2 * linux/arch/ppc64/kernel/process.c
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/init_task.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/utsname.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
44 #include <asm/processor.h>
46 #include <asm/mmu_context.h>
48 #include <asm/ppcdebug.h>
49 #include <asm/machdep.h>
50 #include <asm/iSeries/HvCallHpt.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
57 struct task_struct *last_task_used_math = NULL;
58 struct task_struct *last_task_used_altivec = NULL;
62 * Make sure the floating-point register state in the
63 * the thread_struct is up to date for task tsk.
65 void flush_fp_to_thread(struct task_struct *tsk)
67 if (tsk->thread.regs) {
69 * We need to disable preemption here because if we didn't,
70 * another process could get scheduled after the regs->msr
71 * test but before we have finished saving the FP registers
72 * to the thread_struct. That process could take over the
73 * FPU, and then when we get scheduled again we would store
74 * bogus values for the remaining FP registers.
77 if (tsk->thread.regs->msr & MSR_FP) {
80 * This should only ever be called for current or
81 * for a stopped child process. Since we save away
82 * the FP register state on context switch on SMP,
83 * there is something wrong if a stopped child appears
84 * to still have its FP state in the CPU registers.
86 BUG_ON(tsk != current);
94 void enable_kernel_fp(void)
96 WARN_ON(preemptible());
99 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 giveup_fpu(NULL); /* just enables FP for kernel */
104 giveup_fpu(last_task_used_math);
105 #endif /* CONFIG_SMP */
107 EXPORT_SYMBOL(enable_kernel_fp);
109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
111 if (!tsk->thread.regs)
113 flush_fp_to_thread(current);
115 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
120 #ifdef CONFIG_ALTIVEC
122 void enable_kernel_altivec(void)
124 WARN_ON(preemptible());
127 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
128 giveup_altivec(current);
130 giveup_altivec(NULL); /* just enables FP for kernel */
132 giveup_altivec(last_task_used_altivec);
133 #endif /* CONFIG_SMP */
135 EXPORT_SYMBOL(enable_kernel_altivec);
138 * Make sure the VMX/Altivec register state in the
139 * the thread_struct is up to date for task tsk.
141 void flush_altivec_to_thread(struct task_struct *tsk)
143 if (tsk->thread.regs) {
145 if (tsk->thread.regs->msr & MSR_VEC) {
147 BUG_ON(tsk != current);
149 giveup_altivec(current);
155 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 flush_altivec_to_thread(current);
158 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs));
162 #endif /* CONFIG_ALTIVEC */
164 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
166 struct task_struct *__switch_to(struct task_struct *prev,
167 struct task_struct *new)
169 struct thread_struct *new_thread, *old_thread;
171 struct task_struct *last;
174 /* avoid complexity of lazy save/restore of fpu
175 * by just saving it every time we switch out if
176 * this task used the fpu during the last quantum.
178 * If it tries to use the fpu again, it'll trap and
179 * reload its fp regs. So we don't have to do a restore
180 * every switch, just a save.
183 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
185 #ifdef CONFIG_ALTIVEC
186 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
187 giveup_altivec(prev);
188 #endif /* CONFIG_ALTIVEC */
189 #endif /* CONFIG_SMP */
191 #if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
192 /* Avoid the trap. On smp this this never happens since
193 * we don't set last_task_used_altivec -- Cort
195 if (new->thread.regs && last_task_used_altivec == new)
196 new->thread.regs->msr |= MSR_VEC;
197 #endif /* CONFIG_ALTIVEC */
201 new_thread = &new->thread;
202 old_thread = ¤t->thread;
204 /* Collect purr utilization data per process and per processor wise */
205 /* purr is nothing but processor time base */
207 #if defined(CONFIG_PPC_PSERIES)
208 if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) {
209 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
210 long unsigned start_tb, current_tb;
211 start_tb = old_thread->start_tb;
212 cu->current_tb = current_tb = mfspr(SPRN_PURR);
213 old_thread->accum_tb += (current_tb - start_tb);
214 new_thread->start_tb = current_tb;
219 local_irq_save(flags);
220 last = _switch(old_thread, new_thread);
222 local_irq_restore(flags);
227 static int instructions_to_print = 16;
229 static void show_instructions(struct pt_regs *regs)
232 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
235 printk("Instruction dump:");
237 for (i = 0; i < instructions_to_print; i++) {
243 if (((REGION_ID(pc) != KERNEL_REGION_ID) &&
244 (REGION_ID(pc) != VMALLOC_REGION_ID)) ||
245 __get_user(instr, (unsigned int *)pc)) {
249 printk("<%08x> ", instr);
251 printk("%08x ", instr);
260 void show_regs(struct pt_regs * regs)
265 printk("NIP: %016lX XER: %08X LR: %016lX CTR: %016lX\n",
266 regs->nip, (unsigned int)regs->xer, regs->link, regs->ctr);
267 printk("REGS: %p TRAP: %04lx %s (%s)\n",
268 regs, regs->trap, print_tainted(), system_utsname.release);
269 printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x "
270 "IR/DR: %01x%01x CR: %08X\n",
271 regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
272 regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
273 regs->msr&MSR_IR ? 1 : 0,
274 regs->msr&MSR_DR ? 1 : 0,
275 (unsigned int)regs->ccr);
277 printk("DAR: %016lx DSISR: %016lx\n", regs->dar, regs->dsisr);
278 printk("TASK: %p[%d] '%s' THREAD: %p",
279 current, current->pid, current->comm, current->thread_info);
282 printk(" CPU: %d", smp_processor_id());
283 #endif /* CONFIG_SMP */
285 for (i = 0; i < 32; i++) {
287 printk("\n" KERN_INFO "GPR%02d: ", i);
290 printk("%016lX ", regs->gpr[i]);
291 if (i == 13 && !FULL_REGS(regs))
296 * Lookup NIP late so we have the best change of getting the
297 * above info out without failing
299 printk("NIP [%016lx] ", regs->nip);
300 print_symbol("%s\n", regs->nip);
301 printk("LR [%016lx] ", regs->link);
302 print_symbol("%s\n", regs->link);
303 show_stack(current, (unsigned long *)regs->gpr[1]);
304 if (!user_mode(regs))
305 show_instructions(regs);
308 void exit_thread(void)
311 if (last_task_used_math == current)
312 last_task_used_math = NULL;
313 #ifdef CONFIG_ALTIVEC
314 if (last_task_used_altivec == current)
315 last_task_used_altivec = NULL;
316 #endif /* CONFIG_ALTIVEC */
317 #endif /* CONFIG_SMP */
320 void flush_thread(void)
322 struct thread_info *t = current_thread_info();
324 if (t->flags & _TIF_ABI_PENDING)
325 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
328 if (last_task_used_math == current)
329 last_task_used_math = NULL;
330 #ifdef CONFIG_ALTIVEC
331 if (last_task_used_altivec == current)
332 last_task_used_altivec = NULL;
333 #endif /* CONFIG_ALTIVEC */
334 #endif /* CONFIG_SMP */
338 release_thread(struct task_struct *t)
344 * This gets called before we allocate a new thread and copy
345 * the current task into it.
347 void prepare_to_copy(struct task_struct *tsk)
349 flush_fp_to_thread(current);
350 flush_altivec_to_thread(current);
357 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
358 unsigned long unused, struct task_struct *p, struct pt_regs *regs)
360 struct pt_regs *childregs, *kregs;
361 extern void ret_from_fork(void);
362 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
365 sp -= sizeof(struct pt_regs);
366 childregs = (struct pt_regs *) sp;
368 if ((childregs->msr & MSR_PR) == 0) {
369 /* for kernel thread, set stackptr in new task */
370 childregs->gpr[1] = sp + sizeof(struct pt_regs);
371 p->thread.regs = NULL; /* no user register state */
372 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
374 childregs->gpr[1] = usp;
375 p->thread.regs = childregs;
376 if (clone_flags & CLONE_SETTLS) {
377 if (test_thread_flag(TIF_32BIT))
378 childregs->gpr[2] = childregs->gpr[6];
380 childregs->gpr[13] = childregs->gpr[6];
383 childregs->gpr[3] = 0; /* Result from fork() */
384 sp -= STACK_FRAME_OVERHEAD;
387 * The way this works is that at some point in the future
388 * some task will call _switch to switch to the new task.
389 * That will pop off the stack frame created below and start
390 * the new task running at ret_from_fork. The new task will
391 * do some house keeping and then return from the fork or clone
392 * system call, using the stack frame created above.
394 sp -= sizeof(struct pt_regs);
395 kregs = (struct pt_regs *) sp;
396 sp -= STACK_FRAME_OVERHEAD;
398 if (cpu_has_feature(CPU_FTR_SLB)) {
399 unsigned long sp_vsid = get_kernel_vsid(sp);
401 sp_vsid <<= SLB_VSID_SHIFT;
402 sp_vsid |= SLB_VSID_KERNEL;
403 if (cpu_has_feature(CPU_FTR_16M_PAGE))
404 sp_vsid |= SLB_VSID_L;
406 p->thread.ksp_vsid = sp_vsid;
410 * The PPC64 ABI makes use of a TOC to contain function
411 * pointers. The function (ret_from_except) is actually a pointer
412 * to the TOC entry. The first entry is a pointer to the actual
415 kregs->nip = *((unsigned long *)ret_from_fork);
421 * Set up a thread for executing a new program
423 void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
425 unsigned long entry, toc, load_addr = regs->gpr[2];
427 /* fdptr is a relocated pointer to the function descriptor for
428 * the elf _start routine. The first entry in the function
429 * descriptor is the entry address of _start and the second
430 * entry is the TOC value we need to use.
433 __get_user(entry, (unsigned long __user *)fdptr);
434 __get_user(toc, (unsigned long __user *)fdptr+1);
436 /* Check whether the e_entry function descriptor entries
437 * need to be relocated before we can use them.
439 if (load_addr != 0) {
445 * If we exec out of a kernel thread then thread.regs will not be
448 if (!current->thread.regs) {
449 unsigned long childregs = (unsigned long)current->thread_info +
451 childregs -= sizeof(struct pt_regs);
452 current->thread.regs = (struct pt_regs *)childregs;
458 regs->msr = MSR_USER64;
460 if (last_task_used_math == current)
461 last_task_used_math = 0;
462 #endif /* CONFIG_SMP */
463 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
464 current->thread.fpscr = 0;
465 #ifdef CONFIG_ALTIVEC
467 if (last_task_used_altivec == current)
468 last_task_used_altivec = 0;
469 #endif /* CONFIG_SMP */
470 memset(current->thread.vr, 0, sizeof(current->thread.vr));
471 current->thread.vscr.u[0] = 0;
472 current->thread.vscr.u[1] = 0;
473 current->thread.vscr.u[2] = 0;
474 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
475 current->thread.vrsave = 0;
476 current->thread.used_vr = 0;
477 #endif /* CONFIG_ALTIVEC */
479 EXPORT_SYMBOL(start_thread);
481 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
483 struct pt_regs *regs = tsk->thread.regs;
485 if (val > PR_FP_EXC_PRECISE)
487 tsk->thread.fpexc_mode = __pack_fe01(val);
488 if (regs != NULL && (regs->msr & MSR_FP) != 0)
489 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
490 | tsk->thread.fpexc_mode;
494 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
498 val = __unpack_fe01(tsk->thread.fpexc_mode);
499 return put_user(val, (unsigned int __user *) adr);
502 int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
503 unsigned long p4, unsigned long p5, unsigned long p6,
504 struct pt_regs *regs)
506 unsigned long parent_tidptr = 0;
507 unsigned long child_tidptr = 0;
510 p2 = regs->gpr[1]; /* stack pointer for child */
512 if (clone_flags & (CLONE_PARENT_SETTID | CLONE_CHILD_SETTID |
513 CLONE_CHILD_CLEARTID)) {
516 if (test_thread_flag(TIF_32BIT)) {
517 parent_tidptr &= 0xffffffff;
518 child_tidptr &= 0xffffffff;
522 return do_fork(clone_flags, p2, regs, 0,
523 (int __user *)parent_tidptr, (int __user *)child_tidptr);
526 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
527 unsigned long p4, unsigned long p5, unsigned long p6,
528 struct pt_regs *regs)
530 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
533 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
534 unsigned long p4, unsigned long p5, unsigned long p6,
535 struct pt_regs *regs)
537 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
541 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
542 unsigned long a3, unsigned long a4, unsigned long a5,
543 struct pt_regs *regs)
548 filename = getname((char __user *) a0);
549 error = PTR_ERR(filename);
550 if (IS_ERR(filename))
552 flush_fp_to_thread(current);
553 flush_altivec_to_thread(current);
554 error = do_execve(filename, (char __user * __user *) a1,
555 (char __user * __user *) a2, regs);
559 current->ptrace &= ~PT_DTRACE;
560 task_unlock(current);
568 static int kstack_depth_to_print = 64;
570 static int validate_sp(unsigned long sp, struct task_struct *p,
571 unsigned long nbytes)
573 unsigned long stack_page = (unsigned long)p->thread_info;
575 if (sp >= stack_page + sizeof(struct thread_struct)
576 && sp <= stack_page + THREAD_SIZE - nbytes)
579 #ifdef CONFIG_IRQSTACKS
580 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
581 if (sp >= stack_page + sizeof(struct thread_struct)
582 && sp <= stack_page + THREAD_SIZE - nbytes)
585 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
586 if (sp >= stack_page + sizeof(struct thread_struct)
587 && sp <= stack_page + THREAD_SIZE - nbytes)
594 unsigned long get_wchan(struct task_struct *p)
596 unsigned long ip, sp;
599 if (!p || p == current || p->state == TASK_RUNNING)
603 if (!validate_sp(sp, p, 112))
607 sp = *(unsigned long *)sp;
608 if (!validate_sp(sp, p, 112))
611 ip = *(unsigned long *)(sp + 16);
612 if (!in_sched_functions(ip))
615 } while (count++ < 16);
618 EXPORT_SYMBOL(get_wchan);
620 void show_stack(struct task_struct *p, unsigned long *_sp)
622 unsigned long ip, newsp, lr;
624 unsigned long sp = (unsigned long)_sp;
637 printk("Call Trace:\n");
639 if (!validate_sp(sp, p, 112))
642 _sp = (unsigned long *) sp;
645 if (!firstframe || ip != lr) {
646 printk("[%016lx] [%016lx] ", sp, ip);
647 print_symbol("%s", ip);
649 printk(" (unreliable)");
655 * See if this is an exception frame.
656 * We look for the "regshere" marker in the current frame.
658 if (validate_sp(sp, p, sizeof(struct pt_regs) + 400)
659 && _sp[12] == 0x7265677368657265ul) {
660 struct pt_regs *regs = (struct pt_regs *)
661 (sp + STACK_FRAME_OVERHEAD);
662 printk("--- Exception: %lx", regs->trap);
663 print_symbol(" at %s\n", regs->nip);
665 print_symbol(" LR = %s\n", lr);
670 } while (count++ < kstack_depth_to_print);
673 void dump_stack(void)
675 show_stack(current, (unsigned long *)__get_SP());
677 EXPORT_SYMBOL(dump_stack);