Merge branch 'linus' into x86/irq
[linux-2.6] / net / xfrm / xfrm_algo.c
1 /*
2  * xfrm algorithm interface
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26  * Algorithms supported by IPsec.  These entries contain properties which
27  * are used in key negotiation and xfrm processing, and are used to verify
28  * that instantiated crypto transforms have correct parameters for IPsec
29  * purposes.
30  */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33         .name = "rfc4106(gcm(aes))",
34
35         .uinfo = {
36                 .aead = {
37                         .icv_truncbits = 64,
38                 }
39         },
40
41         .desc = {
42                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43                 .sadb_alg_ivlen = 8,
44                 .sadb_alg_minbits = 128,
45                 .sadb_alg_maxbits = 256
46         }
47 },
48 {
49         .name = "rfc4106(gcm(aes))",
50
51         .uinfo = {
52                 .aead = {
53                         .icv_truncbits = 96,
54                 }
55         },
56
57         .desc = {
58                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59                 .sadb_alg_ivlen = 8,
60                 .sadb_alg_minbits = 128,
61                 .sadb_alg_maxbits = 256
62         }
63 },
64 {
65         .name = "rfc4106(gcm(aes))",
66
67         .uinfo = {
68                 .aead = {
69                         .icv_truncbits = 128,
70                 }
71         },
72
73         .desc = {
74                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75                 .sadb_alg_ivlen = 8,
76                 .sadb_alg_minbits = 128,
77                 .sadb_alg_maxbits = 256
78         }
79 },
80 {
81         .name = "rfc4309(ccm(aes))",
82
83         .uinfo = {
84                 .aead = {
85                         .icv_truncbits = 64,
86                 }
87         },
88
89         .desc = {
90                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91                 .sadb_alg_ivlen = 8,
92                 .sadb_alg_minbits = 128,
93                 .sadb_alg_maxbits = 256
94         }
95 },
96 {
97         .name = "rfc4309(ccm(aes))",
98
99         .uinfo = {
100                 .aead = {
101                         .icv_truncbits = 96,
102                 }
103         },
104
105         .desc = {
106                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107                 .sadb_alg_ivlen = 8,
108                 .sadb_alg_minbits = 128,
109                 .sadb_alg_maxbits = 256
110         }
111 },
112 {
113         .name = "rfc4309(ccm(aes))",
114
115         .uinfo = {
116                 .aead = {
117                         .icv_truncbits = 128,
118                 }
119         },
120
121         .desc = {
122                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123                 .sadb_alg_ivlen = 8,
124                 .sadb_alg_minbits = 128,
125                 .sadb_alg_maxbits = 256
126         }
127 },
128 };
129
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132         .name = "digest_null",
133
134         .uinfo = {
135                 .auth = {
136                         .icv_truncbits = 0,
137                         .icv_fullbits = 0,
138                 }
139         },
140
141         .desc = {
142                 .sadb_alg_id = SADB_X_AALG_NULL,
143                 .sadb_alg_ivlen = 0,
144                 .sadb_alg_minbits = 0,
145                 .sadb_alg_maxbits = 0
146         }
147 },
148 {
149         .name = "hmac(md5)",
150         .compat = "md5",
151
152         .uinfo = {
153                 .auth = {
154                         .icv_truncbits = 96,
155                         .icv_fullbits = 128,
156                 }
157         },
158
159         .desc = {
160                 .sadb_alg_id = SADB_AALG_MD5HMAC,
161                 .sadb_alg_ivlen = 0,
162                 .sadb_alg_minbits = 128,
163                 .sadb_alg_maxbits = 128
164         }
165 },
166 {
167         .name = "hmac(sha1)",
168         .compat = "sha1",
169
170         .uinfo = {
171                 .auth = {
172                         .icv_truncbits = 96,
173                         .icv_fullbits = 160,
174                 }
175         },
176
177         .desc = {
178                 .sadb_alg_id = SADB_AALG_SHA1HMAC,
179                 .sadb_alg_ivlen = 0,
180                 .sadb_alg_minbits = 160,
181                 .sadb_alg_maxbits = 160
182         }
183 },
184 {
185         .name = "hmac(sha256)",
186         .compat = "sha256",
187
188         .uinfo = {
189                 .auth = {
190                         .icv_truncbits = 96,
191                         .icv_fullbits = 256,
192                 }
193         },
194
195         .desc = {
196                 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
197                 .sadb_alg_ivlen = 0,
198                 .sadb_alg_minbits = 256,
199                 .sadb_alg_maxbits = 256
200         }
201 },
202 {
203         .name = "hmac(rmd160)",
204         .compat = "rmd160",
205
206         .uinfo = {
207                 .auth = {
208                         .icv_truncbits = 96,
209                         .icv_fullbits = 160,
210                 }
211         },
212
213         .desc = {
214                 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
215                 .sadb_alg_ivlen = 0,
216                 .sadb_alg_minbits = 160,
217                 .sadb_alg_maxbits = 160
218         }
219 },
220 {
221         .name = "xcbc(aes)",
222
223         .uinfo = {
224                 .auth = {
225                         .icv_truncbits = 96,
226                         .icv_fullbits = 128,
227                 }
228         },
229
230         .desc = {
231                 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
232                 .sadb_alg_ivlen = 0,
233                 .sadb_alg_minbits = 128,
234                 .sadb_alg_maxbits = 128
235         }
236 },
237 };
238
239 static struct xfrm_algo_desc ealg_list[] = {
240 {
241         .name = "ecb(cipher_null)",
242         .compat = "cipher_null",
243
244         .uinfo = {
245                 .encr = {
246                         .blockbits = 8,
247                         .defkeybits = 0,
248                 }
249         },
250
251         .desc = {
252                 .sadb_alg_id =  SADB_EALG_NULL,
253                 .sadb_alg_ivlen = 0,
254                 .sadb_alg_minbits = 0,
255                 .sadb_alg_maxbits = 0
256         }
257 },
258 {
259         .name = "cbc(des)",
260         .compat = "des",
261
262         .uinfo = {
263                 .encr = {
264                         .blockbits = 64,
265                         .defkeybits = 64,
266                 }
267         },
268
269         .desc = {
270                 .sadb_alg_id = SADB_EALG_DESCBC,
271                 .sadb_alg_ivlen = 8,
272                 .sadb_alg_minbits = 64,
273                 .sadb_alg_maxbits = 64
274         }
275 },
276 {
277         .name = "cbc(des3_ede)",
278         .compat = "des3_ede",
279
280         .uinfo = {
281                 .encr = {
282                         .blockbits = 64,
283                         .defkeybits = 192,
284                 }
285         },
286
287         .desc = {
288                 .sadb_alg_id = SADB_EALG_3DESCBC,
289                 .sadb_alg_ivlen = 8,
290                 .sadb_alg_minbits = 192,
291                 .sadb_alg_maxbits = 192
292         }
293 },
294 {
295         .name = "cbc(cast128)",
296         .compat = "cast128",
297
298         .uinfo = {
299                 .encr = {
300                         .blockbits = 64,
301                         .defkeybits = 128,
302                 }
303         },
304
305         .desc = {
306                 .sadb_alg_id = SADB_X_EALG_CASTCBC,
307                 .sadb_alg_ivlen = 8,
308                 .sadb_alg_minbits = 40,
309                 .sadb_alg_maxbits = 128
310         }
311 },
312 {
313         .name = "cbc(blowfish)",
314         .compat = "blowfish",
315
316         .uinfo = {
317                 .encr = {
318                         .blockbits = 64,
319                         .defkeybits = 128,
320                 }
321         },
322
323         .desc = {
324                 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
325                 .sadb_alg_ivlen = 8,
326                 .sadb_alg_minbits = 40,
327                 .sadb_alg_maxbits = 448
328         }
329 },
330 {
331         .name = "cbc(aes)",
332         .compat = "aes",
333
334         .uinfo = {
335                 .encr = {
336                         .blockbits = 128,
337                         .defkeybits = 128,
338                 }
339         },
340
341         .desc = {
342                 .sadb_alg_id = SADB_X_EALG_AESCBC,
343                 .sadb_alg_ivlen = 8,
344                 .sadb_alg_minbits = 128,
345                 .sadb_alg_maxbits = 256
346         }
347 },
348 {
349         .name = "cbc(serpent)",
350         .compat = "serpent",
351
352         .uinfo = {
353                 .encr = {
354                         .blockbits = 128,
355                         .defkeybits = 128,
356                 }
357         },
358
359         .desc = {
360                 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
361                 .sadb_alg_ivlen = 8,
362                 .sadb_alg_minbits = 128,
363                 .sadb_alg_maxbits = 256,
364         }
365 },
366 {
367         .name = "cbc(camellia)",
368
369         .uinfo = {
370                 .encr = {
371                         .blockbits = 128,
372                         .defkeybits = 128,
373                 }
374         },
375
376         .desc = {
377                 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
378                 .sadb_alg_ivlen = 8,
379                 .sadb_alg_minbits = 128,
380                 .sadb_alg_maxbits = 256
381         }
382 },
383 {
384         .name = "cbc(twofish)",
385         .compat = "twofish",
386
387         .uinfo = {
388                 .encr = {
389                         .blockbits = 128,
390                         .defkeybits = 128,
391                 }
392         },
393
394         .desc = {
395                 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
396                 .sadb_alg_ivlen = 8,
397                 .sadb_alg_minbits = 128,
398                 .sadb_alg_maxbits = 256
399         }
400 },
401 {
402         .name = "rfc3686(ctr(aes))",
403
404         .uinfo = {
405                 .encr = {
406                         .blockbits = 128,
407                         .defkeybits = 160, /* 128-bit key + 32-bit nonce */
408                 }
409         },
410
411         .desc = {
412                 .sadb_alg_id = SADB_X_EALG_AESCTR,
413                 .sadb_alg_ivlen = 8,
414                 .sadb_alg_minbits = 128,
415                 .sadb_alg_maxbits = 256
416         }
417 },
418 };
419
420 static struct xfrm_algo_desc calg_list[] = {
421 {
422         .name = "deflate",
423         .uinfo = {
424                 .comp = {
425                         .threshold = 90,
426                 }
427         },
428         .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
429 },
430 {
431         .name = "lzs",
432         .uinfo = {
433                 .comp = {
434                         .threshold = 90,
435                 }
436         },
437         .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
438 },
439 {
440         .name = "lzjh",
441         .uinfo = {
442                 .comp = {
443                         .threshold = 50,
444                 }
445         },
446         .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
447 },
448 };
449
450 static inline int aead_entries(void)
451 {
452         return ARRAY_SIZE(aead_list);
453 }
454
455 static inline int aalg_entries(void)
456 {
457         return ARRAY_SIZE(aalg_list);
458 }
459
460 static inline int ealg_entries(void)
461 {
462         return ARRAY_SIZE(ealg_list);
463 }
464
465 static inline int calg_entries(void)
466 {
467         return ARRAY_SIZE(calg_list);
468 }
469
470 struct xfrm_algo_list {
471         struct xfrm_algo_desc *algs;
472         int entries;
473         u32 type;
474         u32 mask;
475 };
476
477 static const struct xfrm_algo_list xfrm_aead_list = {
478         .algs = aead_list,
479         .entries = ARRAY_SIZE(aead_list),
480         .type = CRYPTO_ALG_TYPE_AEAD,
481         .mask = CRYPTO_ALG_TYPE_MASK,
482 };
483
484 static const struct xfrm_algo_list xfrm_aalg_list = {
485         .algs = aalg_list,
486         .entries = ARRAY_SIZE(aalg_list),
487         .type = CRYPTO_ALG_TYPE_HASH,
488         .mask = CRYPTO_ALG_TYPE_HASH_MASK,
489 };
490
491 static const struct xfrm_algo_list xfrm_ealg_list = {
492         .algs = ealg_list,
493         .entries = ARRAY_SIZE(ealg_list),
494         .type = CRYPTO_ALG_TYPE_BLKCIPHER,
495         .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
496 };
497
498 static const struct xfrm_algo_list xfrm_calg_list = {
499         .algs = calg_list,
500         .entries = ARRAY_SIZE(calg_list),
501         .type = CRYPTO_ALG_TYPE_COMPRESS,
502         .mask = CRYPTO_ALG_TYPE_MASK,
503 };
504
505 static struct xfrm_algo_desc *xfrm_find_algo(
506         const struct xfrm_algo_list *algo_list,
507         int match(const struct xfrm_algo_desc *entry, const void *data),
508         const void *data, int probe)
509 {
510         struct xfrm_algo_desc *list = algo_list->algs;
511         int i, status;
512
513         for (i = 0; i < algo_list->entries; i++) {
514                 if (!match(list + i, data))
515                         continue;
516
517                 if (list[i].available)
518                         return &list[i];
519
520                 if (!probe)
521                         break;
522
523                 status = crypto_has_alg(list[i].name, algo_list->type,
524                                         algo_list->mask);
525                 if (!status)
526                         break;
527
528                 list[i].available = status;
529                 return &list[i];
530         }
531         return NULL;
532 }
533
534 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
535                              const void *data)
536 {
537         return entry->desc.sadb_alg_id == (unsigned long)data;
538 }
539
540 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
541 {
542         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
543                               (void *)(unsigned long)alg_id, 1);
544 }
545 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
546
547 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
548 {
549         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
550                               (void *)(unsigned long)alg_id, 1);
551 }
552 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
553
554 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
555 {
556         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
557                               (void *)(unsigned long)alg_id, 1);
558 }
559 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
560
561 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
562                                const void *data)
563 {
564         const char *name = data;
565
566         return name && (!strcmp(name, entry->name) ||
567                         (entry->compat && !strcmp(name, entry->compat)));
568 }
569
570 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
571 {
572         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
573                               probe);
574 }
575 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
576
577 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
578 {
579         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
580                               probe);
581 }
582 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
583
584 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
585 {
586         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
587                               probe);
588 }
589 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
590
591 struct xfrm_aead_name {
592         const char *name;
593         int icvbits;
594 };
595
596 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
597                                 const void *data)
598 {
599         const struct xfrm_aead_name *aead = data;
600         const char *name = aead->name;
601
602         return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
603                !strcmp(name, entry->name);
604 }
605
606 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
607 {
608         struct xfrm_aead_name data = {
609                 .name = name,
610                 .icvbits = icv_len,
611         };
612
613         return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
614                               probe);
615 }
616 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
617
618 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
619 {
620         if (idx >= aalg_entries())
621                 return NULL;
622
623         return &aalg_list[idx];
624 }
625 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
626
627 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
628 {
629         if (idx >= ealg_entries())
630                 return NULL;
631
632         return &ealg_list[idx];
633 }
634 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
635
636 /*
637  * Probe for the availability of crypto algorithms, and set the available
638  * flag for any algorithms found on the system.  This is typically called by
639  * pfkey during userspace SA add, update or register.
640  */
641 void xfrm_probe_algs(void)
642 {
643         int i, status;
644
645         BUG_ON(in_softirq());
646
647         for (i = 0; i < aalg_entries(); i++) {
648                 status = crypto_has_hash(aalg_list[i].name, 0,
649                                          CRYPTO_ALG_ASYNC);
650                 if (aalg_list[i].available != status)
651                         aalg_list[i].available = status;
652         }
653
654         for (i = 0; i < ealg_entries(); i++) {
655                 status = crypto_has_blkcipher(ealg_list[i].name, 0,
656                                               CRYPTO_ALG_ASYNC);
657                 if (ealg_list[i].available != status)
658                         ealg_list[i].available = status;
659         }
660
661         for (i = 0; i < calg_entries(); i++) {
662                 status = crypto_has_comp(calg_list[i].name, 0,
663                                          CRYPTO_ALG_ASYNC);
664                 if (calg_list[i].available != status)
665                         calg_list[i].available = status;
666         }
667 }
668 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
669
670 int xfrm_count_auth_supported(void)
671 {
672         int i, n;
673
674         for (i = 0, n = 0; i < aalg_entries(); i++)
675                 if (aalg_list[i].available)
676                         n++;
677         return n;
678 }
679 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
680
681 int xfrm_count_enc_supported(void)
682 {
683         int i, n;
684
685         for (i = 0, n = 0; i < ealg_entries(); i++)
686                 if (ealg_list[i].available)
687                         n++;
688         return n;
689 }
690 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
691
692 /* Move to common area: it is shared with AH. */
693
694 int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
695                  int offset, int len, icv_update_fn_t icv_update)
696 {
697         int start = skb_headlen(skb);
698         int i, copy = start - offset;
699         int err;
700         struct scatterlist sg;
701
702         /* Checksum header. */
703         if (copy > 0) {
704                 if (copy > len)
705                         copy = len;
706
707                 sg_init_one(&sg, skb->data + offset, copy);
708
709                 err = icv_update(desc, &sg, copy);
710                 if (unlikely(err))
711                         return err;
712
713                 if ((len -= copy) == 0)
714                         return 0;
715                 offset += copy;
716         }
717
718         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
719                 int end;
720
721                 BUG_TRAP(start <= offset + len);
722
723                 end = start + skb_shinfo(skb)->frags[i].size;
724                 if ((copy = end - offset) > 0) {
725                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
726
727                         if (copy > len)
728                                 copy = len;
729
730                         sg_init_table(&sg, 1);
731                         sg_set_page(&sg, frag->page, copy,
732                                     frag->page_offset + offset-start);
733
734                         err = icv_update(desc, &sg, copy);
735                         if (unlikely(err))
736                                 return err;
737
738                         if (!(len -= copy))
739                                 return 0;
740                         offset += copy;
741                 }
742                 start = end;
743         }
744
745         if (skb_shinfo(skb)->frag_list) {
746                 struct sk_buff *list = skb_shinfo(skb)->frag_list;
747
748                 for (; list; list = list->next) {
749                         int end;
750
751                         BUG_TRAP(start <= offset + len);
752
753                         end = start + list->len;
754                         if ((copy = end - offset) > 0) {
755                                 if (copy > len)
756                                         copy = len;
757                                 err = skb_icv_walk(list, desc, offset-start,
758                                                    copy, icv_update);
759                                 if (unlikely(err))
760                                         return err;
761                                 if ((len -= copy) == 0)
762                                         return 0;
763                                 offset += copy;
764                         }
765                         start = end;
766                 }
767         }
768         BUG_ON(len);
769         return 0;
770 }
771 EXPORT_SYMBOL_GPL(skb_icv_walk);
772
773 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
774
775 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
776 {
777         if (tail != skb) {
778                 skb->data_len += len;
779                 skb->len += len;
780         }
781         return skb_put(tail, len);
782 }
783 EXPORT_SYMBOL_GPL(pskb_put);
784 #endif