Pull acpica into release branch
[linux-2.6] / arch / sparc64 / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *  Adapted for sparc64 by David S. Miller davem@davemloft.net
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/bootmem.h>
23 #include <linux/module.h>
24
25 #include <asm/prom.h>
26 #include <asm/of_device.h>
27 #include <asm/oplib.h>
28 #include <asm/irq.h>
29 #include <asm/asi.h>
30 #include <asm/upa.h>
31 #include <asm/smp.h>
32
33 extern struct device_node *allnodes;    /* temporary while merging */
34
35 extern rwlock_t devtree_lock;   /* temporary while merging */
36
37 struct device_node *of_find_node_by_phandle(phandle handle)
38 {
39         struct device_node *np;
40
41         for (np = allnodes; np != 0; np = np->allnext)
42                 if (np->node == handle)
43                         break;
44
45         return np;
46 }
47 EXPORT_SYMBOL(of_find_node_by_phandle);
48
49 int of_getintprop_default(struct device_node *np, const char *name, int def)
50 {
51         struct property *prop;
52         int len;
53
54         prop = of_find_property(np, name, &len);
55         if (!prop || len != 4)
56                 return def;
57
58         return *(int *) prop->value;
59 }
60 EXPORT_SYMBOL(of_getintprop_default);
61
62 int of_set_property(struct device_node *dp, const char *name, void *val, int len)
63 {
64         struct property **prevp;
65         void *new_val;
66         int err;
67
68         new_val = kmalloc(len, GFP_KERNEL);
69         if (!new_val)
70                 return -ENOMEM;
71
72         memcpy(new_val, val, len);
73
74         err = -ENODEV;
75
76         write_lock(&devtree_lock);
77         prevp = &dp->properties;
78         while (*prevp) {
79                 struct property *prop = *prevp;
80
81                 if (!strcasecmp(prop->name, name)) {
82                         void *old_val = prop->value;
83                         int ret;
84
85                         ret = prom_setprop(dp->node, name, val, len);
86                         err = -EINVAL;
87                         if (ret >= 0) {
88                                 prop->value = new_val;
89                                 prop->length = len;
90
91                                 if (OF_IS_DYNAMIC(prop))
92                                         kfree(old_val);
93
94                                 OF_MARK_DYNAMIC(prop);
95
96                                 err = 0;
97                         }
98                         break;
99                 }
100                 prevp = &(*prevp)->next;
101         }
102         write_unlock(&devtree_lock);
103
104         /* XXX Upate procfs if necessary... */
105
106         return err;
107 }
108 EXPORT_SYMBOL(of_set_property);
109
110 static unsigned int prom_early_allocated;
111
112 static void * __init prom_early_alloc(unsigned long size)
113 {
114         void *ret;
115
116         ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
117         if (ret != NULL)
118                 memset(ret, 0, size);
119
120         prom_early_allocated += size;
121
122         return ret;
123 }
124
125 #ifdef CONFIG_PCI
126 /* PSYCHO interrupt mapping support. */
127 #define PSYCHO_IMAP_A_SLOT0     0x0c00UL
128 #define PSYCHO_IMAP_B_SLOT0     0x0c20UL
129 static unsigned long psycho_pcislot_imap_offset(unsigned long ino)
130 {
131         unsigned int bus =  (ino & 0x10) >> 4;
132         unsigned int slot = (ino & 0x0c) >> 2;
133
134         if (bus == 0)
135                 return PSYCHO_IMAP_A_SLOT0 + (slot * 8);
136         else
137                 return PSYCHO_IMAP_B_SLOT0 + (slot * 8);
138 }
139
140 #define PSYCHO_IMAP_SCSI        0x1000UL
141 #define PSYCHO_IMAP_ETH         0x1008UL
142 #define PSYCHO_IMAP_BPP         0x1010UL
143 #define PSYCHO_IMAP_AU_REC      0x1018UL
144 #define PSYCHO_IMAP_AU_PLAY     0x1020UL
145 #define PSYCHO_IMAP_PFAIL       0x1028UL
146 #define PSYCHO_IMAP_KMS         0x1030UL
147 #define PSYCHO_IMAP_FLPY        0x1038UL
148 #define PSYCHO_IMAP_SHW         0x1040UL
149 #define PSYCHO_IMAP_KBD         0x1048UL
150 #define PSYCHO_IMAP_MS          0x1050UL
151 #define PSYCHO_IMAP_SER         0x1058UL
152 #define PSYCHO_IMAP_TIM0        0x1060UL
153 #define PSYCHO_IMAP_TIM1        0x1068UL
154 #define PSYCHO_IMAP_UE          0x1070UL
155 #define PSYCHO_IMAP_CE          0x1078UL
156 #define PSYCHO_IMAP_A_ERR       0x1080UL
157 #define PSYCHO_IMAP_B_ERR       0x1088UL
158 #define PSYCHO_IMAP_PMGMT       0x1090UL
159 #define PSYCHO_IMAP_GFX         0x1098UL
160 #define PSYCHO_IMAP_EUPA        0x10a0UL
161
162 static unsigned long __psycho_onboard_imap_off[] = {
163 /*0x20*/        PSYCHO_IMAP_SCSI,
164 /*0x21*/        PSYCHO_IMAP_ETH,
165 /*0x22*/        PSYCHO_IMAP_BPP,
166 /*0x23*/        PSYCHO_IMAP_AU_REC,
167 /*0x24*/        PSYCHO_IMAP_AU_PLAY,
168 /*0x25*/        PSYCHO_IMAP_PFAIL,
169 /*0x26*/        PSYCHO_IMAP_KMS,
170 /*0x27*/        PSYCHO_IMAP_FLPY,
171 /*0x28*/        PSYCHO_IMAP_SHW,
172 /*0x29*/        PSYCHO_IMAP_KBD,
173 /*0x2a*/        PSYCHO_IMAP_MS,
174 /*0x2b*/        PSYCHO_IMAP_SER,
175 /*0x2c*/        PSYCHO_IMAP_TIM0,
176 /*0x2d*/        PSYCHO_IMAP_TIM1,
177 /*0x2e*/        PSYCHO_IMAP_UE,
178 /*0x2f*/        PSYCHO_IMAP_CE,
179 /*0x30*/        PSYCHO_IMAP_A_ERR,
180 /*0x31*/        PSYCHO_IMAP_B_ERR,
181 /*0x32*/        PSYCHO_IMAP_PMGMT,
182 /*0x33*/        PSYCHO_IMAP_GFX,
183 /*0x34*/        PSYCHO_IMAP_EUPA,
184 };
185 #define PSYCHO_ONBOARD_IRQ_BASE         0x20
186 #define PSYCHO_ONBOARD_IRQ_LAST         0x34
187 #define psycho_onboard_imap_offset(__ino) \
188         __psycho_onboard_imap_off[(__ino) - PSYCHO_ONBOARD_IRQ_BASE]
189
190 #define PSYCHO_ICLR_A_SLOT0     0x1400UL
191 #define PSYCHO_ICLR_SCSI        0x1800UL
192
193 #define psycho_iclr_offset(ino)                                       \
194         ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
195                         (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
196
197 static unsigned int psycho_irq_build(struct device_node *dp,
198                                      unsigned int ino,
199                                      void *_data)
200 {
201         unsigned long controller_regs = (unsigned long) _data;
202         unsigned long imap, iclr;
203         unsigned long imap_off, iclr_off;
204         int inofixup = 0;
205
206         ino &= 0x3f;
207         if (ino < PSYCHO_ONBOARD_IRQ_BASE) {
208                 /* PCI slot */
209                 imap_off = psycho_pcislot_imap_offset(ino);
210         } else {
211                 /* Onboard device */
212                 if (ino > PSYCHO_ONBOARD_IRQ_LAST) {
213                         prom_printf("psycho_irq_build: Wacky INO [%x]\n", ino);
214                         prom_halt();
215                 }
216                 imap_off = psycho_onboard_imap_offset(ino);
217         }
218
219         /* Now build the IRQ bucket. */
220         imap = controller_regs + imap_off;
221
222         iclr_off = psycho_iclr_offset(ino);
223         iclr = controller_regs + iclr_off;
224
225         if ((ino & 0x20) == 0)
226                 inofixup = ino & 0x03;
227
228         return build_irq(inofixup, iclr, imap);
229 }
230
231 static void __init psycho_irq_trans_init(struct device_node *dp)
232 {
233         const struct linux_prom64_registers *regs;
234
235         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
236         dp->irq_trans->irq_build = psycho_irq_build;
237
238         regs = of_get_property(dp, "reg", NULL);
239         dp->irq_trans->data = (void *) regs[2].phys_addr;
240 }
241
242 #define sabre_read(__reg) \
243 ({      u64 __ret; \
244         __asm__ __volatile__("ldxa [%1] %2, %0" \
245                              : "=r" (__ret) \
246                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
247                              : "memory"); \
248         __ret; \
249 })
250
251 struct sabre_irq_data {
252         unsigned long controller_regs;
253         unsigned int pci_first_busno;
254 };
255 #define SABRE_CONFIGSPACE       0x001000000UL
256 #define SABRE_WRSYNC            0x1c20UL
257
258 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \
259         (CONFIG_SPACE | (1UL << 24))
260 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
261         (((unsigned long)(BUS)   << 16) |       \
262          ((unsigned long)(DEVFN) << 8)  |       \
263          ((unsigned long)(REG)))
264
265 /* When a device lives behind a bridge deeper in the PCI bus topology
266  * than APB, a special sequence must run to make sure all pending DMA
267  * transfers at the time of IRQ delivery are visible in the coherency
268  * domain by the cpu.  This sequence is to perform a read on the far
269  * side of the non-APB bridge, then perform a read of Sabre's DMA
270  * write-sync register.
271  */
272 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
273 {
274         unsigned int phys_hi = (unsigned int) (unsigned long) _arg1;
275         struct sabre_irq_data *irq_data = _arg2;
276         unsigned long controller_regs = irq_data->controller_regs;
277         unsigned long sync_reg = controller_regs + SABRE_WRSYNC;
278         unsigned long config_space = controller_regs + SABRE_CONFIGSPACE;
279         unsigned int bus, devfn;
280         u16 _unused;
281
282         config_space = SABRE_CONFIG_BASE(config_space);
283
284         bus = (phys_hi >> 16) & 0xff;
285         devfn = (phys_hi >> 8) & 0xff;
286
287         config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00);
288
289         __asm__ __volatile__("membar #Sync\n\t"
290                              "lduha [%1] %2, %0\n\t"
291                              "membar #Sync"
292                              : "=r" (_unused)
293                              : "r" ((u16 *) config_space),
294                                "i" (ASI_PHYS_BYPASS_EC_E_L)
295                              : "memory");
296
297         sabre_read(sync_reg);
298 }
299
300 #define SABRE_IMAP_A_SLOT0      0x0c00UL
301 #define SABRE_IMAP_B_SLOT0      0x0c20UL
302 #define SABRE_IMAP_SCSI         0x1000UL
303 #define SABRE_IMAP_ETH          0x1008UL
304 #define SABRE_IMAP_BPP          0x1010UL
305 #define SABRE_IMAP_AU_REC       0x1018UL
306 #define SABRE_IMAP_AU_PLAY      0x1020UL
307 #define SABRE_IMAP_PFAIL        0x1028UL
308 #define SABRE_IMAP_KMS          0x1030UL
309 #define SABRE_IMAP_FLPY         0x1038UL
310 #define SABRE_IMAP_SHW          0x1040UL
311 #define SABRE_IMAP_KBD          0x1048UL
312 #define SABRE_IMAP_MS           0x1050UL
313 #define SABRE_IMAP_SER          0x1058UL
314 #define SABRE_IMAP_UE           0x1070UL
315 #define SABRE_IMAP_CE           0x1078UL
316 #define SABRE_IMAP_PCIERR       0x1080UL
317 #define SABRE_IMAP_GFX          0x1098UL
318 #define SABRE_IMAP_EUPA         0x10a0UL
319 #define SABRE_ICLR_A_SLOT0      0x1400UL
320 #define SABRE_ICLR_B_SLOT0      0x1480UL
321 #define SABRE_ICLR_SCSI         0x1800UL
322 #define SABRE_ICLR_ETH          0x1808UL
323 #define SABRE_ICLR_BPP          0x1810UL
324 #define SABRE_ICLR_AU_REC       0x1818UL
325 #define SABRE_ICLR_AU_PLAY      0x1820UL
326 #define SABRE_ICLR_PFAIL        0x1828UL
327 #define SABRE_ICLR_KMS          0x1830UL
328 #define SABRE_ICLR_FLPY         0x1838UL
329 #define SABRE_ICLR_SHW          0x1840UL
330 #define SABRE_ICLR_KBD          0x1848UL
331 #define SABRE_ICLR_MS           0x1850UL
332 #define SABRE_ICLR_SER          0x1858UL
333 #define SABRE_ICLR_UE           0x1870UL
334 #define SABRE_ICLR_CE           0x1878UL
335 #define SABRE_ICLR_PCIERR       0x1880UL
336
337 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
338 {
339         unsigned int bus =  (ino & 0x10) >> 4;
340         unsigned int slot = (ino & 0x0c) >> 2;
341
342         if (bus == 0)
343                 return SABRE_IMAP_A_SLOT0 + (slot * 8);
344         else
345                 return SABRE_IMAP_B_SLOT0 + (slot * 8);
346 }
347
348 static unsigned long __sabre_onboard_imap_off[] = {
349 /*0x20*/        SABRE_IMAP_SCSI,
350 /*0x21*/        SABRE_IMAP_ETH,
351 /*0x22*/        SABRE_IMAP_BPP,
352 /*0x23*/        SABRE_IMAP_AU_REC,
353 /*0x24*/        SABRE_IMAP_AU_PLAY,
354 /*0x25*/        SABRE_IMAP_PFAIL,
355 /*0x26*/        SABRE_IMAP_KMS,
356 /*0x27*/        SABRE_IMAP_FLPY,
357 /*0x28*/        SABRE_IMAP_SHW,
358 /*0x29*/        SABRE_IMAP_KBD,
359 /*0x2a*/        SABRE_IMAP_MS,
360 /*0x2b*/        SABRE_IMAP_SER,
361 /*0x2c*/        0 /* reserved */,
362 /*0x2d*/        0 /* reserved */,
363 /*0x2e*/        SABRE_IMAP_UE,
364 /*0x2f*/        SABRE_IMAP_CE,
365 /*0x30*/        SABRE_IMAP_PCIERR,
366 /*0x31*/        0 /* reserved */,
367 /*0x32*/        0 /* reserved */,
368 /*0x33*/        SABRE_IMAP_GFX,
369 /*0x34*/        SABRE_IMAP_EUPA,
370 };
371 #define SABRE_ONBOARD_IRQ_BASE          0x20
372 #define SABRE_ONBOARD_IRQ_LAST          0x30
373 #define sabre_onboard_imap_offset(__ino) \
374         __sabre_onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
375
376 #define sabre_iclr_offset(ino)                                        \
377         ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
378                         (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
379
380 static int sabre_device_needs_wsync(struct device_node *dp)
381 {
382         struct device_node *parent = dp->parent;
383         const char *parent_model, *parent_compat;
384
385         /* This traversal up towards the root is meant to
386          * handle two cases:
387          *
388          * 1) non-PCI bus sitting under PCI, such as 'ebus'
389          * 2) the PCI controller interrupts themselves, which
390          *    will use the sabre_irq_build but do not need
391          *    the DMA synchronization handling
392          */
393         while (parent) {
394                 if (!strcmp(parent->type, "pci"))
395                         break;
396                 parent = parent->parent;
397         }
398
399         if (!parent)
400                 return 0;
401
402         parent_model = of_get_property(parent,
403                                        "model", NULL);
404         if (parent_model &&
405             (!strcmp(parent_model, "SUNW,sabre") ||
406              !strcmp(parent_model, "SUNW,simba")))
407                 return 0;
408
409         parent_compat = of_get_property(parent,
410                                         "compatible", NULL);
411         if (parent_compat &&
412             (!strcmp(parent_compat, "pci108e,a000") ||
413              !strcmp(parent_compat, "pci108e,a001")))
414                 return 0;
415
416         return 1;
417 }
418
419 static unsigned int sabre_irq_build(struct device_node *dp,
420                                     unsigned int ino,
421                                     void *_data)
422 {
423         struct sabre_irq_data *irq_data = _data;
424         unsigned long controller_regs = irq_data->controller_regs;
425         const struct linux_prom_pci_registers *regs;
426         unsigned long imap, iclr;
427         unsigned long imap_off, iclr_off;
428         int inofixup = 0;
429         int virt_irq;
430
431         ino &= 0x3f;
432         if (ino < SABRE_ONBOARD_IRQ_BASE) {
433                 /* PCI slot */
434                 imap_off = sabre_pcislot_imap_offset(ino);
435         } else {
436                 /* onboard device */
437                 if (ino > SABRE_ONBOARD_IRQ_LAST) {
438                         prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
439                         prom_halt();
440                 }
441                 imap_off = sabre_onboard_imap_offset(ino);
442         }
443
444         /* Now build the IRQ bucket. */
445         imap = controller_regs + imap_off;
446
447         iclr_off = sabre_iclr_offset(ino);
448         iclr = controller_regs + iclr_off;
449
450         if ((ino & 0x20) == 0)
451                 inofixup = ino & 0x03;
452
453         virt_irq = build_irq(inofixup, iclr, imap);
454
455         /* If the parent device is a PCI<->PCI bridge other than
456          * APB, we have to install a pre-handler to ensure that
457          * all pending DMA is drained before the interrupt handler
458          * is run.
459          */
460         regs = of_get_property(dp, "reg", NULL);
461         if (regs && sabre_device_needs_wsync(dp)) {
462                 irq_install_pre_handler(virt_irq,
463                                         sabre_wsync_handler,
464                                         (void *) (long) regs->phys_hi,
465                                         (void *) irq_data);
466         }
467
468         return virt_irq;
469 }
470
471 static void __init sabre_irq_trans_init(struct device_node *dp)
472 {
473         const struct linux_prom64_registers *regs;
474         struct sabre_irq_data *irq_data;
475         const u32 *busrange;
476
477         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
478         dp->irq_trans->irq_build = sabre_irq_build;
479
480         irq_data = prom_early_alloc(sizeof(struct sabre_irq_data));
481
482         regs = of_get_property(dp, "reg", NULL);
483         irq_data->controller_regs = regs[0].phys_addr;
484
485         busrange = of_get_property(dp, "bus-range", NULL);
486         irq_data->pci_first_busno = busrange[0];
487
488         dp->irq_trans->data = irq_data;
489 }
490
491 /* SCHIZO interrupt mapping support.  Unlike Psycho, for this controller the
492  * imap/iclr registers are per-PBM.
493  */
494 #define SCHIZO_IMAP_BASE        0x1000UL
495 #define SCHIZO_ICLR_BASE        0x1400UL
496
497 static unsigned long schizo_imap_offset(unsigned long ino)
498 {
499         return SCHIZO_IMAP_BASE + (ino * 8UL);
500 }
501
502 static unsigned long schizo_iclr_offset(unsigned long ino)
503 {
504         return SCHIZO_ICLR_BASE + (ino * 8UL);
505 }
506
507 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs,
508                                         unsigned int ino)
509 {
510
511         return pbm_regs + schizo_iclr_offset(ino);
512 }
513
514 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs,
515                                         unsigned int ino)
516 {
517         return pbm_regs + schizo_imap_offset(ino);
518 }
519
520 #define schizo_read(__reg) \
521 ({      u64 __ret; \
522         __asm__ __volatile__("ldxa [%1] %2, %0" \
523                              : "=r" (__ret) \
524                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
525                              : "memory"); \
526         __ret; \
527 })
528 #define schizo_write(__reg, __val) \
529         __asm__ __volatile__("stxa %0, [%1] %2" \
530                              : /* no outputs */ \
531                              : "r" (__val), "r" (__reg), \
532                                "i" (ASI_PHYS_BYPASS_EC_E) \
533                              : "memory")
534
535 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
536 {
537         unsigned long sync_reg = (unsigned long) _arg2;
538         u64 mask = 1UL << (ino & IMAP_INO);
539         u64 val;
540         int limit;
541
542         schizo_write(sync_reg, mask);
543
544         limit = 100000;
545         val = 0;
546         while (--limit) {
547                 val = schizo_read(sync_reg);
548                 if (!(val & mask))
549                         break;
550         }
551         if (limit <= 0) {
552                 printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n",
553                        val, mask);
554         }
555
556         if (_arg1) {
557                 static unsigned char cacheline[64]
558                         __attribute__ ((aligned (64)));
559
560                 __asm__ __volatile__("rd %%fprs, %0\n\t"
561                                      "or %0, %4, %1\n\t"
562                                      "wr %1, 0x0, %%fprs\n\t"
563                                      "stda %%f0, [%5] %6\n\t"
564                                      "wr %0, 0x0, %%fprs\n\t"
565                                      "membar #Sync"
566                                      : "=&r" (mask), "=&r" (val)
567                                      : "0" (mask), "1" (val),
568                                      "i" (FPRS_FEF), "r" (&cacheline[0]),
569                                      "i" (ASI_BLK_COMMIT_P));
570         }
571 }
572
573 struct schizo_irq_data {
574         unsigned long pbm_regs;
575         unsigned long sync_reg;
576         u32 portid;
577         int chip_version;
578 };
579
580 static unsigned int schizo_irq_build(struct device_node *dp,
581                                      unsigned int ino,
582                                      void *_data)
583 {
584         struct schizo_irq_data *irq_data = _data;
585         unsigned long pbm_regs = irq_data->pbm_regs;
586         unsigned long imap, iclr;
587         int ign_fixup;
588         int virt_irq;
589         int is_tomatillo;
590
591         ino &= 0x3f;
592
593         /* Now build the IRQ bucket. */
594         imap = schizo_ino_to_imap(pbm_regs, ino);
595         iclr = schizo_ino_to_iclr(pbm_regs, ino);
596
597         /* On Schizo, no inofixup occurs.  This is because each
598          * INO has it's own IMAP register.  On Psycho and Sabre
599          * there is only one IMAP register for each PCI slot even
600          * though four different INOs can be generated by each
601          * PCI slot.
602          *
603          * But, for JBUS variants (essentially, Tomatillo), we have
604          * to fixup the lowest bit of the interrupt group number.
605          */
606         ign_fixup = 0;
607
608         is_tomatillo = (irq_data->sync_reg != 0UL);
609
610         if (is_tomatillo) {
611                 if (irq_data->portid & 1)
612                         ign_fixup = (1 << 6);
613         }
614
615         virt_irq = build_irq(ign_fixup, iclr, imap);
616
617         if (is_tomatillo) {
618                 irq_install_pre_handler(virt_irq,
619                                         tomatillo_wsync_handler,
620                                         ((irq_data->chip_version <= 4) ?
621                                          (void *) 1 : (void *) 0),
622                                         (void *) irq_data->sync_reg);
623         }
624
625         return virt_irq;
626 }
627
628 static void __init __schizo_irq_trans_init(struct device_node *dp,
629                                            int is_tomatillo)
630 {
631         const struct linux_prom64_registers *regs;
632         struct schizo_irq_data *irq_data;
633
634         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
635         dp->irq_trans->irq_build = schizo_irq_build;
636
637         irq_data = prom_early_alloc(sizeof(struct schizo_irq_data));
638
639         regs = of_get_property(dp, "reg", NULL);
640         dp->irq_trans->data = irq_data;
641
642         irq_data->pbm_regs = regs[0].phys_addr;
643         if (is_tomatillo)
644                 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL;
645         else
646                 irq_data->sync_reg = 0UL;
647         irq_data->portid = of_getintprop_default(dp, "portid", 0);
648         irq_data->chip_version = of_getintprop_default(dp, "version#", 0);
649 }
650
651 static void __init schizo_irq_trans_init(struct device_node *dp)
652 {
653         __schizo_irq_trans_init(dp, 0);
654 }
655
656 static void __init tomatillo_irq_trans_init(struct device_node *dp)
657 {
658         __schizo_irq_trans_init(dp, 1);
659 }
660
661 static unsigned int pci_sun4v_irq_build(struct device_node *dp,
662                                         unsigned int devino,
663                                         void *_data)
664 {
665         u32 devhandle = (u32) (unsigned long) _data;
666
667         return sun4v_build_irq(devhandle, devino);
668 }
669
670 static void __init pci_sun4v_irq_trans_init(struct device_node *dp)
671 {
672         const struct linux_prom64_registers *regs;
673
674         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
675         dp->irq_trans->irq_build = pci_sun4v_irq_build;
676
677         regs = of_get_property(dp, "reg", NULL);
678         dp->irq_trans->data = (void *) (unsigned long)
679                 ((regs->phys_addr >> 32UL) & 0x0fffffff);
680 }
681
682 struct fire_irq_data {
683         unsigned long pbm_regs;
684         u32 portid;
685 };
686
687 #define FIRE_IMAP_BASE  0x001000
688 #define FIRE_ICLR_BASE  0x001400
689
690 static unsigned long fire_imap_offset(unsigned long ino)
691 {
692         return FIRE_IMAP_BASE + (ino * 8UL);
693 }
694
695 static unsigned long fire_iclr_offset(unsigned long ino)
696 {
697         return FIRE_ICLR_BASE + (ino * 8UL);
698 }
699
700 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs,
701                                             unsigned int ino)
702 {
703         return pbm_regs + fire_iclr_offset(ino);
704 }
705
706 static unsigned long fire_ino_to_imap(unsigned long pbm_regs,
707                                             unsigned int ino)
708 {
709         return pbm_regs + fire_imap_offset(ino);
710 }
711
712 static unsigned int fire_irq_build(struct device_node *dp,
713                                          unsigned int ino,
714                                          void *_data)
715 {
716         struct fire_irq_data *irq_data = _data;
717         unsigned long pbm_regs = irq_data->pbm_regs;
718         unsigned long imap, iclr;
719         unsigned long int_ctrlr;
720
721         ino &= 0x3f;
722
723         /* Now build the IRQ bucket. */
724         imap = fire_ino_to_imap(pbm_regs, ino);
725         iclr = fire_ino_to_iclr(pbm_regs, ino);
726
727         /* Set the interrupt controller number.  */
728         int_ctrlr = 1 << 6;
729         upa_writeq(int_ctrlr, imap);
730
731         /* The interrupt map registers do not have an INO field
732          * like other chips do.  They return zero in the INO
733          * field, and the interrupt controller number is controlled
734          * in bits 6 to 9.  So in order for build_irq() to get
735          * the INO right we pass it in as part of the fixup
736          * which will get added to the map register zero value
737          * read by build_irq().
738          */
739         ino |= (irq_data->portid << 6);
740         ino -= int_ctrlr;
741         return build_irq(ino, iclr, imap);
742 }
743
744 static void __init fire_irq_trans_init(struct device_node *dp)
745 {
746         const struct linux_prom64_registers *regs;
747         struct fire_irq_data *irq_data;
748
749         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
750         dp->irq_trans->irq_build = fire_irq_build;
751
752         irq_data = prom_early_alloc(sizeof(struct fire_irq_data));
753
754         regs = of_get_property(dp, "reg", NULL);
755         dp->irq_trans->data = irq_data;
756
757         irq_data->pbm_regs = regs[0].phys_addr;
758         irq_data->portid = of_getintprop_default(dp, "portid", 0);
759 }
760 #endif /* CONFIG_PCI */
761
762 #ifdef CONFIG_SBUS
763 /* INO number to IMAP register offset for SYSIO external IRQ's.
764  * This should conform to both Sunfire/Wildfire server and Fusion
765  * desktop designs.
766  */
767 #define SYSIO_IMAP_SLOT0        0x2c00UL
768 #define SYSIO_IMAP_SLOT1        0x2c08UL
769 #define SYSIO_IMAP_SLOT2        0x2c10UL
770 #define SYSIO_IMAP_SLOT3        0x2c18UL
771 #define SYSIO_IMAP_SCSI         0x3000UL
772 #define SYSIO_IMAP_ETH          0x3008UL
773 #define SYSIO_IMAP_BPP          0x3010UL
774 #define SYSIO_IMAP_AUDIO        0x3018UL
775 #define SYSIO_IMAP_PFAIL        0x3020UL
776 #define SYSIO_IMAP_KMS          0x3028UL
777 #define SYSIO_IMAP_FLPY         0x3030UL
778 #define SYSIO_IMAP_SHW          0x3038UL
779 #define SYSIO_IMAP_KBD          0x3040UL
780 #define SYSIO_IMAP_MS           0x3048UL
781 #define SYSIO_IMAP_SER          0x3050UL
782 #define SYSIO_IMAP_TIM0         0x3060UL
783 #define SYSIO_IMAP_TIM1         0x3068UL
784 #define SYSIO_IMAP_UE           0x3070UL
785 #define SYSIO_IMAP_CE           0x3078UL
786 #define SYSIO_IMAP_SBERR        0x3080UL
787 #define SYSIO_IMAP_PMGMT        0x3088UL
788 #define SYSIO_IMAP_GFX          0x3090UL
789 #define SYSIO_IMAP_EUPA         0x3098UL
790
791 #define bogon     ((unsigned long) -1)
792 static unsigned long sysio_irq_offsets[] = {
793         /* SBUS Slot 0 --> 3, level 1 --> 7 */
794         SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
795         SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
796         SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
797         SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
798         SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
799         SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
800         SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
801         SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
802
803         /* Onboard devices (not relevant/used on SunFire). */
804         SYSIO_IMAP_SCSI,
805         SYSIO_IMAP_ETH,
806         SYSIO_IMAP_BPP,
807         bogon,
808         SYSIO_IMAP_AUDIO,
809         SYSIO_IMAP_PFAIL,
810         bogon,
811         bogon,
812         SYSIO_IMAP_KMS,
813         SYSIO_IMAP_FLPY,
814         SYSIO_IMAP_SHW,
815         SYSIO_IMAP_KBD,
816         SYSIO_IMAP_MS,
817         SYSIO_IMAP_SER,
818         bogon,
819         bogon,
820         SYSIO_IMAP_TIM0,
821         SYSIO_IMAP_TIM1,
822         bogon,
823         bogon,
824         SYSIO_IMAP_UE,
825         SYSIO_IMAP_CE,
826         SYSIO_IMAP_SBERR,
827         SYSIO_IMAP_PMGMT,
828         SYSIO_IMAP_GFX,
829         SYSIO_IMAP_EUPA,
830 };
831
832 #undef bogon
833
834 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
835
836 /* Convert Interrupt Mapping register pointer to associated
837  * Interrupt Clear register pointer, SYSIO specific version.
838  */
839 #define SYSIO_ICLR_UNUSED0      0x3400UL
840 #define SYSIO_ICLR_SLOT0        0x3408UL
841 #define SYSIO_ICLR_SLOT1        0x3448UL
842 #define SYSIO_ICLR_SLOT2        0x3488UL
843 #define SYSIO_ICLR_SLOT3        0x34c8UL
844 static unsigned long sysio_imap_to_iclr(unsigned long imap)
845 {
846         unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
847         return imap + diff;
848 }
849
850 static unsigned int sbus_of_build_irq(struct device_node *dp,
851                                       unsigned int ino,
852                                       void *_data)
853 {
854         unsigned long reg_base = (unsigned long) _data;
855         const struct linux_prom_registers *regs;
856         unsigned long imap, iclr;
857         int sbus_slot = 0;
858         int sbus_level = 0;
859
860         ino &= 0x3f;
861
862         regs = of_get_property(dp, "reg", NULL);
863         if (regs)
864                 sbus_slot = regs->which_io;
865
866         if (ino < 0x20)
867                 ino += (sbus_slot * 8);
868
869         imap = sysio_irq_offsets[ino];
870         if (imap == ((unsigned long)-1)) {
871                 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n",
872                             ino);
873                 prom_halt();
874         }
875         imap += reg_base;
876
877         /* SYSIO inconsistency.  For external SLOTS, we have to select
878          * the right ICLR register based upon the lower SBUS irq level
879          * bits.
880          */
881         if (ino >= 0x20) {
882                 iclr = sysio_imap_to_iclr(imap);
883         } else {
884                 sbus_level = ino & 0x7;
885
886                 switch(sbus_slot) {
887                 case 0:
888                         iclr = reg_base + SYSIO_ICLR_SLOT0;
889                         break;
890                 case 1:
891                         iclr = reg_base + SYSIO_ICLR_SLOT1;
892                         break;
893                 case 2:
894                         iclr = reg_base + SYSIO_ICLR_SLOT2;
895                         break;
896                 default:
897                 case 3:
898                         iclr = reg_base + SYSIO_ICLR_SLOT3;
899                         break;
900                 };
901
902                 iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
903         }
904         return build_irq(sbus_level, iclr, imap);
905 }
906
907 static void __init sbus_irq_trans_init(struct device_node *dp)
908 {
909         const struct linux_prom64_registers *regs;
910
911         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
912         dp->irq_trans->irq_build = sbus_of_build_irq;
913
914         regs = of_get_property(dp, "reg", NULL);
915         dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr;
916 }
917 #endif /* CONFIG_SBUS */
918
919
920 static unsigned int central_build_irq(struct device_node *dp,
921                                       unsigned int ino,
922                                       void *_data)
923 {
924         struct device_node *central_dp = _data;
925         struct of_device *central_op = of_find_device_by_node(central_dp);
926         struct resource *res;
927         unsigned long imap, iclr;
928         u32 tmp;
929
930         if (!strcmp(dp->name, "eeprom")) {
931                 res = &central_op->resource[5];
932         } else if (!strcmp(dp->name, "zs")) {
933                 res = &central_op->resource[4];
934         } else if (!strcmp(dp->name, "clock-board")) {
935                 res = &central_op->resource[3];
936         } else {
937                 return ino;
938         }
939
940         imap = res->start + 0x00UL;
941         iclr = res->start + 0x10UL;
942
943         /* Set the INO state to idle, and disable.  */
944         upa_writel(0, iclr);
945         upa_readl(iclr);
946
947         tmp = upa_readl(imap);
948         tmp &= ~0x80000000;
949         upa_writel(tmp, imap);
950
951         return build_irq(0, iclr, imap);
952 }
953
954 static void __init central_irq_trans_init(struct device_node *dp)
955 {
956         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
957         dp->irq_trans->irq_build = central_build_irq;
958
959         dp->irq_trans->data = dp;
960 }
961
962 struct irq_trans {
963         const char *name;
964         void (*init)(struct device_node *);
965 };
966
967 #ifdef CONFIG_PCI
968 static struct irq_trans __initdata pci_irq_trans_table[] = {
969         { "SUNW,sabre", sabre_irq_trans_init },
970         { "pci108e,a000", sabre_irq_trans_init },
971         { "pci108e,a001", sabre_irq_trans_init },
972         { "SUNW,psycho", psycho_irq_trans_init },
973         { "pci108e,8000", psycho_irq_trans_init },
974         { "SUNW,schizo", schizo_irq_trans_init },
975         { "pci108e,8001", schizo_irq_trans_init },
976         { "SUNW,schizo+", schizo_irq_trans_init },
977         { "pci108e,8002", schizo_irq_trans_init },
978         { "SUNW,tomatillo", tomatillo_irq_trans_init },
979         { "pci108e,a801", tomatillo_irq_trans_init },
980         { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init },
981         { "pciex108e,80f0", fire_irq_trans_init },
982 };
983 #endif
984
985 static unsigned int sun4v_vdev_irq_build(struct device_node *dp,
986                                          unsigned int devino,
987                                          void *_data)
988 {
989         u32 devhandle = (u32) (unsigned long) _data;
990
991         return sun4v_build_irq(devhandle, devino);
992 }
993
994 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp)
995 {
996         const struct linux_prom64_registers *regs;
997
998         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
999         dp->irq_trans->irq_build = sun4v_vdev_irq_build;
1000
1001         regs = of_get_property(dp, "reg", NULL);
1002         dp->irq_trans->data = (void *) (unsigned long)
1003                 ((regs->phys_addr >> 32UL) & 0x0fffffff);
1004 }
1005
1006 static void __init irq_trans_init(struct device_node *dp)
1007 {
1008 #ifdef CONFIG_PCI
1009         const char *model;
1010         int i;
1011 #endif
1012
1013 #ifdef CONFIG_PCI
1014         model = of_get_property(dp, "model", NULL);
1015         if (!model)
1016                 model = of_get_property(dp, "compatible", NULL);
1017         if (model) {
1018                 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) {
1019                         struct irq_trans *t = &pci_irq_trans_table[i];
1020
1021                         if (!strcmp(model, t->name))
1022                                 return t->init(dp);
1023                 }
1024         }
1025 #endif
1026 #ifdef CONFIG_SBUS
1027         if (!strcmp(dp->name, "sbus") ||
1028             !strcmp(dp->name, "sbi"))
1029                 return sbus_irq_trans_init(dp);
1030 #endif
1031         if (!strcmp(dp->name, "fhc") &&
1032             !strcmp(dp->parent->name, "central"))
1033                 return central_irq_trans_init(dp);
1034         if (!strcmp(dp->name, "virtual-devices"))
1035                 return sun4v_vdev_irq_trans_init(dp);
1036 }
1037
1038 static int is_root_node(const struct device_node *dp)
1039 {
1040         if (!dp)
1041                 return 0;
1042
1043         return (dp->parent == NULL);
1044 }
1045
1046 /* The following routines deal with the black magic of fully naming a
1047  * node.
1048  *
1049  * Certain well known named nodes are just the simple name string.
1050  *
1051  * Actual devices have an address specifier appended to the base name
1052  * string, like this "foo@addr".  The "addr" can be in any number of
1053  * formats, and the platform plus the type of the node determine the
1054  * format and how it is constructed.
1055  *
1056  * For children of the ROOT node, the naming convention is fixed and
1057  * determined by whether this is a sun4u or sun4v system.
1058  *
1059  * For children of other nodes, it is bus type specific.  So
1060  * we walk up the tree until we discover a "device_type" property
1061  * we recognize and we go from there.
1062  *
1063  * As an example, the boot device on my workstation has a full path:
1064  *
1065  *      /pci@1e,600000/ide@d/disk@0,0:c
1066  */
1067 static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf)
1068 {
1069         struct linux_prom64_registers *regs;
1070         struct property *rprop;
1071         u32 high_bits, low_bits, type;
1072
1073         rprop = of_find_property(dp, "reg", NULL);
1074         if (!rprop)
1075                 return;
1076
1077         regs = rprop->value;
1078         if (!is_root_node(dp->parent)) {
1079                 sprintf(tmp_buf, "%s@%x,%x",
1080                         dp->name,
1081                         (unsigned int) (regs->phys_addr >> 32UL),
1082                         (unsigned int) (regs->phys_addr & 0xffffffffUL));
1083                 return;
1084         }
1085
1086         type = regs->phys_addr >> 60UL;
1087         high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL;
1088         low_bits = (regs->phys_addr & 0xffffffffUL);
1089
1090         if (type == 0 || type == 8) {
1091                 const char *prefix = (type == 0) ? "m" : "i";
1092
1093                 if (low_bits)
1094                         sprintf(tmp_buf, "%s@%s%x,%x",
1095                                 dp->name, prefix,
1096                                 high_bits, low_bits);
1097                 else
1098                         sprintf(tmp_buf, "%s@%s%x",
1099                                 dp->name,
1100                                 prefix,
1101                                 high_bits);
1102         } else if (type == 12) {
1103                 sprintf(tmp_buf, "%s@%x",
1104                         dp->name, high_bits);
1105         }
1106 }
1107
1108 static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf)
1109 {
1110         struct linux_prom64_registers *regs;
1111         struct property *prop;
1112
1113         prop = of_find_property(dp, "reg", NULL);
1114         if (!prop)
1115                 return;
1116
1117         regs = prop->value;
1118         if (!is_root_node(dp->parent)) {
1119                 sprintf(tmp_buf, "%s@%x,%x",
1120                         dp->name,
1121                         (unsigned int) (regs->phys_addr >> 32UL),
1122                         (unsigned int) (regs->phys_addr & 0xffffffffUL));
1123                 return;
1124         }
1125
1126         prop = of_find_property(dp, "upa-portid", NULL);
1127         if (!prop)
1128                 prop = of_find_property(dp, "portid", NULL);
1129         if (prop) {
1130                 unsigned long mask = 0xffffffffUL;
1131
1132                 if (tlb_type >= cheetah)
1133                         mask = 0x7fffff;
1134
1135                 sprintf(tmp_buf, "%s@%x,%x",
1136                         dp->name,
1137                         *(u32 *)prop->value,
1138                         (unsigned int) (regs->phys_addr & mask));
1139         }
1140 }
1141
1142 /* "name@slot,offset"  */
1143 static void __init sbus_path_component(struct device_node *dp, char *tmp_buf)
1144 {
1145         struct linux_prom_registers *regs;
1146         struct property *prop;
1147
1148         prop = of_find_property(dp, "reg", NULL);
1149         if (!prop)
1150                 return;
1151
1152         regs = prop->value;
1153         sprintf(tmp_buf, "%s@%x,%x",
1154                 dp->name,
1155                 regs->which_io,
1156                 regs->phys_addr);
1157 }
1158
1159 /* "name@devnum[,func]" */
1160 static void __init pci_path_component(struct device_node *dp, char *tmp_buf)
1161 {
1162         struct linux_prom_pci_registers *regs;
1163         struct property *prop;
1164         unsigned int devfn;
1165
1166         prop = of_find_property(dp, "reg", NULL);
1167         if (!prop)
1168                 return;
1169
1170         regs = prop->value;
1171         devfn = (regs->phys_hi >> 8) & 0xff;
1172         if (devfn & 0x07) {
1173                 sprintf(tmp_buf, "%s@%x,%x",
1174                         dp->name,
1175                         devfn >> 3,
1176                         devfn & 0x07);
1177         } else {
1178                 sprintf(tmp_buf, "%s@%x",
1179                         dp->name,
1180                         devfn >> 3);
1181         }
1182 }
1183
1184 /* "name@UPA_PORTID,offset" */
1185 static void __init upa_path_component(struct device_node *dp, char *tmp_buf)
1186 {
1187         struct linux_prom64_registers *regs;
1188         struct property *prop;
1189
1190         prop = of_find_property(dp, "reg", NULL);
1191         if (!prop)
1192                 return;
1193
1194         regs = prop->value;
1195
1196         prop = of_find_property(dp, "upa-portid", NULL);
1197         if (!prop)
1198                 return;
1199
1200         sprintf(tmp_buf, "%s@%x,%x",
1201                 dp->name,
1202                 *(u32 *) prop->value,
1203                 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1204 }
1205
1206 /* "name@reg" */
1207 static void __init vdev_path_component(struct device_node *dp, char *tmp_buf)
1208 {
1209         struct property *prop;
1210         u32 *regs;
1211
1212         prop = of_find_property(dp, "reg", NULL);
1213         if (!prop)
1214                 return;
1215
1216         regs = prop->value;
1217
1218         sprintf(tmp_buf, "%s@%x", dp->name, *regs);
1219 }
1220
1221 /* "name@addrhi,addrlo" */
1222 static void __init ebus_path_component(struct device_node *dp, char *tmp_buf)
1223 {
1224         struct linux_prom64_registers *regs;
1225         struct property *prop;
1226
1227         prop = of_find_property(dp, "reg", NULL);
1228         if (!prop)
1229                 return;
1230
1231         regs = prop->value;
1232
1233         sprintf(tmp_buf, "%s@%x,%x",
1234                 dp->name,
1235                 (unsigned int) (regs->phys_addr >> 32UL),
1236                 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1237 }
1238
1239 /* "name@bus,addr" */
1240 static void __init i2c_path_component(struct device_node *dp, char *tmp_buf)
1241 {
1242         struct property *prop;
1243         u32 *regs;
1244
1245         prop = of_find_property(dp, "reg", NULL);
1246         if (!prop)
1247                 return;
1248
1249         regs = prop->value;
1250
1251         /* This actually isn't right... should look at the #address-cells
1252          * property of the i2c bus node etc. etc.
1253          */
1254         sprintf(tmp_buf, "%s@%x,%x",
1255                 dp->name, regs[0], regs[1]);
1256 }
1257
1258 /* "name@reg0[,reg1]" */
1259 static void __init usb_path_component(struct device_node *dp, char *tmp_buf)
1260 {
1261         struct property *prop;
1262         u32 *regs;
1263
1264         prop = of_find_property(dp, "reg", NULL);
1265         if (!prop)
1266                 return;
1267
1268         regs = prop->value;
1269
1270         if (prop->length == sizeof(u32) || regs[1] == 1) {
1271                 sprintf(tmp_buf, "%s@%x",
1272                         dp->name, regs[0]);
1273         } else {
1274                 sprintf(tmp_buf, "%s@%x,%x",
1275                         dp->name, regs[0], regs[1]);
1276         }
1277 }
1278
1279 /* "name@reg0reg1[,reg2reg3]" */
1280 static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf)
1281 {
1282         struct property *prop;
1283         u32 *regs;
1284
1285         prop = of_find_property(dp, "reg", NULL);
1286         if (!prop)
1287                 return;
1288
1289         regs = prop->value;
1290
1291         if (regs[2] || regs[3]) {
1292                 sprintf(tmp_buf, "%s@%08x%08x,%04x%08x",
1293                         dp->name, regs[0], regs[1], regs[2], regs[3]);
1294         } else {
1295                 sprintf(tmp_buf, "%s@%08x%08x",
1296                         dp->name, regs[0], regs[1]);
1297         }
1298 }
1299
1300 static void __init __build_path_component(struct device_node *dp, char *tmp_buf)
1301 {
1302         struct device_node *parent = dp->parent;
1303
1304         if (parent != NULL) {
1305                 if (!strcmp(parent->type, "pci") ||
1306                     !strcmp(parent->type, "pciex"))
1307                         return pci_path_component(dp, tmp_buf);
1308                 if (!strcmp(parent->type, "sbus"))
1309                         return sbus_path_component(dp, tmp_buf);
1310                 if (!strcmp(parent->type, "upa"))
1311                         return upa_path_component(dp, tmp_buf);
1312                 if (!strcmp(parent->type, "ebus"))
1313                         return ebus_path_component(dp, tmp_buf);
1314                 if (!strcmp(parent->name, "usb") ||
1315                     !strcmp(parent->name, "hub"))
1316                         return usb_path_component(dp, tmp_buf);
1317                 if (!strcmp(parent->type, "i2c"))
1318                         return i2c_path_component(dp, tmp_buf);
1319                 if (!strcmp(parent->type, "firewire"))
1320                         return ieee1394_path_component(dp, tmp_buf);
1321                 if (!strcmp(parent->type, "virtual-devices"))
1322                         return vdev_path_component(dp, tmp_buf);
1323
1324                 /* "isa" is handled with platform naming */
1325         }
1326
1327         /* Use platform naming convention.  */
1328         if (tlb_type == hypervisor)
1329                 return sun4v_path_component(dp, tmp_buf);
1330         else
1331                 return sun4u_path_component(dp, tmp_buf);
1332 }
1333
1334 static char * __init build_path_component(struct device_node *dp)
1335 {
1336         char tmp_buf[64], *n;
1337
1338         tmp_buf[0] = '\0';
1339         __build_path_component(dp, tmp_buf);
1340         if (tmp_buf[0] == '\0')
1341                 strcpy(tmp_buf, dp->name);
1342
1343         n = prom_early_alloc(strlen(tmp_buf) + 1);
1344         strcpy(n, tmp_buf);
1345
1346         return n;
1347 }
1348
1349 static char * __init build_full_name(struct device_node *dp)
1350 {
1351         int len, ourlen, plen;
1352         char *n;
1353
1354         plen = strlen(dp->parent->full_name);
1355         ourlen = strlen(dp->path_component_name);
1356         len = ourlen + plen + 2;
1357
1358         n = prom_early_alloc(len);
1359         strcpy(n, dp->parent->full_name);
1360         if (!is_root_node(dp->parent)) {
1361                 strcpy(n + plen, "/");
1362                 plen++;
1363         }
1364         strcpy(n + plen, dp->path_component_name);
1365
1366         return n;
1367 }
1368
1369 static unsigned int unique_id;
1370
1371 static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len)
1372 {
1373         static struct property *tmp = NULL;
1374         struct property *p;
1375
1376         if (tmp) {
1377                 p = tmp;
1378                 memset(p, 0, sizeof(*p) + 32);
1379                 tmp = NULL;
1380         } else {
1381                 p = prom_early_alloc(sizeof(struct property) + 32);
1382                 p->unique_id = unique_id++;
1383         }
1384
1385         p->name = (char *) (p + 1);
1386         if (special_name) {
1387                 strcpy(p->name, special_name);
1388                 p->length = special_len;
1389                 p->value = prom_early_alloc(special_len);
1390                 memcpy(p->value, special_val, special_len);
1391         } else {
1392                 if (prev == NULL) {
1393                         prom_firstprop(node, p->name);
1394                 } else {
1395                         prom_nextprop(node, prev, p->name);
1396                 }
1397                 if (strlen(p->name) == 0) {
1398                         tmp = p;
1399                         return NULL;
1400                 }
1401                 p->length = prom_getproplen(node, p->name);
1402                 if (p->length <= 0) {
1403                         p->length = 0;
1404                 } else {
1405                         p->value = prom_early_alloc(p->length + 1);
1406                         prom_getproperty(node, p->name, p->value, p->length);
1407                         ((unsigned char *)p->value)[p->length] = '\0';
1408                 }
1409         }
1410         return p;
1411 }
1412
1413 static struct property * __init build_prop_list(phandle node)
1414 {
1415         struct property *head, *tail;
1416
1417         head = tail = build_one_prop(node, NULL,
1418                                      ".node", &node, sizeof(node));
1419
1420         tail->next = build_one_prop(node, NULL, NULL, NULL, 0);
1421         tail = tail->next;
1422         while(tail) {
1423                 tail->next = build_one_prop(node, tail->name,
1424                                             NULL, NULL, 0);
1425                 tail = tail->next;
1426         }
1427
1428         return head;
1429 }
1430
1431 static char * __init get_one_property(phandle node, const char *name)
1432 {
1433         char *buf = "<NULL>";
1434         int len;
1435
1436         len = prom_getproplen(node, name);
1437         if (len > 0) {
1438                 buf = prom_early_alloc(len);
1439                 prom_getproperty(node, name, buf, len);
1440         }
1441
1442         return buf;
1443 }
1444
1445 static struct device_node * __init create_node(phandle node, struct device_node *parent)
1446 {
1447         struct device_node *dp;
1448
1449         if (!node)
1450                 return NULL;
1451
1452         dp = prom_early_alloc(sizeof(*dp));
1453         dp->unique_id = unique_id++;
1454         dp->parent = parent;
1455
1456         kref_init(&dp->kref);
1457
1458         dp->name = get_one_property(node, "name");
1459         dp->type = get_one_property(node, "device_type");
1460         dp->node = node;
1461
1462         dp->properties = build_prop_list(node);
1463
1464         irq_trans_init(dp);
1465
1466         return dp;
1467 }
1468
1469 static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
1470 {
1471         struct device_node *ret = NULL, *prev_sibling = NULL;
1472         struct device_node *dp;
1473
1474         while (1) {
1475                 dp = create_node(node, parent);
1476                 if (!dp)
1477                         break;
1478
1479                 if (prev_sibling)
1480                         prev_sibling->sibling = dp;
1481
1482                 if (!ret)
1483                         ret = dp;
1484                 prev_sibling = dp;
1485
1486                 *(*nextp) = dp;
1487                 *nextp = &dp->allnext;
1488
1489                 dp->path_component_name = build_path_component(dp);
1490                 dp->full_name = build_full_name(dp);
1491
1492                 dp->child = build_tree(dp, prom_getchild(node), nextp);
1493
1494                 node = prom_getsibling(node);
1495         }
1496
1497         return ret;
1498 }
1499
1500 static const char *get_mid_prop(void)
1501 {
1502         return (tlb_type == spitfire ? "upa-portid" : "portid");
1503 }
1504
1505 struct device_node *of_find_node_by_cpuid(int cpuid)
1506 {
1507         struct device_node *dp;
1508         const char *mid_prop = get_mid_prop();
1509
1510         for_each_node_by_type(dp, "cpu") {
1511                 int id = of_getintprop_default(dp, mid_prop, -1);
1512                 const char *this_mid_prop = mid_prop;
1513
1514                 if (id < 0) {
1515                         this_mid_prop = "cpuid";
1516                         id = of_getintprop_default(dp, this_mid_prop, -1);
1517                 }
1518
1519                 if (id < 0) {
1520                         prom_printf("OF: Serious problem, cpu lacks "
1521                                     "%s property", this_mid_prop);
1522                         prom_halt();
1523                 }
1524                 if (cpuid == id)
1525                         return dp;
1526         }
1527         return NULL;
1528 }
1529
1530 static void __init of_fill_in_cpu_data(void)
1531 {
1532         struct device_node *dp;
1533         const char *mid_prop = get_mid_prop();
1534
1535         ncpus_probed = 0;
1536         for_each_node_by_type(dp, "cpu") {
1537                 int cpuid = of_getintprop_default(dp, mid_prop, -1);
1538                 const char *this_mid_prop = mid_prop;
1539                 struct device_node *portid_parent;
1540                 int portid = -1;
1541
1542                 portid_parent = NULL;
1543                 if (cpuid < 0) {
1544                         this_mid_prop = "cpuid";
1545                         cpuid = of_getintprop_default(dp, this_mid_prop, -1);
1546                         if (cpuid >= 0) {
1547                                 int limit = 2;
1548
1549                                 portid_parent = dp;
1550                                 while (limit--) {
1551                                         portid_parent = portid_parent->parent;
1552                                         if (!portid_parent)
1553                                                 break;
1554                                         portid = of_getintprop_default(portid_parent,
1555                                                                        "portid", -1);
1556                                         if (portid >= 0)
1557                                                 break;
1558                                 }
1559                         }
1560                 }
1561
1562                 if (cpuid < 0) {
1563                         prom_printf("OF: Serious problem, cpu lacks "
1564                                     "%s property", this_mid_prop);
1565                         prom_halt();
1566                 }
1567
1568                 ncpus_probed++;
1569
1570 #ifdef CONFIG_SMP
1571                 if (cpuid >= NR_CPUS)
1572                         continue;
1573 #else
1574                 /* On uniprocessor we only want the values for the
1575                  * real physical cpu the kernel booted onto, however
1576                  * cpu_data() only has one entry at index 0.
1577                  */
1578                 if (cpuid != real_hard_smp_processor_id())
1579                         continue;
1580                 cpuid = 0;
1581 #endif
1582
1583                 cpu_data(cpuid).clock_tick =
1584                         of_getintprop_default(dp, "clock-frequency", 0);
1585
1586                 if (portid_parent) {
1587                         cpu_data(cpuid).dcache_size =
1588                                 of_getintprop_default(dp, "l1-dcache-size",
1589                                                       16 * 1024);
1590                         cpu_data(cpuid).dcache_line_size =
1591                                 of_getintprop_default(dp, "l1-dcache-line-size",
1592                                                       32);
1593                         cpu_data(cpuid).icache_size =
1594                                 of_getintprop_default(dp, "l1-icache-size",
1595                                                       8 * 1024);
1596                         cpu_data(cpuid).icache_line_size =
1597                                 of_getintprop_default(dp, "l1-icache-line-size",
1598                                                       32);
1599                         cpu_data(cpuid).ecache_size =
1600                                 of_getintprop_default(dp, "l2-cache-size", 0);
1601                         cpu_data(cpuid).ecache_line_size =
1602                                 of_getintprop_default(dp, "l2-cache-line-size", 0);
1603                         if (!cpu_data(cpuid).ecache_size ||
1604                             !cpu_data(cpuid).ecache_line_size) {
1605                                 cpu_data(cpuid).ecache_size =
1606                                         of_getintprop_default(portid_parent,
1607                                                               "l2-cache-size",
1608                                                               (4 * 1024 * 1024));
1609                                 cpu_data(cpuid).ecache_line_size =
1610                                         of_getintprop_default(portid_parent,
1611                                                               "l2-cache-line-size", 64);
1612                         }
1613
1614                         cpu_data(cpuid).core_id = portid + 1;
1615                         cpu_data(cpuid).proc_id = portid;
1616 #ifdef CONFIG_SMP
1617                         sparc64_multi_core = 1;
1618 #endif
1619                 } else {
1620                         cpu_data(cpuid).dcache_size =
1621                                 of_getintprop_default(dp, "dcache-size", 16 * 1024);
1622                         cpu_data(cpuid).dcache_line_size =
1623                                 of_getintprop_default(dp, "dcache-line-size", 32);
1624
1625                         cpu_data(cpuid).icache_size =
1626                                 of_getintprop_default(dp, "icache-size", 16 * 1024);
1627                         cpu_data(cpuid).icache_line_size =
1628                                 of_getintprop_default(dp, "icache-line-size", 32);
1629
1630                         cpu_data(cpuid).ecache_size =
1631                                 of_getintprop_default(dp, "ecache-size",
1632                                                       (4 * 1024 * 1024));
1633                         cpu_data(cpuid).ecache_line_size =
1634                                 of_getintprop_default(dp, "ecache-line-size", 64);
1635
1636                         cpu_data(cpuid).core_id = 0;
1637                         cpu_data(cpuid).proc_id = -1;
1638                 }
1639
1640 #ifdef CONFIG_SMP
1641                 cpu_set(cpuid, cpu_present_map);
1642                 cpu_set(cpuid, cpu_possible_map);
1643 #endif
1644         }
1645
1646         smp_fill_in_sib_core_maps();
1647 }
1648
1649 struct device_node *of_console_device;
1650 EXPORT_SYMBOL(of_console_device);
1651
1652 char *of_console_path;
1653 EXPORT_SYMBOL(of_console_path);
1654
1655 char *of_console_options;
1656 EXPORT_SYMBOL(of_console_options);
1657
1658 static void __init of_console_init(void)
1659 {
1660         char *msg = "OF stdout device is: %s\n";
1661         struct device_node *dp;
1662         const char *type;
1663         phandle node;
1664
1665         of_console_path = prom_early_alloc(256);
1666         if (prom_ihandle2path(prom_stdout, of_console_path, 256) < 0) {
1667                 prom_printf("Cannot obtain path of stdout.\n");
1668                 prom_halt();
1669         }
1670         of_console_options = strrchr(of_console_path, ':');
1671         if (of_console_options) {
1672                 of_console_options++;
1673                 if (*of_console_options == '\0')
1674                         of_console_options = NULL;
1675         }
1676
1677         node = prom_inst2pkg(prom_stdout);
1678         if (!node) {
1679                 prom_printf("Cannot resolve stdout node from "
1680                             "instance %08x.\n", prom_stdout);
1681                 prom_halt();
1682         }
1683
1684         dp = of_find_node_by_phandle(node);
1685         type = of_get_property(dp, "device_type", NULL);
1686         if (!type) {
1687                 prom_printf("Console stdout lacks device_type property.\n");
1688                 prom_halt();
1689         }
1690
1691         if (strcmp(type, "display") && strcmp(type, "serial")) {
1692                 prom_printf("Console device_type is neither display "
1693                             "nor serial.\n");
1694                 prom_halt();
1695         }
1696
1697         of_console_device = dp;
1698
1699         prom_printf(msg, of_console_path);
1700         printk(msg, of_console_path);
1701 }
1702
1703 void __init prom_build_devicetree(void)
1704 {
1705         struct device_node **nextp;
1706
1707         allnodes = create_node(prom_root_node, NULL);
1708         allnodes->path_component_name = "";
1709         allnodes->full_name = "/";
1710
1711         nextp = &allnodes->allnext;
1712         allnodes->child = build_tree(allnodes,
1713                                      prom_getchild(allnodes->node),
1714                                      &nextp);
1715         of_console_init();
1716
1717         printk("PROM: Built device tree with %u bytes of memory.\n",
1718                prom_early_allocated);
1719
1720         if (tlb_type != hypervisor)
1721                 of_fill_in_cpu_data();
1722 }