starts at skb->data.  Should
162  *              another driver implementation need ADDITIONAL padding, the net_init.c
163  *              module should be updated and dev->hard_header_len should be increased.
164  *              NOTE: To maintain the alignment on the data portion of the packet,
165  *              dev->hard_header_len should always be evenly divisible by 4 and at
166  *              least 24 bytes in size.
167  *
168  * Modification History:
169  *              Date            Name    Description
170  *              16-Aug-96       LVS             Created.
171  *              20-Aug-96       LVS             Updated dfx_probe so that version information
172  *                                                      string is only displayed if 1 or more cards are
173  *                                                      found.  Changed dfx_rcv_queue_process to copy
174  *                                                      3 NULL bytes before FC to ensure that data is
175  *                                                      longword aligned in receive buffer.
176  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
177  *                                                      LLC group promiscuous mode if multicast list
178  *                                                      is too large.  LLC individual/group promiscuous
179  *                                                      mode is now disabled if IFF_PROMISC flag not set.
180  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
181  *                                                      on Alan Cox recommendation.  Added node address
182  *                                                      override support.
183  *              12-Sep-96       LVS             Reset current address to factory address during
184  *                                                      device open.  Updated transmit path to post a
185  *                                                      single fragment which includes PRH->end of data.
186  *              Mar 2000        AC              Did various cleanups for 2.3.x
187  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
188  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
189  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
190  *              Feb 2001                        Skb allocation fixes
191  *              Feb 2001        davej           PCI enable cleanups.
192  *              04 Aug 2003     macro           Converted to the DMA API.
193  *              14 Aug 2004     macro           Fix device names reported.
194  *              14 Jun 2005     macro           Use irqreturn_t.
195  *              23 Oct 2006     macro           Big-endian host support.
196  */
197
198 /* Include files */
199
200 #include <linux/module.h>
201 #include <linux/kernel.h>
202 #include <linux/string.h>
203 #include <linux/errno.h>
204 #include <linux/ioport.h>
205 #include <linux/slab.h>
206 #include <linux/interrupt.h>
207 #include <linux/pci.h>
208 #include <linux/delay.h>
209 #include <linux/init.h>
210 #include <linux/netdevice.h>
211 #include <linux/fddidevice.h>
212 #include <linux/skbuff.h>
213 #include <linux/bitops.h>
214
215 #include <asm/byteorder.h>
216 #include <asm/io.h>
217
218 #include "defxx.h"
219
220 /* Version information string should be updated prior to each new release!  */
221 #define DRV_NAME "defxx"
222 #define DRV_VERSION "v1.09"
223 #define DRV_RELDATE "2006/10/23"
224
225 static char version[] __devinitdata =
226         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
227         "  Lawrence V. Stefani and others\n";
228
229 #define DYNAMIC_BUFFERS 1
230
231 #define SKBUFF_RX_COPYBREAK 200
232 /*
233  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
234  * alignment for compatibility with old EISA boards.
235  */
236 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
237
238 /* Define module-wide (static) routines */
239
240 static void             dfx_bus_init(struct net_device *dev);
241 static void             dfx_bus_config_check(DFX_board_t *bp);
242
243 static int              dfx_driver_init(struct net_device *dev, const char *print_name);
244 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
245
246 static int              dfx_open(struct net_device *dev);
247 static int              dfx_close(struct net_device *dev);
248
249 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
250 static void             dfx_int_type_0_process(DFX_board_t *bp);
251 static void             dfx_int_common(struct net_device *dev);
252 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
253
254 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
255 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
256 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
257 static int              dfx_ctl_update_cam(DFX_board_t *bp);
258 static int              dfx_ctl_update_filters(DFX_board_t *bp);
259
260 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
261 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
262 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
263 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
264 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
265
266 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
267 static void             dfx_rcv_queue_process(DFX_board_t *bp);
268 static void             dfx_rcv_flush(DFX_board_t *bp);
269
270 static int              dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
271 static int              dfx_xmt_done(DFX_board_t *bp);
272 static void             dfx_xmt_flush(DFX_board_t *bp);
273
274 /* Define module-wide (static) variables */
275
276 static struct net_device *root_dfx_eisa_dev;
277
278
279 /*
280  * =======================
281  * = dfx_port_write_byte =
282  * = dfx_port_read_byte  =
283  * = dfx_port_write_long =
284  * = dfx_port_read_long  =
285  * =======================
286  *
287  * Overview:
288  *   Routines for reading and writing values from/to adapter
289  *
290  * Returns:
291  *   None
292  *
293  * Arguments:
294  *   bp     - pointer to board information
295  *   offset - register offset from base I/O address
296  *   data   - for dfx_port_write_byte and dfx_port_write_long, this
297  *                        is a value to write.
298  *                        for dfx_port_read_byte and dfx_port_read_byte, this
299  *                        is a pointer to store the read value.
300  *
301  * Functional Description:
302  *   These routines perform the correct operation to read or write
303  *   the adapter register.
304  *
305  *   EISA port block base addresses are based on the slot number in which the
306  *   controller is installed.  For example, if the EISA controller is installed
307  *   in slot 4, the port block base address is 0x4000.  If the controller is
308  *   installed in slot 2, the port block base address is 0x2000, and so on.
309  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
310  *   registers using the register offsets defined in DEFXX.H.
311  *
312  *   PCI port block base addresses are assigned by the PCI BIOS or system
313  *       firmware.  There is one 128 byte port block which can be accessed.  It
314  *   allows for I/O mapping of both PDQ and PFI registers using the register
315  *   offsets defined in DEFXX.H.
316  *
317  * Return Codes:
318  *   None
319  *
320  * Assumptions:
321  *   bp->base_addr is a valid base I/O address for this adapter.
322  *   offset is a valid register offset for this adapter.
323  *
324  * Side Effects:
325  *   Rather than produce macros for these functions, these routines
326  *   are defined using "inline" to ensure that the compiler will
327  *   generate inline code and not waste a procedure call and return.
328  *   This provides all the benefits of macros, but with the
329  *   advantage of strict data type checking.
330  */
331
332 static inline void dfx_port_write_byte(
333         DFX_board_t     *bp,
334         int                     offset,
335         u8                      data
336         )
337
338         {
339         u16 port = bp->base_addr + offset;
340
341         outb(data, port);
342         }
343
344 static inline void dfx_port_read_byte(
345         DFX_board_t     *bp,
346         int                     offset,
347         u8                      *data
348         )
349
350         {
351         u16 port = bp->base_addr + offset;
352
353         *data = inb(port);
354         }
355
356 static inline void dfx_port_write_long(
357         DFX_board_t     *bp,
358         int                     offset,
359         u32                     data
360         )
361
362         {
363         u16 port = bp->base_addr + offset;
364
365         outl(data, port);
366         }
367
368 static inline void dfx_port_read_long(
369         DFX_board_t     *bp,
370         int                     offset,
371         u32                     *data
372         )
373
374         {
375         u16 port = bp->base_addr + offset;
376
377         *data = inl(port);
378         }
379
380
381 /*
382  * =============
383  * = dfx_init_one_pci_or_eisa =
384  * =============
385  *
386  * Overview:
387  *   Initializes a supported FDDI EISA or PCI controller
388  *
389  * Returns:
390  *   Condition code
391  *
392  * Arguments:
393  *   pdev - pointer to pci device information (NULL for EISA)
394  *   ioaddr - pointer to port (NULL for PCI)
395  *
396  * Functional Description:
397  *
398  * Return Codes:
399  *   0           - This device (fddi0, fddi1, etc) configured successfully
400  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
401  *
402  * Assumptions:
403  *   It compiles so it should work :-( (PCI cards do :-)
404  *
405  * Side Effects:
406  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
407  *   initialized and the board resources are read and stored in
408  *   the device structure.
409  */
410 static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
411 {
412         static int version_disp;
413         char *print_name = DRV_NAME;
414         struct net_device *dev;
415         DFX_board_t       *bp;                  /* board pointer */
416         int alloc_size;                         /* total buffer size used */
417         int err;
418
419         if (!version_disp) {    /* display version info if adapter is found */
420                 version_disp = 1;       /* set display flag to TRUE so that */
421                 printk(version);        /* we only display this string ONCE */
422         }
423
424         if (pdev != NULL)
425                 print_name = pci_name(pdev);
426
427         dev = alloc_fddidev(sizeof(*bp));
428         if (!dev) {
429                 printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n",
430                        print_name);
431                 return -ENOMEM;
432         }
433
434         /* Enable PCI device. */
435         if (pdev != NULL) {
436                 err = pci_enable_device (pdev);
437                 if (err) goto err_out;
438                 ioaddr = pci_resource_start (pdev, 1);
439         }
440
441         SET_MODULE_OWNER(dev);
442         if (pdev != NULL)
443                 SET_NETDEV_DEV(dev, &pdev->dev);
444
445         bp = dev->priv;
446
447         if (!request_region(ioaddr,
448                             pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN,
449                             print_name)) {
450                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
451                        "0x%x @ 0x%lx, aborting\n", print_name,
452                        pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr);
453                 err = -EBUSY;
454                 goto err_out;
455         }
456
457         /* Initialize new device structure */
458
459         dev->base_addr                  = ioaddr; /* save port (I/O) base address */
460
461         dev->get_stats                  = dfx_ctl_get_stats;
462         dev->open                       = dfx_open;
463         dev->stop                       = dfx_close;
464         dev->hard_start_xmit            = dfx_xmt_queue_pkt;
465         dev->set_multicast_list         = dfx_ctl_set_multicast_list;
466         dev->set_mac_address            = dfx_ctl_set_mac_address;
467
468         if (pdev == NULL) {
469                 /* EISA board */
470                 bp->bus_type = DFX_BUS_TYPE_EISA;
471                 bp->next = root_dfx_eisa_dev;
472                 root_dfx_eisa_dev = dev;
473         } else {
474                 /* PCI board */
475                 bp->bus_type = DFX_BUS_TYPE_PCI;
476                 bp->pci_dev = pdev;
477                 pci_set_drvdata (pdev, dev);
478                 pci_set_master (pdev);
479         }
480
481         if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) {
482                 err = -ENODEV;
483                 goto err_out_region;
484         }
485
486         err = register_netdev(dev);
487         if (err)
488                 goto err_out_kfree;
489
490         printk("%s: registered as %s\n", print_name, dev->name);
491         return 0;
492
493 err_out_kfree:
494         alloc_size = sizeof(PI_DESCR_BLOCK) +
495                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
496 #ifndef DYNAMIC_BUFFERS
497                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
498 #endif
499                      sizeof(PI_CONSUMER_BLOCK) +
500                      (PI_ALIGN_K_DESC_BLK - 1);
501         if (bp->kmalloced)
502                 pci_free_consistent(pdev, alloc_size,
503                                     bp->kmalloced, bp->kmalloced_dma);
504 err_out_region:
505         release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
506 err_out:
507         free_netdev(dev);
508         return err;
509 }
510
511 static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
512 {
513         return dfx_init_one_pci_or_eisa(pdev, 0);
514 }
515
516 static int __init dfx_eisa_init(void)
517 {
518         int rc = -ENODEV;
519         int i;                  /* used in for loops */
520         u16 port;               /* temporary I/O (port) address */
521         u32 slot_id;            /* EISA hardware (slot) ID read from adapter */
522
523         DBG_printk("In dfx_eisa_init...\n");
524
525         /* Scan for FDDI EISA controllers */
526
527         for (i=0; i < DFX_MAX_EISA_SLOTS; i++)          /* only scan for up to 16 EISA slots */
528         {
529                 port = (i << 12) + PI_ESIC_K_SLOT_ID;   /* port = I/O address for reading slot ID */
530                 slot_id = inl(port);                                    /* read EISA HW (slot) ID */
531                 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
532                 {
533                         port = (i << 12);                                       /* recalc base addr */
534
535                         if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
536                 }
537         }
538         return rc;
539 }
540
541 /*
542  * ================
543  * = dfx_bus_init =
544  * ================
545  *
546  * Overview:
547  *   Initializes EISA and PCI controller bus-specific logic.
548  *
549  * Returns:
550  *   None
551  *
552  * Arguments:
553  *   dev - pointer to device information
554  *
555  * Functional Description:
556  *   Determine and save adapter IRQ in device table,
557  *   then perform bus-specific logic initialization.
558  *
559  * Return Codes:
560  *   None
561  *
562  * Assumptions:
563  *   dev->base_addr has already been set with the proper
564  *       base I/O address for this device.
565  *
566  * Side Effects:
567  *   Interrupts are enabled at the adapter bus-specific logic.
568  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
569  *   enabled yet.
570  */
571
572 static void __devinit dfx_bus_init(struct net_device *dev)
573 {
574         DFX_board_t *bp = dev->priv;
575         u8                      val;    /* used for I/O read/writes */
576
577         DBG_printk("In dfx_bus_init...\n");
578
579         /*
580          * Initialize base I/O address field in bp structure
581          *
582          * Note: bp->base_addr is the same as dev->base_addr.
583          *               It's useful because often we'll need to read
584          *               or write registers where we already have the
585          *               bp pointer instead of the dev pointer.  Having
586          *               the base address in the bp structure will
587          *               save a pointer dereference.
588          *
589          *               IMPORTANT!! This field must be defined before
590          *               any of the dfx_port_* inline functions are
591          *               called.
592          */
593
594         bp->base_addr = dev->base_addr;
595
596         /* And a pointer back to the net_device struct */
597         bp->dev = dev;
598
599         /* Initialize adapter based on bus type */
600
601         if (bp->bus_type == DFX_BUS_TYPE_EISA)
602                 {
603                 /* Get the interrupt level from the ESIC chip */
604
605                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
606                 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
607                         {
608                         case PI_CONFIG_STAT_0_IRQ_K_9:
609                                 dev->irq = 9;
610                                 break;
611
612                         case PI_CONFIG_STAT_0_IRQ_K_10:
613                                 dev->irq = 10;
614                                 break;
615
616                         case PI_CONFIG_STAT_0_IRQ_K_11:
617                                 dev->irq = 11;
618                                 break;
619
620                         case PI_CONFIG_STAT_0_IRQ_K_15:
621                                 dev->irq = 15;
622                                 break;
623                         }
624
625                 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
626
627                 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
628
629                 /* Set the I/O decode range of the board */
630
631                 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
632                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
633                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
634
635                 /* Enable access to rest of module (including PDQ and packet memory) */
636
637                 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
638
639                 /*
640                  * Map PDQ registers into I/O space.  This is done by clearing a bit
641                  * in Burst Holdoff register.
642                  */
643
644                 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
645                 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
646
647                 /* Enable interrupts at EISA bus interface chip (ESIC) */
648
649                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
650                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
651                 }
652         else
653                 {
654                 struct pci_dev *pdev = bp->pci_dev;
655
656                 /* Get the interrupt level from the PCI Configuration Table */
657
658                 dev->irq = pdev->irq;
659
660                 /* Check Latency Timer and set if less than minimal */
661
662                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
663                 if (val < PFI_K_LAT_TIMER_MIN)  /* if less than min, override with default */
664                         {
665                         val = PFI_K_LAT_TIMER_DEF;
666                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
667                         }
668
669                 /* Enable interrupts at PCI bus interface chip (PFI) */
670
671                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
672                 }
673         }
674
675
676 /*
677  * ========================
678  * = dfx_bus_config_check =
679  * ========================
680  *
681  * Overview:
682  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
683  *   are illegal, then this routine will set new defaults.
684  *
685  * Returns:
686  *   None
687  *
688  * Arguments:
689  *   bp - pointer to board information
690  *
691  * Functional Description:
692  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
693  *   PDQ, and all FDDI PCI controllers, all values are legal.
694  *
695  * Return Codes:
696  *   None
697  *
698  * Assumptions:
699  *   dfx_adap_init has NOT been called yet so burst size and other items have
700  *   not been set.
701  *
702  * Side Effects:
703  *   None
704  */
705
706 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
707 {
708         int     status;                         /* return code from adapter port control call */
709         u32     slot_id;                        /* EISA-bus hardware id (DEC3001, DEC3002,...) */
710         u32     host_data;                      /* LW data returned from port control call */
711
712         DBG_printk("In dfx_bus_config_check...\n");
713
714         /* Configuration check only valid for EISA adapter */
715
716         if (bp->bus_type == DFX_BUS_TYPE_EISA)
717                 {
718                 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
719
720                 /*
721                  * First check if revision 2 EISA controller.  Rev. 1 cards used
722                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
723                  * cards used PDQ revision E, so no workaround needed in this
724                  * case, either.  Only Rev. 2 cards used either Rev. D or E
725                  * chips, so we must verify the chip revision on Rev. 2 cards.
726                  */
727
728                 if (slot_id == DEFEA_PROD_ID_2)
729                         {
730                         /*
731                          * Revision 2 FDDI EISA controller found, so let's check PDQ
732                          * revision of adapter.
733                          */
734
735                         status = dfx_hw_port_ctrl_req(bp,
736                                                                                         PI_PCTRL_M_SUB_CMD,
737                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
738                                                                                         0,
739                                                                                         &host_data);
740                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
741                                 {
742                                 /*
743                                  * Either we couldn't determine the PDQ revision, or
744                                  * we determined that it is at revision D.  In either case,
745                                  * we need to implement the workaround.
746                                  */
747
748                                 /* Ensure that the burst size is set to 8 longwords or less */
749
750                                 switch (bp->burst_size)
751                                         {
752                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
753                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
754                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
755                                                 break;
756
757                                         default:
758                                                 break;
759                                         }
760
761                                 /* Ensure that full-duplex mode is not enabled */
762
763                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
764                                 }
765                         }
766                 }
767         }
768
769
770 /*
771  * ===================
772  * = dfx_driver_init =
773  * ===================
774  *
775  * Overview:
776  *   Initializes remaining adapter board structure information
777  *   and makes sure adapter is in a safe state prior to dfx_open().
778  *
779  * Returns:
780  *   Condition code
781  *
782  * Arguments:
783  *   dev - pointer to device information
784  *   print_name - printable device name
785  *
786  * Functional Description:
787  *   This function allocates additional resources such as the host memory
788  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
789  *       Remaining bus initialization steps are also completed.  The adapter
790  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
791  *   must call dfx_open() to open the adapter and bring it on-line.
792  *
793  * Return Codes:
794  *   DFX_K_SUCCESS      - initialization succeeded
795  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
796  *                                              or read adapter MAC address
797  *
798  * Assumptions:
799  *   Memory allocated from pci_alloc_consistent() call is physically
800  *   contiguous, locked memory.
801  *
802  * Side Effects:
803  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
804  *   returning from this routine.
805  */
806
807 static int __devinit dfx_driver_init(struct net_device *dev,
808                                      const char *print_name)
809 {
810         DFX_board_t *bp = dev->priv;
811         int                     alloc_size;                     /* total buffer size needed */
812         char            *top_v, *curr_v;        /* virtual addrs into memory block */
813         dma_addr_t              top_p, curr_p;          /* physical addrs into memory block */
814         u32                     data;                           /* host data register value */
815
816         DBG_printk("In dfx_driver_init...\n");
817
818         /* Initialize bus-specific hardware registers */
819
820         dfx_bus_init(dev);
821
822         /*
823          * Initialize default values for configurable parameters
824          *
825          * Note: All of these parameters are ones that a user may
826          *       want to customize.  It'd be nice to break these
827          *               out into Space.c or someplace else that's more
828          *               accessible/understandable than this file.
829          */
830
831         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
832         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
833         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
834         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
835
836         /*
837          * Ensure that HW configuration is OK
838          *
839          * Note: Depending on the hardware revision, we may need to modify
840          *       some of the configurable parameters to workaround hardware
841          *       limitations.  We'll perform this configuration check AFTER
842          *       setting the parameters to their default values.
843          */
844
845         dfx_bus_config_check(bp);
846
847         /* Disable PDQ interrupts first */
848
849         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
850
851         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
852
853         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
854
855         /*  Read the factory MAC address from the adapter then save it */
856
857         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
858                                  &data) != DFX_K_SUCCESS) {
859                 printk("%s: Could not read adapter factory MAC address!\n",
860                        print_name);
861                 return(DFX_K_FAILURE);
862         }
863         data = cpu_to_le32(data);
864         memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
865
866         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
867                                  &data) != DFX_K_SUCCESS) {
868                 printk("%s: Could not read adapter factory MAC address!\n",
869                        print_name);
870                 return(DFX_K_FAILURE);
871         }
872         data = cpu_to_le32(data);
873         memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
874
875         /*
876          * Set current address to factory address
877          *
878          * Note: Node address override support is handled through
879          *       dfx_ctl_set_mac_address.
880          */
881
882         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
883         if (bp->bus_type == DFX_BUS_TYPE_EISA)
884                 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, "
885                        "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
886                        print_name, dev->base_addr, dev->irq,
887                        dev->dev_addr[0], dev->dev_addr[1],
888                        dev->dev_addr[2], dev->dev_addr[3],
889                        dev->dev_addr[4], dev->dev_addr[5]);
890         else
891                 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, "
892                        "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
893                        print_name, dev->base_addr, dev->irq,
894                        dev->dev_addr[0], dev->dev_addr[1],
895                        dev->dev_addr[2], dev->dev_addr[3],
896                        dev->dev_addr[4], dev->dev_addr[5]);
897
898         /*
899          * Get memory for descriptor block, consumer block, and other buffers
900          * that need to be DMA read or written to by the adapter.
901          */
902
903         alloc_size = sizeof(PI_DESCR_BLOCK) +
904                                         PI_CMD_REQ_K_SIZE_MAX +
905                                         PI_CMD_RSP_K_SIZE_MAX +
906 #ifndef DYNAMIC_BUFFERS
907                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
908 #endif
909                                         sizeof(PI_CONSUMER_BLOCK) +
910                                         (PI_ALIGN_K_DESC_BLK - 1);
911         bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
912                                                      &bp->kmalloced_dma);
913         if (top_v == NULL) {
914                 printk("%s: Could not allocate memory for host buffers "
915                        "and structures!\n", print_name);
916                 return(DFX_K_FAILURE);
917         }
918         memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
919         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
920
921         /*
922          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
923          *  plus the amount of memory needed was allocated.  The physical address
924          *      is now 8K aligned.  By carving up the memory in a specific order,
925          *  we'll guarantee the alignment requirements for all other structures.
926          *
927          *  Note: If the assumptions change regarding the non-paged, non-cached,
928          *                physically contiguous nature of the memory block or the address
929          *                alignments, then we'll need to implement a different algorithm
930          *                for allocating the needed memory.
931          */
932
933         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
934         curr_v = top_v + (curr_p - top_p);
935
936         /* Reserve space for descriptor block */
937
938         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
939         bp->descr_block_phys = curr_p;
940         curr_v += sizeof(PI_DESCR_BLOCK);
941         curr_p += sizeof(PI_DESCR_BLOCK);
942
943         /* Reserve space for command request buffer */
944
945         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
946         bp->cmd_req_phys = curr_p;
947         curr_v += PI_CMD_REQ_K_SIZE_MAX;
948         curr_p += PI_CMD_REQ_K_SIZE_MAX;
949
950         /* Reserve space for command response buffer */
951
952         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
953         bp->cmd_rsp_phys = curr_p;
954         curr_v += PI_CMD_RSP_K_SIZE_MAX;
955         curr_p += PI_CMD_RSP_K_SIZE_MAX;
956
957         /* Reserve space for the LLC host receive queue buffers */
958
959         bp->rcv_block_virt = curr_v;
960         bp->rcv_block_phys = curr_p;
961
962 #ifndef DYNAMIC_BUFFERS
963         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
964         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
965 #endif
966
967         /* Reserve space for the consumer block */
968
969         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
970         bp->cons_block_phys = curr_p;
971
972         /* Display virtual and physical addresses if debug driver */
973
974         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
975                    print_name,
976                    (long)bp->descr_block_virt, bp->descr_block_phys);
977         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
978                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
979         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
980                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
981         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
982                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
983         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
984                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
985
986         return(DFX_K_SUCCESS);
987 }
988
989
990 /*
991  * =================
992  * = dfx_adap_init =
993  * =================
994  *
995  * Overview:
996  *   Brings the adapter to the link avail/link unavailable state.
997  *
998  * Returns:
999  *   Condition code
1000  *
1001  * Arguments:
1002  *   bp - pointer to board information
1003  *   get_buffers - non-zero if buffers to be allocated
1004  *
1005  * Functional Description:
1006  *   Issues the low-level firmware/hardware calls necessary to bring
1007  *   the adapter up, or to properly reset and restore adapter during
1008  *   run-time.
1009  *
1010  * Return Codes:
1011  *   DFX_K_SUCCESS - Adapter brought up successfully
1012  *   DFX_K_FAILURE - Adapter initialization failed
1013  *
1014  * Assumptions:
1015  *   bp->reset_type should be set to a valid reset type value before
1016  *   calling this routine.
1017  *
1018  * Side Effects:
1019  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1020  *   upon a successful return of this routine.
1021  */
1022
1023 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1024         {
1025         DBG_printk("In dfx_adap_init...\n");
1026
1027         /* Disable PDQ interrupts first */
1028
1029         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1030
1031         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1032
1033         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1034                 {
1035                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1036                 return(DFX_K_FAILURE);
1037                 }
1038
1039         /*
1040          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1041          * so we'll acknowledge all Type 0 interrupts now before continuing.
1042          */
1043
1044         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1045
1046         /*
1047          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1048          *
1049          * Note: We only need to clear host copies of these registers.  The PDQ reset
1050          *       takes care of the on-board register values.
1051          */
1052
1053         bp->cmd_req_reg.lword   = 0;
1054         bp->cmd_rsp_reg.lword   = 0;
1055         bp->rcv_xmt_reg.lword   = 0;
1056
1057         /* Clear consumer block before going to DMA_AVAILABLE state */
1058
1059         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1060
1061         /* Initialize the DMA Burst Size */
1062
1063         if (dfx_hw_port_ctrl_req(bp,
1064                                                         PI_PCTRL_M_SUB_CMD,
1065                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1066                                                         bp->burst_size,
1067                                                         NULL) != DFX_K_SUCCESS)
1068                 {
1069                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1070                 return(DFX_K_FAILURE);
1071                 }
1072
1073         /*
1074          * Set base address of Consumer Block
1075          *
1076          * Assumption: 32-bit physical address of consumer block is 64 byte
1077          *                         aligned.  That is, bits 0-5 of the address must be zero.
1078          */
1079
1080         if (dfx_hw_port_ctrl_req(bp,
1081                                                         PI_PCTRL_M_CONS_BLOCK,
1082                                                         bp->cons_block_phys,
1083                                                         0,
1084                                                         NULL) != DFX_K_SUCCESS)
1085                 {
1086                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1087                 return(DFX_K_FAILURE);
1088                 }
1089
1090         /*
1091          * Set the base address of Descriptor Block and bring adapter
1092          * to DMA_AVAILABLE state.
1093          *
1094          * Note: We also set the literal and data swapping requirements
1095          *       in this command.
1096          *
1097          * Assumption: 32-bit physical address of descriptor block
1098          *       is 8Kbyte aligned.
1099          */
1100         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1101                                  (u32)(bp->descr_block_phys |
1102                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1103                                  0, NULL) != DFX_K_SUCCESS) {
1104                 printk("%s: Could not set descriptor block address!\n",
1105                        bp->dev->name);
1106                 return DFX_K_FAILURE;
1107         }
1108
1109         /* Set transmit flush timeout value */
1110
1111         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1112         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1113         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1114         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1115         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1116         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1117                 {
1118                 printk("%s: DMA command request failed!\n", bp->dev->name);
1119                 return(DFX_K_FAILURE);
1120                 }
1121
1122         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1123
1124         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1125         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1126         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1127         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1128         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1129         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1130         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1131         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1132         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1133                 {
1134                 printk("%s: DMA command request failed!\n", bp->dev->name);
1135                 return(DFX_K_FAILURE);
1136                 }
1137
1138         /* Initialize adapter CAM */
1139
1140         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1141                 {
1142                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1143                 return(DFX_K_FAILURE);
1144                 }
1145
1146         /* Initialize adapter filters */
1147
1148         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1149                 {
1150                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1151                 return(DFX_K_FAILURE);
1152                 }
1153
1154         /*
1155          * Remove any existing dynamic buffers (i.e. if the adapter is being
1156          * reinitialized)
1157          */
1158
1159         if (get_buffers)
1160                 dfx_rcv_flush(bp);
1161
1162         /* Initialize receive descriptor block and produce buffers */
1163
1164         if (dfx_rcv_init(bp, get_buffers))
1165                 {
1166                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1167                 if (get_buffers)
1168                         dfx_rcv_flush(bp);
1169                 return(DFX_K_FAILURE);
1170                 }
1171
1172         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1173
1174         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1175         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1176                 {
1177                 printk("%s: Start command failed\n", bp->dev->name);
1178                 if (get_buffers)
1179                         dfx_rcv_flush(bp);
1180                 return(DFX_K_FAILURE);
1181                 }
1182
1183         /* Initialization succeeded, reenable PDQ interrupts */
1184
1185         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1186         return(DFX_K_SUCCESS);
1187         }
1188
1189
1190 /*
1191  * ============
1192  * = dfx_open =
1193  * ============
1194  *
1195  * Overview:
1196  *   Opens the adapter
1197  *
1198  * Returns:
1199  *   Condition code
1200  *
1201  * Arguments:
1202  *   dev - pointer to device information
1203  *
1204  * Functional Description:
1205  *   This function brings the adapter to an operational state.
1206  *
1207  * Return Codes:
1208  *   0           - Adapter was successfully opened
1209  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1210  *
1211  * Assumptions:
1212  *   This routine should only be called for a device that was
1213  *   initialized successfully.
1214  *
1215  * Side Effects:
1216  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1217  *   if the open is successful.
1218  */
1219
1220 static int dfx_open(struct net_device *dev)
1221 {
1222         int ret;
1223         DFX_board_t     *bp = dev->priv;
1224
1225         DBG_printk("In dfx_open...\n");
1226
1227         /* Register IRQ - support shared interrupts by passing device ptr */
1228
1229         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, dev);
1230         if (ret) {
1231                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1232                 return ret;
1233         }
1234
1235         /*
1236          * Set current address to factory MAC address
1237          *
1238          * Note: We've already done this step in dfx_driver_init.
1239          *       However, it's possible that a user has set a node
1240          *               address override, then closed and reopened the
1241          *               adapter.  Unless we reset the device address field
1242          *               now, we'll continue to use the existing modified
1243          *               address.
1244          */
1245
1246         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1247
1248         /* Clear local unicast/multicast address tables and counts */
1249
1250         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1251         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1252         bp->uc_count = 0;
1253         bp->mc_count = 0;
1254
1255         /* Disable promiscuous filter settings */
1256
1257         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1258         bp->group_prom          = PI_FSTATE_K_BLOCK;
1259
1260         spin_lock_init(&bp->lock);
1261
1262         /* Reset and initialize adapter */
1263
1264         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1265         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1266         {
1267                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1268                 free_irq(dev->irq, dev);
1269                 return -EAGAIN;
1270         }
1271
1272         /* Set device structure info */
1273         netif_start_queue(dev);
1274         return(0);
1275 }
1276
1277
1278 /*
1279  * =============
1280  * = dfx_close =
1281  * =============
1282  *
1283  * Overview:
1284  *   Closes the device/module.
1285  *
1286  * Returns:
1287  *   Condition code
1288  *
1289  * Arguments:
1290  *   dev - pointer to device information
1291  *
1292  * Functional Description:
1293  *   This routine closes the adapter and brings it to a safe state.
1294  *   The interrupt service routine is deregistered with the OS.
1295  *   The adapter can be opened again with another call to dfx_open().
1296  *
1297  * Return Codes:
1298  *   Always return 0.
1299  *
1300  * Assumptions:
1301  *   No further requests for this adapter are made after this routine is
1302  *   called.  dfx_open() can be called to reset and reinitialize the
1303  *   adapter.
1304  *
1305  * Side Effects:
1306  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1307  *   routine.
1308  */
1309
1310 static int dfx_close(struct net_device *dev)
1311 {
1312         DFX_board_t     *bp = dev->priv;
1313
1314         DBG_printk("In dfx_close...\n");
1315
1316         /* Disable PDQ interrupts first */
1317
1318         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1319
1320         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1321
1322         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1323
1324         /*
1325          * Flush any pending transmit buffers
1326          *
1327          * Note: It's important that we flush the transmit buffers
1328          *               BEFORE we clear our copy of the Type 2 register.
1329          *               Otherwise, we'll have no idea how many buffers
1330          *               we need to free.
1331          */
1332
1333         dfx_xmt_flush(bp);
1334
1335         /*
1336          * Clear Type 1 and Type 2 registers after adapter reset
1337          *
1338          * Note: Even though we're closing the adapter, it's
1339          *       possible that an interrupt will occur after
1340          *               dfx_close is called.  Without some assurance to
1341          *               the contrary we want to make sure that we don't
1342          *               process receive and transmit LLC frames and update
1343          *               the Type 2 register with bad information.
1344          */
1345
1346         bp->cmd_req_reg.lword   = 0;
1347         bp->cmd_rsp_reg.lword   = 0;
1348         bp->rcv_xmt_reg.lword   = 0;
1349
1350         /* Clear consumer block for the same reason given above */
1351
1352         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1353
1354         /* Release all dynamically allocate skb in the receive ring. */
1355
1356         dfx_rcv_flush(bp);
1357
1358         /* Clear device structure flags */
1359
1360         netif_stop_queue(dev);
1361
1362         /* Deregister (free) IRQ */
1363
1364         free_irq(dev->irq, dev);
1365
1366         return(0);
1367 }
1368
1369
1370 /*
1371  * ======================
1372  * = dfx_int_pr_halt_id =
1373  * ======================
1374  *
1375  * Overview:
1376  *   Displays halt id's in string form.
1377  *
1378  * Returns:
1379  *   None
1380  *
1381  * Arguments:
1382  *   bp - pointer to board information
1383  *
1384  * Functional Description:
1385  *   Determine current halt id and display appropriate string.
1386  *
1387  * Return Codes:
1388  *   None
1389  *
1390  * Assumptions:
1391  *   None
1392  *
1393  * Side Effects:
1394  *   None
1395  */
1396
1397 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1398         {
1399         PI_UINT32       port_status;                    /* PDQ port status register value */
1400         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1401
1402         /* Read the latest port status */
1403
1404         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1405
1406         /* Display halt state transition information */
1407
1408         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1409         switch (halt_id)
1410                 {
1411                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1412                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1413                         break;
1414
1415                 case PI_HALT_ID_K_PARITY_ERROR:
1416                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1417                         break;
1418
1419                 case PI_HALT_ID_K_HOST_DIR_HALT:
1420                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1421                         break;
1422
1423                 case PI_HALT_ID_K_SW_FAULT:
1424                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1425                         break;
1426
1427                 case PI_HALT_ID_K_HW_FAULT:
1428                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1429                         break;
1430
1431                 case PI_HALT_ID_K_PC_TRACE:
1432                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1433                         break;
1434
1435                 case PI_HALT_ID_K_DMA_ERROR:
1436                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1437                         break;
1438
1439                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1440                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1441                         break;
1442
1443                 case PI_HALT_ID_K_BUS_EXCEPTION:
1444                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1445                         break;
1446
1447                 default:
1448                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1449                         break;
1450                 }
1451         }
1452
1453
1454 /*
1455  * ==========================
1456  * = dfx_int_type_0_process =
1457  * ==========================
1458  *
1459  * Overview:
1460  *   Processes Type 0 interrupts.
1461  *
1462  * Returns:
1463  *   None
1464  *
1465  * Arguments:
1466  *   bp - pointer to board information
1467  *
1468  * Functional Description:
1469  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1470  *   is a serious fault on the adapter, then an error message is displayed
1471  *   and the adapter is reset.
1472  *
1473  *   One tricky potential timing window is the rapid succession of "link avail"
1474  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1475  *   interrupt must be done before reading the state from the Port Status
1476  *   register.  This is true because a state change could occur after reading
1477  *   the data, but before acknowledging the interrupt.  If this state change
1478  *   does happen, it would be lost because the driver is using the old state,
1479  *   and it will never know about the new state because it subsequently
1480  *   acknowledges the state change interrupt.
1481  *
1482  *          INCORRECT                                      CORRECT
1483  *      read type 0 int reasons                   read type 0 int reasons
1484  *      read adapter state                        ack type 0 interrupts
1485  *      ack type 0 interrupts                     read adapter state
1486  *      ... process interrupt ...                 ... process interrupt ...
1487  *
1488  * Return Codes:
1489  *   None
1490  *
1491  * Assumptions:
1492  *   None
1493  *
1494  * Side Effects:
1495  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1496  *   or if the port status indicates that the adapter is halted.  The driver
1497  *   is responsible for reinitializing the adapter with the current CAM
1498  *   contents and adapter filter settings.
1499  */
1500
1501 static void dfx_int_type_0_process(DFX_board_t  *bp)
1502
1503         {
1504         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1505         PI_UINT32       state;                          /* current adap state (from port status) */
1506
1507         /*
1508          * Read host interrupt Type 0 register to determine which Type 0
1509          * interrupts are pending.  Immediately write it back out to clear
1510          * those interrupts.
1511          */
1512
1513         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1514         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1515
1516         /* Check for Type 0 error interrupts */
1517
1518         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1519                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1520                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1521                 {
1522                 /* Check for Non-Existent Memory error */
1523
1524                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1525                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1526
1527                 /* Check for Packet Memory Parity error */
1528
1529                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1530                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1531
1532                 /* Check for Host Bus Parity error */
1533
1534                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1535                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1536
1537                 /* Reset adapter and bring it back on-line */
1538
1539                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1540                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1541                 printk("%s: Resetting adapter...\n", bp->dev->name);
1542                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1543                         {
1544                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1545                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1546                         return;
1547                         }
1548                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1549                 return;
1550                 }
1551
1552         /* Check for transmit flush interrupt */
1553
1554         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1555                 {
1556                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1557
1558                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1559                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1560                 (void) dfx_hw_port_ctrl_req(bp,
1561                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1562                                                                         0,
1563                                                                         0,
1564                                                                         NULL);
1565                 }
1566
1567         /* Check for adapter state change */
1568
1569         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1570                 {
1571                 /* Get latest adapter state */
1572
1573                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1574                 if (state == PI_STATE_K_HALTED)
1575                         {
1576                         /*
1577                          * Adapter has transitioned to HALTED state, try to reset
1578                          * adapter to bring it back on-line.  If reset fails,
1579                          * leave the adapter in the broken state.
1580                          */
1581
1582                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1583                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1584
1585                         /* Reset adapter and bring it back on-line */
1586
1587                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1588                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1589                         printk("%s: Resetting adapter...\n", bp->dev->name);
1590                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1591                                 {
1592                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1593                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1594                                 return;
1595                                 }
1596                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1597                         }
1598                 else if (state == PI_STATE_K_LINK_AVAIL)
1599                         {
1600                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1601                         }
1602                 }
1603         }
1604
1605
1606 /*
1607  * ==================
1608  * = dfx_int_common =
1609  * ==================
1610  *
1611  * Overview:
1612  *   Interrupt service routine (ISR)
1613  *
1614  * Returns:
1615  *   None
1616  *
1617  * Arguments:
1618  *   bp - pointer to board information
1619  *
1620  * Functional Description:
1621  *   This is the ISR which processes incoming adapter interrupts.
1622  *
1623  * Return Codes:
1624  *   None
1625  *
1626  * Assumptions:
1627  *   This routine assumes PDQ interrupts have not been disabled.
1628  *   When interrupts are disabled at the PDQ, the Port Status register
1629  *   is automatically cleared.  This routine uses the Port Status
1630  *   register value to determine whether a Type 0 interrupt occurred,
1631  *   so it's important that adapter interrupts are not normally
1632  *   enabled/disabled at the PDQ.
1633  *
1634  *   It's vital that this routine is NOT reentered for the
1635  *   same board and that the OS is not in another section of
1636  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1637  *   different thread.
1638  *
1639  * Side Effects:
1640  *   Pending interrupts are serviced.  Depending on the type of
1641  *   interrupt, acknowledging and clearing the interrupt at the
1642  *   PDQ involves writing a register to clear the interrupt bit
1643  *   or updating completion indices.
1644  */
1645
1646 static void dfx_int_common(struct net_device *dev)
1647 {
1648         DFX_board_t     *bp = dev->priv;
1649         PI_UINT32       port_status;            /* Port Status register */
1650
1651         /* Process xmt interrupts - frequent case, so always call this routine */
1652
1653         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1654                 netif_wake_queue(dev);
1655
1656         /* Process rcv interrupts - frequent case, so always call this routine */
1657
1658         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1659
1660         /*
1661          * Transmit and receive producer and completion indices are updated on the
1662          * adapter by writing to the Type 2 Producer register.  Since the frequent
1663          * case is that we'll be processing either LLC transmit or receive buffers,
1664          * we'll optimize I/O writes by doing a single register write here.
1665          */
1666
1667         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1668
1669         /* Read PDQ Port Status register to find out which interrupts need processing */
1670
1671         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1672
1673         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1674
1675         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1676                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1677         }
1678
1679
1680 /*
1681  * =================
1682  * = dfx_interrupt =
1683  * =================
1684  *
1685  * Overview:
1686  *   Interrupt processing routine
1687  *
1688  * Returns:
1689  *   Whether a valid interrupt was seen.
1690  *
1691  * Arguments:
1692  *   irq        - interrupt vector
1693  *   dev_id     - pointer to device information
1694  *
1695  * Functional Description:
1696  *   This routine calls the interrupt processing routine for this adapter.  It
1697  *   disables and reenables adapter interrupts, as appropriate.  We can support
1698  *   shared interrupts since the incoming dev_id pointer provides our device
1699  *   structure context.
1700  *
1701  * Return Codes:
1702  *   IRQ_HANDLED - an IRQ was handled.
1703  *   IRQ_NONE    - no IRQ was handled.
1704  *
1705  * Assumptions:
1706  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1707  *   on Intel-based systems) is done by the operating system outside this
1708  *   routine.
1709  *
1710  *       System interrupts are enabled through this call.
1711  *
1712  * Side Effects:
1713  *   Interrupts are disabled, then reenabled at the adapter.
1714  */
1715
1716 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1717 {
1718         struct net_device       *dev = dev_id;
1719         DFX_board_t             *bp;    /* private board structure pointer */
1720
1721         /* Get board pointer only if device structure is valid */
1722
1723         bp = dev->priv;
1724
1725         /* See if we're already servicing an interrupt */
1726
1727         /* Service adapter interrupts */
1728
1729         if (bp->bus_type == DFX_BUS_TYPE_PCI) {
1730                 u32 status;
1731
1732                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1733                 if (!(status & PFI_STATUS_M_PDQ_INT))
1734                         return IRQ_NONE;
1735
1736                 spin_lock(&bp->lock);
1737
1738                 /* Disable PDQ-PFI interrupts at PFI */
1739                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1740                                     PFI_MODE_M_DMA_ENB);
1741
1742                 /* Call interrupt service routine for this adapter */
1743                 dfx_int_common(dev);
1744
1745                 /* Clear PDQ interrupt status bit and reenable interrupts */
1746                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1747                                     PFI_STATUS_M_PDQ_INT);
1748                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1749                                     (PFI_MODE_M_PDQ_INT_ENB |
1750                                      PFI_MODE_M_DMA_ENB));
1751
1752                 spin_unlock(&bp->lock);
1753         } else {
1754                 u8 status;
1755
1756                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1757                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1758                         return IRQ_NONE;
1759
1760                 spin_lock(&bp->lock);
1761
1762                 /* Disable interrupts at the ESIC */
1763                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1764                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1765
1766                 /* Call interrupt service routine for this adapter */
1767                 dfx_int_common(dev);
1768
1769                 /* Reenable interrupts at the ESIC */
1770                 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1771                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1772                 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1773
1774                 spin_unlock(&bp->lock);
1775         }
1776
1777         return IRQ_HANDLED;
1778 }
1779
1780
1781 /*
1782  * =====================
1783  * = dfx_ctl_get_stats =
1784  * =====================
1785  *
1786  * Overview:
1787  *   Get statistics for FDDI adapter
1788  *
1789  * Returns:
1790  *   Pointer to FDDI statistics structure
1791  *
1792  * Arguments:
1793  *   dev - pointer to device information
1794  *
1795  * Functional Description:
1796  *   Gets current MIB objects from adapter, then
1797  *   returns FDDI statistics structure as defined
1798  *   in if_fddi.h.
1799  *
1800  *   Note: Since the FDDI statistics structure is
1801  *   still new and the device structure doesn't
1802  *   have an FDDI-specific get statistics handler,
1803  *   we'll return the FDDI statistics structure as
1804  *   a pointer to an Ethernet statistics structure.
1805  *   That way, at least the first part of the statistics
1806  *   structure can be decoded properly, and it allows
1807  *   "smart" applications to perform a second cast to
1808  *   decode the FDDI-specific statistics.
1809  *
1810  *   We'll have to pay attention to this routine as the
1811  *   device structure becomes more mature and LAN media
1812  *   independent.
1813  *
1814  * Return Codes:
1815  *   None
1816  *
1817  * Assumptions:
1818  *   None
1819  *
1820  * Side Effects:
1821  *   None
1822  */
1823
1824 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1825         {
1826         DFX_board_t     *bp = dev->priv;
1827
1828         /* Fill the bp->stats structure with driver-maintained counters */
1829
1830         bp->stats.gen.rx_packets = bp->rcv_total_frames;
1831         bp->stats.gen.tx_packets = bp->xmt_total_frames;
1832         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
1833         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
1834         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
1835                                    bp->rcv_frame_status_errors +
1836                                    bp->rcv_length_errors;
1837         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
1838         bp->stats.gen.rx_dropped = bp->rcv_discards;
1839         bp->stats.gen.tx_dropped = bp->xmt_discards;
1840         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
1841         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
1842
1843         /* Get FDDI SMT MIB objects */
1844
1845         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1846         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1847                 return((struct net_device_stats *) &bp->stats);
1848
1849         /* Fill the bp->stats structure with the SMT MIB object values */
1850
1851         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1852         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1853         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1854         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1855         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1856         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1857         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1858         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1859         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1860         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1861         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1862         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1863         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1864         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1865         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1866         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1867         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1868         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1869         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1870         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1871         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1872         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1873         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1874         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1875         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1876         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1877         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1878         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1879         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1880         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1881         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1882         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1883         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1884         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1885         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1886         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1887         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1888         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1889         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1890         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1891         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1892         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1893         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1894         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1895         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1896         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1897         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1898         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1899         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1900         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1901         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1902         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1903         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1904         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1905         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1906         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1907         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1908         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1909         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1910         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1911         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1912         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1913         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1914         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1915         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1916         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1917         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1918         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1919         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1920         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1921         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1922         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1923         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1924         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1925         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1926         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1927         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1928         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1929         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1930         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1931         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1932         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1933         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1934         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1935         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1936         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1937         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1938         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1939         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1940         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1941         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1942         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1943
1944         /* Get FDDI counters */
1945
1946         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1947         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1948                 return((struct net_device_stats *) &bp->stats);
1949
1950         /* Fill the bp->stats structure with the FDDI counter values */
1951
1952         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1953         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1954         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1955         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1956         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1957         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1958         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1959         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1960         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1961         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1962         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1963
1964         return((struct net_device_stats *) &bp->stats);
1965         }
1966
1967
1968 /*
1969  * ==============================
1970  * = dfx_ctl_set_multicast_list =
1971  * ==============================
1972  *
1973  * Overview:
1974  *   Enable/Disable LLC frame promiscuous mode reception
1975  *   on the adapter and/or update multicast address table.
1976  *
1977  * Returns:
1978  *   None
1979  *
1980  * Arguments:
1981  *   dev - pointer to device information
1982  *
1983  * Functional Description:
1984  *   This routine follows a fairly simple algorithm for setting the
1985  *   adapter filters and CAM:
1986  *
1987  *              if IFF_PROMISC flag is set
1988  *                      enable LLC individual/group promiscuous mode
1989  *              else
1990  *                      disable LLC individual/group promiscuous mode
1991  *                      if number of incoming multicast addresses >
1992  *                                      (CAM max size - number of unicast addresses in CAM)
1993  *                              enable LLC group promiscuous mode
1994  *                              set driver-maintained multicast address count to zero
1995  *                      else
1996  *                              disable LLC group promiscuous mode
1997  *                              set driver-maintained multicast address count to incoming count
1998  *                      update adapter CAM
1999  *              update adapter filters
2000  *
2001  * Return Codes:
2002  *   None
2003  *
2004  * Assumptions:
2005  *   Multicast addresses are presented in canonical (LSB) format.
2006  *
2007  * Side Effects:
2008  *   On-board adapter CAM and filters are updated.
2009  */
2010
2011 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2012         {
2013         DFX_board_t                     *bp = dev->priv;
2014         int                                     i;                      /* used as index in for loop */
2015         struct dev_mc_list      *dmi;           /* ptr to multicast addr entry */
2016
2017         /* Enable LLC frame promiscuous mode, if necessary */
2018
2019         if (dev->flags & IFF_PROMISC)
2020                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2021
2022         /* Else, update multicast address table */
2023
2024         else
2025                 {
2026                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2027                 /*
2028                  * Check whether incoming multicast address count exceeds table size
2029                  *
2030                  * Note: The adapters utilize an on-board 64 entry CAM for
2031                  *       supporting perfect filtering of multicast packets
2032                  *               and bridge functions when adding unicast addresses.
2033                  *               There is no hash function available.  To support
2034                  *               additional multicast addresses, the all multicast
2035                  *               filter (LLC group promiscuous mode) must be enabled.
2036                  *
2037                  *               The firmware reserves two CAM entries for SMT-related
2038                  *               multicast addresses, which leaves 62 entries available.
2039                  *               The following code ensures that we're not being asked
2040                  *               to add more than 62 addresses to the CAM.  If we are,
2041                  *               the driver will enable the all multicast filter.
2042                  *               Should the number of multicast addresses drop below
2043                  *               the high water mark, the filter will be disabled and
2044                  *               perfect filtering will be used.
2045                  */
2046
2047                 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2048                         {
2049                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2050                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2051                         }
2052                 else
2053                         {
2054                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2055                         bp->mc_count    = dev->mc_count;                /* Add mc addrs to CAM */
2056                         }
2057
2058                 /* Copy addresses to multicast address table, then update adapter CAM */
2059
2060                 dmi = dev->mc_list;                             /* point to first multicast addr */
2061                 for (i=0; i < bp->mc_count; i++)
2062                         {
2063                         memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2064                         dmi = dmi->next;                        /* point to next multicast addr */
2065                         }
2066                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2067                         {
2068                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2069                         }
2070                 else
2071                         {
2072                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2073                         }
2074                 }
2075
2076         /* Update adapter filters */
2077
2078         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2079                 {
2080                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2081                 }
2082         else
2083                 {
2084                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2085                 }
2086         }
2087
2088
2089 /*
2090  * ===========================
2091  * = dfx_ctl_set_mac_address =
2092  * ===========================
2093  *
2094  * Overview:
2095  *   Add node address override (unicast address) to adapter
2096  *   CAM and update dev_addr field in device table.
2097  *
2098  * Returns:
2099  *   None
2100  *
2101  * Arguments:
2102  *   dev  - pointer to device information
2103  *   addr - pointer to sockaddr structure containing unicast address to add
2104  *
2105  * Functional Description:
2106  *   The adapter supports node address overrides by adding one or more
2107  *   unicast addresses to the adapter CAM.  This is similar to adding
2108  *   multicast addresses.  In this routine we'll update the driver and
2109  *   device structures with the new address, then update the adapter CAM
2110  *   to ensure that the adapter will copy and strip frames destined and
2111  *   sourced by that address.
2112  *
2113  * Return Codes:
2114  *   Always returns zero.
2115  *
2116  * Assumptions:
2117  *   The address pointed to by addr->sa_data is a valid unicast
2118  *   address and is presented in canonical (LSB) format.
2119  *
2120  * Side Effects:
2121  *   On-board adapter CAM is updated.  On-board adapter filters
2122  *   may be updated.
2123  */
2124
2125 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2126         {
2127         DFX_board_t             *bp = dev->priv;
2128         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2129
2130         /* Copy unicast address to driver-maintained structs and update count */
2131
2132         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2133         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2134         bp->uc_count = 1;
2135
2136         /*
2137          * Verify we're not exceeding the CAM size by adding unicast address
2138          *
2139          * Note: It's possible that before entering this routine we've
2140          *       already filled the CAM with 62 multicast addresses.
2141          *               Since we need to place the node address override into
2142          *               the CAM, we have to check to see that we're not
2143          *               exceeding the CAM size.  If we are, we have to enable
2144          *               the LLC group (multicast) promiscuous mode filter as
2145          *               in dfx_ctl_set_multicast_list.
2146          */
2147
2148         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2149                 {
2150                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2151                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2152
2153                 /* Update adapter filters */
2154
2155                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2156                         {
2157                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2158                         }
2159                 else
2160                         {
2161                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2162                         }
2163                 }
2164
2165         /* Update adapter CAM with new unicast address */
2166
2167         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2168                 {
2169                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2170                 }
2171         else
2172                 {
2173                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2174                 }
2175         return(0);                      /* always return zero */
2176         }
2177
2178
2179 /*
2180  * ======================
2181  * = dfx_ctl_update_cam =
2182  * ======================
2183  *
2184  * Overview:
2185  *   Procedure to update adapter CAM (Content Addressable Memory)
2186  *   with desired unicast and multicast address entries.
2187  *
2188  * Returns:
2189  *   Condition code
2190  *
2191  * Arguments:
2192  *   bp - pointer to board information
2193  *
2194  * Functional Description:
2195  *   Updates adapter CAM with current contents of board structure
2196  *   unicast and multicast address tables.  Since there are only 62
2197  *   free entries in CAM, this routine ensures that the command
2198  *   request buffer is not overrun.
2199  *
2200  * Return Codes:
2201  *   DFX_K_SUCCESS - Request succeeded
2202  *   DFX_K_FAILURE - Request failed
2203  *
2204  * Assumptions:
2205  *   All addresses being added (unicast and multicast) are in canonical
2206  *   order.
2207  *
2208  * Side Effects:
2209  *   On-board adapter CAM is updated.
2210  */
2211
2212 static int dfx_ctl_update_cam(DFX_board_t *bp)
2213         {
2214         int                     i;                              /* used as index */
2215         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2216
2217         /*
2218          * Fill in command request information
2219          *
2220          * Note: Even though both the unicast and multicast address
2221          *       table entries are stored as contiguous 6 byte entries,
2222          *               the firmware address filter set command expects each
2223          *               entry to be two longwords (8 bytes total).  We must be
2224          *               careful to only copy the six bytes of each unicast and
2225          *               multicast table entry into each command entry.  This
2226          *               is also why we must first clear the entire command
2227          *               request buffer.
2228          */
2229
2230         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2231         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2232         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2233
2234         /* Now add unicast addresses to command request buffer, if any */
2235
2236         for (i=0; i < (int)bp->uc_count; i++)
2237                 {
2238                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2239                         {
2240                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2241                         p_addr++;                       /* point to next command entry */
2242                         }
2243                 }
2244
2245         /* Now add multicast addresses to command request buffer, if any */
2246
2247         for (i=0; i < (int)bp->mc_count; i++)
2248                 {
2249                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2250                         {
2251                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2252                         p_addr++;                       /* point to next command entry */
2253                         }
2254                 }
2255
2256         /* Issue command to update adapter CAM, then return */
2257
2258         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2259                 return(DFX_K_FAILURE);
2260         return(DFX_K_SUCCESS);
2261         }
2262
2263
2264 /*
2265  * ==========================
2266  * = dfx_ctl_update_filters =
2267  * ==========================
2268  *
2269  * Overview:
2270  *   Procedure to update adapter filters with desired
2271  *   filter settings.
2272  *
2273  * Returns:
2274  *   Condition code
2275  *
2276  * Arguments:
2277  *   bp - pointer to board information
2278  *
2279  * Functional Description:
2280  *   Enables or disables filter using current filter settings.
2281  *
2282  * Return Codes:
2283  *   DFX_K_SUCCESS - Request succeeded.
2284  *   DFX_K_FAILURE - Request failed.
2285  *
2286  * Assumptions:
2287  *   We must always pass up packets destined to the broadcast
2288  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2289  *   broadcast filter enabled.
2290  *
2291  * Side Effects:
2292  *   On-board adapter filters are updated.
2293  */
2294
2295 static int dfx_ctl_update_filters(DFX_board_t *bp)
2296         {
2297         int     i = 0;                                  /* used as index */
2298
2299         /* Fill in command request information */
2300
2301         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2302
2303         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2304
2305         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2306         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2307
2308         /* Initialize LLC Individual/Group Promiscuous filter */
2309
2310         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2311         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2312
2313         /* Initialize LLC Group Promiscuous filter */
2314
2315         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2316         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2317
2318         /* Terminate the item code list */
2319
2320         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2321
2322         /* Issue command to update adapter filters, then return */
2323
2324         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2325                 return(DFX_K_FAILURE);
2326         return(DFX_K_SUCCESS);
2327         }
2328
2329
2330 /*
2331  * ======================
2332  * = dfx_hw_dma_cmd_req =
2333  * ======================
2334  *
2335  * Overview:
2336  *   Sends PDQ DMA command to adapter firmware
2337  *
2338  * Returns:
2339  *   Condition code
2340  *
2341  * Arguments:
2342  *   bp - pointer to board information
2343  *
2344  * Functional Description:
2345  *   The command request and response buffers are posted to the adapter in the manner
2346  *   described in the PDQ Port Specification:
2347  *
2348  *              1. Command Response Buffer is posted to adapter.
2349  *              2. Command Request Buffer is posted to adapter.
2350  *              3. Command Request consumer index is polled until it indicates that request
2351  *         buffer has been DMA'd to adapter.
2352  *              4. Command Response consumer index is polled until it indicates that response
2353  *         buffer has been DMA'd from adapter.
2354  *
2355  *   This ordering ensures that a response buffer is already available for the firmware
2356  *   to use once it's done processing the request buffer.
2357  *
2358  * Return Codes:
2359  *   DFX_K_SUCCESS        - DMA command succeeded
2360  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2361  *   DFX_K_HW_TIMEOUT - DMA command timed out
2362  *
2363  * Assumptions:
2364  *   Command request buffer has already been filled with desired DMA command.
2365  *
2366  * Side Effects:
2367  *   None
2368  */
2369
2370 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2371         {
2372         int status;                     /* adapter status */
2373         int timeout_cnt;        /* used in for loops */
2374
2375         /* Make sure the adapter is in a state that we can issue the DMA command in */
2376
2377         status = dfx_hw_adap_state_rd(bp);
2378         if ((status == PI_STATE_K_RESET)                ||
2379                 (status == PI_STATE_K_HALTED)           ||
2380                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2381                 (status == PI_STATE_K_UPGRADE))
2382                 return(DFX_K_OUTSTATE);
2383
2384         /* Put response buffer on the command response queue */
2385
2386         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2387                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2388         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2389
2390         /* Bump (and wrap) the producer index and write out to register */
2391
2392         bp->cmd_rsp_reg.index.prod += 1;
2393         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2394         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2395
2396         /* Put request buffer on the command request queue */
2397
2398         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2399                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2400         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2401
2402         /* Bump (and wrap) the producer index and write out to register */
2403
2404         bp->cmd_req_reg.index.prod += 1;
2405         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2406         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2407
2408         /*
2409          * Here we wait for the command request consumer index to be equal
2410          * to the producer, indicating that the adapter has DMAed the request.
2411          */
2412
2413         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2414                 {
2415                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2416                         break;
2417                 udelay(100);                    /* wait for 100 microseconds */
2418                 }
2419         if (timeout_cnt == 0)
2420                 return(DFX_K_HW_TIMEOUT);
2421
2422         /* Bump (and wrap) the completion index and write out to register */
2423
2424         bp->cmd_req_reg.index.comp += 1;
2425         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2426         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2427
2428         /*
2429          * Here we wait for the command response consumer index to be equal
2430          * to the producer, indicating that the adapter has DMAed the response.
2431          */
2432
2433         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2434                 {
2435                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2436                         break;
2437                 udelay(100);                    /* wait for 100 microseconds */
2438                 }
2439         if (timeout_cnt == 0)
2440                 return(DFX_K_HW_TIMEOUT);
2441
2442         /* Bump (and wrap) the completion index and write out to register */
2443
2444         bp->cmd_rsp_reg.index.comp += 1;
2445         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2446         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2447         return(DFX_K_SUCCESS);
2448         }
2449
2450
2451 /*
2452  * ========================
2453  * = dfx_hw_port_ctrl_req =
2454  * ========================
2455  *
2456  * Overview:
2457  *   Sends PDQ port control command to adapter firmware
2458  *
2459  * Returns:
2460  *   Host data register value in host_data if ptr is not NULL
2461  *
2462  * Arguments:
2463  *   bp                 - pointer to board information
2464  *       command        - port control command
2465  *       data_a         - port data A register value
2466  *       data_b         - port data B register value
2467  *       host_data      - ptr to host data register value
2468  *
2469  * Functional Description:
2470  *   Send generic port control command to adapter by writing
2471  *   to various PDQ port registers, then polling for completion.
2472  *
2473  * Return Codes:
2474  *   DFX_K_SUCCESS        - port control command succeeded
2475  *   DFX_K_HW_TIMEOUT - port control command timed out
2476  *
2477  * Assumptions:
2478  *   None
2479  *
2480  * Side Effects:
2481  *   None
2482  */
2483
2484 static int dfx_hw_port_ctrl_req(
2485         DFX_board_t     *bp,
2486         PI_UINT32       command,
2487         PI_UINT32       data_a,
2488         PI_UINT32       data_b,
2489         PI_UINT32       *host_data
2490         )
2491
2492         {
2493         PI_UINT32       port_cmd;               /* Port Control command register value */
2494         int                     timeout_cnt;    /* used in for loops */
2495
2496         /* Set Command Error bit in command longword */
2497
2498         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2499
2500         /* Issue port command to the adapter */
2501
2502         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2503         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2504         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2505
2506         /* Now wait for command to complete */
2507
2508         if (command == PI_PCTRL_M_BLAST_FLASH)
2509                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2510         else
2511                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2512
2513         for (; timeout_cnt > 0; timeout_cnt--)
2514                 {
2515                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2516                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2517                         break;
2518                 udelay(100);                    /* wait for 100 microseconds */
2519                 }
2520         if (timeout_cnt == 0)
2521                 return(DFX_K_HW_TIMEOUT);
2522
2523         /*
2524          * If the address of host_data is non-zero, assume caller has supplied a
2525          * non NULL pointer, and return the contents of the HOST_DATA register in
2526          * it.
2527          */
2528
2529         if (host_data != NULL)
2530                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2531         return(DFX_K_SUCCESS);
2532         }
2533
2534
2535 /*
2536  * =====================
2537  * = dfx_hw_adap_reset =
2538  * =====================
2539  *
2540  * Overview:
2541  *   Resets adapter
2542  *
2543  * Returns:
2544  *   None
2545  *
2546  * Arguments:
2547  *   bp   - pointer to board information
2548  *   type - type of reset to perform
2549  *
2550  * Functional Description:
2551  *   Issue soft reset to adapter by writing to PDQ Port Reset
2552  *   register.  Use incoming reset type to tell adapter what
2553  *   kind of reset operation to perform.
2554  *
2555  * Return Codes:
2556  *   None
2557  *
2558  * Assumptions:
2559  *   This routine merely issues a soft reset to the adapter.
2560  *   It is expected that after this routine returns, the caller
2561  *   will appropriately poll the Port Status register for the
2562  *   adapter to enter the proper state.
2563  *
2564  * Side Effects:
2565  *   Internal adapter registers are cleared.
2566  */
2567
2568 static void dfx_hw_adap_reset(
2569         DFX_board_t     *bp,
2570         PI_UINT32       type
2571         )
2572
2573         {
2574         /* Set Reset type and assert reset */
2575
2576         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2577         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2578
2579         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2580
2581         udelay(20);
2582
2583         /* Deassert reset */
2584
2585         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2586         }
2587
2588
2589 /*
2590  * ========================
2591  * = dfx_hw_adap_state_rd =
2592  * ========================
2593  *
2594  * Overview:
2595  *   Returns current adapter state
2596  *
2597  * Returns:
2598  *   Adapter state per PDQ Port Specification
2599  *
2600  * Arguments:
2601  *   bp - pointer to board information
2602  *
2603  * Functional Description:
2604  *   Reads PDQ Port Status register and returns adapter state.
2605  *
2606  * Return Codes:
2607  *   None
2608  *
2609  * Assumptions:
2610  *   None
2611  *
2612  * Side Effects:
2613  *   None
2614  */
2615
2616 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2617         {
2618         PI_UINT32 port_status;          /* Port Status register value */
2619
2620         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2621         return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2622         }
2623
2624
2625 /*
2626  * =====================
2627  * = dfx_hw_dma_uninit =
2628  * =====================
2629  *
2630  * Overview:
2631  *   Brings adapter to DMA_UNAVAILABLE state
2632  *
2633  * Returns:
2634  *   Condition code
2635  *
2636  * Arguments:
2637  *   bp   - pointer to board information
2638  *   type - type of reset to perform
2639  *
2640  * Functional Description:
2641  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2642  *              1. Set reset type bit in Port Data A Register then reset adapter.
2643  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2644  *
2645  * Return Codes:
2646  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2647  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2648  *
2649  * Assumptions:
2650  *   None
2651  *
2652  * Side Effects:
2653  *   Internal adapter registers are cleared.
2654  */
2655
2656 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2657         {
2658         int timeout_cnt;        /* used in for loops */
2659
2660         /* Set reset type bit and reset adapter */
2661
2662         dfx_hw_adap_reset(bp, type);
2663
2664         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2665
2666         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2667                 {
2668                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2669                         break;
2670                 udelay(100);                                    /* wait for 100 microseconds */
2671                 }
2672         if (timeout_cnt == 0)
2673                 return(DFX_K_HW_TIMEOUT);
2674         return(DFX_K_SUCCESS);
2675         }
2676
2677 /*
2678  *      Align an sk_buff to a boundary power of 2
2679  *
2680  */
2681
2682 static void my_skb_align(struct sk_buff *skb, int n)
2683 {
2684         unsigned long x = (unsigned long)skb->data;
2685         unsigned long v;
2686
2687         v = ALIGN(x, n);        /* Where we want to be */
2688
2689         skb_reserve(skb, v - x);
2690 }
2691
2692
2693 /*
2694  * ================
2695  * = dfx_rcv_init =
2696  * ================
2697  *
2698  * Overview:
2699  *   Produces buffers to adapter LLC Host receive descriptor block
2700  *
2701  * Returns:
2702  *   None
2703  *
2704  * Arguments:
2705  *   bp - pointer to board information
2706  *   get_buffers - non-zero if buffers to be allocated
2707  *
2708  * Functional Description:
2709  *   This routine can be called during dfx_adap_init() or during an adapter
2710  *       reset.  It initializes the descriptor block and produces all allocated
2711  *   LLC Host queue receive buffers.
2712  *
2713  * Return Codes:
2714  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2715  *   dynamic buffer allocation). If the buffer allocation failed, the
2716  *   already allocated buffers will not be released and the caller should do
2717  *   this.
2718  *
2719  * Assumptions:
2720  *   The PDQ has been reset and the adapter and driver maintained Type 2
2721  *   register indices are cleared.
2722  *
2723  * Side Effects:
2724  *   Receive buffers are posted to the adapter LLC queue and the adapter
2725  *   is notified.
2726  */
2727
2728 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2729         {
2730         int     i, j;                                   /* used in for loop */
2731
2732         /*
2733          *  Since each receive buffer is a single fragment of same length, initialize
2734          *  first longword in each receive descriptor for entire LLC Host descriptor
2735          *  block.  Also initialize second longword in each receive descriptor with
2736          *  physical address of receive buffer.  We'll always allocate receive
2737          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2738          *  block and produce new receive buffers by simply updating the receive
2739          *  producer index.
2740          *
2741          *      Assumptions:
2742          *              To support all shipping versions of PDQ, the receive buffer size
2743          *              must be mod 128 in length and the physical address must be 128 byte
2744          *              aligned.  In other words, bits 0-6 of the length and address must
2745          *              be zero for the following descriptor field entries to be correct on
2746          *              all PDQ-based boards.  We guaranteed both requirements during
2747          *              driver initialization when we allocated memory for the receive buffers.
2748          */
2749
2750         if (get_buffers) {
2751 #ifdef DYNAMIC_BUFFERS
2752         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2753                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2754                 {
2755                         struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2756                         if (!newskb)
2757                                 return -ENOMEM;
2758                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2759                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2760                         /*
2761                          * align to 128 bytes for compatibility with
2762                          * the old EISA boards.
2763                          */
2764
2765                         my_skb_align(newskb, 128);
2766                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2767                                 (u32)pci_map_single(bp->pci_dev, newskb->data,
2768                                                     NEW_SKB_SIZE,
2769                                                     PCI_DMA_FROMDEVICE);
2770                         /*
2771                          * p_rcv_buff_va is only used inside the
2772                          * kernel so we put the skb pointer here.
2773                          */
2774                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2775                 }
2776 #else
2777         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2778                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2779                         {
2780                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2781                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2782                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2783                         bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2784                         }
2785 #endif
2786         }
2787
2788         /* Update receive producer and Type 2 register */
2789
2790         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2791         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2792         return 0;
2793         }
2794
2795
2796 /*
2797  * =========================
2798  * = dfx_rcv_queue_process =
2799  * =========================
2800  *
2801  * Overview:
2802  *   Process received LLC frames.
2803  *
2804  * Returns:
2805  *   None
2806  *
2807  * Arguments:
2808  *   bp - pointer to board information
2809  *
2810  * Functional Description:
2811  *   Received LLC frames are processed until there are no more consumed frames.
2812  *   Once all frames are processed, the receive buffers are returned to the
2813  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2814  *   in this routine, because there are a fixed number of receive buffers to
2815  *   process and buffers are not produced until this routine exits and returns
2816  *   to the ISR.
2817  *
2818  * Return Codes:
2819  *   None
2820  *
2821  * Assumptions:
2822  *   None
2823  *
2824  * Side Effects:
2825  *   None
2826  */
2827
2828 static void dfx_rcv_queue_process(
2829         DFX_board_t *bp
2830         )
2831
2832         {
2833         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
2834         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
2835         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
2836         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
2837
2838         /* Service all consumed LLC receive frames */
2839
2840         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2841         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2842                 {
2843                 /* Process any errors */
2844
2845                 int entry;
2846
2847                 entry = bp->rcv_xmt_reg.index.rcv_comp;
2848 #ifdef DYNAMIC_BUFFERS
2849                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2850 #else
2851                 p_buff = (char *) bp->p_rcv_buff_va[entry];
2852 #endif
2853                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2854
2855                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2856                         {
2857                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
2858                                 bp->rcv_crc_errors++;
2859                         else
2860                                 bp->rcv_frame_status_errors++;
2861                         }
2862                 else
2863                 {
2864                         int rx_in_place = 0;
2865
2866                         /* The frame was received without errors - verify packet length */
2867
2868                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2869                         pkt_len -= 4;                           /* subtract 4 byte CRC */
2870                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2871                                 bp->rcv_length_errors++;
2872                         else{
2873 #ifdef DYNAMIC_BUFFERS
2874                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2875                                         struct sk_buff *newskb;
2876
2877                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
2878                                         if (newskb){
2879                                                 rx_in_place = 1;
2880
2881                                                 my_skb_align(newskb, 128);
2882                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2883                                                 pci_unmap_single(bp->pci_dev,
2884                                                         bp->descr_block_virt->rcv_data[entry].long_1,
2885                                                         NEW_SKB_SIZE,
2886                                                         PCI_DMA_FROMDEVICE);
2887                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
2888                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
2889                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
2890                                                         (u32)pci_map_single(bp->pci_dev,
2891                                                                 newskb->data,
2892                                                                 NEW_SKB_SIZE,
2893                                                                 PCI_DMA_FROMDEVICE);
2894                                         } else
2895                                                 skb = NULL;
2896                                 } else
2897 #endif
2898                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2899                                 if (skb == NULL)
2900                                         {
2901                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
2902                                         bp->rcv_discards++;
2903                                         break;
2904                                         }
2905                                 else {
2906 #ifndef DYNAMIC_BUFFERS
2907                                         if (! rx_in_place)
2908 #endif
2909                                         {
2910                                                 /* Receive buffer allocated, pass receive packet up */
2911
2912                                                 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2913                                         }
2914
2915                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
2916                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
2917                                         skb->dev = bp->dev;             /* pass up device pointer */
2918
2919                                         skb->protocol = fddi_type_trans(skb, bp->dev);
2920                                         bp->rcv_total_bytes += skb->len;
2921                                         netif_rx(skb);
2922
2923                                         /* Update the rcv counters */
2924                                         bp->dev->last_rx = jiffies;
2925                                         bp->rcv_total_frames++;
2926                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2927                                                 bp->rcv_multicast_frames++;
2928                                 }
2929                         }
2930                         }
2931
2932                 /*
2933                  * Advance the producer (for recycling) and advance the completion
2934                  * (for servicing received frames).  Note that it is okay to
2935                  * advance the producer without checking that it passes the
2936                  * completion index because they are both advanced at the same
2937                  * rate.
2938                  */
2939
2940                 bp->rcv_xmt_reg.index.rcv_prod += 1;
2941                 bp->rcv_xmt_reg.index.rcv_comp += 1;
2942                 }
2943         }
2944
2945
2946 /*
2947  * =====================
2948  * = dfx_xmt_queue_pkt =
2949  * =====================
2950  *
2951  * Overview:
2952  *   Queues packets for transmission
2953  *
2954  * Returns:
2955  *   Condition code
2956  *
2957  * Arguments:
2958  *   skb - pointer to sk_buff to queue for transmission
2959  *   dev - pointer to device information
2960  *
2961  * Functional Description:
2962  *   Here we assume that an incoming skb transmit request
2963  *   is contained in a single physically contiguous buffer
2964  *   in which the virtual address of the start of packet
2965  *   (skb->data) can be converted to a physical address
2966  *   by using pci_map_single().
2967  *
2968  *   Since the adapter architecture requires a three byte
2969  *   packet request header to prepend the start of packet,
2970  *   we'll write the three byte field immediately prior to
2971  *   the FC byte.  This assumption is valid because we've
2972  *   ensured that dev->hard_header_len includes three pad
2973  *   bytes.  By posting a single fragment to the adapter,
2974  *   we'll reduce the number of descriptor fetches and
2975  *   bus traffic needed to send the request.
2976  *
2977  *   Also, we can't free the skb until after it's been DMA'd
2978  *   out by the adapter, so we'll queue it in the driver and
2979  *   return it in dfx_xmt_done.
2980  *
2981  * Return Codes:
2982  *   0 - driver queued packet, link is unavailable, or skbuff was bad
2983  *       1 - caller should requeue the sk_buff for later transmission
2984  *
2985  * Assumptions:
2986  *       First and foremost, we assume the incoming skb pointer
2987  *   is NOT NULL and is pointing to a valid sk_buff structure.
2988  *
2989  *   The outgoing packet is complete, starting with the
2990  *   frame control byte including the last byte of data,
2991  *   but NOT including the 4 byte CRC.  We'll let the
2992  *   adapter hardware generate and append the CRC.
2993  *
2994  *   The entire packet is stored in one physically
2995  *   contiguous buffer which is not cached and whose
2996  *   32-bit physical address can be determined.
2997  *
2998  *   It's vital that this routine is NOT reentered for the
2999  *   same board and that the OS is not in another section of
3000  *   code (eg. dfx_int_common) for the same board on a
3001  *   different thread.
3002  *
3003  * Side Effects:
3004  *   None
3005  */
3006
3007 static int dfx_xmt_queue_pkt(
3008         struct sk_buff  *skb,
3009         struct net_device       *dev
3010         )
3011
3012         {
3013         DFX_board_t             *bp = dev->priv;
3014         u8                      prod;                           /* local transmit producer index */
3015         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3016         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3017         unsigned long           flags;
3018
3019         netif_stop_queue(dev);
3020
3021         /*
3022          * Verify that incoming transmit request is OK
3023          *
3024          * Note: The packet size check is consistent with other
3025          *               Linux device drivers, although the correct packet
3026          *               size should be verified before calling the
3027          *               transmit routine.
3028          */
3029
3030         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3031         {
3032                 printk("%s: Invalid packet length - %u bytes\n",
3033                         dev->name, skb->len);
3034                 bp->xmt_length_errors++;                /* bump error counter */
3035                 netif_wake_queue(dev);
3036                 dev_kfree_skb(skb);
3037                 return(0);                              /* return "success" */
3038         }
3039         /*
3040          * See if adapter link is available, if not, free buffer
3041          *
3042          * Note: If the link isn't available, free buffer and return 0
3043          *               rather than tell the upper layer to requeue the packet.
3044          *               The methodology here is that by the time the link
3045          *               becomes available, the packet to be sent will be
3046          *               fairly stale.  By simply dropping the packet, the
3047          *               higher layer protocols will eventually time out
3048          *               waiting for response packets which it won't receive.
3049          */
3050
3051         if (bp->link_available == PI_K_FALSE)
3052                 {
3053                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3054                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3055                 else
3056                         {
3057                         bp->xmt_discards++;                                     /* bump error counter */
3058                         dev_kfree_skb(skb);             /* free sk_buff now */
3059                         netif_wake_queue(dev);
3060                         return(0);                                                      /* return "success" */
3061                         }
3062                 }
3063
3064         spin_lock_irqsave(&bp->lock, flags);
3065
3066         /* Get the current producer and the next free xmt data descriptor */
3067
3068         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3069         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3070
3071         /*
3072          * Get pointer to auxiliary queue entry to contain information
3073          * for this packet.
3074          *
3075          * Note: The current xmt producer index will become the
3076          *       current xmt completion index when we complete this
3077          *       packet later on.  So, we'll get the pointer to the
3078          *       next auxiliary queue entry now before we bump the
3079          *       producer index.
3080          */
3081
3082         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3083
3084         /* Write the three PRH bytes immediately before the FC byte */
3085
3086         skb_push(skb,3);
3087         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3088         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3089         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3090
3091         /*
3092          * Write the descriptor with buffer info and bump producer
3093          *
3094          * Note: Since we need to start DMA from the packet request
3095          *               header, we'll add 3 bytes to the DMA buffer length,
3096          *               and we'll determine the physical address of the
3097          *               buffer from the PRH, not skb->data.
3098          *
3099          * Assumptions:
3100          *               1. Packet starts with the frame control (FC) byte
3101          *                  at skb->data.
3102          *               2. The 4-byte CRC is not appended to the buffer or
3103          *                      included in the length.
3104          *               3. Packet length (skb->len) is from FC to end of
3105          *                      data, inclusive.
3106          *               4. The packet length does not exceed the maximum
3107          *                      FDDI LLC frame length of 4491 bytes.
3108          *               5. The entire packet is contained in a physically
3109          *                      contiguous, non-cached, locked memory space
3110          *                      comprised of a single buffer pointed to by
3111          *                      skb->data.
3112          *               6. The physical address of the start of packet
3113          *                      can be determined from the virtual address
3114          *                      by using pci_map_single() and is only 32-bits
3115          *                      wide.
3116          */
3117
3118         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3119         p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data,
3120                                                   skb->len, PCI_DMA_TODEVICE);
3121
3122         /*
3123          * Verify that descriptor is actually available
3124          *
3125          * Note: If descriptor isn't available, return 1 which tells
3126          *       the upper layer to requeue the packet for later
3127          *       transmission.
3128          *
3129          *       We need to ensure that the producer never reaches the
3130          *       completion, except to indicate that the queue is empty.
3131          */
3132
3133         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3134         {
3135                 skb_pull(skb,3);
3136                 spin_unlock_irqrestore(&bp->lock, flags);
3137                 return(1);                      /* requeue packet for later */
3138         }
3139
3140         /*
3141          * Save info for this packet for xmt done indication routine
3142          *
3143          * Normally, we'd save the producer index in the p_xmt_drv_descr
3144          * structure so that we'd have it handy when we complete this
3145          * packet later (in dfx_xmt_done).  However, since the current
3146          * transmit architecture guarantees a single fragment for the
3147          * entire packet, we can simply bump the completion index by
3148          * one (1) for each completed packet.
3149          *
3150          * Note: If this assumption changes and we're presented with
3151          *       an inconsistent number of transmit fragments for packet
3152          *       data, we'll need to modify this code to save the current
3153          *       transmit producer index.
3154          */
3155
3156         p_xmt_drv_descr->p_skb = skb;
3157
3158         /* Update Type 2 register */
3159
3160         bp->rcv_xmt_reg.index.xmt_prod = prod;
3161         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3162         spin_unlock_irqrestore(&bp->lock, flags);
3163         netif_wake_queue(dev);
3164         return(0);                                                      /* packet queued to adapter */
3165         }
3166
3167
3168 /*
3169  * ================
3170  * = dfx_xmt_done =
3171  * ================
3172  *
3173  * Overview:
3174  *   Processes all frames that have been transmitted.
3175  *
3176  * Returns:
3177  *   None
3178  *
3179  * Arguments:
3180  *   bp - pointer to board information
3181  *
3182  * Functional Description:
3183  *   For all consumed transmit descriptors that have not
3184  *   yet been completed, we'll free the skb we were holding
3185  *   onto using dev_kfree_skb and bump the appropriate
3186  *   counters.
3187  *
3188  * Return Codes:
3189  *   None
3190  *
3191  * Assumptions:
3192  *   The Type 2 register is not updated in this routine.  It is
3193  *   assumed that it will be updated in the ISR when dfx_xmt_done
3194  *   returns.
3195  *
3196  * Side Effects:
3197  *   None
3198  */
3199
3200 static int dfx_xmt_done(DFX_board_t *bp)
3201         {
3202         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3203         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3204         u8                      comp;                   /* local transmit completion index */
3205         int                     freed = 0;              /* buffers freed */
3206
3207         /* Service all consumed transmit frames */
3208
3209         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3210         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3211                 {
3212                 /* Get pointer to the transmit driver descriptor block information */
3213
3214                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3215
3216                 /* Increment transmit counters */
3217
3218                 bp->xmt_total_frames++;
3219                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3220
3221                 /* Return skb to operating system */
3222                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3223                 pci_unmap_single(bp->pci_dev,
3224                                  bp->descr_block_virt->xmt_data[comp].long_1,
3225                                  p_xmt_drv_descr->p_skb->len,
3226                                  PCI_DMA_TODEVICE);
3227                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3228
3229                 /*
3230                  * Move to start of next packet by updating completion index
3231                  *
3232                  * Here we assume that a transmit packet request is always
3233                  * serviced by posting one fragment.  We can therefore
3234                  * simplify the completion code by incrementing the
3235                  * completion index by one.  This code will need to be
3236                  * modified if this assumption changes.  See comments
3237                  * in dfx_xmt_queue_pkt for more details.
3238                  */
3239
3240                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3241                 freed++;
3242                 }
3243         return freed;
3244         }
3245
3246
3247 /*
3248  * =================
3249  * = dfx_rcv_flush =
3250  * =================
3251  *
3252  * Overview:
3253  *   Remove all skb's in the receive ring.
3254  *
3255  * Returns:
3256  *   None
3257  *
3258  * Arguments:
3259  *   bp - pointer to board information
3260  *
3261  * Functional Description:
3262  *   Free's all the dynamically allocated skb's that are
3263  *   currently attached to the device receive ring. This
3264  *   function is typically only used when the device is
3265  *   initialized or reinitialized.
3266  *
3267  * Return Codes:
3268  *   None
3269  *
3270  * Side Effects:
3271  *   None
3272  */
3273 #ifdef DYNAMIC_BUFFERS
3274 static void dfx_rcv_flush( DFX_board_t *bp )
3275         {
3276         int i, j;
3277
3278         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3279                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3280                 {
3281                         struct sk_buff *skb;
3282                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3283                         if (skb)
3284                                 dev_kfree_skb(skb);
3285                         bp->p_rcv_buff_va[i+j] = NULL;
3286                 }
3287
3288         }
3289 #else
3290 static inline void dfx_rcv_flush( DFX_board_t *bp )
3291 {
3292 }
3293 #endif /* DYNAMIC_BUFFERS */
3294
3295 /*
3296  * =================
3297  * = dfx_xmt_flush =
3298  * =================
3299  *
3300  * Overview:
3301  *   Processes all frames whether they've been transmitted
3302  *   or not.
3303  *
3304  * Returns:
3305  *   None
3306  *
3307  * Arguments:
3308  *   bp - pointer to board information
3309  *
3310  * Functional Description:
3311  *   For all produced transmit descriptors that have not
3312  *   yet been completed, we'll free the skb we were holding
3313  *   onto using dev_kfree_skb and bump the appropriate
3314  *   counters.  Of course, it's possible that some of
3315  *   these transmit requests actually did go out, but we
3316  *   won't make that distinction here.  Finally, we'll
3317  *   update the consumer index to match the producer.
3318  *
3319  * Return Codes:
3320  *   None
3321  *
3322  * Assumptions:
3323  *   This routine does NOT update the Type 2 register.  It
3324  *   is assumed that this routine is being called during a
3325  *   transmit flush interrupt, or a shutdown or close routine.
3326  *
3327  * Side Effects:
3328  *   None
3329  */
3330
3331 static void dfx_xmt_flush( DFX_board_t *bp )
3332         {
3333         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3334         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3335         u8                      comp;                   /* local transmit completion index */
3336
3337         /* Flush all outstanding transmit frames */
3338
3339         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3340                 {
3341                 /* Get pointer to the transmit driver descriptor block information */
3342
3343                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3344
3345                 /* Return skb to operating system */
3346                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3347                 pci_unmap_single(bp->pci_dev,
3348                                  bp->descr_block_virt->xmt_data[comp].long_1,
3349                                  p_xmt_drv_descr->p_skb->len,
3350                                  PCI_DMA_TODEVICE);
3351                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3352
3353                 /* Increment transmit error counter */
3354
3355                 bp->xmt_discards++;
3356
3357                 /*
3358                  * Move to start of next packet by updating completion index
3359                  *
3360                  * Here we assume that a transmit packet request is always
3361                  * serviced by posting one fragment.  We can therefore
3362                  * simplify the completion code by incrementing the
3363                  * completion index by one.  This code will need to be
3364                  * modified if this assumption changes.  See comments
3365                  * in dfx_xmt_queue_pkt for more details.
3366                  */
3367
3368                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3369                 }
3370
3371         /* Update the transmit consumer index in the consumer block */
3372
3373         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3374         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3375         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3376         }
3377
3378 static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3379 {
3380         DFX_board_t     *bp = dev->priv;
3381         int             alloc_size;             /* total buffer size used */
3382
3383         unregister_netdev(dev);
3384         release_region(dev->base_addr,  pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3385
3386         alloc_size = sizeof(PI_DESCR_BLOCK) +
3387                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3388 #ifndef DYNAMIC_BUFFERS
3389                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3390 #endif
3391                      sizeof(PI_CONSUMER_BLOCK) +
3392                      (PI_ALIGN_K_DESC_BLK - 1);
3393         if (bp->kmalloced)
3394                 pci_free_consistent(pdev, alloc_size, bp->kmalloced,
3395                                     bp->kmalloced_dma);
3396         free_netdev(dev);
3397 }
3398
3399 static void __devexit dfx_remove_one (struct pci_dev *pdev)
3400 {
3401         struct net_device *dev = pci_get_drvdata(pdev);
3402
3403         dfx_remove_one_pci_or_eisa(pdev, dev);
3404         pci_set_drvdata(pdev, NULL);
3405 }
3406
3407 static struct pci_device_id dfx_pci_tbl[] = {
3408         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3409         { 0, }
3410 };
3411 MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3412
3413 static struct pci_driver dfx_driver = {
3414         .name           = "defxx",
3415         .probe          = dfx_init_one,
3416         .remove         = __devexit_p(dfx_remove_one),
3417         .id_table       = dfx_pci_tbl,
3418 };
3419
3420 static int dfx_have_pci;
3421 static int dfx_have_eisa;
3422
3423
3424 static void __exit dfx_eisa_cleanup(void)
3425 {
3426         struct net_device *dev = root_dfx_eisa_dev;
3427
3428         while (dev)
3429         {
3430                 struct net_device *tmp;
3431                 DFX_board_t *bp;
3432
3433                 bp = (DFX_board_t*)dev->priv;
3434                 tmp = bp->next;
3435                 dfx_remove_one_pci_or_eisa(NULL, dev);
3436                 dev = tmp;
3437         }
3438 }
3439
3440 static int __init dfx_init(void)
3441 {
3442         int rc_pci, rc_eisa;
3443
3444         rc_pci = pci_register_driver(&dfx_driver);
3445         if (rc_pci >= 0) dfx_have_pci = 1;
3446
3447         rc_eisa = dfx_eisa_init();
3448         if (rc_eisa >= 0) dfx_have_eisa = 1;
3449
3450         return ((rc_eisa < 0) ? 0 : rc_eisa)  + ((rc_pci < 0) ? 0 : rc_pci);
3451 }
3452
3453 static void __exit dfx_cleanup(void)
3454 {
3455         if (dfx_have_pci)
3456                 pci_unregister_driver(&dfx_driver);
3457         if (dfx_have_eisa)
3458                 dfx_eisa_cleanup();
3459
3460 }
3461
3462 module_init(dfx_init);
3463 module_exit(dfx_cleanup);
3464 MODULE_AUTHOR("Lawrence V. Stefani");
3465 MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver "
3466                    DRV_VERSION " " DRV_RELDATE);
3467 MODULE_LICENSE("GPL");
3468
3469
3470 /*
3471  * Local variables:
3472  * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3473  * End:
3474  */