3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 #include <linux/config.h>
56 #include <linux/types.h>
57 #include <linux/init.h>
58 #include <linux/sched.h>
59 #include <linux/interrupt.h>
60 #include <linux/irq.h>
61 #include <linux/kallsyms.h>
62 #include <linux/smp_lock.h>
63 #include <linux/bootmem.h>
64 #include <linux/acpi.h>
65 #include <linux/timer.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/smp.h>
69 #include <linux/workqueue.h>
71 #include <asm/delay.h>
72 #include <asm/machvec.h>
73 #include <asm/meminit.h>
75 #include <asm/ptrace.h>
76 #include <asm/system.h>
81 #include <asm/hw_irq.h>
85 #if defined(IA64_MCA_DEBUG_INFO)
86 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
88 # define IA64_MCA_DEBUG(fmt...)
91 /* Used by mca_asm.S */
92 u32 ia64_mca_serialize;
93 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
94 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
95 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
96 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
98 unsigned long __per_cpu_mca[NR_CPUS];
101 extern void ia64_os_init_dispatch_monarch (void);
102 extern void ia64_os_init_dispatch_slave (void);
104 static int monarch_cpu = -1;
106 static ia64_mc_info_t ia64_mc_info;
108 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
109 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
110 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
111 #define CPE_HISTORY_LENGTH 5
112 #define CMC_HISTORY_LENGTH 5
114 static struct timer_list cpe_poll_timer;
115 static struct timer_list cmc_poll_timer;
117 * This variable tells whether we are currently in polling mode.
118 * Start with this in the wrong state so we won't play w/ timers
119 * before the system is ready.
121 static int cmc_polling_enabled = 1;
124 * Clearing this variable prevents CPE polling from getting activated
125 * in mca_late_init. Use it if your system doesn't provide a CPEI,
126 * but encounters problems retrieving CPE logs. This should only be
127 * necessary for debugging.
129 static int cpe_poll_enabled = 1;
131 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
136 * IA64_MCA log support
138 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
139 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
141 typedef struct ia64_state_log_s
145 unsigned long isl_count;
146 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
149 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
151 #define IA64_LOG_ALLOCATE(it, size) \
152 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
153 (ia64_err_rec_t *)alloc_bootmem(size); \
154 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
155 (ia64_err_rec_t *)alloc_bootmem(size);}
156 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
157 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
158 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
159 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
160 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_INDEX_INC(it) \
162 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
163 ia64_state_log[it].isl_count++;}
164 #define IA64_LOG_INDEX_DEC(it) \
165 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
166 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
167 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
168 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
172 * Reset the OS ia64 log buffer
173 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
177 ia64_log_init(int sal_info_type)
181 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
182 IA64_LOG_LOCK_INIT(sal_info_type);
184 // SAL will tell us the maximum size of any error record of this type
185 max_size = ia64_sal_get_state_info_size(sal_info_type);
187 /* alloc_bootmem() doesn't like zero-sized allocations! */
190 // set up OS data structures to hold error info
191 IA64_LOG_ALLOCATE(sal_info_type, max_size);
192 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
193 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
199 * Get the current MCA log from SAL and copy it into the OS log buffer.
201 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
202 * irq_safe whether you can use printk at this point
203 * Outputs : size (total record length)
204 * *buffer (ptr to error record)
208 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
210 sal_log_record_header_t *log_buffer;
214 IA64_LOG_LOCK(sal_info_type);
216 /* Get the process state information */
217 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
219 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
222 IA64_LOG_INDEX_INC(sal_info_type);
223 IA64_LOG_UNLOCK(sal_info_type);
225 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
226 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
228 *buffer = (u8 *) log_buffer;
231 IA64_LOG_UNLOCK(sal_info_type);
237 * ia64_mca_log_sal_error_record
239 * This function retrieves a specified error record type from SAL
240 * and wakes up any processes waiting for error records.
242 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
243 * FIXME: remove MCA and irq_safe.
246 ia64_mca_log_sal_error_record(int sal_info_type)
249 sal_log_record_header_t *rh;
251 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
252 #ifdef IA64_MCA_DEBUG_INFO
253 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
256 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
260 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
263 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
265 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
267 /* Clear logs from corrected errors in case there's no user-level logger */
268 rh = (sal_log_record_header_t *)buffer;
269 if (rh->severity == sal_log_severity_corrected)
270 ia64_sal_clear_state_info(sal_info_type);
274 * platform dependent error handling
276 #ifndef PLATFORM_MCA_HANDLERS
283 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
285 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
287 static DEFINE_SPINLOCK(cpe_history_lock);
289 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
290 __FUNCTION__, cpe_irq, smp_processor_id());
292 /* SAL spec states this should run w/ interrupts enabled */
295 /* Get the CPE error record and log it */
296 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
298 spin_lock(&cpe_history_lock);
299 if (!cpe_poll_enabled && cpe_vector >= 0) {
301 int i, count = 1; /* we know 1 happened now */
302 unsigned long now = jiffies;
304 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
305 if (now - cpe_history[i] <= HZ)
309 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
310 if (count >= CPE_HISTORY_LENGTH) {
312 cpe_poll_enabled = 1;
313 spin_unlock(&cpe_history_lock);
314 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
317 * Corrected errors will still be corrected, but
318 * make sure there's a log somewhere that indicates
319 * something is generating more than we can handle.
321 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
323 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
325 /* lock already released, get out now */
328 cpe_history[index++] = now;
329 if (index == CPE_HISTORY_LENGTH)
333 spin_unlock(&cpe_history_lock);
337 #endif /* CONFIG_ACPI */
341 * ia64_mca_register_cpev
343 * Register the corrected platform error vector with SAL.
346 * cpev Corrected Platform Error Vector number
352 ia64_mca_register_cpev (int cpev)
354 /* Register the CPE interrupt vector with SAL */
355 struct ia64_sal_retval isrv;
357 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
359 printk(KERN_ERR "Failed to register Corrected Platform "
360 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
364 IA64_MCA_DEBUG("%s: corrected platform error "
365 "vector %#x registered\n", __FUNCTION__, cpev);
367 #endif /* CONFIG_ACPI */
369 #endif /* PLATFORM_MCA_HANDLERS */
372 * ia64_mca_cmc_vector_setup
374 * Setup the corrected machine check vector register in the processor.
375 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
376 * This function is invoked on a per-processor basis.
385 ia64_mca_cmc_vector_setup (void)
389 cmcv.cmcv_regval = 0;
390 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
391 cmcv.cmcv_vector = IA64_CMC_VECTOR;
392 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
394 IA64_MCA_DEBUG("%s: CPU %d corrected "
395 "machine check vector %#x registered.\n",
396 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
398 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
399 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
403 * ia64_mca_cmc_vector_disable
405 * Mask the corrected machine check vector register in the processor.
406 * This function is invoked on a per-processor basis.
415 ia64_mca_cmc_vector_disable (void *dummy)
419 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
421 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
422 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
424 IA64_MCA_DEBUG("%s: CPU %d corrected "
425 "machine check vector %#x disabled.\n",
426 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
430 * ia64_mca_cmc_vector_enable
432 * Unmask the corrected machine check vector register in the processor.
433 * This function is invoked on a per-processor basis.
442 ia64_mca_cmc_vector_enable (void *dummy)
446 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
448 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
449 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
451 IA64_MCA_DEBUG("%s: CPU %d corrected "
452 "machine check vector %#x enabled.\n",
453 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
457 * ia64_mca_cmc_vector_disable_keventd
459 * Called via keventd (smp_call_function() is not safe in interrupt context) to
460 * disable the cmc interrupt vector.
463 ia64_mca_cmc_vector_disable_keventd(void *unused)
465 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
469 * ia64_mca_cmc_vector_enable_keventd
471 * Called via keventd (smp_call_function() is not safe in interrupt context) to
472 * enable the cmc interrupt vector.
475 ia64_mca_cmc_vector_enable_keventd(void *unused)
477 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
483 * Send an inter-cpu interrupt to wake-up a particular cpu
484 * and mark that cpu to be out of rendez.
490 ia64_mca_wakeup(int cpu)
492 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
493 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
498 * ia64_mca_wakeup_all
500 * Wakeup all the cpus which have rendez'ed previously.
506 ia64_mca_wakeup_all(void)
510 /* Clear the Rendez checkin flag for all cpus */
511 for(cpu = 0; cpu < NR_CPUS; cpu++) {
512 if (!cpu_online(cpu))
514 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
515 ia64_mca_wakeup(cpu);
521 * ia64_mca_rendez_interrupt_handler
523 * This is handler used to put slave processors into spinloop
524 * while the monarch processor does the mca handling and later
525 * wake each slave up once the monarch is done.
531 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
534 int cpu = smp_processor_id();
536 /* Mask all interrupts */
537 local_irq_save(flags);
539 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
540 /* Register with the SAL monarch that the slave has
543 ia64_sal_mc_rendez();
545 /* Wait for the monarch cpu to exit. */
546 while (monarch_cpu != -1)
547 cpu_relax(); /* spin until monarch leaves */
549 /* Enable all interrupts */
550 local_irq_restore(flags);
555 * ia64_mca_wakeup_int_handler
557 * The interrupt handler for processing the inter-cpu interrupt to the
558 * slave cpu which was spinning in the rendez loop.
559 * Since this spinning is done by turning off the interrupts and
560 * polling on the wakeup-interrupt bit in the IRR, there is
561 * nothing useful to be done in the handler.
563 * Inputs : wakeup_irq (Wakeup-interrupt bit)
564 * arg (Interrupt handler specific argument)
565 * ptregs (Exception frame at the time of the interrupt)
570 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
575 /* Function pointer for extra MCA recovery */
576 int (*ia64_mca_ucmc_extension)
577 (void*,struct ia64_sal_os_state*)
581 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
583 if (ia64_mca_ucmc_extension)
586 ia64_mca_ucmc_extension = fn;
591 ia64_unreg_MCA_extension(void)
593 if (ia64_mca_ucmc_extension)
594 ia64_mca_ucmc_extension = NULL;
597 EXPORT_SYMBOL(ia64_reg_MCA_extension);
598 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
602 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
604 u64 fslot, tslot, nat;
606 fslot = ((unsigned long)fr >> 3) & 63;
607 tslot = ((unsigned long)tr >> 3) & 63;
608 *tnat &= ~(1UL << tslot);
609 nat = (fnat >> fslot) & 1;
610 *tnat |= (nat << tslot);
613 /* On entry to this routine, we are running on the per cpu stack, see
614 * mca_asm.h. The original stack has not been touched by this event. Some of
615 * the original stack's registers will be in the RBS on this stack. This stack
616 * also contains a partial pt_regs and switch_stack, the rest of the data is in
619 * The first thing to do is modify the original stack to look like a blocked
620 * task so we can run backtrace on the original task. Also mark the per cpu
621 * stack as current to ensure that we use the correct task state, it also means
622 * that we can do backtrace on the MCA/INIT handler code itself.
626 ia64_mca_modify_original_stack(struct pt_regs *regs,
627 const struct switch_stack *sw,
628 struct ia64_sal_os_state *sos,
631 char *p, comm[sizeof(current->comm)];
633 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
634 const pal_min_state_area_t *ms = sos->pal_min_state;
635 task_t *previous_current;
636 struct pt_regs *old_regs;
637 struct switch_stack *old_sw;
638 unsigned size = sizeof(struct pt_regs) +
639 sizeof(struct switch_stack) + 16;
640 u64 *old_bspstore, *old_bsp;
641 u64 *new_bspstore, *new_bsp;
642 u64 old_unat, old_rnat, new_rnat, nat;
643 u64 slots, loadrs = regs->loadrs;
644 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
645 u64 ar_bspstore = regs->ar_bspstore;
646 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
649 int cpu = smp_processor_id();
651 previous_current = curr_task(cpu);
652 set_curr_task(cpu, current);
653 if ((p = strchr(current->comm, ' ')))
656 /* Best effort attempt to cope with MCA/INIT delivered while in
659 regs->cr_ipsr = ms->pmsa_ipsr;
660 if (ia64_psr(regs)->dt == 0) {
672 if (ia64_psr(regs)->rt == 0) {
685 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
686 * have been copied to the old stack, the old stack may fail the
687 * validation tests below. So ia64_old_stack() must restore the dirty
688 * registers from the new stack. The old and new bspstore probably
689 * have different alignments, so loadrs calculated on the old bsp
690 * cannot be used to restore from the new bsp. Calculate a suitable
691 * loadrs for the new stack and save it in the new pt_regs, where
692 * ia64_old_stack() can get it.
694 old_bspstore = (u64 *)ar_bspstore;
695 old_bsp = (u64 *)ar_bsp;
696 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
697 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
698 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
699 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
701 /* Verify the previous stack state before we change it */
702 if (user_mode(regs)) {
703 msg = "occurred in user space";
706 if (r13 != sos->prev_IA64_KR_CURRENT) {
707 msg = "inconsistent previous current and r13";
710 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
711 msg = "inconsistent r12 and r13";
714 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
715 msg = "inconsistent ar.bspstore and r13";
720 msg = "old_bspstore is in the wrong region";
723 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
724 msg = "inconsistent ar.bsp and r13";
727 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
728 if (ar_bspstore + size > r12) {
729 msg = "no room for blocked state";
733 /* Change the comm field on the MCA/INT task to include the pid that
734 * was interrupted, it makes for easier debugging. If that pid was 0
735 * (swapper or nested MCA/INIT) then use the start of the previous comm
736 * field suffixed with its cpu.
738 if (previous_current->pid)
739 snprintf(comm, sizeof(comm), "%s %d",
740 current->comm, previous_current->pid);
743 if ((p = strchr(previous_current->comm, ' ')))
744 l = p - previous_current->comm;
746 l = strlen(previous_current->comm);
747 snprintf(comm, sizeof(comm), "%s %*s %d",
748 current->comm, l, previous_current->comm,
749 previous_current->thread_info->cpu);
751 memcpy(current->comm, comm, sizeof(current->comm));
753 /* Make the original task look blocked. First stack a struct pt_regs,
754 * describing the state at the time of interrupt. mca_asm.S built a
755 * partial pt_regs, copy it and fill in the blanks using minstate.
757 p = (char *)r12 - sizeof(*regs);
758 old_regs = (struct pt_regs *)p;
759 memcpy(old_regs, regs, sizeof(*regs));
760 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
761 * pmsa_{xip,xpsr,xfs}
763 if (ia64_psr(regs)->ic) {
764 old_regs->cr_iip = ms->pmsa_iip;
765 old_regs->cr_ipsr = ms->pmsa_ipsr;
766 old_regs->cr_ifs = ms->pmsa_ifs;
768 old_regs->cr_iip = ms->pmsa_xip;
769 old_regs->cr_ipsr = ms->pmsa_xpsr;
770 old_regs->cr_ifs = ms->pmsa_xfs;
772 old_regs->pr = ms->pmsa_pr;
773 old_regs->b0 = ms->pmsa_br0;
774 old_regs->loadrs = loadrs;
775 old_regs->ar_rsc = ms->pmsa_rsc;
776 old_unat = old_regs->ar_unat;
777 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
778 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
779 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
780 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
781 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
782 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
783 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
784 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
785 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
786 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
787 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
788 if (ia64_psr(old_regs)->bn)
789 bank = ms->pmsa_bank1_gr;
791 bank = ms->pmsa_bank0_gr;
792 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
793 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
794 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
795 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
796 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
797 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
798 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
799 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
800 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
801 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
802 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
803 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
804 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
805 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
806 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
807 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
809 /* Next stack a struct switch_stack. mca_asm.S built a partial
810 * switch_stack, copy it and fill in the blanks using pt_regs and
813 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
814 * ar.pfs is set to 0.
816 * unwind.c::unw_unwind() does special processing for interrupt frames.
817 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
818 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
819 * that this is documented, of course. Set PRED_NON_SYSCALL in the
820 * switch_stack on the original stack so it will unwind correctly when
821 * unwind.c reads pt_regs.
823 * thread.ksp is updated to point to the synthesized switch_stack.
825 p -= sizeof(struct switch_stack);
826 old_sw = (struct switch_stack *)p;
827 memcpy(old_sw, sw, sizeof(*sw));
828 old_sw->caller_unat = old_unat;
829 old_sw->ar_fpsr = old_regs->ar_fpsr;
830 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
831 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
832 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
833 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
834 old_sw->b0 = (u64)ia64_leave_kernel;
835 old_sw->b1 = ms->pmsa_br1;
837 old_sw->ar_unat = old_unat;
838 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
839 previous_current->thread.ksp = (u64)p - 16;
841 /* Finally copy the original stack's registers back to its RBS.
842 * Registers from ar.bspstore through ar.bsp at the time of the event
843 * are in the current RBS, copy them back to the original stack. The
844 * copy must be done register by register because the original bspstore
845 * and the current one have different alignments, so the saved RNAT
846 * data occurs at different places.
848 * mca_asm does cover, so the old_bsp already includes all registers at
849 * the time of MCA/INIT. It also does flushrs, so all registers before
850 * this function have been written to backing store on the MCA/INIT
853 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
854 old_rnat = regs->ar_rnat;
856 if (ia64_rse_is_rnat_slot(new_bspstore)) {
857 new_rnat = ia64_get_rnat(new_bspstore++);
859 if (ia64_rse_is_rnat_slot(old_bspstore)) {
860 *old_bspstore++ = old_rnat;
863 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
864 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
865 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
866 *old_bspstore++ = *new_bspstore++;
868 old_sw->ar_bspstore = (unsigned long)old_bspstore;
869 old_sw->ar_rnat = old_rnat;
871 sos->prev_task = previous_current;
872 return previous_current;
875 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
876 smp_processor_id(), type, msg);
877 return previous_current;
880 /* The monarch/slave interaction is based on monarch_cpu and requires that all
881 * slaves have entered rendezvous before the monarch leaves. If any cpu has
882 * not entered rendezvous yet then wait a bit. The assumption is that any
883 * slave that has not rendezvoused after a reasonable time is never going to do
884 * so. In this context, slave includes cpus that respond to the MCA rendezvous
885 * interrupt, as well as cpus that receive the INIT slave event.
889 ia64_wait_for_slaves(int monarch)
892 for_each_online_cpu(c) {
895 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
896 udelay(1000); /* short wait first */
903 for_each_online_cpu(c) {
906 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
907 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
916 * This is uncorrectable machine check handler called from OS_MCA
917 * dispatch code which is in turn called from SAL_CHECK().
918 * This is the place where the core of OS MCA handling is done.
919 * Right now the logs are extracted and displayed in a well-defined
920 * format. This handler code is supposed to be run only on the
921 * monarch processor. Once the monarch is done with MCA handling
922 * further MCA logging is enabled by clearing logs.
923 * Monarch also has the duty of sending wakeup-IPIs to pull the
924 * slave processors out of rendezvous spinloop.
927 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
928 struct ia64_sal_os_state *sos)
930 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
931 &sos->proc_state_param;
932 int recover, cpu = smp_processor_id();
933 task_t *previous_current;
935 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
936 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
938 ia64_wait_for_slaves(cpu);
940 /* Wakeup all the processors which are spinning in the rendezvous loop.
941 * They will leave SAL, then spin in the OS with interrupts disabled
942 * until this monarch cpu leaves the MCA handler. That gets control
943 * back to the OS so we can backtrace the other cpus, backtrace when
944 * spinning in SAL does not work.
946 ia64_mca_wakeup_all();
948 /* Get the MCA error record and log it */
949 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
951 /* TLB error is only exist in this SAL error record */
952 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
953 /* other error recovery */
954 || (ia64_mca_ucmc_extension
955 && ia64_mca_ucmc_extension(
956 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
960 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
961 rh->severity = sal_log_severity_corrected;
962 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
963 sos->os_status = IA64_MCA_CORRECTED;
966 set_curr_task(cpu, previous_current);
970 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
971 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
974 * ia64_mca_cmc_int_handler
976 * This is corrected machine check interrupt handler.
977 * Right now the logs are extracted and displayed in a well-defined
982 * client data arg ptr
983 * saved registers ptr
989 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
991 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
993 static DEFINE_SPINLOCK(cmc_history_lock);
995 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
996 __FUNCTION__, cmc_irq, smp_processor_id());
998 /* SAL spec states this should run w/ interrupts enabled */
1001 /* Get the CMC error record and log it */
1002 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1004 spin_lock(&cmc_history_lock);
1005 if (!cmc_polling_enabled) {
1006 int i, count = 1; /* we know 1 happened now */
1007 unsigned long now = jiffies;
1009 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1010 if (now - cmc_history[i] <= HZ)
1014 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1015 if (count >= CMC_HISTORY_LENGTH) {
1017 cmc_polling_enabled = 1;
1018 spin_unlock(&cmc_history_lock);
1019 /* If we're being hit with CMC interrupts, we won't
1020 * ever execute the schedule_work() below. Need to
1021 * disable CMC interrupts on this processor now.
1023 ia64_mca_cmc_vector_disable(NULL);
1024 schedule_work(&cmc_disable_work);
1027 * Corrected errors will still be corrected, but
1028 * make sure there's a log somewhere that indicates
1029 * something is generating more than we can handle.
1031 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1033 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1035 /* lock already released, get out now */
1038 cmc_history[index++] = now;
1039 if (index == CMC_HISTORY_LENGTH)
1043 spin_unlock(&cmc_history_lock);
1048 * ia64_mca_cmc_int_caller
1050 * Triggered by sw interrupt from CMC polling routine. Calls
1051 * real interrupt handler and either triggers a sw interrupt
1052 * on the next cpu or does cleanup at the end.
1056 * client data arg ptr
1057 * saved registers ptr
1062 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1064 static int start_count = -1;
1067 cpuid = smp_processor_id();
1069 /* If first cpu, update count */
1070 if (start_count == -1)
1071 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1073 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1075 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1077 if (cpuid < NR_CPUS) {
1078 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1080 /* If no log record, switch out of polling mode */
1081 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1083 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1084 schedule_work(&cmc_enable_work);
1085 cmc_polling_enabled = 0;
1089 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1101 * Poll for Corrected Machine Checks (CMCs)
1103 * Inputs : dummy(unused)
1108 ia64_mca_cmc_poll (unsigned long dummy)
1110 /* Trigger a CMC interrupt cascade */
1111 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1115 * ia64_mca_cpe_int_caller
1117 * Triggered by sw interrupt from CPE polling routine. Calls
1118 * real interrupt handler and either triggers a sw interrupt
1119 * on the next cpu or does cleanup at the end.
1123 * client data arg ptr
1124 * saved registers ptr
1131 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1133 static int start_count = -1;
1134 static int poll_time = MIN_CPE_POLL_INTERVAL;
1137 cpuid = smp_processor_id();
1139 /* If first cpu, update count */
1140 if (start_count == -1)
1141 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1143 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1145 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1147 if (cpuid < NR_CPUS) {
1148 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1151 * If a log was recorded, increase our polling frequency,
1152 * otherwise, backoff or return to interrupt mode.
1154 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1155 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1156 } else if (cpe_vector < 0) {
1157 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1159 poll_time = MIN_CPE_POLL_INTERVAL;
1161 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1162 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1163 cpe_poll_enabled = 0;
1166 if (cpe_poll_enabled)
1167 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1177 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1178 * on first cpu, from there it will trickle through all the cpus.
1180 * Inputs : dummy(unused)
1185 ia64_mca_cpe_poll (unsigned long dummy)
1187 /* Trigger a CPE interrupt cascade */
1188 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1191 #endif /* CONFIG_ACPI */
1194 * C portion of the OS INIT handler
1196 * Called from ia64_os_init_dispatch
1198 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1199 * this event. This code is used for both monarch and slave INIT events, see
1202 * All INIT events switch to the INIT stack and change the previous process to
1203 * blocked status. If one of the INIT events is the monarch then we are
1204 * probably processing the nmi button/command. Use the monarch cpu to dump all
1205 * the processes. The slave INIT events all spin until the monarch cpu
1206 * returns. We can also get INIT slave events for MCA, in which case the MCA
1207 * process is the monarch.
1211 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1212 struct ia64_sal_os_state *sos)
1214 static atomic_t slaves;
1215 static atomic_t monarchs;
1216 task_t *previous_current;
1217 int cpu = smp_processor_id(), c;
1218 struct task_struct *g, *t;
1220 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1221 console_loglevel = 15; /* make sure printks make it to console */
1223 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1224 sos->proc_state_param, cpu, sos->monarch);
1225 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1227 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1228 sos->os_status = IA64_INIT_RESUME;
1230 /* FIXME: Workaround for broken proms that drive all INIT events as
1231 * slaves. The last slave that enters is promoted to be a monarch.
1232 * Remove this code in September 2006, that gives platforms a year to
1233 * fix their proms and get their customers updated.
1235 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1236 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1238 atomic_dec(&slaves);
1242 /* FIXME: Workaround for broken proms that drive all INIT events as
1243 * monarchs. Second and subsequent monarchs are demoted to slaves.
1244 * Remove this code in September 2006, that gives platforms a year to
1245 * fix their proms and get their customers updated.
1247 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1248 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1250 atomic_dec(&monarchs);
1254 if (!sos->monarch) {
1255 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1256 while (monarch_cpu == -1)
1257 cpu_relax(); /* spin until monarch enters */
1258 while (monarch_cpu != -1)
1259 cpu_relax(); /* spin until monarch leaves */
1260 printk("Slave on cpu %d returning to normal service.\n", cpu);
1261 set_curr_task(cpu, previous_current);
1262 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1263 atomic_dec(&slaves);
1270 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1271 * generated via the BMC's command-line interface, but since the console is on the
1272 * same serial line, the user will need some time to switch out of the BMC before
1275 printk("Delaying for 5 seconds...\n");
1277 ia64_wait_for_slaves(cpu);
1278 printk(KERN_ERR "Processes interrupted by INIT -");
1279 for_each_online_cpu(c) {
1280 struct ia64_sal_os_state *s;
1281 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1282 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1286 printk(" %d", g->pid);
1288 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1292 if (read_trylock(&tasklist_lock)) {
1293 do_each_thread (g, t) {
1294 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1295 show_stack(t, NULL);
1296 } while_each_thread (g, t);
1297 read_unlock(&tasklist_lock);
1299 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1300 atomic_dec(&monarchs);
1301 set_curr_task(cpu, previous_current);
1307 ia64_mca_disable_cpe_polling(char *str)
1309 cpe_poll_enabled = 0;
1313 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1315 static struct irqaction cmci_irqaction = {
1316 .handler = ia64_mca_cmc_int_handler,
1317 .flags = SA_INTERRUPT,
1321 static struct irqaction cmcp_irqaction = {
1322 .handler = ia64_mca_cmc_int_caller,
1323 .flags = SA_INTERRUPT,
1327 static struct irqaction mca_rdzv_irqaction = {
1328 .handler = ia64_mca_rendez_int_handler,
1329 .flags = SA_INTERRUPT,
1333 static struct irqaction mca_wkup_irqaction = {
1334 .handler = ia64_mca_wakeup_int_handler,
1335 .flags = SA_INTERRUPT,
1340 static struct irqaction mca_cpe_irqaction = {
1341 .handler = ia64_mca_cpe_int_handler,
1342 .flags = SA_INTERRUPT,
1346 static struct irqaction mca_cpep_irqaction = {
1347 .handler = ia64_mca_cpe_int_caller,
1348 .flags = SA_INTERRUPT,
1351 #endif /* CONFIG_ACPI */
1353 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1354 * these stacks can never sleep, they cannot return from the kernel to user
1355 * space, they do not appear in a normal ps listing. So there is no need to
1356 * format most of the fields.
1360 format_mca_init_stack(void *mca_data, unsigned long offset,
1361 const char *type, int cpu)
1363 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1364 struct thread_info *ti;
1365 memset(p, 0, KERNEL_STACK_SIZE);
1366 ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
1367 ti->flags = _TIF_MCA_INIT;
1368 ti->preempt_count = 1;
1371 p->thread_info = ti;
1372 p->state = TASK_UNINTERRUPTIBLE;
1373 __set_bit(cpu, &p->cpus_allowed);
1374 INIT_LIST_HEAD(&p->tasks);
1375 p->parent = p->real_parent = p->group_leader = p;
1376 INIT_LIST_HEAD(&p->children);
1377 INIT_LIST_HEAD(&p->sibling);
1378 strncpy(p->comm, type, sizeof(p->comm)-1);
1381 /* Do per-CPU MCA-related initialization. */
1384 ia64_mca_cpu_init(void *cpu_data)
1388 if (smp_processor_id() == 0) {
1392 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1393 * NR_CPUS + KERNEL_STACK_SIZE);
1394 mca_data = (void *)(((unsigned long)mca_data +
1395 KERNEL_STACK_SIZE - 1) &
1396 (-KERNEL_STACK_SIZE));
1397 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1398 format_mca_init_stack(mca_data,
1399 offsetof(struct ia64_mca_cpu, mca_stack),
1401 format_mca_init_stack(mca_data,
1402 offsetof(struct ia64_mca_cpu, init_stack),
1404 __per_cpu_mca[cpu] = __pa(mca_data);
1405 mca_data += sizeof(struct ia64_mca_cpu);
1410 * The MCA info structure was allocated earlier and its
1411 * physical address saved in __per_cpu_mca[cpu]. Copy that
1412 * address * to ia64_mca_data so we can access it as a per-CPU
1415 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1418 * Stash away a copy of the PTE needed to map the per-CPU page.
1419 * We may need it during MCA recovery.
1421 __get_cpu_var(ia64_mca_per_cpu_pte) =
1422 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1425 * Also, stash away a copy of the PAL address and the PTE
1428 pal_vaddr = efi_get_pal_addr();
1431 __get_cpu_var(ia64_mca_pal_base) =
1432 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1433 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1440 * Do all the system level mca specific initialization.
1442 * 1. Register spinloop and wakeup request interrupt vectors
1444 * 2. Register OS_MCA handler entry point
1446 * 3. Register OS_INIT handler entry point
1448 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1450 * Note that this initialization is done very early before some kernel
1451 * services are available.
1460 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1461 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1462 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1465 struct ia64_sal_retval isrv;
1466 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1468 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1470 /* Clear the Rendez checkin flag for all cpus */
1471 for(i = 0 ; i < NR_CPUS; i++)
1472 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1475 * Register the rendezvous spinloop and wakeup mechanism with SAL
1478 /* Register the rendezvous interrupt vector with SAL */
1480 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1481 SAL_MC_PARAM_MECHANISM_INT,
1482 IA64_MCA_RENDEZ_VECTOR,
1484 SAL_MC_PARAM_RZ_ALWAYS);
1489 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1490 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1494 printk(KERN_ERR "Failed to register rendezvous interrupt "
1495 "with SAL (status %ld)\n", rc);
1499 /* Register the wakeup interrupt vector with SAL */
1500 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1501 SAL_MC_PARAM_MECHANISM_INT,
1502 IA64_MCA_WAKEUP_VECTOR,
1506 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1507 "(status %ld)\n", rc);
1511 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1513 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1515 * XXX - disable SAL checksum by setting size to 0; should be
1516 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1518 ia64_mc_info.imi_mca_handler_size = 0;
1520 /* Register the os mca handler with SAL */
1521 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1522 ia64_mc_info.imi_mca_handler,
1523 ia64_tpa(mca_hldlr_ptr->gp),
1524 ia64_mc_info.imi_mca_handler_size,
1527 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1528 "(status %ld)\n", rc);
1532 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1533 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1536 * XXX - disable SAL checksum by setting size to 0, should be
1537 * size of the actual init handler in mca_asm.S.
1539 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1540 ia64_mc_info.imi_monarch_init_handler_size = 0;
1541 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1542 ia64_mc_info.imi_slave_init_handler_size = 0;
1544 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1545 ia64_mc_info.imi_monarch_init_handler);
1547 /* Register the os init handler with SAL */
1548 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1549 ia64_mc_info.imi_monarch_init_handler,
1550 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1551 ia64_mc_info.imi_monarch_init_handler_size,
1552 ia64_mc_info.imi_slave_init_handler,
1553 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1554 ia64_mc_info.imi_slave_init_handler_size)))
1556 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1557 "(status %ld)\n", rc);
1561 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1564 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1565 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1567 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1568 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1569 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1571 /* Setup the MCA rendezvous interrupt vector */
1572 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1574 /* Setup the MCA wakeup interrupt vector */
1575 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1578 /* Setup the CPEI/P handler */
1579 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1582 /* Initialize the areas set aside by the OS to buffer the
1583 * platform/processor error states for MCA/INIT/CMC
1586 ia64_log_init(SAL_INFO_TYPE_MCA);
1587 ia64_log_init(SAL_INFO_TYPE_INIT);
1588 ia64_log_init(SAL_INFO_TYPE_CMC);
1589 ia64_log_init(SAL_INFO_TYPE_CPE);
1592 printk(KERN_INFO "MCA related initialization done\n");
1596 * ia64_mca_late_init
1598 * Opportunity to setup things that require initialization later
1599 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1600 * platform doesn't support an interrupt driven mechanism.
1606 ia64_mca_late_init(void)
1611 /* Setup the CMCI/P vector and handler */
1612 init_timer(&cmc_poll_timer);
1613 cmc_poll_timer.function = ia64_mca_cmc_poll;
1615 /* Unmask/enable the vector */
1616 cmc_polling_enabled = 0;
1617 schedule_work(&cmc_enable_work);
1619 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1622 /* Setup the CPEI/P vector and handler */
1623 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1624 init_timer(&cpe_poll_timer);
1625 cpe_poll_timer.function = ia64_mca_cpe_poll;
1631 if (cpe_vector >= 0) {
1632 /* If platform supports CPEI, enable the irq. */
1633 cpe_poll_enabled = 0;
1634 for (irq = 0; irq < NR_IRQS; ++irq)
1635 if (irq_to_vector(irq) == cpe_vector) {
1636 desc = irq_descp(irq);
1637 desc->status |= IRQ_PER_CPU;
1638 setup_irq(irq, &mca_cpe_irqaction);
1640 ia64_mca_register_cpev(cpe_vector);
1641 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1643 /* If platform doesn't support CPEI, get the timer going. */
1644 if (cpe_poll_enabled) {
1645 ia64_mca_cpe_poll(0UL);
1646 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1655 device_initcall(ia64_mca_late_init);