2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
4 * This file contains the lowest level x86_64-specific interrupt
5 * entry and irq statistics code. All the remaining irq logic is
6 * done by the generic kernel/irq/ code and in the
7 * x86_64-specific irq controller code. (e.g. i8259.c and
11 #include <linux/kernel_stat.h>
12 #include <linux/interrupt.h>
13 #include <linux/seq_file.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <asm/uaccess.h>
17 #include <asm/io_apic.h>
21 atomic_t irq_err_count;
24 * 'what should we do if we get a hw irq event on an illegal vector'.
25 * each architecture has to answer this themselves.
27 void ack_bad_irq(unsigned int irq)
29 printk(KERN_WARNING "unexpected IRQ trap at vector %02x\n", irq);
31 * Currently unexpected vectors happen only on SMP and APIC.
32 * We _must_ ack these because every local APIC has only N
33 * irq slots per priority level, and a 'hanging, unacked' IRQ
34 * holds up an irq slot - in excessive cases (when multiple
35 * unexpected vectors occur) that might lock up the APIC
37 * But don't ack when the APIC is disabled. -AK
43 #ifdef CONFIG_DEBUG_STACKOVERFLOW
45 * Probabilistic stack overflow check:
47 * Only check the stack in process context, because everything else
48 * runs on the big interrupt stacks. Checking reliably is too expensive,
49 * so we just check from interrupts.
51 static inline void stack_overflow_check(struct pt_regs *regs)
53 u64 curbase = (u64)task_stack_page(current);
54 static unsigned long warned = -60*HZ;
56 if (regs->sp >= curbase && regs->sp <= curbase + THREAD_SIZE &&
57 regs->sp < curbase + sizeof(struct thread_info) + 128 &&
58 time_after(jiffies, warned + 60*HZ)) {
59 printk("do_IRQ: %s near stack overflow (cur:%Lx,sp:%lx)\n",
60 current->comm, curbase, regs->sp);
61 show_stack(NULL,NULL);
68 * Generic, controller-independent functions:
71 int show_interrupts(struct seq_file *p, void *v)
73 int i = *(loff_t *) v, j;
74 struct irqaction * action;
79 for_each_online_cpu(j)
80 seq_printf(p, "CPU%-8d",j);
85 unsigned any_count = 0;
87 spin_lock_irqsave(&irq_desc[i].lock, flags);
89 any_count = kstat_irqs(i);
91 for_each_online_cpu(j)
92 any_count |= kstat_cpu(j).irqs[i];
94 action = irq_desc[i].action;
95 if (!action && !any_count)
97 seq_printf(p, "%3d: ",i);
99 seq_printf(p, "%10u ", kstat_irqs(i));
101 for_each_online_cpu(j)
102 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
104 seq_printf(p, " %8s", irq_desc[i].chip->name);
105 seq_printf(p, "-%-8s", irq_desc[i].name);
108 seq_printf(p, " %s", action->name);
109 while ((action = action->next) != NULL)
110 seq_printf(p, ", %s", action->name);
114 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
115 } else if (i == NR_IRQS) {
116 seq_printf(p, "NMI: ");
117 for_each_online_cpu(j)
118 seq_printf(p, "%10u ", cpu_pda(j)->__nmi_count);
119 seq_printf(p, " Non-maskable interrupts\n");
120 seq_printf(p, "LOC: ");
121 for_each_online_cpu(j)
122 seq_printf(p, "%10u ", cpu_pda(j)->apic_timer_irqs);
123 seq_printf(p, " Local timer interrupts\n");
125 seq_printf(p, "RES: ");
126 for_each_online_cpu(j)
127 seq_printf(p, "%10u ", cpu_pda(j)->irq_resched_count);
128 seq_printf(p, " Rescheduling interrupts\n");
129 seq_printf(p, "CAL: ");
130 for_each_online_cpu(j)
131 seq_printf(p, "%10u ", cpu_pda(j)->irq_call_count);
132 seq_printf(p, " function call interrupts\n");
133 seq_printf(p, "TLB: ");
134 for_each_online_cpu(j)
135 seq_printf(p, "%10u ", cpu_pda(j)->irq_tlb_count);
136 seq_printf(p, " TLB shootdowns\n");
138 seq_printf(p, "TRM: ");
139 for_each_online_cpu(j)
140 seq_printf(p, "%10u ", cpu_pda(j)->irq_thermal_count);
141 seq_printf(p, " Thermal event interrupts\n");
142 seq_printf(p, "THR: ");
143 for_each_online_cpu(j)
144 seq_printf(p, "%10u ", cpu_pda(j)->irq_threshold_count);
145 seq_printf(p, " Threshold APIC interrupts\n");
146 seq_printf(p, "SPU: ");
147 for_each_online_cpu(j)
148 seq_printf(p, "%10u ", cpu_pda(j)->irq_spurious_count);
149 seq_printf(p, " Spurious interrupts\n");
150 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
156 * do_IRQ handles all normal device IRQ's (the special
157 * SMP cross-CPU interrupts have their own specific
160 asmlinkage unsigned int do_IRQ(struct pt_regs *regs)
162 struct pt_regs *old_regs = set_irq_regs(regs);
164 /* high bit used in ret_from_ code */
165 unsigned vector = ~regs->orig_ax;
170 irq = __get_cpu_var(vector_irq)[vector];
172 #ifdef CONFIG_DEBUG_STACKOVERFLOW
173 stack_overflow_check(regs);
176 if (likely(irq < NR_IRQS))
177 generic_handle_irq(irq);
182 if (printk_ratelimit())
183 printk(KERN_EMERG "%s: %d.%d No irq handler for vector\n",
184 __func__, smp_processor_id(), vector);
189 set_irq_regs(old_regs);
193 #ifdef CONFIG_HOTPLUG_CPU
194 void fixup_irqs(cpumask_t map)
199 for (irq = 0; irq < NR_IRQS; irq++) {
201 int break_affinity = 0;
202 int set_affinity = 1;
207 /* interrupt's are disabled at this point */
208 spin_lock(&irq_desc[irq].lock);
210 if (!irq_has_action(irq) ||
211 cpus_equal(irq_desc[irq].affinity, map)) {
212 spin_unlock(&irq_desc[irq].lock);
216 cpus_and(mask, irq_desc[irq].affinity, map);
217 if (cpus_empty(mask)) {
222 if (irq_desc[irq].chip->mask)
223 irq_desc[irq].chip->mask(irq);
225 if (irq_desc[irq].chip->set_affinity)
226 irq_desc[irq].chip->set_affinity(irq, mask);
227 else if (!(warned++))
230 if (irq_desc[irq].chip->unmask)
231 irq_desc[irq].chip->unmask(irq);
233 spin_unlock(&irq_desc[irq].lock);
235 if (break_affinity && set_affinity)
236 printk("Broke affinity for irq %i\n", irq);
237 else if (!set_affinity)
238 printk("Cannot set affinity for irq %i\n", irq);
241 /* That doesn't seem sufficient. Give it 1ms. */
248 extern void call_softirq(void);
250 asmlinkage void do_softirq(void)
258 local_irq_save(flags);
259 pending = local_softirq_pending();
260 /* Switch to interrupt stack */
263 WARN_ON_ONCE(softirq_count());
265 local_irq_restore(flags);