2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
22 #define ATH_PCI_VERSION "0.1"
24 static char *dev_info = "ath9k";
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
33 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
36 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
41 static void ath_detach(struct ath_softc *sc);
43 /* return bus cachesize in 4B word units */
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
49 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
53 * This check was put in to avoid "unplesant" consequences if
54 * the bootrom has not fully initialized all PCI devices.
55 * Sometimes the cache line size register is not set
59 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
64 sc->cur_rate_table = sc->hw_rate_table[mode];
66 * All protection frames are transmited at 2Mb/s for
67 * 11g, otherwise at 1Mb/s.
68 * XXX select protection rate index from rate table.
70 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
73 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
75 if (chan->chanmode == CHANNEL_A)
76 return ATH9K_MODE_11A;
77 else if (chan->chanmode == CHANNEL_G)
78 return ATH9K_MODE_11G;
79 else if (chan->chanmode == CHANNEL_B)
80 return ATH9K_MODE_11B;
81 else if (chan->chanmode == CHANNEL_A_HT20)
82 return ATH9K_MODE_11NA_HT20;
83 else if (chan->chanmode == CHANNEL_G_HT20)
84 return ATH9K_MODE_11NG_HT20;
85 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
86 return ATH9K_MODE_11NA_HT40PLUS;
87 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
88 return ATH9K_MODE_11NA_HT40MINUS;
89 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
90 return ATH9K_MODE_11NG_HT40PLUS;
91 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
92 return ATH9K_MODE_11NG_HT40MINUS;
94 WARN_ON(1); /* should not get here */
96 return ATH9K_MODE_11B;
99 static void ath_update_txpow(struct ath_softc *sc)
101 struct ath_hal *ah = sc->sc_ah;
104 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
105 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
106 /* read back in case value is clamped */
107 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
108 sc->sc_curtxpow = txpow;
112 static u8 parse_mpdudensity(u8 mpdudensity)
115 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
116 * 0 for no restriction
125 switch (mpdudensity) {
131 /* Our lower layer calculations limit our precision to
147 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
149 struct ath_rate_table *rate_table = NULL;
150 struct ieee80211_supported_band *sband;
151 struct ieee80211_rate *rate;
155 case IEEE80211_BAND_2GHZ:
156 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
158 case IEEE80211_BAND_5GHZ:
159 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
165 if (rate_table == NULL)
168 sband = &sc->sbands[band];
169 rate = sc->rates[band];
171 if (rate_table->rate_cnt > ATH_RATE_MAX)
172 maxrates = ATH_RATE_MAX;
174 maxrates = rate_table->rate_cnt;
176 for (i = 0; i < maxrates; i++) {
177 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
178 rate[i].hw_value = rate_table->info[i].ratecode;
180 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
181 rate[i].bitrate / 10, rate[i].hw_value);
185 static int ath_setup_channels(struct ath_softc *sc)
187 struct ath_hal *ah = sc->sc_ah;
188 int nchan, i, a = 0, b = 0;
189 u8 regclassids[ATH_REGCLASSIDS_MAX];
191 struct ieee80211_supported_band *band_2ghz;
192 struct ieee80211_supported_band *band_5ghz;
193 struct ieee80211_channel *chan_2ghz;
194 struct ieee80211_channel *chan_5ghz;
195 struct ath9k_channel *c;
197 /* Fill in ah->ah_channels */
198 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
199 regclassids, ATH_REGCLASSIDS_MAX,
200 &nregclass, CTRY_DEFAULT, false, 1)) {
201 u32 rd = ah->ah_currentRD;
202 DPRINTF(sc, ATH_DBG_FATAL,
203 "Unable to collect channel list; "
204 "regdomain likely %u country code %u\n",
209 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
210 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
211 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
212 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
214 for (i = 0; i < nchan; i++) {
215 c = &ah->ah_channels[i];
216 if (IS_CHAN_2GHZ(c)) {
217 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
218 chan_2ghz[a].center_freq = c->channel;
219 chan_2ghz[a].max_power = c->maxTxPower;
221 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
222 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
223 if (c->channelFlags & CHANNEL_PASSIVE)
224 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
226 band_2ghz->n_channels = ++a;
228 DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
229 "channelFlags: 0x%x\n",
230 c->channel, c->channelFlags);
231 } else if (IS_CHAN_5GHZ(c)) {
232 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
233 chan_5ghz[b].center_freq = c->channel;
234 chan_5ghz[b].max_power = c->maxTxPower;
236 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
237 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
238 if (c->channelFlags & CHANNEL_PASSIVE)
239 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
241 band_5ghz->n_channels = ++b;
243 DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
244 "channelFlags: 0x%x\n",
245 c->channel, c->channelFlags);
253 * Set/change channels. If the channel is really being changed, it's done
254 * by reseting the chip. To accomplish this we must first cleanup any pending
255 * DMA, then restart stuff.
257 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
259 struct ath_hal *ah = sc->sc_ah;
260 bool fastcc = true, stopped;
262 if (sc->sc_flags & SC_OP_INVALID)
265 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
266 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
267 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
268 (sc->sc_flags & SC_OP_FULL_RESET)) {
271 * This is only performed if the channel settings have
274 * To switch channels clear any pending DMA operations;
275 * wait long enough for the RX fifo to drain, reset the
276 * hardware at the new frequency, and then re-enable
277 * the relevant bits of the h/w.
279 ath9k_hw_set_interrupts(ah, 0);
280 ath_draintxq(sc, false);
281 stopped = ath_stoprecv(sc);
283 /* XXX: do not flush receive queue here. We don't want
284 * to flush data frames already in queue because of
285 * changing channel. */
287 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
290 DPRINTF(sc, ATH_DBG_CONFIG,
291 "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
292 sc->sc_ah->ah_curchan->channel,
293 hchan->channel, hchan->channelFlags, sc->tx_chan_width);
295 spin_lock_bh(&sc->sc_resetlock);
296 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
297 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
298 sc->sc_ht_extprotspacing, fastcc, &status)) {
299 DPRINTF(sc, ATH_DBG_FATAL,
300 "Unable to reset channel %u (%uMhz) "
301 "flags 0x%x hal status %u\n",
302 ath9k_hw_mhz2ieee(ah, hchan->channel,
303 hchan->channelFlags),
304 hchan->channel, hchan->channelFlags, status);
305 spin_unlock_bh(&sc->sc_resetlock);
308 spin_unlock_bh(&sc->sc_resetlock);
310 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311 sc->sc_flags &= ~SC_OP_FULL_RESET;
313 if (ath_startrecv(sc) != 0) {
314 DPRINTF(sc, ATH_DBG_FATAL,
315 "Unable to restart recv logic\n");
319 ath_setcurmode(sc, ath_chan2mode(hchan));
320 ath_update_txpow(sc);
321 ath9k_hw_set_interrupts(ah, sc->sc_imask);
327 * This routine performs the periodic noise floor calibration function
328 * that is used to adjust and optimize the chip performance. This
329 * takes environmental changes (location, temperature) into account.
330 * When the task is complete, it reschedules itself depending on the
331 * appropriate interval that was calculated.
333 static void ath_ani_calibrate(unsigned long data)
335 struct ath_softc *sc;
337 bool longcal = false;
338 bool shortcal = false;
339 bool aniflag = false;
340 unsigned int timestamp = jiffies_to_msecs(jiffies);
343 sc = (struct ath_softc *)data;
347 * don't calibrate when we're scanning.
348 * we are most likely not on our home channel.
350 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->sc_ani.sc_longcal_timer = timestamp;
360 /* Short calibration applies only while sc_caldone is false */
361 if (!sc->sc_ani.sc_caldone) {
362 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363 ATH_SHORT_CALINTERVAL) {
365 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366 sc->sc_ani.sc_shortcal_timer = timestamp;
367 sc->sc_ani.sc_resetcal_timer = timestamp;
370 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
371 ATH_RESTART_CALINTERVAL) {
372 ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
373 &sc->sc_ani.sc_caldone);
374 if (sc->sc_ani.sc_caldone)
375 sc->sc_ani.sc_resetcal_timer = timestamp;
379 /* Verify whether we must check ANI */
380 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
381 ATH_ANI_POLLINTERVAL) {
383 sc->sc_ani.sc_checkani_timer = timestamp;
386 /* Skip all processing if there's nothing to do. */
387 if (longcal || shortcal || aniflag) {
388 /* Call ANI routine if necessary */
390 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
393 /* Perform calibration if necessary */
394 if (longcal || shortcal) {
395 bool iscaldone = false;
397 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
398 sc->sc_rx_chainmask, longcal,
401 sc->sc_ani.sc_noise_floor =
402 ath9k_hw_getchan_noise(ah,
405 DPRINTF(sc, ATH_DBG_ANI,
406 "calibrate chan %u/%x nf: %d\n",
407 ah->ah_curchan->channel,
408 ah->ah_curchan->channelFlags,
409 sc->sc_ani.sc_noise_floor);
411 DPRINTF(sc, ATH_DBG_ANY,
412 "calibrate chan %u/%x failed\n",
413 ah->ah_curchan->channel,
414 ah->ah_curchan->channelFlags);
416 sc->sc_ani.sc_caldone = iscaldone;
421 * Set timer interval based on previous results.
422 * The interval must be the shortest necessary to satisfy ANI,
423 * short calibration and long calibration.
425 cal_interval = ATH_LONG_CALINTERVAL;
426 if (sc->sc_ah->ah_config.enable_ani)
427 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
428 if (!sc->sc_ani.sc_caldone)
429 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
431 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration.
439 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
443 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
446 sc->sc_tx_chainmask = 1;
447 sc->sc_rx_chainmask = 1;
450 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
458 an = (struct ath_node *)sta->drv_priv;
460 if (sc->sc_flags & SC_OP_TXAGGR)
461 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
470 struct ath_node *an = (struct ath_node *)sta->drv_priv;
472 if (sc->sc_flags & SC_OP_TXAGGR)
473 ath_tx_node_cleanup(sc, an);
476 static void ath9k_tasklet(unsigned long data)
478 struct ath_softc *sc = (struct ath_softc *)data;
479 u32 status = sc->sc_intrstatus;
481 if (status & ATH9K_INT_FATAL) {
482 /* need a chip reset */
483 ath_reset(sc, false);
488 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489 spin_lock_bh(&sc->rx.rxflushlock);
490 ath_rx_tasklet(sc, 0);
491 spin_unlock_bh(&sc->rx.rxflushlock);
493 /* XXX: optimize this */
494 if (status & ATH9K_INT_TX)
498 /* re-enable hardware interrupt */
499 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
502 static irqreturn_t ath_isr(int irq, void *dev)
504 struct ath_softc *sc = dev;
505 struct ath_hal *ah = sc->sc_ah;
506 enum ath9k_int status;
510 if (sc->sc_flags & SC_OP_INVALID) {
512 * The hardware is not ready/present, don't
513 * touch anything. Note this can happen early
514 * on if the IRQ is shared.
518 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
523 * Figure out the reason(s) for the interrupt. Note
524 * that the hal returns a pseudo-ISR that may include
525 * bits we haven't explicitly enabled so we mask the
526 * value to insure we only process bits we requested.
528 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
530 status &= sc->sc_imask; /* discard unasked-for bits */
533 * If there are no status bits set, then this interrupt was not
534 * for me (should have been caught above).
539 sc->sc_intrstatus = status;
541 if (status & ATH9K_INT_FATAL) {
542 /* need a chip reset */
544 } else if (status & ATH9K_INT_RXORN) {
545 /* need a chip reset */
548 if (status & ATH9K_INT_SWBA) {
549 /* schedule a tasklet for beacon handling */
550 tasklet_schedule(&sc->bcon_tasklet);
552 if (status & ATH9K_INT_RXEOL) {
554 * NB: the hardware should re-read the link when
555 * RXE bit is written, but it doesn't work
556 * at least on older hardware revs.
561 if (status & ATH9K_INT_TXURN)
562 /* bump tx trigger level */
563 ath9k_hw_updatetxtriglevel(ah, true);
564 /* XXX: optimize this */
565 if (status & ATH9K_INT_RX)
567 if (status & ATH9K_INT_TX)
569 if (status & ATH9K_INT_BMISS)
571 /* carrier sense timeout */
572 if (status & ATH9K_INT_CST)
574 if (status & ATH9K_INT_MIB) {
576 * Disable interrupts until we service the MIB
577 * interrupt; otherwise it will continue to
580 ath9k_hw_set_interrupts(ah, 0);
582 * Let the hal handle the event. We assume
583 * it will clear whatever condition caused
586 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587 ath9k_hw_set_interrupts(ah, sc->sc_imask);
589 if (status & ATH9K_INT_TIM_TIMER) {
590 if (!(ah->ah_caps.hw_caps &
591 ATH9K_HW_CAP_AUTOSLEEP)) {
592 /* Clear RxAbort bit so that we can
594 ath9k_hw_setrxabort(ah, 0);
601 ath_debug_stat_interrupt(sc, status);
604 /* turn off every interrupt except SWBA */
605 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606 tasklet_schedule(&sc->intr_tq);
612 static int ath_get_channel(struct ath_softc *sc,
613 struct ieee80211_channel *chan)
617 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 enum nl80211_channel_type channel_type)
631 switch (chan->band) {
632 case IEEE80211_BAND_2GHZ:
633 switch(channel_type) {
634 case NL80211_CHAN_NO_HT:
635 case NL80211_CHAN_HT20:
636 chanmode = CHANNEL_G_HT20;
638 case NL80211_CHAN_HT40PLUS:
639 chanmode = CHANNEL_G_HT40PLUS;
641 case NL80211_CHAN_HT40MINUS:
642 chanmode = CHANNEL_G_HT40MINUS;
646 case IEEE80211_BAND_5GHZ:
647 switch(channel_type) {
648 case NL80211_CHAN_NO_HT:
649 case NL80211_CHAN_HT20:
650 chanmode = CHANNEL_A_HT20;
652 case NL80211_CHAN_HT40PLUS:
653 chanmode = CHANNEL_A_HT40PLUS;
655 case NL80211_CHAN_HT40MINUS:
656 chanmode = CHANNEL_A_HT40MINUS;
667 static void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
669 ath9k_hw_keyreset(sc->sc_ah, keyix);
671 clear_bit(keyix, sc->sc_keymap);
674 static int ath_keyset(struct ath_softc *sc, u16 keyix,
675 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
679 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
680 keyix, hk, mac, false);
682 return status != false;
685 static int ath_setkey_tkip(struct ath_softc *sc,
686 struct ieee80211_key_conf *key,
687 struct ath9k_keyval *hk,
690 u8 *key_rxmic = NULL;
691 u8 *key_txmic = NULL;
693 key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
694 key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
697 /* Group key installation */
698 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699 return ath_keyset(sc, key->keyidx, hk, addr);
701 if (!sc->sc_splitmic) {
703 * data key goes at first index,
704 * the hal handles the MIC keys at index+64.
706 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
707 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
708 return ath_keyset(sc, key->keyidx, hk, addr);
711 * TX key goes at first index, RX key at +32.
712 * The hal handles the MIC keys at index+64.
714 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
715 if (!ath_keyset(sc, key->keyidx, hk, NULL)) {
716 /* Txmic entry failed. No need to proceed further */
717 DPRINTF(sc, ATH_DBG_KEYCACHE,
718 "Setting TX MIC Key Failed\n");
722 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
723 /* XXX delete tx key on failure? */
724 return ath_keyset(sc, key->keyidx+32, hk, addr);
727 static int ath_key_config(struct ath_softc *sc,
729 struct ieee80211_key_conf *key)
731 struct ieee80211_vif *vif;
732 struct ath9k_keyval hk;
733 const u8 *mac = NULL;
735 enum nl80211_iftype opmode;
737 memset(&hk, 0, sizeof(hk));
741 hk.kv_type = ATH9K_CIPHER_WEP;
744 hk.kv_type = ATH9K_CIPHER_TKIP;
747 hk.kv_type = ATH9K_CIPHER_AES_CCM;
753 hk.kv_len = key->keylen;
754 memcpy(hk.kv_val, key->key, key->keylen);
759 vif = sc->sc_vaps[0];
764 * For STA mc tx, we will not setup a key at
765 * all since we never tx mc.
767 * For STA mc rx, we will use the keyID.
769 * For ADHOC mc tx, we will use the keyID, and no macaddr.
771 * For ADHOC mc rx, we will alloc a slot and plumb the mac of
773 * BUT we will plumb a cleartext key so that we can do
774 * per-Sta default key table lookup in software.
776 if (is_broadcast_ether_addr(addr)) {
778 case NL80211_IFTYPE_STATION:
779 /* default key: could be group WPA key
780 * or could be static WEP key */
783 case NL80211_IFTYPE_ADHOC:
785 case NL80211_IFTYPE_AP:
795 if (key->alg == ALG_TKIP)
796 ret = ath_setkey_tkip(sc, key, &hk, mac);
798 ret = ath_keyset(sc, key->keyidx, &hk, mac);
806 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
810 freeslot = (key->keyidx >= 4) ? 1 : 0;
811 ath_key_reset(sc, key->keyidx, freeslot);
814 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
816 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
817 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
819 ht_info->ht_supported = true;
820 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
821 IEEE80211_HT_CAP_SM_PS |
822 IEEE80211_HT_CAP_SGI_40 |
823 IEEE80211_HT_CAP_DSSSCCK40;
825 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
826 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
827 /* set up supported mcs set */
828 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
829 ht_info->mcs.rx_mask[0] = 0xff;
830 ht_info->mcs.rx_mask[1] = 0xff;
831 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
834 static void ath9k_bss_assoc_info(struct ath_softc *sc,
835 struct ieee80211_vif *vif,
836 struct ieee80211_bss_conf *bss_conf)
838 struct ath_vap *avp = (void *)vif->drv_priv;
840 if (bss_conf->assoc) {
841 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
842 bss_conf->aid, sc->sc_curbssid);
844 /* New association, store aid */
845 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
846 sc->sc_curaid = bss_conf->aid;
847 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
851 /* Configure the beacon */
852 ath_beacon_config(sc, 0);
853 sc->sc_flags |= SC_OP_BEACONS;
855 /* Reset rssi stats */
856 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
857 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
858 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
859 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
862 mod_timer(&sc->sc_ani.timer,
863 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
866 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
871 /********************************/
873 /********************************/
875 static void ath_led_brightness(struct led_classdev *led_cdev,
876 enum led_brightness brightness)
878 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
879 struct ath_softc *sc = led->sc;
881 switch (brightness) {
883 if (led->led_type == ATH_LED_ASSOC ||
884 led->led_type == ATH_LED_RADIO)
885 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
886 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
887 (led->led_type == ATH_LED_RADIO) ? 1 :
888 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
891 if (led->led_type == ATH_LED_ASSOC)
892 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
893 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
900 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
906 led->led_cdev.name = led->name;
907 led->led_cdev.default_trigger = trigger;
908 led->led_cdev.brightness_set = ath_led_brightness;
910 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
912 DPRINTF(sc, ATH_DBG_FATAL,
913 "Failed to register led:%s", led->name);
919 static void ath_unregister_led(struct ath_led *led)
921 if (led->registered) {
922 led_classdev_unregister(&led->led_cdev);
927 static void ath_deinit_leds(struct ath_softc *sc)
929 ath_unregister_led(&sc->assoc_led);
930 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
931 ath_unregister_led(&sc->tx_led);
932 ath_unregister_led(&sc->rx_led);
933 ath_unregister_led(&sc->radio_led);
934 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
937 static void ath_init_leds(struct ath_softc *sc)
942 /* Configure gpio 1 for output */
943 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
944 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
945 /* LED off, active low */
946 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
948 trigger = ieee80211_get_radio_led_name(sc->hw);
949 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
950 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
951 ret = ath_register_led(sc, &sc->radio_led, trigger);
952 sc->radio_led.led_type = ATH_LED_RADIO;
956 trigger = ieee80211_get_assoc_led_name(sc->hw);
957 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
958 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
959 ret = ath_register_led(sc, &sc->assoc_led, trigger);
960 sc->assoc_led.led_type = ATH_LED_ASSOC;
964 trigger = ieee80211_get_tx_led_name(sc->hw);
965 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
966 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
967 ret = ath_register_led(sc, &sc->tx_led, trigger);
968 sc->tx_led.led_type = ATH_LED_TX;
972 trigger = ieee80211_get_rx_led_name(sc->hw);
973 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
974 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
975 ret = ath_register_led(sc, &sc->rx_led, trigger);
976 sc->rx_led.led_type = ATH_LED_RX;
986 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
988 /*******************/
990 /*******************/
992 static void ath_radio_enable(struct ath_softc *sc)
994 struct ath_hal *ah = sc->sc_ah;
997 spin_lock_bh(&sc->sc_resetlock);
998 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1000 sc->sc_tx_chainmask,
1001 sc->sc_rx_chainmask,
1002 sc->sc_ht_extprotspacing,
1004 DPRINTF(sc, ATH_DBG_FATAL,
1005 "Unable to reset channel %u (%uMhz) "
1006 "flags 0x%x hal status %u\n",
1007 ath9k_hw_mhz2ieee(ah,
1008 ah->ah_curchan->channel,
1009 ah->ah_curchan->channelFlags),
1010 ah->ah_curchan->channel,
1011 ah->ah_curchan->channelFlags, status);
1013 spin_unlock_bh(&sc->sc_resetlock);
1015 ath_update_txpow(sc);
1016 if (ath_startrecv(sc) != 0) {
1017 DPRINTF(sc, ATH_DBG_FATAL,
1018 "Unable to restart recv logic\n");
1022 if (sc->sc_flags & SC_OP_BEACONS)
1023 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1025 /* Re-Enable interrupts */
1026 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1029 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1030 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1031 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1033 ieee80211_wake_queues(sc->hw);
1036 static void ath_radio_disable(struct ath_softc *sc)
1038 struct ath_hal *ah = sc->sc_ah;
1042 ieee80211_stop_queues(sc->hw);
1045 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1046 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1048 /* Disable interrupts */
1049 ath9k_hw_set_interrupts(ah, 0);
1051 ath_draintxq(sc, false); /* clear pending tx frames */
1052 ath_stoprecv(sc); /* turn off frame recv */
1053 ath_flushrecv(sc); /* flush recv queue */
1055 spin_lock_bh(&sc->sc_resetlock);
1056 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1058 sc->sc_tx_chainmask,
1059 sc->sc_rx_chainmask,
1060 sc->sc_ht_extprotspacing,
1062 DPRINTF(sc, ATH_DBG_FATAL,
1063 "Unable to reset channel %u (%uMhz) "
1064 "flags 0x%x hal status %u\n",
1065 ath9k_hw_mhz2ieee(ah,
1066 ah->ah_curchan->channel,
1067 ah->ah_curchan->channelFlags),
1068 ah->ah_curchan->channel,
1069 ah->ah_curchan->channelFlags, status);
1071 spin_unlock_bh(&sc->sc_resetlock);
1073 ath9k_hw_phy_disable(ah);
1074 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1077 static bool ath_is_rfkill_set(struct ath_softc *sc)
1079 struct ath_hal *ah = sc->sc_ah;
1081 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1082 ah->ah_rfkill_polarity;
1085 /* h/w rfkill poll function */
1086 static void ath_rfkill_poll(struct work_struct *work)
1088 struct ath_softc *sc = container_of(work, struct ath_softc,
1089 rf_kill.rfkill_poll.work);
1092 if (sc->sc_flags & SC_OP_INVALID)
1095 radio_on = !ath_is_rfkill_set(sc);
1098 * enable/disable radio only when there is a
1099 * state change in RF switch
1101 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1102 enum rfkill_state state;
1104 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1105 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1106 : RFKILL_STATE_HARD_BLOCKED;
1107 } else if (radio_on) {
1108 ath_radio_enable(sc);
1109 state = RFKILL_STATE_UNBLOCKED;
1111 ath_radio_disable(sc);
1112 state = RFKILL_STATE_HARD_BLOCKED;
1115 if (state == RFKILL_STATE_HARD_BLOCKED)
1116 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1118 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1120 rfkill_force_state(sc->rf_kill.rfkill, state);
1123 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1124 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1127 /* s/w rfkill handler */
1128 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1130 struct ath_softc *sc = data;
1133 case RFKILL_STATE_SOFT_BLOCKED:
1134 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1135 SC_OP_RFKILL_SW_BLOCKED)))
1136 ath_radio_disable(sc);
1137 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1139 case RFKILL_STATE_UNBLOCKED:
1140 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1141 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1142 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1143 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1144 "radio as it is disabled by h/w\n");
1147 ath_radio_enable(sc);
1155 /* Init s/w rfkill */
1156 static int ath_init_sw_rfkill(struct ath_softc *sc)
1158 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1160 if (!sc->rf_kill.rfkill) {
1161 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1165 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1166 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1167 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1168 sc->rf_kill.rfkill->data = sc;
1169 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1170 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1171 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1176 /* Deinitialize rfkill */
1177 static void ath_deinit_rfkill(struct ath_softc *sc)
1179 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1180 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1182 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1183 rfkill_unregister(sc->rf_kill.rfkill);
1184 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1185 sc->rf_kill.rfkill = NULL;
1189 static int ath_start_rfkill_poll(struct ath_softc *sc)
1191 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1192 queue_delayed_work(sc->hw->workqueue,
1193 &sc->rf_kill.rfkill_poll, 0);
1195 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1196 if (rfkill_register(sc->rf_kill.rfkill)) {
1197 DPRINTF(sc, ATH_DBG_FATAL,
1198 "Unable to register rfkill\n");
1199 rfkill_free(sc->rf_kill.rfkill);
1201 /* Deinitialize the device */
1204 free_irq(sc->pdev->irq, sc);
1205 pci_iounmap(sc->pdev, sc->mem);
1206 pci_release_region(sc->pdev, 0);
1207 pci_disable_device(sc->pdev);
1208 ieee80211_free_hw(sc->hw);
1211 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1217 #endif /* CONFIG_RFKILL */
1219 static void ath_detach(struct ath_softc *sc)
1221 struct ieee80211_hw *hw = sc->hw;
1224 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1226 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1227 ath_deinit_rfkill(sc);
1229 ath_deinit_leds(sc);
1231 ieee80211_unregister_hw(hw);
1233 ath_rate_control_unregister();
1238 tasklet_kill(&sc->intr_tq);
1239 tasklet_kill(&sc->bcon_tasklet);
1241 if (!(sc->sc_flags & SC_OP_INVALID))
1242 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1244 /* cleanup tx queues */
1245 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1246 if (ATH_TXQ_SETUP(sc, i))
1247 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1249 ath9k_hw_detach(sc->sc_ah);
1250 ath9k_exit_debug(sc);
1253 static int ath_init(u16 devid, struct ath_softc *sc)
1255 struct ath_hal *ah = NULL;
1260 /* XXX: hardware will not be ready until ath_open() being called */
1261 sc->sc_flags |= SC_OP_INVALID;
1263 if (ath9k_init_debug(sc) < 0)
1264 printk(KERN_ERR "Unable to create debugfs files\n");
1266 spin_lock_init(&sc->sc_resetlock);
1267 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1268 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1272 * Cache line size is used to size and align various
1273 * structures used to communicate with the hardware.
1275 bus_read_cachesize(sc, &csz);
1276 /* XXX assert csz is non-zero */
1277 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1279 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1281 DPRINTF(sc, ATH_DBG_FATAL,
1282 "Unable to attach hardware; HAL status %u\n", status);
1288 /* Get the hardware key cache size. */
1289 sc->sc_keymax = ah->ah_caps.keycache_size;
1290 if (sc->sc_keymax > ATH_KEYMAX) {
1291 DPRINTF(sc, ATH_DBG_KEYCACHE,
1292 "Warning, using only %u entries in %u key cache\n",
1293 ATH_KEYMAX, sc->sc_keymax);
1294 sc->sc_keymax = ATH_KEYMAX;
1298 * Reset the key cache since some parts do not
1299 * reset the contents on initial power up.
1301 for (i = 0; i < sc->sc_keymax; i++)
1302 ath9k_hw_keyreset(ah, (u16) i);
1304 * Mark key cache slots associated with global keys
1305 * as in use. If we knew TKIP was not to be used we
1306 * could leave the +32, +64, and +32+64 slots free.
1307 * XXX only for splitmic.
1309 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1310 set_bit(i, sc->sc_keymap);
1311 set_bit(i + 32, sc->sc_keymap);
1312 set_bit(i + 64, sc->sc_keymap);
1313 set_bit(i + 32 + 64, sc->sc_keymap);
1316 /* Collect the channel list using the default country code */
1318 error = ath_setup_channels(sc);
1322 /* default to MONITOR mode */
1323 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1326 /* Setup rate tables */
1328 ath_rate_attach(sc);
1329 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1330 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1333 * Allocate hardware transmit queues: one queue for
1334 * beacon frames and one data queue for each QoS
1335 * priority. Note that the hal handles reseting
1336 * these queues at the needed time.
1338 sc->beacon.beaconq = ath_beaconq_setup(ah);
1339 if (sc->beacon.beaconq == -1) {
1340 DPRINTF(sc, ATH_DBG_FATAL,
1341 "Unable to setup a beacon xmit queue\n");
1345 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1346 if (sc->beacon.cabq == NULL) {
1347 DPRINTF(sc, ATH_DBG_FATAL,
1348 "Unable to setup CAB xmit queue\n");
1353 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1354 ath_cabq_update(sc);
1356 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1357 sc->tx.hwq_map[i] = -1;
1359 /* Setup data queues */
1360 /* NB: ensure BK queue is the lowest priority h/w queue */
1361 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1362 DPRINTF(sc, ATH_DBG_FATAL,
1363 "Unable to setup xmit queue for BK traffic\n");
1368 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1369 DPRINTF(sc, ATH_DBG_FATAL,
1370 "Unable to setup xmit queue for BE traffic\n");
1374 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1375 DPRINTF(sc, ATH_DBG_FATAL,
1376 "Unable to setup xmit queue for VI traffic\n");
1380 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1381 DPRINTF(sc, ATH_DBG_FATAL,
1382 "Unable to setup xmit queue for VO traffic\n");
1387 /* Initializes the noise floor to a reasonable default value.
1388 * Later on this will be updated during ANI processing. */
1390 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1391 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1393 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1394 ATH9K_CIPHER_TKIP, NULL)) {
1396 * Whether we should enable h/w TKIP MIC.
1397 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1398 * report WMM capable, so it's always safe to turn on
1399 * TKIP MIC in this case.
1401 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1406 * Check whether the separate key cache entries
1407 * are required to handle both tx+rx MIC keys.
1408 * With split mic keys the number of stations is limited
1409 * to 27 otherwise 59.
1411 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1412 ATH9K_CIPHER_TKIP, NULL)
1413 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1414 ATH9K_CIPHER_MIC, NULL)
1415 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1417 sc->sc_splitmic = 1;
1419 /* turn on mcast key search if possible */
1420 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1421 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1424 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1425 sc->sc_config.txpowlimit_override = 0;
1427 /* 11n Capabilities */
1428 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1429 sc->sc_flags |= SC_OP_TXAGGR;
1430 sc->sc_flags |= SC_OP_RXAGGR;
1433 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1434 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1436 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1437 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1439 ath9k_hw_getmac(ah, sc->sc_myaddr);
1440 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1441 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1442 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1443 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1446 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1448 /* initialize beacon slots */
1449 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1450 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1452 /* save MISC configurations */
1453 sc->sc_config.swBeaconProcess = 1;
1455 /* setup channels and rates */
1457 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1458 sc->channels[IEEE80211_BAND_2GHZ];
1459 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1460 sc->rates[IEEE80211_BAND_2GHZ];
1461 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1463 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1464 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1465 sc->channels[IEEE80211_BAND_5GHZ];
1466 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1467 sc->rates[IEEE80211_BAND_5GHZ];
1468 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1473 /* cleanup tx queues */
1474 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1475 if (ATH_TXQ_SETUP(sc, i))
1476 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1479 ath9k_hw_detach(ah);
1484 static int ath_attach(u16 devid, struct ath_softc *sc)
1486 struct ieee80211_hw *hw = sc->hw;
1489 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1491 error = ath_init(devid, sc);
1495 /* get mac address from hardware and set in mac80211 */
1497 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1499 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1500 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1501 IEEE80211_HW_SIGNAL_DBM |
1502 IEEE80211_HW_AMPDU_AGGREGATION;
1504 hw->wiphy->interface_modes =
1505 BIT(NL80211_IFTYPE_AP) |
1506 BIT(NL80211_IFTYPE_STATION) |
1507 BIT(NL80211_IFTYPE_ADHOC);
1511 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1512 hw->sta_data_size = sizeof(struct ath_node);
1513 hw->vif_data_size = sizeof(struct ath_vap);
1515 /* Register rate control */
1516 hw->rate_control_algorithm = "ath9k_rate_control";
1517 error = ath_rate_control_register();
1519 DPRINTF(sc, ATH_DBG_FATAL,
1520 "Unable to register rate control algorithm: %d\n", error);
1521 ath_rate_control_unregister();
1525 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1526 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1527 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1528 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1531 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1532 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1533 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1534 &sc->sbands[IEEE80211_BAND_5GHZ];
1536 /* initialize tx/rx engine */
1537 error = ath_tx_init(sc, ATH_TXBUF);
1541 error = ath_rx_init(sc, ATH_RXBUF);
1545 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1546 /* Initialze h/w Rfkill */
1547 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1548 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1550 /* Initialize s/w rfkill */
1551 if (ath_init_sw_rfkill(sc))
1555 error = ieee80211_register_hw(hw);
1557 ath_rate_control_unregister();
1561 /* Initialize LED control */
1571 int ath_reset(struct ath_softc *sc, bool retry_tx)
1573 struct ath_hal *ah = sc->sc_ah;
1577 ath9k_hw_set_interrupts(ah, 0);
1578 ath_draintxq(sc, retry_tx);
1582 spin_lock_bh(&sc->sc_resetlock);
1583 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1585 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1586 sc->sc_ht_extprotspacing, false, &status)) {
1587 DPRINTF(sc, ATH_DBG_FATAL,
1588 "Unable to reset hardware; hal status %u\n", status);
1591 spin_unlock_bh(&sc->sc_resetlock);
1593 if (ath_startrecv(sc) != 0)
1594 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1597 * We may be doing a reset in response to a request
1598 * that changes the channel so update any state that
1599 * might change as a result.
1601 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1603 ath_update_txpow(sc);
1605 if (sc->sc_flags & SC_OP_BEACONS)
1606 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1608 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1612 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1613 if (ATH_TXQ_SETUP(sc, i)) {
1614 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1615 ath_txq_schedule(sc, &sc->tx.txq[i]);
1616 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1625 * This function will allocate both the DMA descriptor structure, and the
1626 * buffers it contains. These are used to contain the descriptors used
1629 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1630 struct list_head *head, const char *name,
1631 int nbuf, int ndesc)
1633 #define DS2PHYS(_dd, _ds) \
1634 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1635 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1636 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1638 struct ath_desc *ds;
1640 int i, bsize, error;
1642 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1645 /* ath_desc must be a multiple of DWORDs */
1646 if ((sizeof(struct ath_desc) % 4) != 0) {
1647 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1648 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1654 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1657 * Need additional DMA memory because we can't use
1658 * descriptors that cross the 4K page boundary. Assume
1659 * one skipped descriptor per 4K page.
1661 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1663 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1666 while (ndesc_skipped) {
1667 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1668 dd->dd_desc_len += dma_len;
1670 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1674 /* allocate descriptors */
1675 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1677 &dd->dd_desc_paddr);
1678 if (dd->dd_desc == NULL) {
1683 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1684 dd->dd_name, ds, (u32) dd->dd_desc_len,
1685 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1687 /* allocate buffers */
1688 bsize = sizeof(struct ath_buf) * nbuf;
1689 bf = kmalloc(bsize, GFP_KERNEL);
1694 memset(bf, 0, bsize);
1697 INIT_LIST_HEAD(head);
1698 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1700 bf->bf_daddr = DS2PHYS(dd, ds);
1702 if (!(sc->sc_ah->ah_caps.hw_caps &
1703 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1705 * Skip descriptor addresses which can cause 4KB
1706 * boundary crossing (addr + length) with a 32 dword
1709 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1710 ASSERT((caddr_t) bf->bf_desc <
1711 ((caddr_t) dd->dd_desc +
1716 bf->bf_daddr = DS2PHYS(dd, ds);
1719 list_add_tail(&bf->list, head);
1723 pci_free_consistent(sc->pdev,
1724 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1726 memset(dd, 0, sizeof(*dd));
1728 #undef ATH_DESC_4KB_BOUND_CHECK
1729 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1733 void ath_descdma_cleanup(struct ath_softc *sc,
1734 struct ath_descdma *dd,
1735 struct list_head *head)
1737 pci_free_consistent(sc->pdev,
1738 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1740 INIT_LIST_HEAD(head);
1741 kfree(dd->dd_bufptr);
1742 memset(dd, 0, sizeof(*dd));
1745 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1751 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1754 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1757 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1760 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1763 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1770 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1775 case ATH9K_WME_AC_VO:
1778 case ATH9K_WME_AC_VI:
1781 case ATH9K_WME_AC_BE:
1784 case ATH9K_WME_AC_BK:
1795 /**********************/
1796 /* mac80211 callbacks */
1797 /**********************/
1799 static int ath9k_start(struct ieee80211_hw *hw)
1801 struct ath_softc *sc = hw->priv;
1802 struct ieee80211_channel *curchan = hw->conf.channel;
1803 struct ath9k_channel *init_channel;
1804 int error = 0, pos, status;
1806 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1807 "initial channel: %d MHz\n", curchan->center_freq);
1809 /* setup initial channel */
1811 pos = ath_get_channel(sc, curchan);
1813 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1818 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1819 sc->sc_ah->ah_channels[pos].chanmode =
1820 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1821 init_channel = &sc->sc_ah->ah_channels[pos];
1823 /* Reset SERDES registers */
1824 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1827 * The basic interface to setting the hardware in a good
1828 * state is ``reset''. On return the hardware is known to
1829 * be powered up and with interrupts disabled. This must
1830 * be followed by initialization of the appropriate bits
1831 * and then setup of the interrupt mask.
1833 spin_lock_bh(&sc->sc_resetlock);
1834 if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1836 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1837 sc->sc_ht_extprotspacing, false, &status)) {
1838 DPRINTF(sc, ATH_DBG_FATAL,
1839 "Unable to reset hardware; hal status %u "
1840 "(freq %u flags 0x%x)\n", status,
1841 init_channel->channel, init_channel->channelFlags);
1843 spin_unlock_bh(&sc->sc_resetlock);
1846 spin_unlock_bh(&sc->sc_resetlock);
1849 * This is needed only to setup initial state
1850 * but it's best done after a reset.
1852 ath_update_txpow(sc);
1855 * Setup the hardware after reset:
1856 * The receive engine is set going.
1857 * Frame transmit is handled entirely
1858 * in the frame output path; there's nothing to do
1859 * here except setup the interrupt mask.
1861 if (ath_startrecv(sc) != 0) {
1862 DPRINTF(sc, ATH_DBG_FATAL,
1863 "Unable to start recv logic\n");
1868 /* Setup our intr mask. */
1869 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1870 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1871 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1873 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1874 sc->sc_imask |= ATH9K_INT_GTT;
1876 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1877 sc->sc_imask |= ATH9K_INT_CST;
1880 * Enable MIB interrupts when there are hardware phy counters.
1881 * Note we only do this (at the moment) for station mode.
1883 if (ath9k_hw_phycounters(sc->sc_ah) &&
1884 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1885 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1886 sc->sc_imask |= ATH9K_INT_MIB;
1888 * Some hardware processes the TIM IE and fires an
1889 * interrupt when the TIM bit is set. For hardware
1890 * that does, if not overridden by configuration,
1891 * enable the TIM interrupt when operating as station.
1893 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1894 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1895 !sc->sc_config.swBeaconProcess)
1896 sc->sc_imask |= ATH9K_INT_TIM;
1898 ath_setcurmode(sc, ath_chan2mode(init_channel));
1900 sc->sc_flags &= ~SC_OP_INVALID;
1902 /* Disable BMISS interrupt when we're not associated */
1903 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1904 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1906 ieee80211_wake_queues(sc->hw);
1908 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1909 error = ath_start_rfkill_poll(sc);
1916 static int ath9k_tx(struct ieee80211_hw *hw,
1917 struct sk_buff *skb)
1919 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1920 struct ath_softc *sc = hw->priv;
1921 struct ath_tx_control txctl;
1922 int hdrlen, padsize;
1924 memset(&txctl, 0, sizeof(struct ath_tx_control));
1927 * As a temporary workaround, assign seq# here; this will likely need
1928 * to be cleaned up to work better with Beacon transmission and virtual
1931 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1932 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1933 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1934 sc->tx.seq_no += 0x10;
1935 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1936 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1939 /* Add the padding after the header if this is not already done */
1940 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1942 padsize = hdrlen % 4;
1943 if (skb_headroom(skb) < padsize)
1945 skb_push(skb, padsize);
1946 memmove(skb->data, skb->data + padsize, hdrlen);
1949 /* Check if a tx queue is available */
1951 txctl.txq = ath_test_get_txq(sc, skb);
1955 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1957 if (ath_tx_start(sc, skb, &txctl) != 0) {
1958 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1964 dev_kfree_skb_any(skb);
1968 static void ath9k_stop(struct ieee80211_hw *hw)
1970 struct ath_softc *sc = hw->priv;
1972 if (sc->sc_flags & SC_OP_INVALID) {
1973 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
1977 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
1979 ieee80211_stop_queues(sc->hw);
1981 /* make sure h/w will not generate any interrupt
1982 * before setting the invalid flag. */
1983 ath9k_hw_set_interrupts(sc->sc_ah, 0);
1985 if (!(sc->sc_flags & SC_OP_INVALID)) {
1986 ath_draintxq(sc, false);
1988 ath9k_hw_phy_disable(sc->sc_ah);
1990 sc->rx.rxlink = NULL;
1992 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1993 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1994 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1996 /* disable HAL and put h/w to sleep */
1997 ath9k_hw_disable(sc->sc_ah);
1998 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2000 sc->sc_flags |= SC_OP_INVALID;
2002 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2005 static int ath9k_add_interface(struct ieee80211_hw *hw,
2006 struct ieee80211_if_init_conf *conf)
2008 struct ath_softc *sc = hw->priv;
2009 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2010 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2012 /* Support only vap for now */
2017 switch (conf->type) {
2018 case NL80211_IFTYPE_STATION:
2019 ic_opmode = NL80211_IFTYPE_STATION;
2021 case NL80211_IFTYPE_ADHOC:
2022 ic_opmode = NL80211_IFTYPE_ADHOC;
2024 case NL80211_IFTYPE_AP:
2025 ic_opmode = NL80211_IFTYPE_AP;
2028 DPRINTF(sc, ATH_DBG_FATAL,
2029 "Interface type %d not yet supported\n", conf->type);
2033 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2035 /* Set the VAP opmode */
2036 avp->av_opmode = ic_opmode;
2039 if (ic_opmode == NL80211_IFTYPE_AP)
2040 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2042 sc->sc_vaps[0] = conf->vif;
2045 /* Set the device opmode */
2046 sc->sc_ah->ah_opmode = ic_opmode;
2048 if (conf->type == NL80211_IFTYPE_AP) {
2049 /* TODO: is this a suitable place to start ANI for AP mode? */
2051 mod_timer(&sc->sc_ani.timer,
2052 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2058 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2059 struct ieee80211_if_init_conf *conf)
2061 struct ath_softc *sc = hw->priv;
2062 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2064 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2067 del_timer_sync(&sc->sc_ani.timer);
2069 /* Reclaim beacon resources */
2070 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2071 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2072 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2073 ath_beacon_return(sc, avp);
2076 sc->sc_flags &= ~SC_OP_BEACONS;
2078 sc->sc_vaps[0] = NULL;
2082 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2084 struct ath_softc *sc = hw->priv;
2085 struct ieee80211_conf *conf = &hw->conf;
2087 if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2088 IEEE80211_CONF_CHANGE_HT)) {
2089 struct ieee80211_channel *curchan = hw->conf.channel;
2092 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2093 curchan->center_freq);
2095 pos = ath_get_channel(sc, curchan);
2097 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2098 curchan->center_freq);
2102 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2103 sc->sc_ah->ah_channels[pos].chanmode =
2104 (curchan->band == IEEE80211_BAND_2GHZ) ?
2105 CHANNEL_G : CHANNEL_A;
2107 if (conf->ht.enabled) {
2108 if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2109 conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2110 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2112 sc->sc_ah->ah_channels[pos].chanmode =
2113 ath_get_extchanmode(sc, curchan,
2114 conf->ht.channel_type);
2117 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2118 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2122 ath_update_chainmask(sc, conf->ht.enabled);
2125 if (changed & IEEE80211_CONF_CHANGE_POWER)
2126 sc->sc_config.txpowlimit = 2 * conf->power_level;
2131 static int ath9k_config_interface(struct ieee80211_hw *hw,
2132 struct ieee80211_vif *vif,
2133 struct ieee80211_if_conf *conf)
2135 struct ath_softc *sc = hw->priv;
2136 struct ath_hal *ah = sc->sc_ah;
2137 struct ath_vap *avp = (void *)vif->drv_priv;
2141 /* TODO: Need to decide which hw opmode to use for multi-interface
2143 if (vif->type == NL80211_IFTYPE_AP &&
2144 ah->ah_opmode != NL80211_IFTYPE_AP) {
2145 ah->ah_opmode = NL80211_IFTYPE_STATION;
2146 ath9k_hw_setopmode(ah);
2147 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2148 /* Request full reset to get hw opmode changed properly */
2149 sc->sc_flags |= SC_OP_FULL_RESET;
2152 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2153 !is_zero_ether_addr(conf->bssid)) {
2154 switch (vif->type) {
2155 case NL80211_IFTYPE_STATION:
2156 case NL80211_IFTYPE_ADHOC:
2158 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2160 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2163 /* Set aggregation protection mode parameters */
2164 sc->sc_config.ath_aggr_prot = 0;
2166 DPRINTF(sc, ATH_DBG_CONFIG,
2167 "RX filter 0x%x bssid %pM aid 0x%x\n",
2168 rfilt, sc->sc_curbssid, sc->sc_curaid);
2170 /* need to reconfigure the beacon */
2171 sc->sc_flags &= ~SC_OP_BEACONS ;
2179 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2180 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2181 (vif->type == NL80211_IFTYPE_AP))) {
2183 * Allocate and setup the beacon frame.
2185 * Stop any previous beacon DMA. This may be
2186 * necessary, for example, when an ibss merge
2187 * causes reconfiguration; we may be called
2188 * with beacon transmission active.
2190 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2192 error = ath_beacon_alloc(sc, 0);
2196 ath_beacon_sync(sc, 0);
2199 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2200 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2201 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2202 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2203 ath9k_hw_keysetmac(sc->sc_ah,
2208 /* Only legacy IBSS for now */
2209 if (vif->type == NL80211_IFTYPE_ADHOC)
2210 ath_update_chainmask(sc, 0);
2215 #define SUPPORTED_FILTERS \
2216 (FIF_PROMISC_IN_BSS | \
2220 FIF_BCN_PRBRESP_PROMISC | \
2223 /* FIXME: sc->sc_full_reset ? */
2224 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2225 unsigned int changed_flags,
2226 unsigned int *total_flags,
2228 struct dev_mc_list *mclist)
2230 struct ath_softc *sc = hw->priv;
2233 changed_flags &= SUPPORTED_FILTERS;
2234 *total_flags &= SUPPORTED_FILTERS;
2236 sc->rx.rxfilter = *total_flags;
2237 rfilt = ath_calcrxfilter(sc);
2238 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2240 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2241 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2242 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2245 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2248 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2249 struct ieee80211_vif *vif,
2250 enum sta_notify_cmd cmd,
2251 struct ieee80211_sta *sta)
2253 struct ath_softc *sc = hw->priv;
2256 case STA_NOTIFY_ADD:
2257 ath_node_attach(sc, sta);
2259 case STA_NOTIFY_REMOVE:
2260 ath_node_detach(sc, sta);
2267 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2269 const struct ieee80211_tx_queue_params *params)
2271 struct ath_softc *sc = hw->priv;
2272 struct ath9k_tx_queue_info qi;
2275 if (queue >= WME_NUM_AC)
2278 qi.tqi_aifs = params->aifs;
2279 qi.tqi_cwmin = params->cw_min;
2280 qi.tqi_cwmax = params->cw_max;
2281 qi.tqi_burstTime = params->txop;
2282 qnum = ath_get_hal_qnum(queue, sc);
2284 DPRINTF(sc, ATH_DBG_CONFIG,
2285 "Configure tx [queue/halq] [%d/%d], "
2286 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2287 queue, qnum, params->aifs, params->cw_min,
2288 params->cw_max, params->txop);
2290 ret = ath_txq_update(sc, qnum, &qi);
2292 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2297 static int ath9k_set_key(struct ieee80211_hw *hw,
2298 enum set_key_cmd cmd,
2299 const u8 *local_addr,
2301 struct ieee80211_key_conf *key)
2303 struct ath_softc *sc = hw->priv;
2306 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2310 ret = ath_key_config(sc, addr, key);
2312 set_bit(key->keyidx, sc->sc_keymap);
2313 key->hw_key_idx = key->keyidx;
2314 /* push IV and Michael MIC generation to stack */
2315 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2316 if (key->alg == ALG_TKIP)
2317 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2321 ath_key_delete(sc, key);
2322 clear_bit(key->keyidx, sc->sc_keymap);
2331 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2332 struct ieee80211_vif *vif,
2333 struct ieee80211_bss_conf *bss_conf,
2336 struct ath_softc *sc = hw->priv;
2338 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2339 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2340 bss_conf->use_short_preamble);
2341 if (bss_conf->use_short_preamble)
2342 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2344 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2347 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2348 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2349 bss_conf->use_cts_prot);
2350 if (bss_conf->use_cts_prot &&
2351 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2352 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2354 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2357 if (changed & BSS_CHANGED_ASSOC) {
2358 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2360 ath9k_bss_assoc_info(sc, vif, bss_conf);
2364 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2367 struct ath_softc *sc = hw->priv;
2368 struct ath_hal *ah = sc->sc_ah;
2370 tsf = ath9k_hw_gettsf64(ah);
2375 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2377 struct ath_softc *sc = hw->priv;
2378 struct ath_hal *ah = sc->sc_ah;
2380 ath9k_hw_reset_tsf(ah);
2383 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2384 enum ieee80211_ampdu_mlme_action action,
2385 struct ieee80211_sta *sta,
2388 struct ath_softc *sc = hw->priv;
2392 case IEEE80211_AMPDU_RX_START:
2393 if (!(sc->sc_flags & SC_OP_RXAGGR))
2396 case IEEE80211_AMPDU_RX_STOP:
2398 case IEEE80211_AMPDU_TX_START:
2399 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2401 DPRINTF(sc, ATH_DBG_FATAL,
2402 "Unable to start TX aggregation\n");
2404 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2406 case IEEE80211_AMPDU_TX_STOP:
2407 ret = ath_tx_aggr_stop(sc, sta, tid);
2409 DPRINTF(sc, ATH_DBG_FATAL,
2410 "Unable to stop TX aggregation\n");
2412 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2414 case IEEE80211_AMPDU_TX_RESUME:
2415 ath_tx_aggr_resume(sc, sta, tid);
2418 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2424 static struct ieee80211_ops ath9k_ops = {
2426 .start = ath9k_start,
2428 .add_interface = ath9k_add_interface,
2429 .remove_interface = ath9k_remove_interface,
2430 .config = ath9k_config,
2431 .config_interface = ath9k_config_interface,
2432 .configure_filter = ath9k_configure_filter,
2433 .sta_notify = ath9k_sta_notify,
2434 .conf_tx = ath9k_conf_tx,
2435 .bss_info_changed = ath9k_bss_info_changed,
2436 .set_key = ath9k_set_key,
2437 .get_tsf = ath9k_get_tsf,
2438 .reset_tsf = ath9k_reset_tsf,
2439 .ampdu_action = ath9k_ampdu_action,
2445 } ath_mac_bb_names[] = {
2446 { AR_SREV_VERSION_5416_PCI, "5416" },
2447 { AR_SREV_VERSION_5416_PCIE, "5418" },
2448 { AR_SREV_VERSION_9100, "9100" },
2449 { AR_SREV_VERSION_9160, "9160" },
2450 { AR_SREV_VERSION_9280, "9280" },
2451 { AR_SREV_VERSION_9285, "9285" }
2457 } ath_rf_names[] = {
2459 { AR_RAD5133_SREV_MAJOR, "5133" },
2460 { AR_RAD5122_SREV_MAJOR, "5122" },
2461 { AR_RAD2133_SREV_MAJOR, "2133" },
2462 { AR_RAD2122_SREV_MAJOR, "2122" }
2466 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2469 ath_mac_bb_name(u32 mac_bb_version)
2473 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2474 if (ath_mac_bb_names[i].version == mac_bb_version) {
2475 return ath_mac_bb_names[i].name;
2483 * Return the RF name. "????" is returned if the RF is unknown.
2486 ath_rf_name(u16 rf_version)
2490 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2491 if (ath_rf_names[i].version == rf_version) {
2492 return ath_rf_names[i].name;
2499 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2502 struct ath_softc *sc;
2503 struct ieee80211_hw *hw;
2509 if (pci_enable_device(pdev))
2512 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2515 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2519 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2522 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2523 "DMA enable failed\n");
2528 * Cache line size is used to size and align various
2529 * structures used to communicate with the hardware.
2531 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2534 * Linux 2.4.18 (at least) writes the cache line size
2535 * register as a 16-bit wide register which is wrong.
2536 * We must have this setup properly for rx buffer
2537 * DMA to work so force a reasonable value here if it
2540 csz = L1_CACHE_BYTES / sizeof(u32);
2541 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2544 * The default setting of latency timer yields poor results,
2545 * set it to the value used by other systems. It may be worth
2546 * tweaking this setting more.
2548 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2550 pci_set_master(pdev);
2553 * Disable the RETRY_TIMEOUT register (0x41) to keep
2554 * PCI Tx retries from interfering with C3 CPU state.
2556 pci_read_config_dword(pdev, 0x40, &val);
2557 if ((val & 0x0000ff00) != 0)
2558 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2560 ret = pci_request_region(pdev, 0, "ath9k");
2562 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2567 mem = pci_iomap(pdev, 0, 0);
2569 printk(KERN_ERR "PCI memory map error\n") ;
2574 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2576 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2580 SET_IEEE80211_DEV(hw, &pdev->dev);
2581 pci_set_drvdata(pdev, hw);
2588 if (ath_attach(id->device, sc) != 0) {
2593 /* setup interrupt service routine */
2595 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2596 printk(KERN_ERR "%s: request_irq failed\n",
2597 wiphy_name(hw->wiphy));
2604 "%s: Atheros AR%s MAC/BB Rev:%x "
2605 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2606 wiphy_name(hw->wiphy),
2607 ath_mac_bb_name(ah->ah_macVersion),
2609 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2611 (unsigned long)mem, pdev->irq);
2617 ieee80211_free_hw(hw);
2619 pci_iounmap(pdev, mem);
2621 pci_release_region(pdev, 0);
2623 pci_disable_device(pdev);
2627 static void ath_pci_remove(struct pci_dev *pdev)
2629 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2630 struct ath_softc *sc = hw->priv;
2634 free_irq(pdev->irq, sc);
2635 pci_iounmap(pdev, sc->mem);
2636 pci_release_region(pdev, 0);
2637 pci_disable_device(pdev);
2638 ieee80211_free_hw(hw);
2643 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2645 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2646 struct ath_softc *sc = hw->priv;
2648 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2650 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2651 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2652 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2655 pci_save_state(pdev);
2656 pci_disable_device(pdev);
2657 pci_set_power_state(pdev, 3);
2662 static int ath_pci_resume(struct pci_dev *pdev)
2664 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2665 struct ath_softc *sc = hw->priv;
2669 err = pci_enable_device(pdev);
2672 pci_restore_state(pdev);
2674 * Suspend/Resume resets the PCI configuration space, so we have to
2675 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2676 * PCI Tx retries from interfering with C3 CPU state
2678 pci_read_config_dword(pdev, 0x40, &val);
2679 if ((val & 0x0000ff00) != 0)
2680 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2683 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2684 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2685 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2687 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2689 * check the h/w rfkill state on resume
2690 * and start the rfkill poll timer
2692 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2693 queue_delayed_work(sc->hw->workqueue,
2694 &sc->rf_kill.rfkill_poll, 0);
2700 #endif /* CONFIG_PM */
2702 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2704 static struct pci_driver ath_pci_driver = {
2706 .id_table = ath_pci_id_table,
2707 .probe = ath_pci_probe,
2708 .remove = ath_pci_remove,
2710 .suspend = ath_pci_suspend,
2711 .resume = ath_pci_resume,
2712 #endif /* CONFIG_PM */
2715 static int __init init_ath_pci(void)
2717 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2719 if (pci_register_driver(&ath_pci_driver) < 0) {
2721 "ath_pci: No devices found, driver not installed.\n");
2722 pci_unregister_driver(&ath_pci_driver);
2728 module_init(init_ath_pci);
2730 static void __exit exit_ath_pci(void)
2732 pci_unregister_driver(&ath_pci_driver);
2733 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2735 module_exit(exit_ath_pci);