4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t *p)
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
189 typedef struct runqueue runqueue_t;
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running;
213 unsigned long cpu_load[3];
215 unsigned long long nr_switches;
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
223 unsigned long nr_uninterruptible;
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
234 struct sched_domain *sd;
236 /* For active balancing */
240 task_t *migration_thread;
241 struct list_head migration_queue;
245 #ifdef CONFIG_SCHEDSTATS
247 struct sched_info rq_sched_info;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
266 static DEFINE_PER_CPU(struct runqueue, runqueues);
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t *rq, task_t *p)
293 return rq->curr == p;
296 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
300 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
306 spin_unlock_irq(&rq->lock);
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t *rq, task_t *p)
315 return rq->curr == p;
319 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
332 spin_unlock(&rq->lock);
336 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
358 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
364 local_irq_save(*flags);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
374 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
377 spin_unlock_irqrestore(&rq->lock, *flags);
380 #ifdef CONFIG_SCHEDSTATS
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
385 #define SCHEDSTAT_VERSION 12
387 static int show_schedstat(struct seq_file *seq, void *v)
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
396 struct sched_domain *sd;
400 /* runqueue-specific stats */
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
410 seq_printf(seq, "\n");
413 /* domain-specific stats */
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
445 static int schedstat_open(struct inode *inode, struct file *file)
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
454 res = single_open(file, show_schedstat, NULL);
456 m = file->private_data;
464 struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
468 .release = single_release,
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
479 * rq_lock - lock a given runqueue and disable interrupts.
481 static inline runqueue_t *this_rq_lock(void)
488 spin_lock(&rq->lock);
493 #ifdef CONFIG_SCHEDSTATS
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
509 static inline void sched_info_dequeued(task_t *t)
511 t->sched_info.last_queued = 0;
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
519 static void sched_info_arrive(task_t *t)
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
553 static inline void sched_info_queued(task_t *t)
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
563 static inline void sched_info_depart(task_t *t)
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
568 t->sched_info.cpu_time += diff;
571 rq->rq_sched_info.cpu_time += diff;
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
579 static inline void sched_info_switch(task_t *prev, task_t *next)
581 struct runqueue *rq = task_rq(prev);
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
588 if (prev != rq->idle)
589 sched_info_depart(prev);
591 if (next != rq->idle)
592 sched_info_arrive(next);
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
600 * Adding/removing a task to/from a priority array:
602 static void dequeue_task(struct task_struct *p, prio_array_t *array)
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
610 static void enqueue_task(struct task_struct *p, prio_array_t *array)
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
623 static void requeue_task(struct task_struct *p, prio_array_t *array)
625 list_move_tail(&p->run_list, array->queue + p->prio);
628 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
643 * We use 25% of the full 0...39 priority range so that:
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
648 * Both properties are important to certain workloads.
650 static int effective_prio(task_t *p)
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
662 if (prio > MAX_PRIO-1)
668 * __activate_task - move a task to the runqueue.
670 static void __activate_task(task_t *p, runqueue_t *rq)
672 prio_array_t *target = rq->active;
675 target = rq->expired;
676 enqueue_task(p, target);
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
683 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
685 enqueue_task_head(p, rq->active);
689 static int recalc_task_prio(task_t *p, unsigned long long now)
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
701 sleep_time = (unsigned long)__sleep_time;
704 if (likely(sleep_time > 0)) {
706 * User tasks that sleep a long time are categorised as
707 * idle. They will only have their sleep_avg increased to a
708 * level that makes them just interactive priority to stay
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
712 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
713 unsigned long ceiling;
715 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
717 if (p->sleep_avg < ceiling)
718 p->sleep_avg = ceiling;
721 * Tasks waking from uninterruptible sleep are
722 * limited in their sleep_avg rise as they
723 * are likely to be waiting on I/O
725 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
726 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
728 else if (p->sleep_avg + sleep_time >=
729 INTERACTIVE_SLEEP(p)) {
730 p->sleep_avg = INTERACTIVE_SLEEP(p);
736 * This code gives a bonus to interactive tasks.
738 * The boost works by updating the 'average sleep time'
739 * value here, based on ->timestamp. The more time a
740 * task spends sleeping, the higher the average gets -
741 * and the higher the priority boost gets as well.
743 p->sleep_avg += sleep_time;
745 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
746 p->sleep_avg = NS_MAX_SLEEP_AVG;
750 return effective_prio(p);
754 * activate_task - move a task to the runqueue and do priority recalculation
756 * Update all the scheduling statistics stuff. (sleep average
757 * calculation, priority modifiers, etc.)
759 static void activate_task(task_t *p, runqueue_t *rq, int local)
761 unsigned long long now;
766 /* Compensate for drifting sched_clock */
767 runqueue_t *this_rq = this_rq();
768 now = (now - this_rq->timestamp_last_tick)
769 + rq->timestamp_last_tick;
774 p->prio = recalc_task_prio(p, now);
777 * This checks to make sure it's not an uninterruptible task
778 * that is now waking up.
780 if (p->sleep_type == SLEEP_NORMAL) {
782 * Tasks which were woken up by interrupts (ie. hw events)
783 * are most likely of interactive nature. So we give them
784 * the credit of extending their sleep time to the period
785 * of time they spend on the runqueue, waiting for execution
786 * on a CPU, first time around:
789 p->sleep_type = SLEEP_INTERRUPTED;
792 * Normal first-time wakeups get a credit too for
793 * on-runqueue time, but it will be weighted down:
795 p->sleep_type = SLEEP_INTERACTIVE;
800 __activate_task(p, rq);
804 * deactivate_task - remove a task from the runqueue.
806 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
809 dequeue_task(p, p->array);
814 * resched_task - mark a task 'to be rescheduled now'.
816 * On UP this means the setting of the need_resched flag, on SMP it
817 * might also involve a cross-CPU call to trigger the scheduler on
822 #ifndef tsk_is_polling
823 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
826 static void resched_task(task_t *p)
830 assert_spin_locked(&task_rq(p)->lock);
832 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
835 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
838 if (cpu == smp_processor_id())
841 /* NEED_RESCHED must be visible before we test polling */
843 if (!tsk_is_polling(p))
844 smp_send_reschedule(cpu);
847 static inline void resched_task(task_t *p)
849 assert_spin_locked(&task_rq(p)->lock);
850 set_tsk_need_resched(p);
855 * task_curr - is this task currently executing on a CPU?
856 * @p: the task in question.
858 inline int task_curr(const task_t *p)
860 return cpu_curr(task_cpu(p)) == p;
865 struct list_head list;
870 struct completion done;
874 * The task's runqueue lock must be held.
875 * Returns true if you have to wait for migration thread.
877 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
879 runqueue_t *rq = task_rq(p);
882 * If the task is not on a runqueue (and not running), then
883 * it is sufficient to simply update the task's cpu field.
885 if (!p->array && !task_running(rq, p)) {
886 set_task_cpu(p, dest_cpu);
890 init_completion(&req->done);
892 req->dest_cpu = dest_cpu;
893 list_add(&req->list, &rq->migration_queue);
898 * wait_task_inactive - wait for a thread to unschedule.
900 * The caller must ensure that the task *will* unschedule sometime soon,
901 * else this function might spin for a *long* time. This function can't
902 * be called with interrupts off, or it may introduce deadlock with
903 * smp_call_function() if an IPI is sent by the same process we are
904 * waiting to become inactive.
906 void wait_task_inactive(task_t *p)
913 rq = task_rq_lock(p, &flags);
914 /* Must be off runqueue entirely, not preempted. */
915 if (unlikely(p->array || task_running(rq, p))) {
916 /* If it's preempted, we yield. It could be a while. */
917 preempted = !task_running(rq, p);
918 task_rq_unlock(rq, &flags);
924 task_rq_unlock(rq, &flags);
928 * kick_process - kick a running thread to enter/exit the kernel
929 * @p: the to-be-kicked thread
931 * Cause a process which is running on another CPU to enter
932 * kernel-mode, without any delay. (to get signals handled.)
934 * NOTE: this function doesnt have to take the runqueue lock,
935 * because all it wants to ensure is that the remote task enters
936 * the kernel. If the IPI races and the task has been migrated
937 * to another CPU then no harm is done and the purpose has been
940 void kick_process(task_t *p)
946 if ((cpu != smp_processor_id()) && task_curr(p))
947 smp_send_reschedule(cpu);
952 * Return a low guess at the load of a migration-source cpu.
954 * We want to under-estimate the load of migration sources, to
955 * balance conservatively.
957 static inline unsigned long source_load(int cpu, int type)
959 runqueue_t *rq = cpu_rq(cpu);
960 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
964 return min(rq->cpu_load[type-1], load_now);
968 * Return a high guess at the load of a migration-target cpu
970 static inline unsigned long target_load(int cpu, int type)
972 runqueue_t *rq = cpu_rq(cpu);
973 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
977 return max(rq->cpu_load[type-1], load_now);
981 * find_idlest_group finds and returns the least busy CPU group within the
984 static struct sched_group *
985 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
987 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
988 unsigned long min_load = ULONG_MAX, this_load = 0;
989 int load_idx = sd->forkexec_idx;
990 int imbalance = 100 + (sd->imbalance_pct-100)/2;
993 unsigned long load, avg_load;
997 /* Skip over this group if it has no CPUs allowed */
998 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1001 local_group = cpu_isset(this_cpu, group->cpumask);
1003 /* Tally up the load of all CPUs in the group */
1006 for_each_cpu_mask(i, group->cpumask) {
1007 /* Bias balancing toward cpus of our domain */
1009 load = source_load(i, load_idx);
1011 load = target_load(i, load_idx);
1016 /* Adjust by relative CPU power of the group */
1017 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1020 this_load = avg_load;
1022 } else if (avg_load < min_load) {
1023 min_load = avg_load;
1027 group = group->next;
1028 } while (group != sd->groups);
1030 if (!idlest || 100*this_load < imbalance*min_load)
1036 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1039 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1042 unsigned long load, min_load = ULONG_MAX;
1046 /* Traverse only the allowed CPUs */
1047 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1049 for_each_cpu_mask(i, tmp) {
1050 load = source_load(i, 0);
1052 if (load < min_load || (load == min_load && i == this_cpu)) {
1062 * sched_balance_self: balance the current task (running on cpu) in domains
1063 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1066 * Balance, ie. select the least loaded group.
1068 * Returns the target CPU number, or the same CPU if no balancing is needed.
1070 * preempt must be disabled.
1072 static int sched_balance_self(int cpu, int flag)
1074 struct task_struct *t = current;
1075 struct sched_domain *tmp, *sd = NULL;
1077 for_each_domain(cpu, tmp)
1078 if (tmp->flags & flag)
1083 struct sched_group *group;
1088 group = find_idlest_group(sd, t, cpu);
1092 new_cpu = find_idlest_cpu(group, t, cpu);
1093 if (new_cpu == -1 || new_cpu == cpu)
1096 /* Now try balancing at a lower domain level */
1100 weight = cpus_weight(span);
1101 for_each_domain(cpu, tmp) {
1102 if (weight <= cpus_weight(tmp->span))
1104 if (tmp->flags & flag)
1107 /* while loop will break here if sd == NULL */
1113 #endif /* CONFIG_SMP */
1116 * wake_idle() will wake a task on an idle cpu if task->cpu is
1117 * not idle and an idle cpu is available. The span of cpus to
1118 * search starts with cpus closest then further out as needed,
1119 * so we always favor a closer, idle cpu.
1121 * Returns the CPU we should wake onto.
1123 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1124 static int wake_idle(int cpu, task_t *p)
1127 struct sched_domain *sd;
1133 for_each_domain(cpu, sd) {
1134 if (sd->flags & SD_WAKE_IDLE) {
1135 cpus_and(tmp, sd->span, p->cpus_allowed);
1136 for_each_cpu_mask(i, tmp) {
1147 static inline int wake_idle(int cpu, task_t *p)
1154 * try_to_wake_up - wake up a thread
1155 * @p: the to-be-woken-up thread
1156 * @state: the mask of task states that can be woken
1157 * @sync: do a synchronous wakeup?
1159 * Put it on the run-queue if it's not already there. The "current"
1160 * thread is always on the run-queue (except when the actual
1161 * re-schedule is in progress), and as such you're allowed to do
1162 * the simpler "current->state = TASK_RUNNING" to mark yourself
1163 * runnable without the overhead of this.
1165 * returns failure only if the task is already active.
1167 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1169 int cpu, this_cpu, success = 0;
1170 unsigned long flags;
1174 unsigned long load, this_load;
1175 struct sched_domain *sd, *this_sd = NULL;
1179 rq = task_rq_lock(p, &flags);
1180 old_state = p->state;
1181 if (!(old_state & state))
1188 this_cpu = smp_processor_id();
1191 if (unlikely(task_running(rq, p)))
1196 schedstat_inc(rq, ttwu_cnt);
1197 if (cpu == this_cpu) {
1198 schedstat_inc(rq, ttwu_local);
1202 for_each_domain(this_cpu, sd) {
1203 if (cpu_isset(cpu, sd->span)) {
1204 schedstat_inc(sd, ttwu_wake_remote);
1210 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1214 * Check for affine wakeup and passive balancing possibilities.
1217 int idx = this_sd->wake_idx;
1218 unsigned int imbalance;
1220 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1222 load = source_load(cpu, idx);
1223 this_load = target_load(this_cpu, idx);
1225 new_cpu = this_cpu; /* Wake to this CPU if we can */
1227 if (this_sd->flags & SD_WAKE_AFFINE) {
1228 unsigned long tl = this_load;
1230 * If sync wakeup then subtract the (maximum possible)
1231 * effect of the currently running task from the load
1232 * of the current CPU:
1235 tl -= SCHED_LOAD_SCALE;
1238 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1239 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1241 * This domain has SD_WAKE_AFFINE and
1242 * p is cache cold in this domain, and
1243 * there is no bad imbalance.
1245 schedstat_inc(this_sd, ttwu_move_affine);
1251 * Start passive balancing when half the imbalance_pct
1254 if (this_sd->flags & SD_WAKE_BALANCE) {
1255 if (imbalance*this_load <= 100*load) {
1256 schedstat_inc(this_sd, ttwu_move_balance);
1262 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1264 new_cpu = wake_idle(new_cpu, p);
1265 if (new_cpu != cpu) {
1266 set_task_cpu(p, new_cpu);
1267 task_rq_unlock(rq, &flags);
1268 /* might preempt at this point */
1269 rq = task_rq_lock(p, &flags);
1270 old_state = p->state;
1271 if (!(old_state & state))
1276 this_cpu = smp_processor_id();
1281 #endif /* CONFIG_SMP */
1282 if (old_state == TASK_UNINTERRUPTIBLE) {
1283 rq->nr_uninterruptible--;
1285 * Tasks on involuntary sleep don't earn
1286 * sleep_avg beyond just interactive state.
1288 p->sleep_type = SLEEP_NONINTERACTIVE;
1292 * Tasks that have marked their sleep as noninteractive get
1293 * woken up with their sleep average not weighted in an
1296 if (old_state & TASK_NONINTERACTIVE)
1297 p->sleep_type = SLEEP_NONINTERACTIVE;
1300 activate_task(p, rq, cpu == this_cpu);
1302 * Sync wakeups (i.e. those types of wakeups where the waker
1303 * has indicated that it will leave the CPU in short order)
1304 * don't trigger a preemption, if the woken up task will run on
1305 * this cpu. (in this case the 'I will reschedule' promise of
1306 * the waker guarantees that the freshly woken up task is going
1307 * to be considered on this CPU.)
1309 if (!sync || cpu != this_cpu) {
1310 if (TASK_PREEMPTS_CURR(p, rq))
1311 resched_task(rq->curr);
1316 p->state = TASK_RUNNING;
1318 task_rq_unlock(rq, &flags);
1323 int fastcall wake_up_process(task_t *p)
1325 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1326 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1329 EXPORT_SYMBOL(wake_up_process);
1331 int fastcall wake_up_state(task_t *p, unsigned int state)
1333 return try_to_wake_up(p, state, 0);
1337 * Perform scheduler related setup for a newly forked process p.
1338 * p is forked by current.
1340 void fastcall sched_fork(task_t *p, int clone_flags)
1342 int cpu = get_cpu();
1345 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1347 set_task_cpu(p, cpu);
1350 * We mark the process as running here, but have not actually
1351 * inserted it onto the runqueue yet. This guarantees that
1352 * nobody will actually run it, and a signal or other external
1353 * event cannot wake it up and insert it on the runqueue either.
1355 p->state = TASK_RUNNING;
1356 INIT_LIST_HEAD(&p->run_list);
1358 #ifdef CONFIG_SCHEDSTATS
1359 memset(&p->sched_info, 0, sizeof(p->sched_info));
1361 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1364 #ifdef CONFIG_PREEMPT
1365 /* Want to start with kernel preemption disabled. */
1366 task_thread_info(p)->preempt_count = 1;
1369 * Share the timeslice between parent and child, thus the
1370 * total amount of pending timeslices in the system doesn't change,
1371 * resulting in more scheduling fairness.
1373 local_irq_disable();
1374 p->time_slice = (current->time_slice + 1) >> 1;
1376 * The remainder of the first timeslice might be recovered by
1377 * the parent if the child exits early enough.
1379 p->first_time_slice = 1;
1380 current->time_slice >>= 1;
1381 p->timestamp = sched_clock();
1382 if (unlikely(!current->time_slice)) {
1384 * This case is rare, it happens when the parent has only
1385 * a single jiffy left from its timeslice. Taking the
1386 * runqueue lock is not a problem.
1388 current->time_slice = 1;
1396 * wake_up_new_task - wake up a newly created task for the first time.
1398 * This function will do some initial scheduler statistics housekeeping
1399 * that must be done for every newly created context, then puts the task
1400 * on the runqueue and wakes it.
1402 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1404 unsigned long flags;
1406 runqueue_t *rq, *this_rq;
1408 rq = task_rq_lock(p, &flags);
1409 BUG_ON(p->state != TASK_RUNNING);
1410 this_cpu = smp_processor_id();
1414 * We decrease the sleep average of forking parents
1415 * and children as well, to keep max-interactive tasks
1416 * from forking tasks that are max-interactive. The parent
1417 * (current) is done further down, under its lock.
1419 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1420 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1422 p->prio = effective_prio(p);
1424 if (likely(cpu == this_cpu)) {
1425 if (!(clone_flags & CLONE_VM)) {
1427 * The VM isn't cloned, so we're in a good position to
1428 * do child-runs-first in anticipation of an exec. This
1429 * usually avoids a lot of COW overhead.
1431 if (unlikely(!current->array))
1432 __activate_task(p, rq);
1434 p->prio = current->prio;
1435 list_add_tail(&p->run_list, ¤t->run_list);
1436 p->array = current->array;
1437 p->array->nr_active++;
1442 /* Run child last */
1443 __activate_task(p, rq);
1445 * We skip the following code due to cpu == this_cpu
1447 * task_rq_unlock(rq, &flags);
1448 * this_rq = task_rq_lock(current, &flags);
1452 this_rq = cpu_rq(this_cpu);
1455 * Not the local CPU - must adjust timestamp. This should
1456 * get optimised away in the !CONFIG_SMP case.
1458 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1459 + rq->timestamp_last_tick;
1460 __activate_task(p, rq);
1461 if (TASK_PREEMPTS_CURR(p, rq))
1462 resched_task(rq->curr);
1465 * Parent and child are on different CPUs, now get the
1466 * parent runqueue to update the parent's ->sleep_avg:
1468 task_rq_unlock(rq, &flags);
1469 this_rq = task_rq_lock(current, &flags);
1471 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1472 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1473 task_rq_unlock(this_rq, &flags);
1477 * Potentially available exiting-child timeslices are
1478 * retrieved here - this way the parent does not get
1479 * penalized for creating too many threads.
1481 * (this cannot be used to 'generate' timeslices
1482 * artificially, because any timeslice recovered here
1483 * was given away by the parent in the first place.)
1485 void fastcall sched_exit(task_t *p)
1487 unsigned long flags;
1491 * If the child was a (relative-) CPU hog then decrease
1492 * the sleep_avg of the parent as well.
1494 rq = task_rq_lock(p->parent, &flags);
1495 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1496 p->parent->time_slice += p->time_slice;
1497 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1498 p->parent->time_slice = task_timeslice(p);
1500 if (p->sleep_avg < p->parent->sleep_avg)
1501 p->parent->sleep_avg = p->parent->sleep_avg /
1502 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1504 task_rq_unlock(rq, &flags);
1508 * prepare_task_switch - prepare to switch tasks
1509 * @rq: the runqueue preparing to switch
1510 * @next: the task we are going to switch to.
1512 * This is called with the rq lock held and interrupts off. It must
1513 * be paired with a subsequent finish_task_switch after the context
1516 * prepare_task_switch sets up locking and calls architecture specific
1519 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1521 prepare_lock_switch(rq, next);
1522 prepare_arch_switch(next);
1526 * finish_task_switch - clean up after a task-switch
1527 * @rq: runqueue associated with task-switch
1528 * @prev: the thread we just switched away from.
1530 * finish_task_switch must be called after the context switch, paired
1531 * with a prepare_task_switch call before the context switch.
1532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1533 * and do any other architecture-specific cleanup actions.
1535 * Note that we may have delayed dropping an mm in context_switch(). If
1536 * so, we finish that here outside of the runqueue lock. (Doing it
1537 * with the lock held can cause deadlocks; see schedule() for
1540 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1541 __releases(rq->lock)
1543 struct mm_struct *mm = rq->prev_mm;
1544 unsigned long prev_task_flags;
1549 * A task struct has one reference for the use as "current".
1550 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1551 * calls schedule one last time. The schedule call will never return,
1552 * and the scheduled task must drop that reference.
1553 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1554 * still held, otherwise prev could be scheduled on another cpu, die
1555 * there before we look at prev->state, and then the reference would
1557 * Manfred Spraul <manfred@colorfullife.com>
1559 prev_task_flags = prev->flags;
1560 finish_arch_switch(prev);
1561 finish_lock_switch(rq, prev);
1564 if (unlikely(prev_task_flags & PF_DEAD)) {
1566 * Remove function-return probe instances associated with this
1567 * task and put them back on the free list.
1569 kprobe_flush_task(prev);
1570 put_task_struct(prev);
1575 * schedule_tail - first thing a freshly forked thread must call.
1576 * @prev: the thread we just switched away from.
1578 asmlinkage void schedule_tail(task_t *prev)
1579 __releases(rq->lock)
1581 runqueue_t *rq = this_rq();
1582 finish_task_switch(rq, prev);
1583 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1584 /* In this case, finish_task_switch does not reenable preemption */
1587 if (current->set_child_tid)
1588 put_user(current->pid, current->set_child_tid);
1592 * context_switch - switch to the new MM and the new
1593 * thread's register state.
1596 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1598 struct mm_struct *mm = next->mm;
1599 struct mm_struct *oldmm = prev->active_mm;
1601 if (unlikely(!mm)) {
1602 next->active_mm = oldmm;
1603 atomic_inc(&oldmm->mm_count);
1604 enter_lazy_tlb(oldmm, next);
1606 switch_mm(oldmm, mm, next);
1608 if (unlikely(!prev->mm)) {
1609 prev->active_mm = NULL;
1610 WARN_ON(rq->prev_mm);
1611 rq->prev_mm = oldmm;
1614 /* Here we just switch the register state and the stack. */
1615 switch_to(prev, next, prev);
1621 * nr_running, nr_uninterruptible and nr_context_switches:
1623 * externally visible scheduler statistics: current number of runnable
1624 * threads, current number of uninterruptible-sleeping threads, total
1625 * number of context switches performed since bootup.
1627 unsigned long nr_running(void)
1629 unsigned long i, sum = 0;
1631 for_each_online_cpu(i)
1632 sum += cpu_rq(i)->nr_running;
1637 unsigned long nr_uninterruptible(void)
1639 unsigned long i, sum = 0;
1641 for_each_possible_cpu(i)
1642 sum += cpu_rq(i)->nr_uninterruptible;
1645 * Since we read the counters lockless, it might be slightly
1646 * inaccurate. Do not allow it to go below zero though:
1648 if (unlikely((long)sum < 0))
1654 unsigned long long nr_context_switches(void)
1656 unsigned long long i, sum = 0;
1658 for_each_possible_cpu(i)
1659 sum += cpu_rq(i)->nr_switches;
1664 unsigned long nr_iowait(void)
1666 unsigned long i, sum = 0;
1668 for_each_possible_cpu(i)
1669 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1674 unsigned long nr_active(void)
1676 unsigned long i, running = 0, uninterruptible = 0;
1678 for_each_online_cpu(i) {
1679 running += cpu_rq(i)->nr_running;
1680 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1683 if (unlikely((long)uninterruptible < 0))
1684 uninterruptible = 0;
1686 return running + uninterruptible;
1692 * double_rq_lock - safely lock two runqueues
1694 * We must take them in cpu order to match code in
1695 * dependent_sleeper and wake_dependent_sleeper.
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1700 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1701 __acquires(rq1->lock)
1702 __acquires(rq2->lock)
1705 spin_lock(&rq1->lock);
1706 __acquire(rq2->lock); /* Fake it out ;) */
1708 if (rq1->cpu < rq2->cpu) {
1709 spin_lock(&rq1->lock);
1710 spin_lock(&rq2->lock);
1712 spin_lock(&rq2->lock);
1713 spin_lock(&rq1->lock);
1719 * double_rq_unlock - safely unlock two runqueues
1721 * Note this does not restore interrupts like task_rq_unlock,
1722 * you need to do so manually after calling.
1724 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1725 __releases(rq1->lock)
1726 __releases(rq2->lock)
1728 spin_unlock(&rq1->lock);
1730 spin_unlock(&rq2->lock);
1732 __release(rq2->lock);
1736 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1738 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1739 __releases(this_rq->lock)
1740 __acquires(busiest->lock)
1741 __acquires(this_rq->lock)
1743 if (unlikely(!spin_trylock(&busiest->lock))) {
1744 if (busiest->cpu < this_rq->cpu) {
1745 spin_unlock(&this_rq->lock);
1746 spin_lock(&busiest->lock);
1747 spin_lock(&this_rq->lock);
1749 spin_lock(&busiest->lock);
1754 * If dest_cpu is allowed for this process, migrate the task to it.
1755 * This is accomplished by forcing the cpu_allowed mask to only
1756 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1757 * the cpu_allowed mask is restored.
1759 static void sched_migrate_task(task_t *p, int dest_cpu)
1761 migration_req_t req;
1763 unsigned long flags;
1765 rq = task_rq_lock(p, &flags);
1766 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1767 || unlikely(cpu_is_offline(dest_cpu)))
1770 /* force the process onto the specified CPU */
1771 if (migrate_task(p, dest_cpu, &req)) {
1772 /* Need to wait for migration thread (might exit: take ref). */
1773 struct task_struct *mt = rq->migration_thread;
1774 get_task_struct(mt);
1775 task_rq_unlock(rq, &flags);
1776 wake_up_process(mt);
1777 put_task_struct(mt);
1778 wait_for_completion(&req.done);
1782 task_rq_unlock(rq, &flags);
1786 * sched_exec - execve() is a valuable balancing opportunity, because at
1787 * this point the task has the smallest effective memory and cache footprint.
1789 void sched_exec(void)
1791 int new_cpu, this_cpu = get_cpu();
1792 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1794 if (new_cpu != this_cpu)
1795 sched_migrate_task(current, new_cpu);
1799 * pull_task - move a task from a remote runqueue to the local runqueue.
1800 * Both runqueues must be locked.
1803 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1804 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1806 dequeue_task(p, src_array);
1807 src_rq->nr_running--;
1808 set_task_cpu(p, this_cpu);
1809 this_rq->nr_running++;
1810 enqueue_task(p, this_array);
1811 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1812 + this_rq->timestamp_last_tick;
1814 * Note that idle threads have a prio of MAX_PRIO, for this test
1815 * to be always true for them.
1817 if (TASK_PREEMPTS_CURR(p, this_rq))
1818 resched_task(this_rq->curr);
1822 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1825 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1826 struct sched_domain *sd, enum idle_type idle,
1830 * We do not migrate tasks that are:
1831 * 1) running (obviously), or
1832 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1833 * 3) are cache-hot on their current CPU.
1835 if (!cpu_isset(this_cpu, p->cpus_allowed))
1839 if (task_running(rq, p))
1843 * Aggressive migration if:
1844 * 1) task is cache cold, or
1845 * 2) too many balance attempts have failed.
1848 if (sd->nr_balance_failed > sd->cache_nice_tries)
1851 if (task_hot(p, rq->timestamp_last_tick, sd))
1857 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1858 * as part of a balancing operation within "domain". Returns the number of
1861 * Called with both runqueues locked.
1863 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1864 unsigned long max_nr_move, struct sched_domain *sd,
1865 enum idle_type idle, int *all_pinned)
1867 prio_array_t *array, *dst_array;
1868 struct list_head *head, *curr;
1869 int idx, pulled = 0, pinned = 0;
1872 if (max_nr_move == 0)
1878 * We first consider expired tasks. Those will likely not be
1879 * executed in the near future, and they are most likely to
1880 * be cache-cold, thus switching CPUs has the least effect
1883 if (busiest->expired->nr_active) {
1884 array = busiest->expired;
1885 dst_array = this_rq->expired;
1887 array = busiest->active;
1888 dst_array = this_rq->active;
1892 /* Start searching at priority 0: */
1896 idx = sched_find_first_bit(array->bitmap);
1898 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1899 if (idx >= MAX_PRIO) {
1900 if (array == busiest->expired && busiest->active->nr_active) {
1901 array = busiest->active;
1902 dst_array = this_rq->active;
1908 head = array->queue + idx;
1911 tmp = list_entry(curr, task_t, run_list);
1915 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1922 #ifdef CONFIG_SCHEDSTATS
1923 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1924 schedstat_inc(sd, lb_hot_gained[idle]);
1927 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1930 /* We only want to steal up to the prescribed number of tasks. */
1931 if (pulled < max_nr_move) {
1939 * Right now, this is the only place pull_task() is called,
1940 * so we can safely collect pull_task() stats here rather than
1941 * inside pull_task().
1943 schedstat_add(sd, lb_gained[idle], pulled);
1946 *all_pinned = pinned;
1951 * find_busiest_group finds and returns the busiest CPU group within the
1952 * domain. It calculates and returns the number of tasks which should be
1953 * moved to restore balance via the imbalance parameter.
1955 static struct sched_group *
1956 find_busiest_group(struct sched_domain *sd, int this_cpu,
1957 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1959 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1960 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1961 unsigned long max_pull;
1964 max_load = this_load = total_load = total_pwr = 0;
1965 if (idle == NOT_IDLE)
1966 load_idx = sd->busy_idx;
1967 else if (idle == NEWLY_IDLE)
1968 load_idx = sd->newidle_idx;
1970 load_idx = sd->idle_idx;
1977 local_group = cpu_isset(this_cpu, group->cpumask);
1979 /* Tally up the load of all CPUs in the group */
1982 for_each_cpu_mask(i, group->cpumask) {
1983 if (*sd_idle && !idle_cpu(i))
1986 /* Bias balancing toward cpus of our domain */
1988 load = target_load(i, load_idx);
1990 load = source_load(i, load_idx);
1995 total_load += avg_load;
1996 total_pwr += group->cpu_power;
1998 /* Adjust by relative CPU power of the group */
1999 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2002 this_load = avg_load;
2004 } else if (avg_load > max_load) {
2005 max_load = avg_load;
2008 group = group->next;
2009 } while (group != sd->groups);
2011 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2014 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2016 if (this_load >= avg_load ||
2017 100*max_load <= sd->imbalance_pct*this_load)
2021 * We're trying to get all the cpus to the average_load, so we don't
2022 * want to push ourselves above the average load, nor do we wish to
2023 * reduce the max loaded cpu below the average load, as either of these
2024 * actions would just result in more rebalancing later, and ping-pong
2025 * tasks around. Thus we look for the minimum possible imbalance.
2026 * Negative imbalances (*we* are more loaded than anyone else) will
2027 * be counted as no imbalance for these purposes -- we can't fix that
2028 * by pulling tasks to us. Be careful of negative numbers as they'll
2029 * appear as very large values with unsigned longs.
2032 /* Don't want to pull so many tasks that a group would go idle */
2033 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2035 /* How much load to actually move to equalise the imbalance */
2036 *imbalance = min(max_pull * busiest->cpu_power,
2037 (avg_load - this_load) * this->cpu_power)
2040 if (*imbalance < SCHED_LOAD_SCALE) {
2041 unsigned long pwr_now = 0, pwr_move = 0;
2044 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2050 * OK, we don't have enough imbalance to justify moving tasks,
2051 * however we may be able to increase total CPU power used by
2055 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2056 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2057 pwr_now /= SCHED_LOAD_SCALE;
2059 /* Amount of load we'd subtract */
2060 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2062 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2065 /* Amount of load we'd add */
2066 if (max_load*busiest->cpu_power <
2067 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2068 tmp = max_load*busiest->cpu_power/this->cpu_power;
2070 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2071 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2072 pwr_move /= SCHED_LOAD_SCALE;
2074 /* Move if we gain throughput */
2075 if (pwr_move <= pwr_now)
2082 /* Get rid of the scaling factor, rounding down as we divide */
2083 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2095 static runqueue_t *find_busiest_queue(struct sched_group *group,
2096 enum idle_type idle)
2098 unsigned long load, max_load = 0;
2099 runqueue_t *busiest = NULL;
2102 for_each_cpu_mask(i, group->cpumask) {
2103 load = source_load(i, 0);
2105 if (load > max_load) {
2107 busiest = cpu_rq(i);
2115 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2116 * so long as it is large enough.
2118 #define MAX_PINNED_INTERVAL 512
2121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2122 * tasks if there is an imbalance.
2124 * Called with this_rq unlocked.
2126 static int load_balance(int this_cpu, runqueue_t *this_rq,
2127 struct sched_domain *sd, enum idle_type idle)
2129 struct sched_group *group;
2130 runqueue_t *busiest;
2131 unsigned long imbalance;
2132 int nr_moved, all_pinned = 0;
2133 int active_balance = 0;
2136 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2139 schedstat_inc(sd, lb_cnt[idle]);
2141 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2143 schedstat_inc(sd, lb_nobusyg[idle]);
2147 busiest = find_busiest_queue(group, idle);
2149 schedstat_inc(sd, lb_nobusyq[idle]);
2153 BUG_ON(busiest == this_rq);
2155 schedstat_add(sd, lb_imbalance[idle], imbalance);
2158 if (busiest->nr_running > 1) {
2160 * Attempt to move tasks. If find_busiest_group has found
2161 * an imbalance but busiest->nr_running <= 1, the group is
2162 * still unbalanced. nr_moved simply stays zero, so it is
2163 * correctly treated as an imbalance.
2165 double_rq_lock(this_rq, busiest);
2166 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2167 imbalance, sd, idle, &all_pinned);
2168 double_rq_unlock(this_rq, busiest);
2170 /* All tasks on this runqueue were pinned by CPU affinity */
2171 if (unlikely(all_pinned))
2176 schedstat_inc(sd, lb_failed[idle]);
2177 sd->nr_balance_failed++;
2179 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2181 spin_lock(&busiest->lock);
2183 /* don't kick the migration_thread, if the curr
2184 * task on busiest cpu can't be moved to this_cpu
2186 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2187 spin_unlock(&busiest->lock);
2189 goto out_one_pinned;
2192 if (!busiest->active_balance) {
2193 busiest->active_balance = 1;
2194 busiest->push_cpu = this_cpu;
2197 spin_unlock(&busiest->lock);
2199 wake_up_process(busiest->migration_thread);
2202 * We've kicked active balancing, reset the failure
2205 sd->nr_balance_failed = sd->cache_nice_tries+1;
2208 sd->nr_balance_failed = 0;
2210 if (likely(!active_balance)) {
2211 /* We were unbalanced, so reset the balancing interval */
2212 sd->balance_interval = sd->min_interval;
2215 * If we've begun active balancing, start to back off. This
2216 * case may not be covered by the all_pinned logic if there
2217 * is only 1 task on the busy runqueue (because we don't call
2220 if (sd->balance_interval < sd->max_interval)
2221 sd->balance_interval *= 2;
2224 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2229 schedstat_inc(sd, lb_balanced[idle]);
2231 sd->nr_balance_failed = 0;
2234 /* tune up the balancing interval */
2235 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2236 (sd->balance_interval < sd->max_interval))
2237 sd->balance_interval *= 2;
2239 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2245 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2246 * tasks if there is an imbalance.
2248 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2249 * this_rq is locked.
2251 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2252 struct sched_domain *sd)
2254 struct sched_group *group;
2255 runqueue_t *busiest = NULL;
2256 unsigned long imbalance;
2260 if (sd->flags & SD_SHARE_CPUPOWER)
2263 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2264 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2266 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2270 busiest = find_busiest_queue(group, NEWLY_IDLE);
2272 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2276 BUG_ON(busiest == this_rq);
2278 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2281 if (busiest->nr_running > 1) {
2282 /* Attempt to move tasks */
2283 double_lock_balance(this_rq, busiest);
2284 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2285 imbalance, sd, NEWLY_IDLE, NULL);
2286 spin_unlock(&busiest->lock);
2290 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2291 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2294 sd->nr_balance_failed = 0;
2299 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2302 sd->nr_balance_failed = 0;
2307 * idle_balance is called by schedule() if this_cpu is about to become
2308 * idle. Attempts to pull tasks from other CPUs.
2310 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2312 struct sched_domain *sd;
2314 for_each_domain(this_cpu, sd) {
2315 if (sd->flags & SD_BALANCE_NEWIDLE) {
2316 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2317 /* We've pulled tasks over so stop searching */
2325 * active_load_balance is run by migration threads. It pushes running tasks
2326 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2327 * running on each physical CPU where possible, and avoids physical /
2328 * logical imbalances.
2330 * Called with busiest_rq locked.
2332 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2334 struct sched_domain *sd;
2335 runqueue_t *target_rq;
2336 int target_cpu = busiest_rq->push_cpu;
2338 if (busiest_rq->nr_running <= 1)
2339 /* no task to move */
2342 target_rq = cpu_rq(target_cpu);
2345 * This condition is "impossible", if it occurs
2346 * we need to fix it. Originally reported by
2347 * Bjorn Helgaas on a 128-cpu setup.
2349 BUG_ON(busiest_rq == target_rq);
2351 /* move a task from busiest_rq to target_rq */
2352 double_lock_balance(busiest_rq, target_rq);
2354 /* Search for an sd spanning us and the target CPU. */
2355 for_each_domain(target_cpu, sd)
2356 if ((sd->flags & SD_LOAD_BALANCE) &&
2357 cpu_isset(busiest_cpu, sd->span))
2360 if (unlikely(sd == NULL))
2363 schedstat_inc(sd, alb_cnt);
2365 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2366 schedstat_inc(sd, alb_pushed);
2368 schedstat_inc(sd, alb_failed);
2370 spin_unlock(&target_rq->lock);
2374 * rebalance_tick will get called every timer tick, on every CPU.
2376 * It checks each scheduling domain to see if it is due to be balanced,
2377 * and initiates a balancing operation if so.
2379 * Balancing parameters are set up in arch_init_sched_domains.
2382 /* Don't have all balancing operations going off at once */
2383 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2385 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2386 enum idle_type idle)
2388 unsigned long old_load, this_load;
2389 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2390 struct sched_domain *sd;
2393 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2394 /* Update our load */
2395 for (i = 0; i < 3; i++) {
2396 unsigned long new_load = this_load;
2398 old_load = this_rq->cpu_load[i];
2400 * Round up the averaging division if load is increasing. This
2401 * prevents us from getting stuck on 9 if the load is 10, for
2404 if (new_load > old_load)
2405 new_load += scale-1;
2406 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2409 for_each_domain(this_cpu, sd) {
2410 unsigned long interval;
2412 if (!(sd->flags & SD_LOAD_BALANCE))
2415 interval = sd->balance_interval;
2416 if (idle != SCHED_IDLE)
2417 interval *= sd->busy_factor;
2419 /* scale ms to jiffies */
2420 interval = msecs_to_jiffies(interval);
2421 if (unlikely(!interval))
2424 if (j - sd->last_balance >= interval) {
2425 if (load_balance(this_cpu, this_rq, sd, idle)) {
2427 * We've pulled tasks over so either we're no
2428 * longer idle, or one of our SMT siblings is
2433 sd->last_balance += interval;
2439 * on UP we do not need to balance between CPUs:
2441 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2444 static inline void idle_balance(int cpu, runqueue_t *rq)
2449 static inline int wake_priority_sleeper(runqueue_t *rq)
2452 #ifdef CONFIG_SCHED_SMT
2453 spin_lock(&rq->lock);
2455 * If an SMT sibling task has been put to sleep for priority
2456 * reasons reschedule the idle task to see if it can now run.
2458 if (rq->nr_running) {
2459 resched_task(rq->idle);
2462 spin_unlock(&rq->lock);
2467 DEFINE_PER_CPU(struct kernel_stat, kstat);
2469 EXPORT_PER_CPU_SYMBOL(kstat);
2472 * This is called on clock ticks and on context switches.
2473 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2475 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2476 unsigned long long now)
2478 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2479 p->sched_time += now - last;
2483 * Return current->sched_time plus any more ns on the sched_clock
2484 * that have not yet been banked.
2486 unsigned long long current_sched_time(const task_t *tsk)
2488 unsigned long long ns;
2489 unsigned long flags;
2490 local_irq_save(flags);
2491 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2492 ns = tsk->sched_time + (sched_clock() - ns);
2493 local_irq_restore(flags);
2498 * We place interactive tasks back into the active array, if possible.
2500 * To guarantee that this does not starve expired tasks we ignore the
2501 * interactivity of a task if the first expired task had to wait more
2502 * than a 'reasonable' amount of time. This deadline timeout is
2503 * load-dependent, as the frequency of array switched decreases with
2504 * increasing number of running tasks. We also ignore the interactivity
2505 * if a better static_prio task has expired:
2507 #define EXPIRED_STARVING(rq) \
2508 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2509 (jiffies - (rq)->expired_timestamp >= \
2510 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2511 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2514 * Account user cpu time to a process.
2515 * @p: the process that the cpu time gets accounted to
2516 * @hardirq_offset: the offset to subtract from hardirq_count()
2517 * @cputime: the cpu time spent in user space since the last update
2519 void account_user_time(struct task_struct *p, cputime_t cputime)
2521 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2524 p->utime = cputime_add(p->utime, cputime);
2526 /* Add user time to cpustat. */
2527 tmp = cputime_to_cputime64(cputime);
2528 if (TASK_NICE(p) > 0)
2529 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2531 cpustat->user = cputime64_add(cpustat->user, tmp);
2535 * Account system cpu time to a process.
2536 * @p: the process that the cpu time gets accounted to
2537 * @hardirq_offset: the offset to subtract from hardirq_count()
2538 * @cputime: the cpu time spent in kernel space since the last update
2540 void account_system_time(struct task_struct *p, int hardirq_offset,
2543 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2544 runqueue_t *rq = this_rq();
2547 p->stime = cputime_add(p->stime, cputime);
2549 /* Add system time to cpustat. */
2550 tmp = cputime_to_cputime64(cputime);
2551 if (hardirq_count() - hardirq_offset)
2552 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2553 else if (softirq_count())
2554 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2555 else if (p != rq->idle)
2556 cpustat->system = cputime64_add(cpustat->system, tmp);
2557 else if (atomic_read(&rq->nr_iowait) > 0)
2558 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2560 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2561 /* Account for system time used */
2562 acct_update_integrals(p);
2566 * Account for involuntary wait time.
2567 * @p: the process from which the cpu time has been stolen
2568 * @steal: the cpu time spent in involuntary wait
2570 void account_steal_time(struct task_struct *p, cputime_t steal)
2572 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2573 cputime64_t tmp = cputime_to_cputime64(steal);
2574 runqueue_t *rq = this_rq();
2576 if (p == rq->idle) {
2577 p->stime = cputime_add(p->stime, steal);
2578 if (atomic_read(&rq->nr_iowait) > 0)
2579 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2581 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2583 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2587 * This function gets called by the timer code, with HZ frequency.
2588 * We call it with interrupts disabled.
2590 * It also gets called by the fork code, when changing the parent's
2593 void scheduler_tick(void)
2595 int cpu = smp_processor_id();
2596 runqueue_t *rq = this_rq();
2597 task_t *p = current;
2598 unsigned long long now = sched_clock();
2600 update_cpu_clock(p, rq, now);
2602 rq->timestamp_last_tick = now;
2604 if (p == rq->idle) {
2605 if (wake_priority_sleeper(rq))
2607 rebalance_tick(cpu, rq, SCHED_IDLE);
2611 /* Task might have expired already, but not scheduled off yet */
2612 if (p->array != rq->active) {
2613 set_tsk_need_resched(p);
2616 spin_lock(&rq->lock);
2618 * The task was running during this tick - update the
2619 * time slice counter. Note: we do not update a thread's
2620 * priority until it either goes to sleep or uses up its
2621 * timeslice. This makes it possible for interactive tasks
2622 * to use up their timeslices at their highest priority levels.
2626 * RR tasks need a special form of timeslice management.
2627 * FIFO tasks have no timeslices.
2629 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2630 p->time_slice = task_timeslice(p);
2631 p->first_time_slice = 0;
2632 set_tsk_need_resched(p);
2634 /* put it at the end of the queue: */
2635 requeue_task(p, rq->active);
2639 if (!--p->time_slice) {
2640 dequeue_task(p, rq->active);
2641 set_tsk_need_resched(p);
2642 p->prio = effective_prio(p);
2643 p->time_slice = task_timeslice(p);
2644 p->first_time_slice = 0;
2646 if (!rq->expired_timestamp)
2647 rq->expired_timestamp = jiffies;
2648 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2649 enqueue_task(p, rq->expired);
2650 if (p->static_prio < rq->best_expired_prio)
2651 rq->best_expired_prio = p->static_prio;
2653 enqueue_task(p, rq->active);
2656 * Prevent a too long timeslice allowing a task to monopolize
2657 * the CPU. We do this by splitting up the timeslice into
2660 * Note: this does not mean the task's timeslices expire or
2661 * get lost in any way, they just might be preempted by
2662 * another task of equal priority. (one with higher
2663 * priority would have preempted this task already.) We
2664 * requeue this task to the end of the list on this priority
2665 * level, which is in essence a round-robin of tasks with
2668 * This only applies to tasks in the interactive
2669 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2671 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2672 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2673 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2674 (p->array == rq->active)) {
2676 requeue_task(p, rq->active);
2677 set_tsk_need_resched(p);
2681 spin_unlock(&rq->lock);
2683 rebalance_tick(cpu, rq, NOT_IDLE);
2686 #ifdef CONFIG_SCHED_SMT
2687 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2689 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2690 if (rq->curr == rq->idle && rq->nr_running)
2691 resched_task(rq->idle);
2694 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2696 struct sched_domain *tmp, *sd = NULL;
2697 cpumask_t sibling_map;
2700 for_each_domain(this_cpu, tmp)
2701 if (tmp->flags & SD_SHARE_CPUPOWER)
2708 * Unlock the current runqueue because we have to lock in
2709 * CPU order to avoid deadlocks. Caller knows that we might
2710 * unlock. We keep IRQs disabled.
2712 spin_unlock(&this_rq->lock);
2714 sibling_map = sd->span;
2716 for_each_cpu_mask(i, sibling_map)
2717 spin_lock(&cpu_rq(i)->lock);
2719 * We clear this CPU from the mask. This both simplifies the
2720 * inner loop and keps this_rq locked when we exit:
2722 cpu_clear(this_cpu, sibling_map);
2724 for_each_cpu_mask(i, sibling_map) {
2725 runqueue_t *smt_rq = cpu_rq(i);
2727 wakeup_busy_runqueue(smt_rq);
2730 for_each_cpu_mask(i, sibling_map)
2731 spin_unlock(&cpu_rq(i)->lock);
2733 * We exit with this_cpu's rq still held and IRQs
2739 * number of 'lost' timeslices this task wont be able to fully
2740 * utilize, if another task runs on a sibling. This models the
2741 * slowdown effect of other tasks running on siblings:
2743 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2745 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2748 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2750 struct sched_domain *tmp, *sd = NULL;
2751 cpumask_t sibling_map;
2752 prio_array_t *array;
2756 for_each_domain(this_cpu, tmp)
2757 if (tmp->flags & SD_SHARE_CPUPOWER)
2764 * The same locking rules and details apply as for
2765 * wake_sleeping_dependent():
2767 spin_unlock(&this_rq->lock);
2768 sibling_map = sd->span;
2769 for_each_cpu_mask(i, sibling_map)
2770 spin_lock(&cpu_rq(i)->lock);
2771 cpu_clear(this_cpu, sibling_map);
2774 * Establish next task to be run - it might have gone away because
2775 * we released the runqueue lock above:
2777 if (!this_rq->nr_running)
2779 array = this_rq->active;
2780 if (!array->nr_active)
2781 array = this_rq->expired;
2782 BUG_ON(!array->nr_active);
2784 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2787 for_each_cpu_mask(i, sibling_map) {
2788 runqueue_t *smt_rq = cpu_rq(i);
2789 task_t *smt_curr = smt_rq->curr;
2791 /* Kernel threads do not participate in dependent sleeping */
2792 if (!p->mm || !smt_curr->mm || rt_task(p))
2793 goto check_smt_task;
2796 * If a user task with lower static priority than the
2797 * running task on the SMT sibling is trying to schedule,
2798 * delay it till there is proportionately less timeslice
2799 * left of the sibling task to prevent a lower priority
2800 * task from using an unfair proportion of the
2801 * physical cpu's resources. -ck
2803 if (rt_task(smt_curr)) {
2805 * With real time tasks we run non-rt tasks only
2806 * per_cpu_gain% of the time.
2808 if ((jiffies % DEF_TIMESLICE) >
2809 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2812 if (smt_curr->static_prio < p->static_prio &&
2813 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2814 smt_slice(smt_curr, sd) > task_timeslice(p))
2818 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2822 wakeup_busy_runqueue(smt_rq);
2827 * Reschedule a lower priority task on the SMT sibling for
2828 * it to be put to sleep, or wake it up if it has been put to
2829 * sleep for priority reasons to see if it should run now.
2832 if ((jiffies % DEF_TIMESLICE) >
2833 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2834 resched_task(smt_curr);
2836 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2837 smt_slice(p, sd) > task_timeslice(smt_curr))
2838 resched_task(smt_curr);
2840 wakeup_busy_runqueue(smt_rq);
2844 for_each_cpu_mask(i, sibling_map)
2845 spin_unlock(&cpu_rq(i)->lock);
2849 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2853 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2859 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2861 void fastcall add_preempt_count(int val)
2866 BUG_ON((preempt_count() < 0));
2867 preempt_count() += val;
2869 * Spinlock count overflowing soon?
2871 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2873 EXPORT_SYMBOL(add_preempt_count);
2875 void fastcall sub_preempt_count(int val)
2880 BUG_ON(val > preempt_count());
2882 * Is the spinlock portion underflowing?
2884 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2885 preempt_count() -= val;
2887 EXPORT_SYMBOL(sub_preempt_count);
2891 static inline int interactive_sleep(enum sleep_type sleep_type)
2893 return (sleep_type == SLEEP_INTERACTIVE ||
2894 sleep_type == SLEEP_INTERRUPTED);
2898 * schedule() is the main scheduler function.
2900 asmlinkage void __sched schedule(void)
2903 task_t *prev, *next;
2905 prio_array_t *array;
2906 struct list_head *queue;
2907 unsigned long long now;
2908 unsigned long run_time;
2909 int cpu, idx, new_prio;
2912 * Test if we are atomic. Since do_exit() needs to call into
2913 * schedule() atomically, we ignore that path for now.
2914 * Otherwise, whine if we are scheduling when we should not be.
2916 if (unlikely(in_atomic() && !current->exit_state)) {
2917 printk(KERN_ERR "BUG: scheduling while atomic: "
2919 current->comm, preempt_count(), current->pid);
2922 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2927 release_kernel_lock(prev);
2928 need_resched_nonpreemptible:
2932 * The idle thread is not allowed to schedule!
2933 * Remove this check after it has been exercised a bit.
2935 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2936 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2940 schedstat_inc(rq, sched_cnt);
2941 now = sched_clock();
2942 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2943 run_time = now - prev->timestamp;
2944 if (unlikely((long long)(now - prev->timestamp) < 0))
2947 run_time = NS_MAX_SLEEP_AVG;
2950 * Tasks charged proportionately less run_time at high sleep_avg to
2951 * delay them losing their interactive status
2953 run_time /= (CURRENT_BONUS(prev) ? : 1);
2955 spin_lock_irq(&rq->lock);
2957 if (unlikely(prev->flags & PF_DEAD))
2958 prev->state = EXIT_DEAD;
2960 switch_count = &prev->nivcsw;
2961 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2962 switch_count = &prev->nvcsw;
2963 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2964 unlikely(signal_pending(prev))))
2965 prev->state = TASK_RUNNING;
2967 if (prev->state == TASK_UNINTERRUPTIBLE)
2968 rq->nr_uninterruptible++;
2969 deactivate_task(prev, rq);
2973 cpu = smp_processor_id();
2974 if (unlikely(!rq->nr_running)) {
2976 idle_balance(cpu, rq);
2977 if (!rq->nr_running) {
2979 rq->expired_timestamp = 0;
2980 wake_sleeping_dependent(cpu, rq);
2982 * wake_sleeping_dependent() might have released
2983 * the runqueue, so break out if we got new
2986 if (!rq->nr_running)
2990 if (dependent_sleeper(cpu, rq)) {
2995 * dependent_sleeper() releases and reacquires the runqueue
2996 * lock, hence go into the idle loop if the rq went
2999 if (unlikely(!rq->nr_running))
3004 if (unlikely(!array->nr_active)) {
3006 * Switch the active and expired arrays.
3008 schedstat_inc(rq, sched_switch);
3009 rq->active = rq->expired;
3010 rq->expired = array;
3012 rq->expired_timestamp = 0;
3013 rq->best_expired_prio = MAX_PRIO;
3016 idx = sched_find_first_bit(array->bitmap);
3017 queue = array->queue + idx;
3018 next = list_entry(queue->next, task_t, run_list);
3020 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3021 unsigned long long delta = now - next->timestamp;
3022 if (unlikely((long long)(now - next->timestamp) < 0))
3025 if (next->sleep_type == SLEEP_INTERACTIVE)
3026 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3028 array = next->array;
3029 new_prio = recalc_task_prio(next, next->timestamp + delta);
3031 if (unlikely(next->prio != new_prio)) {
3032 dequeue_task(next, array);
3033 next->prio = new_prio;
3034 enqueue_task(next, array);
3037 next->sleep_type = SLEEP_NORMAL;
3039 if (next == rq->idle)
3040 schedstat_inc(rq, sched_goidle);
3042 prefetch_stack(next);
3043 clear_tsk_need_resched(prev);
3044 rcu_qsctr_inc(task_cpu(prev));
3046 update_cpu_clock(prev, rq, now);
3048 prev->sleep_avg -= run_time;
3049 if ((long)prev->sleep_avg <= 0)
3050 prev->sleep_avg = 0;
3051 prev->timestamp = prev->last_ran = now;
3053 sched_info_switch(prev, next);
3054 if (likely(prev != next)) {
3055 next->timestamp = now;
3060 prepare_task_switch(rq, next);
3061 prev = context_switch(rq, prev, next);
3064 * this_rq must be evaluated again because prev may have moved
3065 * CPUs since it called schedule(), thus the 'rq' on its stack
3066 * frame will be invalid.
3068 finish_task_switch(this_rq(), prev);
3070 spin_unlock_irq(&rq->lock);
3073 if (unlikely(reacquire_kernel_lock(prev) < 0))
3074 goto need_resched_nonpreemptible;
3075 preempt_enable_no_resched();
3076 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3080 EXPORT_SYMBOL(schedule);
3082 #ifdef CONFIG_PREEMPT
3084 * this is is the entry point to schedule() from in-kernel preemption
3085 * off of preempt_enable. Kernel preemptions off return from interrupt
3086 * occur there and call schedule directly.
3088 asmlinkage void __sched preempt_schedule(void)
3090 struct thread_info *ti = current_thread_info();
3091 #ifdef CONFIG_PREEMPT_BKL
3092 struct task_struct *task = current;
3093 int saved_lock_depth;
3096 * If there is a non-zero preempt_count or interrupts are disabled,
3097 * we do not want to preempt the current task. Just return..
3099 if (unlikely(ti->preempt_count || irqs_disabled()))
3103 add_preempt_count(PREEMPT_ACTIVE);
3105 * We keep the big kernel semaphore locked, but we
3106 * clear ->lock_depth so that schedule() doesnt
3107 * auto-release the semaphore:
3109 #ifdef CONFIG_PREEMPT_BKL
3110 saved_lock_depth = task->lock_depth;
3111 task->lock_depth = -1;
3114 #ifdef CONFIG_PREEMPT_BKL
3115 task->lock_depth = saved_lock_depth;
3117 sub_preempt_count(PREEMPT_ACTIVE);
3119 /* we could miss a preemption opportunity between schedule and now */
3121 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3125 EXPORT_SYMBOL(preempt_schedule);
3128 * this is is the entry point to schedule() from kernel preemption
3129 * off of irq context.
3130 * Note, that this is called and return with irqs disabled. This will
3131 * protect us against recursive calling from irq.
3133 asmlinkage void __sched preempt_schedule_irq(void)
3135 struct thread_info *ti = current_thread_info();
3136 #ifdef CONFIG_PREEMPT_BKL
3137 struct task_struct *task = current;
3138 int saved_lock_depth;
3140 /* Catch callers which need to be fixed*/
3141 BUG_ON(ti->preempt_count || !irqs_disabled());
3144 add_preempt_count(PREEMPT_ACTIVE);
3146 * We keep the big kernel semaphore locked, but we
3147 * clear ->lock_depth so that schedule() doesnt
3148 * auto-release the semaphore:
3150 #ifdef CONFIG_PREEMPT_BKL
3151 saved_lock_depth = task->lock_depth;
3152 task->lock_depth = -1;
3156 local_irq_disable();
3157 #ifdef CONFIG_PREEMPT_BKL
3158 task->lock_depth = saved_lock_depth;
3160 sub_preempt_count(PREEMPT_ACTIVE);
3162 /* we could miss a preemption opportunity between schedule and now */
3164 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3168 #endif /* CONFIG_PREEMPT */
3170 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3173 task_t *p = curr->private;
3174 return try_to_wake_up(p, mode, sync);
3177 EXPORT_SYMBOL(default_wake_function);
3180 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3181 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3182 * number) then we wake all the non-exclusive tasks and one exclusive task.
3184 * There are circumstances in which we can try to wake a task which has already
3185 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3186 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3188 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3189 int nr_exclusive, int sync, void *key)
3191 struct list_head *tmp, *next;
3193 list_for_each_safe(tmp, next, &q->task_list) {
3196 curr = list_entry(tmp, wait_queue_t, task_list);
3197 flags = curr->flags;
3198 if (curr->func(curr, mode, sync, key) &&
3199 (flags & WQ_FLAG_EXCLUSIVE) &&
3206 * __wake_up - wake up threads blocked on a waitqueue.
3208 * @mode: which threads
3209 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3210 * @key: is directly passed to the wakeup function
3212 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3213 int nr_exclusive, void *key)
3215 unsigned long flags;
3217 spin_lock_irqsave(&q->lock, flags);
3218 __wake_up_common(q, mode, nr_exclusive, 0, key);
3219 spin_unlock_irqrestore(&q->lock, flags);
3222 EXPORT_SYMBOL(__wake_up);
3225 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3227 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3229 __wake_up_common(q, mode, 1, 0, NULL);
3233 * __wake_up_sync - wake up threads blocked on a waitqueue.
3235 * @mode: which threads
3236 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3238 * The sync wakeup differs that the waker knows that it will schedule
3239 * away soon, so while the target thread will be woken up, it will not
3240 * be migrated to another CPU - ie. the two threads are 'synchronized'
3241 * with each other. This can prevent needless bouncing between CPUs.
3243 * On UP it can prevent extra preemption.
3246 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3248 unsigned long flags;
3254 if (unlikely(!nr_exclusive))
3257 spin_lock_irqsave(&q->lock, flags);
3258 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3259 spin_unlock_irqrestore(&q->lock, flags);
3261 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3263 void fastcall complete(struct completion *x)
3265 unsigned long flags;
3267 spin_lock_irqsave(&x->wait.lock, flags);
3269 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3271 spin_unlock_irqrestore(&x->wait.lock, flags);
3273 EXPORT_SYMBOL(complete);
3275 void fastcall complete_all(struct completion *x)
3277 unsigned long flags;
3279 spin_lock_irqsave(&x->wait.lock, flags);
3280 x->done += UINT_MAX/2;
3281 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3283 spin_unlock_irqrestore(&x->wait.lock, flags);
3285 EXPORT_SYMBOL(complete_all);
3287 void fastcall __sched wait_for_completion(struct completion *x)
3290 spin_lock_irq(&x->wait.lock);
3292 DECLARE_WAITQUEUE(wait, current);
3294 wait.flags |= WQ_FLAG_EXCLUSIVE;
3295 __add_wait_queue_tail(&x->wait, &wait);
3297 __set_current_state(TASK_UNINTERRUPTIBLE);
3298 spin_unlock_irq(&x->wait.lock);
3300 spin_lock_irq(&x->wait.lock);
3302 __remove_wait_queue(&x->wait, &wait);
3305 spin_unlock_irq(&x->wait.lock);
3307 EXPORT_SYMBOL(wait_for_completion);
3309 unsigned long fastcall __sched
3310 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3314 spin_lock_irq(&x->wait.lock);
3316 DECLARE_WAITQUEUE(wait, current);
3318 wait.flags |= WQ_FLAG_EXCLUSIVE;
3319 __add_wait_queue_tail(&x->wait, &wait);
3321 __set_current_state(TASK_UNINTERRUPTIBLE);
3322 spin_unlock_irq(&x->wait.lock);
3323 timeout = schedule_timeout(timeout);
3324 spin_lock_irq(&x->wait.lock);
3326 __remove_wait_queue(&x->wait, &wait);
3330 __remove_wait_queue(&x->wait, &wait);
3334 spin_unlock_irq(&x->wait.lock);
3337 EXPORT_SYMBOL(wait_for_completion_timeout);
3339 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3345 spin_lock_irq(&x->wait.lock);
3347 DECLARE_WAITQUEUE(wait, current);
3349 wait.flags |= WQ_FLAG_EXCLUSIVE;
3350 __add_wait_queue_tail(&x->wait, &wait);
3352 if (signal_pending(current)) {
3354 __remove_wait_queue(&x->wait, &wait);
3357 __set_current_state(TASK_INTERRUPTIBLE);
3358 spin_unlock_irq(&x->wait.lock);
3360 spin_lock_irq(&x->wait.lock);
3362 __remove_wait_queue(&x->wait, &wait);
3366 spin_unlock_irq(&x->wait.lock);
3370 EXPORT_SYMBOL(wait_for_completion_interruptible);
3372 unsigned long fastcall __sched
3373 wait_for_completion_interruptible_timeout(struct completion *x,
3374 unsigned long timeout)
3378 spin_lock_irq(&x->wait.lock);
3380 DECLARE_WAITQUEUE(wait, current);
3382 wait.flags |= WQ_FLAG_EXCLUSIVE;
3383 __add_wait_queue_tail(&x->wait, &wait);
3385 if (signal_pending(current)) {
3386 timeout = -ERESTARTSYS;
3387 __remove_wait_queue(&x->wait, &wait);
3390 __set_current_state(TASK_INTERRUPTIBLE);
3391 spin_unlock_irq(&x->wait.lock);
3392 timeout = schedule_timeout(timeout);
3393 spin_lock_irq(&x->wait.lock);
3395 __remove_wait_queue(&x->wait, &wait);
3399 __remove_wait_queue(&x->wait, &wait);
3403 spin_unlock_irq(&x->wait.lock);
3406 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3409 #define SLEEP_ON_VAR \
3410 unsigned long flags; \
3411 wait_queue_t wait; \
3412 init_waitqueue_entry(&wait, current);
3414 #define SLEEP_ON_HEAD \
3415 spin_lock_irqsave(&q->lock,flags); \
3416 __add_wait_queue(q, &wait); \
3417 spin_unlock(&q->lock);
3419 #define SLEEP_ON_TAIL \
3420 spin_lock_irq(&q->lock); \
3421 __remove_wait_queue(q, &wait); \
3422 spin_unlock_irqrestore(&q->lock, flags);
3424 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3428 current->state = TASK_INTERRUPTIBLE;
3435 EXPORT_SYMBOL(interruptible_sleep_on);
3437 long fastcall __sched
3438 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3442 current->state = TASK_INTERRUPTIBLE;
3445 timeout = schedule_timeout(timeout);
3451 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3453 void fastcall __sched sleep_on(wait_queue_head_t *q)
3457 current->state = TASK_UNINTERRUPTIBLE;
3464 EXPORT_SYMBOL(sleep_on);
3466 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3470 current->state = TASK_UNINTERRUPTIBLE;
3473 timeout = schedule_timeout(timeout);
3479 EXPORT_SYMBOL(sleep_on_timeout);
3481 void set_user_nice(task_t *p, long nice)
3483 unsigned long flags;
3484 prio_array_t *array;
3486 int old_prio, new_prio, delta;
3488 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3491 * We have to be careful, if called from sys_setpriority(),
3492 * the task might be in the middle of scheduling on another CPU.
3494 rq = task_rq_lock(p, &flags);
3496 * The RT priorities are set via sched_setscheduler(), but we still
3497 * allow the 'normal' nice value to be set - but as expected
3498 * it wont have any effect on scheduling until the task is
3499 * not SCHED_NORMAL/SCHED_BATCH:
3502 p->static_prio = NICE_TO_PRIO(nice);
3507 dequeue_task(p, array);
3510 new_prio = NICE_TO_PRIO(nice);
3511 delta = new_prio - old_prio;
3512 p->static_prio = NICE_TO_PRIO(nice);
3516 enqueue_task(p, array);
3518 * If the task increased its priority or is running and
3519 * lowered its priority, then reschedule its CPU:
3521 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3522 resched_task(rq->curr);
3525 task_rq_unlock(rq, &flags);
3528 EXPORT_SYMBOL(set_user_nice);
3531 * can_nice - check if a task can reduce its nice value
3535 int can_nice(const task_t *p, const int nice)
3537 /* convert nice value [19,-20] to rlimit style value [1,40] */
3538 int nice_rlim = 20 - nice;
3539 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3540 capable(CAP_SYS_NICE));
3543 #ifdef __ARCH_WANT_SYS_NICE
3546 * sys_nice - change the priority of the current process.
3547 * @increment: priority increment
3549 * sys_setpriority is a more generic, but much slower function that
3550 * does similar things.
3552 asmlinkage long sys_nice(int increment)
3558 * Setpriority might change our priority at the same moment.
3559 * We don't have to worry. Conceptually one call occurs first
3560 * and we have a single winner.
3562 if (increment < -40)
3567 nice = PRIO_TO_NICE(current->static_prio) + increment;
3573 if (increment < 0 && !can_nice(current, nice))
3576 retval = security_task_setnice(current, nice);
3580 set_user_nice(current, nice);
3587 * task_prio - return the priority value of a given task.
3588 * @p: the task in question.
3590 * This is the priority value as seen by users in /proc.
3591 * RT tasks are offset by -200. Normal tasks are centered
3592 * around 0, value goes from -16 to +15.
3594 int task_prio(const task_t *p)
3596 return p->prio - MAX_RT_PRIO;
3600 * task_nice - return the nice value of a given task.
3601 * @p: the task in question.
3603 int task_nice(const task_t *p)
3605 return TASK_NICE(p);
3607 EXPORT_SYMBOL_GPL(task_nice);
3610 * idle_cpu - is a given cpu idle currently?
3611 * @cpu: the processor in question.
3613 int idle_cpu(int cpu)
3615 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3619 * idle_task - return the idle task for a given cpu.
3620 * @cpu: the processor in question.
3622 task_t *idle_task(int cpu)
3624 return cpu_rq(cpu)->idle;
3628 * find_process_by_pid - find a process with a matching PID value.
3629 * @pid: the pid in question.
3631 static inline task_t *find_process_by_pid(pid_t pid)
3633 return pid ? find_task_by_pid(pid) : current;
3636 /* Actually do priority change: must hold rq lock. */
3637 static void __setscheduler(struct task_struct *p, int policy, int prio)
3641 p->rt_priority = prio;
3642 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3643 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3645 p->prio = p->static_prio;
3647 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3649 if (policy == SCHED_BATCH)
3655 * sched_setscheduler - change the scheduling policy and/or RT priority of
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3661 int sched_setscheduler(struct task_struct *p, int policy,
3662 struct sched_param *param)
3665 int oldprio, oldpolicy = -1;
3666 prio_array_t *array;
3667 unsigned long flags;
3671 /* double check policy once rq lock held */
3673 policy = oldpolicy = p->policy;
3674 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3675 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3678 * Valid priorities for SCHED_FIFO and SCHED_RR are
3679 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3682 if (param->sched_priority < 0 ||
3683 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3684 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3686 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3687 != (param->sched_priority == 0))
3691 * Allow unprivileged RT tasks to decrease priority:
3693 if (!capable(CAP_SYS_NICE)) {
3695 * can't change policy, except between SCHED_NORMAL
3698 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3699 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3700 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3702 /* can't increase priority */
3703 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3704 param->sched_priority > p->rt_priority &&
3705 param->sched_priority >
3706 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3708 /* can't change other user's priorities */
3709 if ((current->euid != p->euid) &&
3710 (current->euid != p->uid))
3714 retval = security_task_setscheduler(p, policy, param);
3718 * To be able to change p->policy safely, the apropriate
3719 * runqueue lock must be held.
3721 rq = task_rq_lock(p, &flags);
3722 /* recheck policy now with rq lock held */
3723 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3724 policy = oldpolicy = -1;
3725 task_rq_unlock(rq, &flags);
3730 deactivate_task(p, rq);
3732 __setscheduler(p, policy, param->sched_priority);
3734 __activate_task(p, rq);
3736 * Reschedule if we are currently running on this runqueue and
3737 * our priority decreased, or if we are not currently running on
3738 * this runqueue and our priority is higher than the current's
3740 if (task_running(rq, p)) {
3741 if (p->prio > oldprio)
3742 resched_task(rq->curr);
3743 } else if (TASK_PREEMPTS_CURR(p, rq))
3744 resched_task(rq->curr);
3746 task_rq_unlock(rq, &flags);
3749 EXPORT_SYMBOL_GPL(sched_setscheduler);
3752 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3755 struct sched_param lparam;
3756 struct task_struct *p;
3758 if (!param || pid < 0)
3760 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3762 read_lock_irq(&tasklist_lock);
3763 p = find_process_by_pid(pid);
3765 read_unlock_irq(&tasklist_lock);
3768 retval = sched_setscheduler(p, policy, &lparam);
3769 read_unlock_irq(&tasklist_lock);
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
3779 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3780 struct sched_param __user *param)
3782 /* negative values for policy are not valid */
3786 return do_sched_setscheduler(pid, policy, param);
3790 * sys_sched_setparam - set/change the RT priority of a thread
3791 * @pid: the pid in question.
3792 * @param: structure containing the new RT priority.
3794 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3796 return do_sched_setscheduler(pid, -1, param);
3800 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3801 * @pid: the pid in question.
3803 asmlinkage long sys_sched_getscheduler(pid_t pid)
3805 int retval = -EINVAL;
3812 read_lock(&tasklist_lock);
3813 p = find_process_by_pid(pid);
3815 retval = security_task_getscheduler(p);
3819 read_unlock(&tasklist_lock);
3826 * sys_sched_getscheduler - get the RT priority of a thread
3827 * @pid: the pid in question.
3828 * @param: structure containing the RT priority.
3830 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3832 struct sched_param lp;
3833 int retval = -EINVAL;
3836 if (!param || pid < 0)
3839 read_lock(&tasklist_lock);
3840 p = find_process_by_pid(pid);
3845 retval = security_task_getscheduler(p);
3849 lp.sched_priority = p->rt_priority;
3850 read_unlock(&tasklist_lock);
3853 * This one might sleep, we cannot do it with a spinlock held ...
3855 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3861 read_unlock(&tasklist_lock);
3865 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3869 cpumask_t cpus_allowed;
3872 read_lock(&tasklist_lock);
3874 p = find_process_by_pid(pid);
3876 read_unlock(&tasklist_lock);
3877 unlock_cpu_hotplug();
3882 * It is not safe to call set_cpus_allowed with the
3883 * tasklist_lock held. We will bump the task_struct's
3884 * usage count and then drop tasklist_lock.
3887 read_unlock(&tasklist_lock);
3890 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3891 !capable(CAP_SYS_NICE))
3894 retval = security_task_setscheduler(p, 0, NULL);
3898 cpus_allowed = cpuset_cpus_allowed(p);
3899 cpus_and(new_mask, new_mask, cpus_allowed);
3900 retval = set_cpus_allowed(p, new_mask);
3904 unlock_cpu_hotplug();
3908 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3909 cpumask_t *new_mask)
3911 if (len < sizeof(cpumask_t)) {
3912 memset(new_mask, 0, sizeof(cpumask_t));
3913 } else if (len > sizeof(cpumask_t)) {
3914 len = sizeof(cpumask_t);
3916 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3920 * sys_sched_setaffinity - set the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to the new cpu mask
3925 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3926 unsigned long __user *user_mask_ptr)
3931 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3935 return sched_setaffinity(pid, new_mask);
3939 * Represents all cpu's present in the system
3940 * In systems capable of hotplug, this map could dynamically grow
3941 * as new cpu's are detected in the system via any platform specific
3942 * method, such as ACPI for e.g.
3945 cpumask_t cpu_present_map __read_mostly;
3946 EXPORT_SYMBOL(cpu_present_map);
3949 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3950 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3953 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3959 read_lock(&tasklist_lock);
3962 p = find_process_by_pid(pid);
3966 retval = security_task_getscheduler(p);
3970 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3973 read_unlock(&tasklist_lock);
3974 unlock_cpu_hotplug();
3982 * sys_sched_getaffinity - get the cpu affinity of a process
3983 * @pid: pid of the process
3984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3987 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3988 unsigned long __user *user_mask_ptr)
3993 if (len < sizeof(cpumask_t))
3996 ret = sched_getaffinity(pid, &mask);
4000 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4003 return sizeof(cpumask_t);
4007 * sys_sched_yield - yield the current processor to other threads.
4009 * this function yields the current CPU by moving the calling thread
4010 * to the expired array. If there are no other threads running on this
4011 * CPU then this function will return.
4013 asmlinkage long sys_sched_yield(void)
4015 runqueue_t *rq = this_rq_lock();
4016 prio_array_t *array = current->array;
4017 prio_array_t *target = rq->expired;
4019 schedstat_inc(rq, yld_cnt);
4021 * We implement yielding by moving the task into the expired
4024 * (special rule: RT tasks will just roundrobin in the active
4027 if (rt_task(current))
4028 target = rq->active;
4030 if (array->nr_active == 1) {
4031 schedstat_inc(rq, yld_act_empty);
4032 if (!rq->expired->nr_active)
4033 schedstat_inc(rq, yld_both_empty);
4034 } else if (!rq->expired->nr_active)
4035 schedstat_inc(rq, yld_exp_empty);
4037 if (array != target) {
4038 dequeue_task(current, array);
4039 enqueue_task(current, target);
4042 * requeue_task is cheaper so perform that if possible.
4044 requeue_task(current, array);
4047 * Since we are going to call schedule() anyway, there's
4048 * no need to preempt or enable interrupts:
4050 __release(rq->lock);
4051 _raw_spin_unlock(&rq->lock);
4052 preempt_enable_no_resched();
4059 static inline void __cond_resched(void)
4061 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4062 __might_sleep(__FILE__, __LINE__);
4065 * The BKS might be reacquired before we have dropped
4066 * PREEMPT_ACTIVE, which could trigger a second
4067 * cond_resched() call.
4069 if (unlikely(preempt_count()))
4071 if (unlikely(system_state != SYSTEM_RUNNING))
4074 add_preempt_count(PREEMPT_ACTIVE);
4076 sub_preempt_count(PREEMPT_ACTIVE);
4077 } while (need_resched());
4080 int __sched cond_resched(void)
4082 if (need_resched()) {
4089 EXPORT_SYMBOL(cond_resched);
4092 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4093 * call schedule, and on return reacquire the lock.
4095 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4096 * operations here to prevent schedule() from being called twice (once via
4097 * spin_unlock(), once by hand).
4099 int cond_resched_lock(spinlock_t *lock)
4103 if (need_lockbreak(lock)) {
4109 if (need_resched()) {
4110 _raw_spin_unlock(lock);
4111 preempt_enable_no_resched();
4119 EXPORT_SYMBOL(cond_resched_lock);
4121 int __sched cond_resched_softirq(void)
4123 BUG_ON(!in_softirq());
4125 if (need_resched()) {
4126 __local_bh_enable();
4134 EXPORT_SYMBOL(cond_resched_softirq);
4138 * yield - yield the current processor to other threads.
4140 * this is a shortcut for kernel-space yielding - it marks the
4141 * thread runnable and calls sys_sched_yield().
4143 void __sched yield(void)
4145 set_current_state(TASK_RUNNING);
4149 EXPORT_SYMBOL(yield);
4152 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4153 * that process accounting knows that this is a task in IO wait state.
4155 * But don't do that if it is a deliberate, throttling IO wait (this task
4156 * has set its backing_dev_info: the queue against which it should throttle)
4158 void __sched io_schedule(void)
4160 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4162 atomic_inc(&rq->nr_iowait);
4164 atomic_dec(&rq->nr_iowait);
4167 EXPORT_SYMBOL(io_schedule);
4169 long __sched io_schedule_timeout(long timeout)
4171 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4174 atomic_inc(&rq->nr_iowait);
4175 ret = schedule_timeout(timeout);
4176 atomic_dec(&rq->nr_iowait);
4181 * sys_sched_get_priority_max - return maximum RT priority.
4182 * @policy: scheduling class.
4184 * this syscall returns the maximum rt_priority that can be used
4185 * by a given scheduling class.
4187 asmlinkage long sys_sched_get_priority_max(int policy)
4194 ret = MAX_USER_RT_PRIO-1;
4205 * sys_sched_get_priority_min - return minimum RT priority.
4206 * @policy: scheduling class.
4208 * this syscall returns the minimum rt_priority that can be used
4209 * by a given scheduling class.
4211 asmlinkage long sys_sched_get_priority_min(int policy)
4228 * sys_sched_rr_get_interval - return the default timeslice of a process.
4229 * @pid: pid of the process.
4230 * @interval: userspace pointer to the timeslice value.
4232 * this syscall writes the default timeslice value of a given process
4233 * into the user-space timespec buffer. A value of '0' means infinity.
4236 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4238 int retval = -EINVAL;
4246 read_lock(&tasklist_lock);
4247 p = find_process_by_pid(pid);
4251 retval = security_task_getscheduler(p);
4255 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4256 0 : task_timeslice(p), &t);
4257 read_unlock(&tasklist_lock);
4258 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4262 read_unlock(&tasklist_lock);
4266 static inline struct task_struct *eldest_child(struct task_struct *p)
4268 if (list_empty(&p->children)) return NULL;
4269 return list_entry(p->children.next,struct task_struct,sibling);
4272 static inline struct task_struct *older_sibling(struct task_struct *p)
4274 if (p->sibling.prev==&p->parent->children) return NULL;
4275 return list_entry(p->sibling.prev,struct task_struct,sibling);
4278 static inline struct task_struct *younger_sibling(struct task_struct *p)
4280 if (p->sibling.next==&p->parent->children) return NULL;
4281 return list_entry(p->sibling.next,struct task_struct,sibling);
4284 static void show_task(task_t *p)
4288 unsigned long free = 0;
4289 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4291 printk("%-13.13s ", p->comm);
4292 state = p->state ? __ffs(p->state) + 1 : 0;
4293 if (state < ARRAY_SIZE(stat_nam))
4294 printk(stat_nam[state]);
4297 #if (BITS_PER_LONG == 32)
4298 if (state == TASK_RUNNING)
4299 printk(" running ");
4301 printk(" %08lX ", thread_saved_pc(p));
4303 if (state == TASK_RUNNING)
4304 printk(" running task ");
4306 printk(" %016lx ", thread_saved_pc(p));
4308 #ifdef CONFIG_DEBUG_STACK_USAGE
4310 unsigned long *n = end_of_stack(p);
4313 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4316 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4317 if ((relative = eldest_child(p)))
4318 printk("%5d ", relative->pid);
4321 if ((relative = younger_sibling(p)))
4322 printk("%7d", relative->pid);
4325 if ((relative = older_sibling(p)))
4326 printk(" %5d", relative->pid);
4330 printk(" (L-TLB)\n");
4332 printk(" (NOTLB)\n");
4334 if (state != TASK_RUNNING)
4335 show_stack(p, NULL);
4338 void show_state(void)
4342 #if (BITS_PER_LONG == 32)
4345 printk(" task PC pid father child younger older\n");
4349 printk(" task PC pid father child younger older\n");
4351 read_lock(&tasklist_lock);
4352 do_each_thread(g, p) {
4354 * reset the NMI-timeout, listing all files on a slow
4355 * console might take alot of time:
4357 touch_nmi_watchdog();
4359 } while_each_thread(g, p);
4361 read_unlock(&tasklist_lock);
4362 mutex_debug_show_all_locks();
4366 * init_idle - set up an idle thread for a given CPU
4367 * @idle: task in question
4368 * @cpu: cpu the idle task belongs to
4370 * NOTE: this function does not set the idle thread's NEED_RESCHED
4371 * flag, to make booting more robust.
4373 void __devinit init_idle(task_t *idle, int cpu)
4375 runqueue_t *rq = cpu_rq(cpu);
4376 unsigned long flags;
4378 idle->timestamp = sched_clock();
4379 idle->sleep_avg = 0;
4381 idle->prio = MAX_PRIO;
4382 idle->state = TASK_RUNNING;
4383 idle->cpus_allowed = cpumask_of_cpu(cpu);
4384 set_task_cpu(idle, cpu);
4386 spin_lock_irqsave(&rq->lock, flags);
4387 rq->curr = rq->idle = idle;
4388 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4391 spin_unlock_irqrestore(&rq->lock, flags);
4393 /* Set the preempt count _outside_ the spinlocks! */
4394 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4395 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4397 task_thread_info(idle)->preempt_count = 0;
4402 * In a system that switches off the HZ timer nohz_cpu_mask
4403 * indicates which cpus entered this state. This is used
4404 * in the rcu update to wait only for active cpus. For system
4405 * which do not switch off the HZ timer nohz_cpu_mask should
4406 * always be CPU_MASK_NONE.
4408 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4412 * This is how migration works:
4414 * 1) we queue a migration_req_t structure in the source CPU's
4415 * runqueue and wake up that CPU's migration thread.
4416 * 2) we down() the locked semaphore => thread blocks.
4417 * 3) migration thread wakes up (implicitly it forces the migrated
4418 * thread off the CPU)
4419 * 4) it gets the migration request and checks whether the migrated
4420 * task is still in the wrong runqueue.
4421 * 5) if it's in the wrong runqueue then the migration thread removes
4422 * it and puts it into the right queue.
4423 * 6) migration thread up()s the semaphore.
4424 * 7) we wake up and the migration is done.
4428 * Change a given task's CPU affinity. Migrate the thread to a
4429 * proper CPU and schedule it away if the CPU it's executing on
4430 * is removed from the allowed bitmask.
4432 * NOTE: the caller must have a valid reference to the task, the
4433 * task must not exit() & deallocate itself prematurely. The
4434 * call is not atomic; no spinlocks may be held.
4436 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4438 unsigned long flags;
4440 migration_req_t req;
4443 rq = task_rq_lock(p, &flags);
4444 if (!cpus_intersects(new_mask, cpu_online_map)) {
4449 p->cpus_allowed = new_mask;
4450 /* Can the task run on the task's current CPU? If so, we're done */
4451 if (cpu_isset(task_cpu(p), new_mask))
4454 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4455 /* Need help from migration thread: drop lock and wait. */
4456 task_rq_unlock(rq, &flags);
4457 wake_up_process(rq->migration_thread);
4458 wait_for_completion(&req.done);
4459 tlb_migrate_finish(p->mm);
4463 task_rq_unlock(rq, &flags);
4467 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4470 * Move (not current) task off this cpu, onto dest cpu. We're doing
4471 * this because either it can't run here any more (set_cpus_allowed()
4472 * away from this CPU, or CPU going down), or because we're
4473 * attempting to rebalance this task on exec (sched_exec).
4475 * So we race with normal scheduler movements, but that's OK, as long
4476 * as the task is no longer on this CPU.
4478 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4480 runqueue_t *rq_dest, *rq_src;
4482 if (unlikely(cpu_is_offline(dest_cpu)))
4485 rq_src = cpu_rq(src_cpu);
4486 rq_dest = cpu_rq(dest_cpu);
4488 double_rq_lock(rq_src, rq_dest);
4489 /* Already moved. */
4490 if (task_cpu(p) != src_cpu)
4492 /* Affinity changed (again). */
4493 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4496 set_task_cpu(p, dest_cpu);
4499 * Sync timestamp with rq_dest's before activating.
4500 * The same thing could be achieved by doing this step
4501 * afterwards, and pretending it was a local activate.
4502 * This way is cleaner and logically correct.
4504 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4505 + rq_dest->timestamp_last_tick;
4506 deactivate_task(p, rq_src);
4507 activate_task(p, rq_dest, 0);
4508 if (TASK_PREEMPTS_CURR(p, rq_dest))
4509 resched_task(rq_dest->curr);
4513 double_rq_unlock(rq_src, rq_dest);
4517 * migration_thread - this is a highprio system thread that performs
4518 * thread migration by bumping thread off CPU then 'pushing' onto
4521 static int migration_thread(void *data)
4524 int cpu = (long)data;
4527 BUG_ON(rq->migration_thread != current);
4529 set_current_state(TASK_INTERRUPTIBLE);
4530 while (!kthread_should_stop()) {
4531 struct list_head *head;
4532 migration_req_t *req;
4536 spin_lock_irq(&rq->lock);
4538 if (cpu_is_offline(cpu)) {
4539 spin_unlock_irq(&rq->lock);
4543 if (rq->active_balance) {
4544 active_load_balance(rq, cpu);
4545 rq->active_balance = 0;
4548 head = &rq->migration_queue;
4550 if (list_empty(head)) {
4551 spin_unlock_irq(&rq->lock);
4553 set_current_state(TASK_INTERRUPTIBLE);
4556 req = list_entry(head->next, migration_req_t, list);
4557 list_del_init(head->next);
4559 spin_unlock(&rq->lock);
4560 __migrate_task(req->task, cpu, req->dest_cpu);
4563 complete(&req->done);
4565 __set_current_state(TASK_RUNNING);
4569 /* Wait for kthread_stop */
4570 set_current_state(TASK_INTERRUPTIBLE);
4571 while (!kthread_should_stop()) {
4573 set_current_state(TASK_INTERRUPTIBLE);
4575 __set_current_state(TASK_RUNNING);
4579 #ifdef CONFIG_HOTPLUG_CPU
4580 /* Figure out where task on dead CPU should go, use force if neccessary. */
4581 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4587 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4588 cpus_and(mask, mask, tsk->cpus_allowed);
4589 dest_cpu = any_online_cpu(mask);
4591 /* On any allowed CPU? */
4592 if (dest_cpu == NR_CPUS)
4593 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4595 /* No more Mr. Nice Guy. */
4596 if (dest_cpu == NR_CPUS) {
4597 cpus_setall(tsk->cpus_allowed);
4598 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4601 * Don't tell them about moving exiting tasks or
4602 * kernel threads (both mm NULL), since they never
4605 if (tsk->mm && printk_ratelimit())
4606 printk(KERN_INFO "process %d (%s) no "
4607 "longer affine to cpu%d\n",
4608 tsk->pid, tsk->comm, dead_cpu);
4610 __migrate_task(tsk, dead_cpu, dest_cpu);
4614 * While a dead CPU has no uninterruptible tasks queued at this point,
4615 * it might still have a nonzero ->nr_uninterruptible counter, because
4616 * for performance reasons the counter is not stricly tracking tasks to
4617 * their home CPUs. So we just add the counter to another CPU's counter,
4618 * to keep the global sum constant after CPU-down:
4620 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4622 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4623 unsigned long flags;
4625 local_irq_save(flags);
4626 double_rq_lock(rq_src, rq_dest);
4627 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4628 rq_src->nr_uninterruptible = 0;
4629 double_rq_unlock(rq_src, rq_dest);
4630 local_irq_restore(flags);
4633 /* Run through task list and migrate tasks from the dead cpu. */
4634 static void migrate_live_tasks(int src_cpu)
4636 struct task_struct *tsk, *t;
4638 write_lock_irq(&tasklist_lock);
4640 do_each_thread(t, tsk) {
4644 if (task_cpu(tsk) == src_cpu)
4645 move_task_off_dead_cpu(src_cpu, tsk);
4646 } while_each_thread(t, tsk);
4648 write_unlock_irq(&tasklist_lock);
4651 /* Schedules idle task to be the next runnable task on current CPU.
4652 * It does so by boosting its priority to highest possible and adding it to
4653 * the _front_ of runqueue. Used by CPU offline code.
4655 void sched_idle_next(void)
4657 int cpu = smp_processor_id();
4658 runqueue_t *rq = this_rq();
4659 struct task_struct *p = rq->idle;
4660 unsigned long flags;
4662 /* cpu has to be offline */
4663 BUG_ON(cpu_online(cpu));
4665 /* Strictly not necessary since rest of the CPUs are stopped by now
4666 * and interrupts disabled on current cpu.
4668 spin_lock_irqsave(&rq->lock, flags);
4670 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4671 /* Add idle task to _front_ of it's priority queue */
4672 __activate_idle_task(p, rq);
4674 spin_unlock_irqrestore(&rq->lock, flags);
4677 /* Ensures that the idle task is using init_mm right before its cpu goes
4680 void idle_task_exit(void)
4682 struct mm_struct *mm = current->active_mm;
4684 BUG_ON(cpu_online(smp_processor_id()));
4687 switch_mm(mm, &init_mm, current);
4691 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4693 struct runqueue *rq = cpu_rq(dead_cpu);
4695 /* Must be exiting, otherwise would be on tasklist. */
4696 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4698 /* Cannot have done final schedule yet: would have vanished. */
4699 BUG_ON(tsk->flags & PF_DEAD);
4701 get_task_struct(tsk);
4704 * Drop lock around migration; if someone else moves it,
4705 * that's OK. No task can be added to this CPU, so iteration is
4708 spin_unlock_irq(&rq->lock);
4709 move_task_off_dead_cpu(dead_cpu, tsk);
4710 spin_lock_irq(&rq->lock);
4712 put_task_struct(tsk);
4715 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4716 static void migrate_dead_tasks(unsigned int dead_cpu)
4719 struct runqueue *rq = cpu_rq(dead_cpu);
4721 for (arr = 0; arr < 2; arr++) {
4722 for (i = 0; i < MAX_PRIO; i++) {
4723 struct list_head *list = &rq->arrays[arr].queue[i];
4724 while (!list_empty(list))
4725 migrate_dead(dead_cpu,
4726 list_entry(list->next, task_t,
4731 #endif /* CONFIG_HOTPLUG_CPU */
4734 * migration_call - callback that gets triggered when a CPU is added.
4735 * Here we can start up the necessary migration thread for the new CPU.
4737 static int migration_call(struct notifier_block *nfb, unsigned long action,
4740 int cpu = (long)hcpu;
4741 struct task_struct *p;
4742 struct runqueue *rq;
4743 unsigned long flags;
4746 case CPU_UP_PREPARE:
4747 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4750 p->flags |= PF_NOFREEZE;
4751 kthread_bind(p, cpu);
4752 /* Must be high prio: stop_machine expects to yield to it. */
4753 rq = task_rq_lock(p, &flags);
4754 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4755 task_rq_unlock(rq, &flags);
4756 cpu_rq(cpu)->migration_thread = p;
4759 /* Strictly unneccessary, as first user will wake it. */
4760 wake_up_process(cpu_rq(cpu)->migration_thread);
4762 #ifdef CONFIG_HOTPLUG_CPU
4763 case CPU_UP_CANCELED:
4764 if (!cpu_rq(cpu)->migration_thread)
4766 /* Unbind it from offline cpu so it can run. Fall thru. */
4767 kthread_bind(cpu_rq(cpu)->migration_thread,
4768 any_online_cpu(cpu_online_map));
4769 kthread_stop(cpu_rq(cpu)->migration_thread);
4770 cpu_rq(cpu)->migration_thread = NULL;
4773 migrate_live_tasks(cpu);
4775 kthread_stop(rq->migration_thread);
4776 rq->migration_thread = NULL;
4777 /* Idle task back to normal (off runqueue, low prio) */
4778 rq = task_rq_lock(rq->idle, &flags);
4779 deactivate_task(rq->idle, rq);
4780 rq->idle->static_prio = MAX_PRIO;
4781 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4782 migrate_dead_tasks(cpu);
4783 task_rq_unlock(rq, &flags);
4784 migrate_nr_uninterruptible(rq);
4785 BUG_ON(rq->nr_running != 0);
4787 /* No need to migrate the tasks: it was best-effort if
4788 * they didn't do lock_cpu_hotplug(). Just wake up
4789 * the requestors. */
4790 spin_lock_irq(&rq->lock);
4791 while (!list_empty(&rq->migration_queue)) {
4792 migration_req_t *req;
4793 req = list_entry(rq->migration_queue.next,
4794 migration_req_t, list);
4795 list_del_init(&req->list);
4796 complete(&req->done);
4798 spin_unlock_irq(&rq->lock);
4805 /* Register at highest priority so that task migration (migrate_all_tasks)
4806 * happens before everything else.
4808 static struct notifier_block migration_notifier = {
4809 .notifier_call = migration_call,
4813 int __init migration_init(void)
4815 void *cpu = (void *)(long)smp_processor_id();
4816 /* Start one for boot CPU. */
4817 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4818 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4819 register_cpu_notifier(&migration_notifier);
4825 #undef SCHED_DOMAIN_DEBUG
4826 #ifdef SCHED_DOMAIN_DEBUG
4827 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4832 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4836 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4841 struct sched_group *group = sd->groups;
4842 cpumask_t groupmask;
4844 cpumask_scnprintf(str, NR_CPUS, sd->span);
4845 cpus_clear(groupmask);
4848 for (i = 0; i < level + 1; i++)
4850 printk("domain %d: ", level);
4852 if (!(sd->flags & SD_LOAD_BALANCE)) {
4853 printk("does not load-balance\n");
4855 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4859 printk("span %s\n", str);
4861 if (!cpu_isset(cpu, sd->span))
4862 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4863 if (!cpu_isset(cpu, group->cpumask))
4864 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4867 for (i = 0; i < level + 2; i++)
4873 printk(KERN_ERR "ERROR: group is NULL\n");
4877 if (!group->cpu_power) {
4879 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4882 if (!cpus_weight(group->cpumask)) {
4884 printk(KERN_ERR "ERROR: empty group\n");
4887 if (cpus_intersects(groupmask, group->cpumask)) {
4889 printk(KERN_ERR "ERROR: repeated CPUs\n");
4892 cpus_or(groupmask, groupmask, group->cpumask);
4894 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4897 group = group->next;
4898 } while (group != sd->groups);
4901 if (!cpus_equal(sd->span, groupmask))
4902 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4908 if (!cpus_subset(groupmask, sd->span))
4909 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4915 #define sched_domain_debug(sd, cpu) {}
4918 static int sd_degenerate(struct sched_domain *sd)
4920 if (cpus_weight(sd->span) == 1)
4923 /* Following flags need at least 2 groups */
4924 if (sd->flags & (SD_LOAD_BALANCE |
4925 SD_BALANCE_NEWIDLE |
4928 if (sd->groups != sd->groups->next)
4932 /* Following flags don't use groups */
4933 if (sd->flags & (SD_WAKE_IDLE |
4941 static int sd_parent_degenerate(struct sched_domain *sd,
4942 struct sched_domain *parent)
4944 unsigned long cflags = sd->flags, pflags = parent->flags;
4946 if (sd_degenerate(parent))
4949 if (!cpus_equal(sd->span, parent->span))
4952 /* Does parent contain flags not in child? */
4953 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4954 if (cflags & SD_WAKE_AFFINE)
4955 pflags &= ~SD_WAKE_BALANCE;
4956 /* Flags needing groups don't count if only 1 group in parent */
4957 if (parent->groups == parent->groups->next) {
4958 pflags &= ~(SD_LOAD_BALANCE |
4959 SD_BALANCE_NEWIDLE |
4963 if (~cflags & pflags)
4970 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4971 * hold the hotplug lock.
4973 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4975 runqueue_t *rq = cpu_rq(cpu);
4976 struct sched_domain *tmp;
4978 /* Remove the sched domains which do not contribute to scheduling. */
4979 for (tmp = sd; tmp; tmp = tmp->parent) {
4980 struct sched_domain *parent = tmp->parent;
4983 if (sd_parent_degenerate(tmp, parent))
4984 tmp->parent = parent->parent;
4987 if (sd && sd_degenerate(sd))
4990 sched_domain_debug(sd, cpu);
4992 rcu_assign_pointer(rq->sd, sd);
4995 /* cpus with isolated domains */
4996 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4998 /* Setup the mask of cpus configured for isolated domains */
4999 static int __init isolated_cpu_setup(char *str)
5001 int ints[NR_CPUS], i;
5003 str = get_options(str, ARRAY_SIZE(ints), ints);
5004 cpus_clear(cpu_isolated_map);
5005 for (i = 1; i <= ints[0]; i++)
5006 if (ints[i] < NR_CPUS)
5007 cpu_set(ints[i], cpu_isolated_map);
5011 __setup ("isolcpus=", isolated_cpu_setup);
5014 * init_sched_build_groups takes an array of groups, the cpumask we wish
5015 * to span, and a pointer to a function which identifies what group a CPU
5016 * belongs to. The return value of group_fn must be a valid index into the
5017 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5018 * keep track of groups covered with a cpumask_t).
5020 * init_sched_build_groups will build a circular linked list of the groups
5021 * covered by the given span, and will set each group's ->cpumask correctly,
5022 * and ->cpu_power to 0.
5024 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5025 int (*group_fn)(int cpu))
5027 struct sched_group *first = NULL, *last = NULL;
5028 cpumask_t covered = CPU_MASK_NONE;
5031 for_each_cpu_mask(i, span) {
5032 int group = group_fn(i);
5033 struct sched_group *sg = &groups[group];
5036 if (cpu_isset(i, covered))
5039 sg->cpumask = CPU_MASK_NONE;
5042 for_each_cpu_mask(j, span) {
5043 if (group_fn(j) != group)
5046 cpu_set(j, covered);
5047 cpu_set(j, sg->cpumask);
5058 #define SD_NODES_PER_DOMAIN 16
5061 * Self-tuning task migration cost measurement between source and target CPUs.
5063 * This is done by measuring the cost of manipulating buffers of varying
5064 * sizes. For a given buffer-size here are the steps that are taken:
5066 * 1) the source CPU reads+dirties a shared buffer
5067 * 2) the target CPU reads+dirties the same shared buffer
5069 * We measure how long they take, in the following 4 scenarios:
5071 * - source: CPU1, target: CPU2 | cost1
5072 * - source: CPU2, target: CPU1 | cost2
5073 * - source: CPU1, target: CPU1 | cost3
5074 * - source: CPU2, target: CPU2 | cost4
5076 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5077 * the cost of migration.
5079 * We then start off from a small buffer-size and iterate up to larger
5080 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5081 * doing a maximum search for the cost. (The maximum cost for a migration
5082 * normally occurs when the working set size is around the effective cache
5085 #define SEARCH_SCOPE 2
5086 #define MIN_CACHE_SIZE (64*1024U)
5087 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5088 #define ITERATIONS 1
5089 #define SIZE_THRESH 130
5090 #define COST_THRESH 130
5093 * The migration cost is a function of 'domain distance'. Domain
5094 * distance is the number of steps a CPU has to iterate down its
5095 * domain tree to share a domain with the other CPU. The farther
5096 * two CPUs are from each other, the larger the distance gets.
5098 * Note that we use the distance only to cache measurement results,
5099 * the distance value is not used numerically otherwise. When two
5100 * CPUs have the same distance it is assumed that the migration
5101 * cost is the same. (this is a simplification but quite practical)
5103 #define MAX_DOMAIN_DISTANCE 32
5105 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5106 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5108 * Architectures may override the migration cost and thus avoid
5109 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5110 * virtualized hardware:
5112 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5113 CONFIG_DEFAULT_MIGRATION_COST
5120 * Allow override of migration cost - in units of microseconds.
5121 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5122 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5124 static int __init migration_cost_setup(char *str)
5126 int ints[MAX_DOMAIN_DISTANCE+1], i;
5128 str = get_options(str, ARRAY_SIZE(ints), ints);
5130 printk("#ints: %d\n", ints[0]);
5131 for (i = 1; i <= ints[0]; i++) {
5132 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5133 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5138 __setup ("migration_cost=", migration_cost_setup);
5141 * Global multiplier (divisor) for migration-cutoff values,
5142 * in percentiles. E.g. use a value of 150 to get 1.5 times
5143 * longer cache-hot cutoff times.
5145 * (We scale it from 100 to 128 to long long handling easier.)
5148 #define MIGRATION_FACTOR_SCALE 128
5150 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5152 static int __init setup_migration_factor(char *str)
5154 get_option(&str, &migration_factor);
5155 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5159 __setup("migration_factor=", setup_migration_factor);
5162 * Estimated distance of two CPUs, measured via the number of domains
5163 * we have to pass for the two CPUs to be in the same span:
5165 static unsigned long domain_distance(int cpu1, int cpu2)
5167 unsigned long distance = 0;
5168 struct sched_domain *sd;
5170 for_each_domain(cpu1, sd) {
5171 WARN_ON(!cpu_isset(cpu1, sd->span));
5172 if (cpu_isset(cpu2, sd->span))
5176 if (distance >= MAX_DOMAIN_DISTANCE) {
5178 distance = MAX_DOMAIN_DISTANCE-1;
5184 static unsigned int migration_debug;
5186 static int __init setup_migration_debug(char *str)
5188 get_option(&str, &migration_debug);
5192 __setup("migration_debug=", setup_migration_debug);
5195 * Maximum cache-size that the scheduler should try to measure.
5196 * Architectures with larger caches should tune this up during
5197 * bootup. Gets used in the domain-setup code (i.e. during SMP
5200 unsigned int max_cache_size;
5202 static int __init setup_max_cache_size(char *str)
5204 get_option(&str, &max_cache_size);
5208 __setup("max_cache_size=", setup_max_cache_size);
5211 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5212 * is the operation that is timed, so we try to generate unpredictable
5213 * cachemisses that still end up filling the L2 cache:
5215 static void touch_cache(void *__cache, unsigned long __size)
5217 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5219 unsigned long *cache = __cache;
5222 for (i = 0; i < size/6; i += 8) {
5225 case 1: cache[size-1-i]++;
5226 case 2: cache[chunk1-i]++;
5227 case 3: cache[chunk1+i]++;
5228 case 4: cache[chunk2-i]++;
5229 case 5: cache[chunk2+i]++;
5235 * Measure the cache-cost of one task migration. Returns in units of nsec.
5237 static unsigned long long measure_one(void *cache, unsigned long size,
5238 int source, int target)
5240 cpumask_t mask, saved_mask;
5241 unsigned long long t0, t1, t2, t3, cost;
5243 saved_mask = current->cpus_allowed;
5246 * Flush source caches to RAM and invalidate them:
5251 * Migrate to the source CPU:
5253 mask = cpumask_of_cpu(source);
5254 set_cpus_allowed(current, mask);
5255 WARN_ON(smp_processor_id() != source);
5258 * Dirty the working set:
5261 touch_cache(cache, size);
5265 * Migrate to the target CPU, dirty the L2 cache and access
5266 * the shared buffer. (which represents the working set
5267 * of a migrated task.)
5269 mask = cpumask_of_cpu(target);
5270 set_cpus_allowed(current, mask);
5271 WARN_ON(smp_processor_id() != target);
5274 touch_cache(cache, size);
5277 cost = t1-t0 + t3-t2;
5279 if (migration_debug >= 2)
5280 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5281 source, target, t1-t0, t1-t0, t3-t2, cost);
5283 * Flush target caches to RAM and invalidate them:
5287 set_cpus_allowed(current, saved_mask);
5293 * Measure a series of task migrations and return the average
5294 * result. Since this code runs early during bootup the system
5295 * is 'undisturbed' and the average latency makes sense.
5297 * The algorithm in essence auto-detects the relevant cache-size,
5298 * so it will properly detect different cachesizes for different
5299 * cache-hierarchies, depending on how the CPUs are connected.
5301 * Architectures can prime the upper limit of the search range via
5302 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5304 static unsigned long long
5305 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5307 unsigned long long cost1, cost2;
5311 * Measure the migration cost of 'size' bytes, over an
5312 * average of 10 runs:
5314 * (We perturb the cache size by a small (0..4k)
5315 * value to compensate size/alignment related artifacts.
5316 * We also subtract the cost of the operation done on
5322 * dry run, to make sure we start off cache-cold on cpu1,
5323 * and to get any vmalloc pagefaults in advance:
5325 measure_one(cache, size, cpu1, cpu2);
5326 for (i = 0; i < ITERATIONS; i++)
5327 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5329 measure_one(cache, size, cpu2, cpu1);
5330 for (i = 0; i < ITERATIONS; i++)
5331 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5334 * (We measure the non-migrating [cached] cost on both
5335 * cpu1 and cpu2, to handle CPUs with different speeds)
5339 measure_one(cache, size, cpu1, cpu1);
5340 for (i = 0; i < ITERATIONS; i++)
5341 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5343 measure_one(cache, size, cpu2, cpu2);
5344 for (i = 0; i < ITERATIONS; i++)
5345 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5348 * Get the per-iteration migration cost:
5350 do_div(cost1, 2*ITERATIONS);
5351 do_div(cost2, 2*ITERATIONS);
5353 return cost1 - cost2;
5356 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5358 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5359 unsigned int max_size, size, size_found = 0;
5360 long long cost = 0, prev_cost;
5364 * Search from max_cache_size*5 down to 64K - the real relevant
5365 * cachesize has to lie somewhere inbetween.
5367 if (max_cache_size) {
5368 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5369 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5372 * Since we have no estimation about the relevant
5375 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5376 size = MIN_CACHE_SIZE;
5379 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5380 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5385 * Allocate the working set:
5387 cache = vmalloc(max_size);
5389 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5390 return 1000000; // return 1 msec on very small boxen
5393 while (size <= max_size) {
5395 cost = measure_cost(cpu1, cpu2, cache, size);
5401 if (max_cost < cost) {
5407 * Calculate average fluctuation, we use this to prevent
5408 * noise from triggering an early break out of the loop:
5410 fluct = abs(cost - prev_cost);
5411 avg_fluct = (avg_fluct + fluct)/2;
5413 if (migration_debug)
5414 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5416 (long)cost / 1000000,
5417 ((long)cost / 100000) % 10,
5418 (long)max_cost / 1000000,
5419 ((long)max_cost / 100000) % 10,
5420 domain_distance(cpu1, cpu2),
5424 * If we iterated at least 20% past the previous maximum,
5425 * and the cost has dropped by more than 20% already,
5426 * (taking fluctuations into account) then we assume to
5427 * have found the maximum and break out of the loop early:
5429 if (size_found && (size*100 > size_found*SIZE_THRESH))
5430 if (cost+avg_fluct <= 0 ||
5431 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5433 if (migration_debug)
5434 printk("-> found max.\n");
5438 * Increase the cachesize in 10% steps:
5440 size = size * 10 / 9;
5443 if (migration_debug)
5444 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5445 cpu1, cpu2, size_found, max_cost);
5450 * A task is considered 'cache cold' if at least 2 times
5451 * the worst-case cost of migration has passed.
5453 * (this limit is only listened to if the load-balancing
5454 * situation is 'nice' - if there is a large imbalance we
5455 * ignore it for the sake of CPU utilization and
5456 * processing fairness.)
5458 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5461 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5463 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5464 unsigned long j0, j1, distance, max_distance = 0;
5465 struct sched_domain *sd;
5470 * First pass - calculate the cacheflush times:
5472 for_each_cpu_mask(cpu1, *cpu_map) {
5473 for_each_cpu_mask(cpu2, *cpu_map) {
5476 distance = domain_distance(cpu1, cpu2);
5477 max_distance = max(max_distance, distance);
5479 * No result cached yet?
5481 if (migration_cost[distance] == -1LL)
5482 migration_cost[distance] =
5483 measure_migration_cost(cpu1, cpu2);
5487 * Second pass - update the sched domain hierarchy with
5488 * the new cache-hot-time estimations:
5490 for_each_cpu_mask(cpu, *cpu_map) {
5492 for_each_domain(cpu, sd) {
5493 sd->cache_hot_time = migration_cost[distance];
5500 if (migration_debug)
5501 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5509 if (system_state == SYSTEM_BOOTING) {
5510 printk("migration_cost=");
5511 for (distance = 0; distance <= max_distance; distance++) {
5514 printk("%ld", (long)migration_cost[distance] / 1000);
5519 if (migration_debug)
5520 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5523 * Move back to the original CPU. NUMA-Q gets confused
5524 * if we migrate to another quad during bootup.
5526 if (raw_smp_processor_id() != orig_cpu) {
5527 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5528 saved_mask = current->cpus_allowed;
5530 set_cpus_allowed(current, mask);
5531 set_cpus_allowed(current, saved_mask);
5538 * find_next_best_node - find the next node to include in a sched_domain
5539 * @node: node whose sched_domain we're building
5540 * @used_nodes: nodes already in the sched_domain
5542 * Find the next node to include in a given scheduling domain. Simply
5543 * finds the closest node not already in the @used_nodes map.
5545 * Should use nodemask_t.
5547 static int find_next_best_node(int node, unsigned long *used_nodes)
5549 int i, n, val, min_val, best_node = 0;
5553 for (i = 0; i < MAX_NUMNODES; i++) {
5554 /* Start at @node */
5555 n = (node + i) % MAX_NUMNODES;
5557 if (!nr_cpus_node(n))
5560 /* Skip already used nodes */
5561 if (test_bit(n, used_nodes))
5564 /* Simple min distance search */
5565 val = node_distance(node, n);
5567 if (val < min_val) {
5573 set_bit(best_node, used_nodes);
5578 * sched_domain_node_span - get a cpumask for a node's sched_domain
5579 * @node: node whose cpumask we're constructing
5580 * @size: number of nodes to include in this span
5582 * Given a node, construct a good cpumask for its sched_domain to span. It
5583 * should be one that prevents unnecessary balancing, but also spreads tasks
5586 static cpumask_t sched_domain_node_span(int node)
5589 cpumask_t span, nodemask;
5590 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5593 bitmap_zero(used_nodes, MAX_NUMNODES);
5595 nodemask = node_to_cpumask(node);
5596 cpus_or(span, span, nodemask);
5597 set_bit(node, used_nodes);
5599 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5600 int next_node = find_next_best_node(node, used_nodes);
5601 nodemask = node_to_cpumask(next_node);
5602 cpus_or(span, span, nodemask);
5610 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5611 * can switch it on easily if needed.
5613 #ifdef CONFIG_SCHED_SMT
5614 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5615 static struct sched_group sched_group_cpus[NR_CPUS];
5616 static int cpu_to_cpu_group(int cpu)
5622 #ifdef CONFIG_SCHED_MC
5623 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5624 static struct sched_group sched_group_core[NR_CPUS];
5627 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5628 static int cpu_to_core_group(int cpu)
5630 return first_cpu(cpu_sibling_map[cpu]);
5632 #elif defined(CONFIG_SCHED_MC)
5633 static int cpu_to_core_group(int cpu)
5639 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5640 static struct sched_group sched_group_phys[NR_CPUS];
5641 static int cpu_to_phys_group(int cpu)
5643 #if defined(CONFIG_SCHED_MC)
5644 cpumask_t mask = cpu_coregroup_map(cpu);
5645 return first_cpu(mask);
5646 #elif defined(CONFIG_SCHED_SMT)
5647 return first_cpu(cpu_sibling_map[cpu]);
5655 * The init_sched_build_groups can't handle what we want to do with node
5656 * groups, so roll our own. Now each node has its own list of groups which
5657 * gets dynamically allocated.
5659 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5660 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5662 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5663 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5665 static int cpu_to_allnodes_group(int cpu)
5667 return cpu_to_node(cpu);
5669 static void init_numa_sched_groups_power(struct sched_group *group_head)
5671 struct sched_group *sg = group_head;
5677 for_each_cpu_mask(j, sg->cpumask) {
5678 struct sched_domain *sd;
5680 sd = &per_cpu(phys_domains, j);
5681 if (j != first_cpu(sd->groups->cpumask)) {
5683 * Only add "power" once for each
5689 sg->cpu_power += sd->groups->cpu_power;
5692 if (sg != group_head)
5698 * Build sched domains for a given set of cpus and attach the sched domains
5699 * to the individual cpus
5701 void build_sched_domains(const cpumask_t *cpu_map)
5705 struct sched_group **sched_group_nodes = NULL;
5706 struct sched_group *sched_group_allnodes = NULL;
5709 * Allocate the per-node list of sched groups
5711 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5713 if (!sched_group_nodes) {
5714 printk(KERN_WARNING "Can not alloc sched group node list\n");
5717 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5721 * Set up domains for cpus specified by the cpu_map.
5723 for_each_cpu_mask(i, *cpu_map) {
5725 struct sched_domain *sd = NULL, *p;
5726 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5728 cpus_and(nodemask, nodemask, *cpu_map);
5731 if (cpus_weight(*cpu_map)
5732 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5733 if (!sched_group_allnodes) {
5734 sched_group_allnodes
5735 = kmalloc(sizeof(struct sched_group)
5738 if (!sched_group_allnodes) {
5740 "Can not alloc allnodes sched group\n");
5743 sched_group_allnodes_bycpu[i]
5744 = sched_group_allnodes;
5746 sd = &per_cpu(allnodes_domains, i);
5747 *sd = SD_ALLNODES_INIT;
5748 sd->span = *cpu_map;
5749 group = cpu_to_allnodes_group(i);
5750 sd->groups = &sched_group_allnodes[group];
5755 sd = &per_cpu(node_domains, i);
5757 sd->span = sched_domain_node_span(cpu_to_node(i));
5759 cpus_and(sd->span, sd->span, *cpu_map);
5763 sd = &per_cpu(phys_domains, i);
5764 group = cpu_to_phys_group(i);
5766 sd->span = nodemask;
5768 sd->groups = &sched_group_phys[group];
5770 #ifdef CONFIG_SCHED_MC
5772 sd = &per_cpu(core_domains, i);
5773 group = cpu_to_core_group(i);
5775 sd->span = cpu_coregroup_map(i);
5776 cpus_and(sd->span, sd->span, *cpu_map);
5778 sd->groups = &sched_group_core[group];
5781 #ifdef CONFIG_SCHED_SMT
5783 sd = &per_cpu(cpu_domains, i);
5784 group = cpu_to_cpu_group(i);
5785 *sd = SD_SIBLING_INIT;
5786 sd->span = cpu_sibling_map[i];
5787 cpus_and(sd->span, sd->span, *cpu_map);
5789 sd->groups = &sched_group_cpus[group];
5793 #ifdef CONFIG_SCHED_SMT
5794 /* Set up CPU (sibling) groups */
5795 for_each_cpu_mask(i, *cpu_map) {
5796 cpumask_t this_sibling_map = cpu_sibling_map[i];
5797 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5798 if (i != first_cpu(this_sibling_map))
5801 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5806 #ifdef CONFIG_SCHED_MC
5807 /* Set up multi-core groups */
5808 for_each_cpu_mask(i, *cpu_map) {
5809 cpumask_t this_core_map = cpu_coregroup_map(i);
5810 cpus_and(this_core_map, this_core_map, *cpu_map);
5811 if (i != first_cpu(this_core_map))
5813 init_sched_build_groups(sched_group_core, this_core_map,
5814 &cpu_to_core_group);
5819 /* Set up physical groups */
5820 for (i = 0; i < MAX_NUMNODES; i++) {
5821 cpumask_t nodemask = node_to_cpumask(i);
5823 cpus_and(nodemask, nodemask, *cpu_map);
5824 if (cpus_empty(nodemask))
5827 init_sched_build_groups(sched_group_phys, nodemask,
5828 &cpu_to_phys_group);
5832 /* Set up node groups */
5833 if (sched_group_allnodes)
5834 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5835 &cpu_to_allnodes_group);
5837 for (i = 0; i < MAX_NUMNODES; i++) {
5838 /* Set up node groups */
5839 struct sched_group *sg, *prev;
5840 cpumask_t nodemask = node_to_cpumask(i);
5841 cpumask_t domainspan;
5842 cpumask_t covered = CPU_MASK_NONE;
5845 cpus_and(nodemask, nodemask, *cpu_map);
5846 if (cpus_empty(nodemask)) {
5847 sched_group_nodes[i] = NULL;
5851 domainspan = sched_domain_node_span(i);
5852 cpus_and(domainspan, domainspan, *cpu_map);
5854 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5855 sched_group_nodes[i] = sg;
5856 for_each_cpu_mask(j, nodemask) {
5857 struct sched_domain *sd;
5858 sd = &per_cpu(node_domains, j);
5860 if (sd->groups == NULL) {
5861 /* Turn off balancing if we have no groups */
5867 "Can not alloc domain group for node %d\n", i);
5871 sg->cpumask = nodemask;
5872 cpus_or(covered, covered, nodemask);
5875 for (j = 0; j < MAX_NUMNODES; j++) {
5876 cpumask_t tmp, notcovered;
5877 int n = (i + j) % MAX_NUMNODES;
5879 cpus_complement(notcovered, covered);
5880 cpus_and(tmp, notcovered, *cpu_map);
5881 cpus_and(tmp, tmp, domainspan);
5882 if (cpus_empty(tmp))
5885 nodemask = node_to_cpumask(n);
5886 cpus_and(tmp, tmp, nodemask);
5887 if (cpus_empty(tmp))
5890 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5893 "Can not alloc domain group for node %d\n", j);
5898 cpus_or(covered, covered, tmp);
5902 prev->next = sched_group_nodes[i];
5906 /* Calculate CPU power for physical packages and nodes */
5907 for_each_cpu_mask(i, *cpu_map) {
5909 struct sched_domain *sd;
5910 #ifdef CONFIG_SCHED_SMT
5911 sd = &per_cpu(cpu_domains, i);
5912 power = SCHED_LOAD_SCALE;
5913 sd->groups->cpu_power = power;
5915 #ifdef CONFIG_SCHED_MC
5916 sd = &per_cpu(core_domains, i);
5917 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5918 * SCHED_LOAD_SCALE / 10;
5919 sd->groups->cpu_power = power;
5921 sd = &per_cpu(phys_domains, i);
5924 * This has to be < 2 * SCHED_LOAD_SCALE
5925 * Lets keep it SCHED_LOAD_SCALE, so that
5926 * while calculating NUMA group's cpu_power
5928 * numa_group->cpu_power += phys_group->cpu_power;
5930 * See "only add power once for each physical pkg"
5933 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5935 sd = &per_cpu(phys_domains, i);
5936 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5937 (cpus_weight(sd->groups->cpumask)-1) / 10;
5938 sd->groups->cpu_power = power;
5943 for (i = 0; i < MAX_NUMNODES; i++)
5944 init_numa_sched_groups_power(sched_group_nodes[i]);
5946 init_numa_sched_groups_power(sched_group_allnodes);
5949 /* Attach the domains */
5950 for_each_cpu_mask(i, *cpu_map) {
5951 struct sched_domain *sd;
5952 #ifdef CONFIG_SCHED_SMT
5953 sd = &per_cpu(cpu_domains, i);
5954 #elif defined(CONFIG_SCHED_MC)
5955 sd = &per_cpu(core_domains, i);
5957 sd = &per_cpu(phys_domains, i);
5959 cpu_attach_domain(sd, i);
5962 * Tune cache-hot values:
5964 calibrate_migration_costs(cpu_map);
5967 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5969 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5971 cpumask_t cpu_default_map;
5974 * Setup mask for cpus without special case scheduling requirements.
5975 * For now this just excludes isolated cpus, but could be used to
5976 * exclude other special cases in the future.
5978 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5980 build_sched_domains(&cpu_default_map);
5983 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5989 for_each_cpu_mask(cpu, *cpu_map) {
5990 struct sched_group *sched_group_allnodes
5991 = sched_group_allnodes_bycpu[cpu];
5992 struct sched_group **sched_group_nodes
5993 = sched_group_nodes_bycpu[cpu];
5995 if (sched_group_allnodes) {
5996 kfree(sched_group_allnodes);
5997 sched_group_allnodes_bycpu[cpu] = NULL;
6000 if (!sched_group_nodes)
6003 for (i = 0; i < MAX_NUMNODES; i++) {
6004 cpumask_t nodemask = node_to_cpumask(i);
6005 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6007 cpus_and(nodemask, nodemask, *cpu_map);
6008 if (cpus_empty(nodemask))
6018 if (oldsg != sched_group_nodes[i])
6021 kfree(sched_group_nodes);
6022 sched_group_nodes_bycpu[cpu] = NULL;
6028 * Detach sched domains from a group of cpus specified in cpu_map
6029 * These cpus will now be attached to the NULL domain
6031 static void detach_destroy_domains(const cpumask_t *cpu_map)
6035 for_each_cpu_mask(i, *cpu_map)
6036 cpu_attach_domain(NULL, i);
6037 synchronize_sched();
6038 arch_destroy_sched_domains(cpu_map);
6042 * Partition sched domains as specified by the cpumasks below.
6043 * This attaches all cpus from the cpumasks to the NULL domain,
6044 * waits for a RCU quiescent period, recalculates sched
6045 * domain information and then attaches them back to the
6046 * correct sched domains
6047 * Call with hotplug lock held
6049 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6051 cpumask_t change_map;
6053 cpus_and(*partition1, *partition1, cpu_online_map);
6054 cpus_and(*partition2, *partition2, cpu_online_map);
6055 cpus_or(change_map, *partition1, *partition2);
6057 /* Detach sched domains from all of the affected cpus */
6058 detach_destroy_domains(&change_map);
6059 if (!cpus_empty(*partition1))
6060 build_sched_domains(partition1);
6061 if (!cpus_empty(*partition2))
6062 build_sched_domains(partition2);
6065 #ifdef CONFIG_HOTPLUG_CPU
6067 * Force a reinitialization of the sched domains hierarchy. The domains
6068 * and groups cannot be updated in place without racing with the balancing
6069 * code, so we temporarily attach all running cpus to the NULL domain
6070 * which will prevent rebalancing while the sched domains are recalculated.
6072 static int update_sched_domains(struct notifier_block *nfb,
6073 unsigned long action, void *hcpu)
6076 case CPU_UP_PREPARE:
6077 case CPU_DOWN_PREPARE:
6078 detach_destroy_domains(&cpu_online_map);
6081 case CPU_UP_CANCELED:
6082 case CPU_DOWN_FAILED:
6086 * Fall through and re-initialise the domains.
6093 /* The hotplug lock is already held by cpu_up/cpu_down */
6094 arch_init_sched_domains(&cpu_online_map);
6100 void __init sched_init_smp(void)
6103 arch_init_sched_domains(&cpu_online_map);
6104 unlock_cpu_hotplug();
6105 /* XXX: Theoretical race here - CPU may be hotplugged now */
6106 hotcpu_notifier(update_sched_domains, 0);
6109 void __init sched_init_smp(void)
6112 #endif /* CONFIG_SMP */
6114 int in_sched_functions(unsigned long addr)
6116 /* Linker adds these: start and end of __sched functions */
6117 extern char __sched_text_start[], __sched_text_end[];
6118 return in_lock_functions(addr) ||
6119 (addr >= (unsigned long)__sched_text_start
6120 && addr < (unsigned long)__sched_text_end);
6123 void __init sched_init(void)
6128 for_each_possible_cpu(i) {
6129 prio_array_t *array;
6132 spin_lock_init(&rq->lock);
6134 rq->active = rq->arrays;
6135 rq->expired = rq->arrays + 1;
6136 rq->best_expired_prio = MAX_PRIO;
6140 for (j = 1; j < 3; j++)
6141 rq->cpu_load[j] = 0;
6142 rq->active_balance = 0;
6144 rq->migration_thread = NULL;
6145 INIT_LIST_HEAD(&rq->migration_queue);
6148 atomic_set(&rq->nr_iowait, 0);
6150 for (j = 0; j < 2; j++) {
6151 array = rq->arrays + j;
6152 for (k = 0; k < MAX_PRIO; k++) {
6153 INIT_LIST_HEAD(array->queue + k);
6154 __clear_bit(k, array->bitmap);
6156 // delimiter for bitsearch
6157 __set_bit(MAX_PRIO, array->bitmap);
6162 * The boot idle thread does lazy MMU switching as well:
6164 atomic_inc(&init_mm.mm_count);
6165 enter_lazy_tlb(&init_mm, current);
6168 * Make us the idle thread. Technically, schedule() should not be
6169 * called from this thread, however somewhere below it might be,
6170 * but because we are the idle thread, we just pick up running again
6171 * when this runqueue becomes "idle".
6173 init_idle(current, smp_processor_id());
6176 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6177 void __might_sleep(char *file, int line)
6179 #if defined(in_atomic)
6180 static unsigned long prev_jiffy; /* ratelimiting */
6182 if ((in_atomic() || irqs_disabled()) &&
6183 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6186 prev_jiffy = jiffies;
6187 printk(KERN_ERR "BUG: sleeping function called from invalid"
6188 " context at %s:%d\n", file, line);
6189 printk("in_atomic():%d, irqs_disabled():%d\n",
6190 in_atomic(), irqs_disabled());
6195 EXPORT_SYMBOL(__might_sleep);
6198 #ifdef CONFIG_MAGIC_SYSRQ
6199 void normalize_rt_tasks(void)
6201 struct task_struct *p;
6202 prio_array_t *array;
6203 unsigned long flags;
6206 read_lock_irq(&tasklist_lock);
6207 for_each_process (p) {
6211 rq = task_rq_lock(p, &flags);
6215 deactivate_task(p, task_rq(p));
6216 __setscheduler(p, SCHED_NORMAL, 0);
6218 __activate_task(p, task_rq(p));
6219 resched_task(rq->curr);
6222 task_rq_unlock(rq, &flags);
6224 read_unlock_irq(&tasklist_lock);
6227 #endif /* CONFIG_MAGIC_SYSRQ */
6231 * These functions are only useful for the IA64 MCA handling.
6233 * They can only be called when the whole system has been
6234 * stopped - every CPU needs to be quiescent, and no scheduling
6235 * activity can take place. Using them for anything else would
6236 * be a serious bug, and as a result, they aren't even visible
6237 * under any other configuration.
6241 * curr_task - return the current task for a given cpu.
6242 * @cpu: the processor in question.
6244 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6246 task_t *curr_task(int cpu)
6248 return cpu_curr(cpu);
6252 * set_curr_task - set the current task for a given cpu.
6253 * @cpu: the processor in question.
6254 * @p: the task pointer to set.
6256 * Description: This function must only be used when non-maskable interrupts
6257 * are serviced on a separate stack. It allows the architecture to switch the
6258 * notion of the current task on a cpu in a non-blocking manner. This function
6259 * must be called with all CPU's synchronized, and interrupts disabled, the
6260 * and caller must save the original value of the current task (see
6261 * curr_task() above) and restore that value before reenabling interrupts and
6262 * re-starting the system.
6264 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6266 void set_curr_task(int cpu, task_t *p)