2 * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
3 * Symbol Wireless Networker LA4137, CompactFlash cards by Socket
4 * Communications and Intel PRO/Wireless 2011B.
6 * The driver implements Symbol firmware download. The rest is handled
7 * in hermes.c and orinoco.c.
9 * Utilities for downloading the Symbol firmware are available at
10 * http://sourceforge.net/projects/orinoco/
12 * Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org>
13 * Portions based on orinoco_cs.c:
14 * Copyright (C) David Gibson, Linuxcare Australia
15 * Portions based on Spectrum24tDnld.c from original spectrum24 driver:
16 * Copyright (C) Symbol Technologies.
18 * See copyright notice in file orinoco.c.
21 #define DRIVER_NAME "spectrum_cs"
22 #define PFX DRIVER_NAME ": "
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <pcmcia/cs_types.h>
31 #include <pcmcia/cs.h>
32 #include <pcmcia/cistpl.h>
33 #include <pcmcia/cisreg.h>
34 #include <pcmcia/ds.h>
38 static unsigned char *primsym;
39 static unsigned char *secsym;
40 static const char primary_fw_name[] = "symbol_sp24t_prim_fw";
41 static const char secondary_fw_name[] = "symbol_sp24t_sec_fw";
43 /********************************************************************/
45 /********************************************************************/
47 MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>");
48 MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader");
49 MODULE_LICENSE("Dual MPL/GPL");
51 /* Module parameters */
53 /* Some D-Link cards have buggy CIS. They do work at 5v properly, but
54 * don't have any CIS entry for it. This workaround it... */
55 static int ignore_cis_vcc; /* = 0 */
56 module_param(ignore_cis_vcc, int, 0);
57 MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket");
59 /********************************************************************/
61 /********************************************************************/
63 /* PCMCIA specific device information (goes in the card field of
64 * struct orinoco_private */
65 struct orinoco_pccard {
66 struct pcmcia_device *p_dev;
70 /********************************************************************/
71 /* Function prototypes */
72 /********************************************************************/
74 static int spectrum_cs_config(struct pcmcia_device *link);
75 static void spectrum_cs_release(struct pcmcia_device *link);
77 /********************************************************************/
78 /* Firmware downloader */
79 /********************************************************************/
81 /* Position of PDA in the adapter memory */
82 #define EEPROM_ADDR 0x3000
83 #define EEPROM_LEN 0x200
84 #define PDA_OFFSET 0x100
86 #define PDA_ADDR (EEPROM_ADDR + PDA_OFFSET)
87 #define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2)
89 /* Constants for the CISREG_CCSR register */
90 #define HCR_RUN 0x07 /* run firmware after reset */
91 #define HCR_IDLE 0x0E /* don't run firmware after reset */
92 #define HCR_MEM16 0x10 /* memory width bit, should be preserved */
95 * AUX port access. To unlock the AUX port write the access keys to the
96 * PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL
97 * register. Then read it and make sure it's HERMES_AUX_ENABLED.
99 #define HERMES_AUX_ENABLE 0x8000 /* Enable auxiliary port access */
100 #define HERMES_AUX_DISABLE 0x4000 /* Disable to auxiliary port access */
101 #define HERMES_AUX_ENABLED 0xC000 /* Auxiliary port is open */
103 #define HERMES_AUX_PW0 0xFE01
104 #define HERMES_AUX_PW1 0xDC23
105 #define HERMES_AUX_PW2 0xBA45
108 #define PDI_END 0x00000000 /* End of PDA */
109 #define BLOCK_END 0xFFFFFFFF /* Last image block */
110 #define TEXT_END 0x1A /* End of text header */
113 * The following structures have little-endian fields denoted by
114 * the leading underscore. Don't access them directly - use inline
115 * functions defined below.
119 * The binary image to be downloaded consists of series of data blocks.
120 * Each block has the following structure.
123 __le32 addr; /* adapter address where to write the block */
124 __le16 len; /* length of the data only, in bytes */
125 char data[0]; /* data to be written */
126 } __attribute__ ((packed));
129 * Plug Data References are located in in the image after the last data
130 * block. They refer to areas in the adapter memory where the plug data
131 * items with matching ID should be written.
134 __le32 id; /* record ID */
135 __le32 addr; /* adapter address where to write the data */
136 __le32 len; /* expected length of the data, in bytes */
137 char next[0]; /* next PDR starts here */
138 } __attribute__ ((packed));
142 * Plug Data Items are located in the EEPROM read from the adapter by
143 * primary firmware. They refer to the device-specific data that should
144 * be plugged into the secondary firmware.
147 __le16 len; /* length of ID and data, in words */
148 __le16 id; /* record ID */
149 char data[0]; /* plug data */
150 } __attribute__ ((packed));
153 /* Functions for access to little-endian data */
155 dblock_addr(const struct dblock *blk)
157 return le32_to_cpu(blk->addr);
161 dblock_len(const struct dblock *blk)
163 return le16_to_cpu(blk->len);
167 pdr_id(const struct pdr *pdr)
169 return le32_to_cpu(pdr->id);
173 pdr_addr(const struct pdr *pdr)
175 return le32_to_cpu(pdr->addr);
179 pdr_len(const struct pdr *pdr)
181 return le32_to_cpu(pdr->len);
185 pdi_id(const struct pdi *pdi)
187 return le16_to_cpu(pdi->id);
190 /* Return length of the data only, in bytes */
192 pdi_len(const struct pdi *pdi)
194 return 2 * (le16_to_cpu(pdi->len) - 1);
198 /* Set address of the auxiliary port */
200 spectrum_aux_setaddr(hermes_t *hw, u32 addr)
202 hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7));
203 hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F));
207 /* Open access to the auxiliary port */
209 spectrum_aux_open(hermes_t *hw)
214 if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED)
217 hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0);
218 hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1);
219 hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2);
220 hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE);
222 for (i = 0; i < 20; i++) {
224 if (hermes_read_reg(hw, HERMES_CONTROL) ==
233 #define CS_CHECK(fn, ret) \
234 do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
237 * Reset the card using configuration registers COR and CCSR.
238 * If IDLE is 1, stop the firmware, so that it can be safely rewritten.
241 spectrum_reset(struct pcmcia_device *link, int idle)
243 int last_ret, last_fn;
247 /* Doing it if hardware is gone is guaranteed crash */
248 if (pcmcia_dev_present(link))
251 /* Save original COR value */
253 reg.Action = CS_READ;
254 reg.Offset = CISREG_COR;
255 CS_CHECK(AccessConfigurationRegister,
256 pcmcia_access_configuration_register(link, ®));
257 save_cor = reg.Value;
259 /* Soft-Reset card */
260 reg.Action = CS_WRITE;
261 reg.Offset = CISREG_COR;
262 reg.Value = (save_cor | COR_SOFT_RESET);
263 CS_CHECK(AccessConfigurationRegister,
264 pcmcia_access_configuration_register(link, ®));
268 reg.Action = CS_READ;
269 reg.Offset = CISREG_CCSR;
270 CS_CHECK(AccessConfigurationRegister,
271 pcmcia_access_configuration_register(link, ®));
274 * Start or stop the firmware. Memory width bit should be
275 * preserved from the value we've just read.
277 reg.Action = CS_WRITE;
278 reg.Offset = CISREG_CCSR;
279 reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16);
280 CS_CHECK(AccessConfigurationRegister,
281 pcmcia_access_configuration_register(link, ®));
284 /* Restore original COR configuration index */
285 reg.Action = CS_WRITE;
286 reg.Offset = CISREG_COR;
287 reg.Value = (save_cor & ~COR_SOFT_RESET);
288 CS_CHECK(AccessConfigurationRegister,
289 pcmcia_access_configuration_register(link, ®));
294 cs_error(link, last_fn, last_ret);
300 * Scan PDR for the record with the specified RECORD_ID.
301 * If it's not found, return NULL.
304 spectrum_find_pdr(struct pdr *first_pdr, u32 record_id)
306 struct pdr *pdr = first_pdr;
308 while (pdr_id(pdr) != PDI_END) {
310 * PDR area is currently not terminated by PDI_END.
311 * It's followed by CRC records, which have the type
312 * field where PDR has length. The type can be 0 or 1.
314 if (pdr_len(pdr) < 2)
317 /* If the record ID matches, we are done */
318 if (pdr_id(pdr) == record_id)
321 pdr = (struct pdr *) pdr->next;
327 /* Process one Plug Data Item - find corresponding PDR and plug it */
329 spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
333 /* Find the PDI corresponding to this PDR */
334 pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi));
336 /* No match is found, safe to ignore */
340 /* Lengths of the data in PDI and PDR must match */
341 if (pdi_len(pdi) != pdr_len(pdr))
344 /* do the actual plugging */
345 spectrum_aux_setaddr(hw, pdr_addr(pdr));
346 hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi));
352 /* Read PDA from the adapter */
354 spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len)
359 /* Issue command to read EEPROM */
360 ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL);
364 /* Open auxiliary port */
365 ret = spectrum_aux_open(hw);
369 /* read PDA from EEPROM */
370 spectrum_aux_setaddr(hw, PDA_ADDR);
371 hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2);
373 /* Check PDA length */
374 pda_size = le16_to_cpu(pda[0]);
375 if (pda_size > pda_len)
382 /* Parse PDA and write the records into the adapter */
384 spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block,
389 struct pdr *first_pdr;
390 const struct dblock *blk = first_block;
392 /* Skip all blocks to locate Plug Data References */
393 while (dblock_addr(blk) != BLOCK_END)
394 blk = (struct dblock *) &blk->data[dblock_len(blk)];
396 first_pdr = (struct pdr *) blk;
398 /* Go through every PDI and plug them into the adapter */
399 pdi = (struct pdi *) (pda + 2);
400 while (pdi_id(pdi) != PDI_END) {
401 ret = spectrum_plug_pdi(hw, first_pdr, pdi);
405 /* Increment to the next PDI */
406 pdi = (struct pdi *) &pdi->data[pdi_len(pdi)];
412 /* Load firmware blocks into the adapter */
414 spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
416 const struct dblock *blk;
421 blkaddr = dblock_addr(blk);
422 blklen = dblock_len(blk);
424 while (dblock_addr(blk) != BLOCK_END) {
425 spectrum_aux_setaddr(hw, blkaddr);
426 hermes_write_bytes(hw, HERMES_AUXDATA, blk->data,
429 blk = (struct dblock *) &blk->data[blklen];
430 blkaddr = dblock_addr(blk);
431 blklen = dblock_len(blk);
438 * Process a firmware image - stop the card, load the firmware, reset
439 * the card and make sure it responds. For the secondary firmware take
440 * care of the PDA - read it and then write it on top of the firmware.
443 spectrum_dl_image(hermes_t *hw, struct pcmcia_device *link,
444 const unsigned char *image)
447 const unsigned char *ptr;
448 const struct dblock *first_block;
450 /* Plug Data Area (PDA) */
451 __le16 pda[PDA_WORDS];
453 /* Binary block begins after the 0x1A marker */
455 while (*ptr++ != TEXT_END);
456 first_block = (const struct dblock *) ptr;
459 if (image != primsym) {
460 ret = spectrum_read_pda(hw, pda, sizeof(pda));
465 /* Stop the firmware, so that it can be safely rewritten */
466 ret = spectrum_reset(link, 1);
470 /* Program the adapter with new firmware */
471 ret = spectrum_load_blocks(hw, first_block);
475 /* Write the PDA to the adapter */
476 if (image != primsym) {
477 ret = spectrum_apply_pda(hw, first_block, pda);
482 /* Run the firmware */
483 ret = spectrum_reset(link, 0);
487 /* Reset hermes chip and make sure it responds */
488 ret = hermes_init(hw);
490 /* hermes_reset() should return 0 with the secondary firmware */
491 if (image != primsym && ret != 0)
494 /* And this should work with any firmware */
495 if (!hermes_present(hw))
503 * Download the firmware into the card, this also does a PCMCIA soft
504 * reset on the card, to make sure it's in a sane state.
507 spectrum_dl_firmware(hermes_t *hw, struct pcmcia_device *link)
510 const struct firmware *fw_entry;
512 if (request_firmware(&fw_entry, primary_fw_name,
513 &handle_to_dev(link)) == 0) {
514 primsym = fw_entry->data;
516 printk(KERN_ERR PFX "Cannot find firmware: %s\n",
521 if (request_firmware(&fw_entry, secondary_fw_name,
522 &handle_to_dev(link)) == 0) {
523 secsym = fw_entry->data;
525 printk(KERN_ERR PFX "Cannot find firmware: %s\n",
530 /* Load primary firmware */
531 ret = spectrum_dl_image(hw, link, primsym);
533 printk(KERN_ERR PFX "Primary firmware download failed\n");
537 /* Load secondary firmware */
538 ret = spectrum_dl_image(hw, link, secsym);
541 printk(KERN_ERR PFX "Secondary firmware download failed\n");
547 /********************************************************************/
549 /********************************************************************/
552 spectrum_cs_hard_reset(struct orinoco_private *priv)
554 struct orinoco_pccard *card = priv->card;
555 struct pcmcia_device *link = card->p_dev;
558 if (!hermes_present(&priv->hw)) {
559 /* The firmware needs to be reloaded */
560 if (spectrum_dl_firmware(&priv->hw, link) != 0) {
561 printk(KERN_ERR PFX "Firmware download failed\n");
565 /* Soft reset using COR and HCR */
566 spectrum_reset(link, 0);
572 /********************************************************************/
574 /********************************************************************/
577 * This creates an "instance" of the driver, allocating local data
578 * structures for one device. The device is registered with Card
581 * The dev_link structure is initialized, but we don't actually
582 * configure the card at this point -- we wait until we receive a card
583 * insertion event. */
585 spectrum_cs_probe(struct pcmcia_device *link)
587 struct net_device *dev;
588 struct orinoco_private *priv;
589 struct orinoco_pccard *card;
591 dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset);
594 priv = netdev_priv(dev);
597 /* Link both structures together */
601 /* Interrupt setup */
602 link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
603 link->irq.IRQInfo1 = IRQ_LEVEL_ID;
604 link->irq.Handler = orinoco_interrupt;
605 link->irq.Instance = dev;
607 /* General socket configuration defaults can go here. In this
608 * client, we assume very little, and rely on the CIS for
609 * almost everything. In most clients, many details (i.e.,
610 * number, sizes, and attributes of IO windows) are fixed by
611 * the nature of the device, and can be hard-wired here. */
612 link->conf.Attributes = 0;
613 link->conf.IntType = INT_MEMORY_AND_IO;
615 return spectrum_cs_config(link);
616 } /* spectrum_cs_attach */
619 * This deletes a driver "instance". The device is de-registered with
620 * Card Services. If it has been released, all local data structures
621 * are freed. Otherwise, the structures will be freed when the device
624 static void spectrum_cs_detach(struct pcmcia_device *link)
626 struct net_device *dev = link->priv;
629 unregister_netdev(dev);
631 spectrum_cs_release(link);
633 free_orinocodev(dev);
634 } /* spectrum_cs_detach */
637 * spectrum_cs_config() is scheduled to run after a CARD_INSERTION
638 * event is received, to configure the PCMCIA socket, and to make the
639 * device available to the system.
643 spectrum_cs_config(struct pcmcia_device *link)
645 struct net_device *dev = link->priv;
646 struct orinoco_private *priv = netdev_priv(dev);
647 struct orinoco_pccard *card = priv->card;
648 hermes_t *hw = &priv->hw;
649 int last_fn, last_ret;
657 * This reads the card's CONFIG tuple to find its
658 * configuration registers.
660 tuple.DesiredTuple = CISTPL_CONFIG;
661 tuple.Attributes = 0;
662 tuple.TupleData = buf;
663 tuple.TupleDataMax = sizeof(buf);
664 tuple.TupleOffset = 0;
665 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
666 CS_CHECK(GetTupleData, pcmcia_get_tuple_data(link, &tuple));
667 CS_CHECK(ParseTuple, pcmcia_parse_tuple(link, &tuple, &parse));
668 link->conf.ConfigBase = parse.config.base;
669 link->conf.Present = parse.config.rmask[0];
671 /* Look up the current Vcc */
672 CS_CHECK(GetConfigurationInfo,
673 pcmcia_get_configuration_info(link, &conf));
676 * In this loop, we scan the CIS for configuration table
677 * entries, each of which describes a valid card
678 * configuration, including voltage, IO window, memory window,
679 * and interrupt settings.
681 * We make no assumptions about the card to be configured: we
682 * use just the information available in the CIS. In an ideal
683 * world, this would work for any PCMCIA card, but it requires
684 * a complete and accurate CIS. In practice, a driver usually
685 * "knows" most of these things without consulting the CIS,
686 * and most client drivers will only use the CIS to fill in
687 * implementation-defined details.
689 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
690 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
692 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
693 cistpl_cftable_entry_t dflt = { .index = 0 };
695 if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
696 || (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
699 if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
703 link->conf.ConfigIndex = cfg->index;
705 /* Use power settings for Vcc and Vpp if present */
706 /* Note that the CIS values need to be rescaled */
707 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
708 if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
709 DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
713 } else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
714 if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
715 DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
721 if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
723 cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
724 else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
726 dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
728 /* Do we need to allocate an interrupt? */
729 link->conf.Attributes |= CONF_ENABLE_IRQ;
731 /* IO window settings */
732 link->io.NumPorts1 = link->io.NumPorts2 = 0;
733 if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
735 (cfg->io.nwin) ? &cfg->io : &dflt.io;
736 link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
737 if (!(io->flags & CISTPL_IO_8BIT))
738 link->io.Attributes1 =
739 IO_DATA_PATH_WIDTH_16;
740 if (!(io->flags & CISTPL_IO_16BIT))
741 link->io.Attributes1 =
742 IO_DATA_PATH_WIDTH_8;
743 link->io.IOAddrLines =
744 io->flags & CISTPL_IO_LINES_MASK;
745 link->io.BasePort1 = io->win[0].base;
746 link->io.NumPorts1 = io->win[0].len;
748 link->io.Attributes2 =
749 link->io.Attributes1;
750 link->io.BasePort2 = io->win[1].base;
751 link->io.NumPorts2 = io->win[1].len;
754 /* This reserves IO space but doesn't actually enable it */
755 if (pcmcia_request_io(link, &link->io) != 0)
760 /* If we got this far, we're cool! */
765 pcmcia_disable_device(link);
766 last_ret = pcmcia_get_next_tuple(link, &tuple);
767 if (last_ret == CS_NO_MORE_ITEMS) {
768 printk(KERN_ERR PFX "GetNextTuple(): No matching "
769 "CIS configuration. Maybe you need the "
770 "ignore_cis_vcc=1 parameter.\n");
776 * Allocate an interrupt line. Note that this does not assign
777 * a handler to the interrupt, unless the 'Handler' member of
778 * the irq structure is initialized.
780 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
782 /* We initialize the hermes structure before completing PCMCIA
783 * configuration just in case the interrupt handler gets
785 mem = ioport_map(link->io.BasePort1, link->io.NumPorts1);
789 hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING);
792 * This actually configures the PCMCIA socket -- setting up
793 * the I/O windows and the interrupt mapping, and putting the
794 * card and host interface into "Memory and IO" mode.
796 CS_CHECK(RequestConfiguration,
797 pcmcia_request_configuration(link, &link->conf));
799 /* Ok, we have the configuration, prepare to register the netdev */
800 dev->base_addr = link->io.BasePort1;
801 dev->irq = link->irq.AssignedIRQ;
802 SET_MODULE_OWNER(dev);
803 card->node.major = card->node.minor = 0;
805 /* Reset card and download firmware */
806 if (spectrum_cs_hard_reset(priv) != 0) {
810 SET_NETDEV_DEV(dev, &handle_to_dev(link));
811 /* Tell the stack we exist */
812 if (register_netdev(dev) != 0) {
813 printk(KERN_ERR PFX "register_netdev() failed\n");
817 /* At this point, the dev_node_t structure(s) needs to be
818 * initialized and arranged in a linked list at link->dev_node. */
819 strcpy(card->node.dev_name, dev->name);
820 link->dev_node = &card->node; /* link->dev_node being non-NULL is also
821 used to indicate that the
822 net_device has been registered */
824 /* Finally, report what we've done */
825 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io "
826 "0x%04x-0x%04x\n", dev->name, dev->class_dev.dev->bus_id,
827 link->irq.AssignedIRQ, link->io.BasePort1,
828 link->io.BasePort1 + link->io.NumPorts1 - 1);
833 cs_error(link, last_fn, last_ret);
836 spectrum_cs_release(link);
838 } /* spectrum_cs_config */
841 * After a card is removed, spectrum_cs_release() will unregister the
842 * device, and release the PCMCIA configuration. If the device is
843 * still open, this will be postponed until it is closed.
846 spectrum_cs_release(struct pcmcia_device *link)
848 struct net_device *dev = link->priv;
849 struct orinoco_private *priv = netdev_priv(dev);
852 /* We're committed to taking the device away now, so mark the
853 * hardware as unavailable */
854 spin_lock_irqsave(&priv->lock, flags);
855 priv->hw_unavailable++;
856 spin_unlock_irqrestore(&priv->lock, flags);
858 pcmcia_disable_device(link);
860 ioport_unmap(priv->hw.iobase);
861 } /* spectrum_cs_release */
865 spectrum_cs_suspend(struct pcmcia_device *link)
867 struct net_device *dev = link->priv;
868 struct orinoco_private *priv = netdev_priv(dev);
871 /* Mark the device as stopped, to block IO until later */
872 spin_lock(&priv->lock);
874 err = __orinoco_down(dev);
876 printk(KERN_WARNING "%s: Error %d downing interface\n",
879 netif_device_detach(dev);
880 priv->hw_unavailable++;
882 spin_unlock(&priv->lock);
888 spectrum_cs_resume(struct pcmcia_device *link)
890 struct net_device *dev = link->priv;
891 struct orinoco_private *priv = netdev_priv(dev);
893 netif_device_attach(dev);
894 priv->hw_unavailable--;
895 schedule_work(&priv->reset_work);
901 /********************************************************************/
902 /* Module initialization */
903 /********************************************************************/
905 /* Can't be declared "const" or the whole __initdata section will
907 static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
908 " (Pavel Roskin <proski@gnu.org>,"
909 " David Gibson <hermes@gibson.dropbear.id.au>, et al)";
911 static struct pcmcia_device_id spectrum_cs_ids[] = {
912 PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */
913 PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
914 PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
917 MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids);
919 static struct pcmcia_driver orinoco_driver = {
920 .owner = THIS_MODULE,
924 .probe = spectrum_cs_probe,
925 .remove = spectrum_cs_detach,
926 .suspend = spectrum_cs_suspend,
927 .resume = spectrum_cs_resume,
928 .id_table = spectrum_cs_ids,
932 init_spectrum_cs(void)
934 printk(KERN_DEBUG "%s\n", version);
936 return pcmcia_register_driver(&orinoco_driver);
940 exit_spectrum_cs(void)
942 pcmcia_unregister_driver(&orinoco_driver);
945 module_init(init_spectrum_cs);
946 module_exit(exit_spectrum_cs);