2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
98 * skb_under_panic - private function
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
122 * __alloc_skb - allocate a network buffer
123 * @size: size to allocate
124 * @gfp_mask: allocation mask
125 * @fclone: allocate from fclone cache instead of head cache
126 * and allocate a cloned (child) skb
128 * Allocate a new &sk_buff. The returned buffer has no headroom and a
129 * tail room of size bytes. The object has a reference count of one.
130 * The return is the buffer. On a failure the return is %NULL.
132 * Buffers may only be allocated from interrupts using a @gfp_mask of
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
143 skb = kmem_cache_alloc(skbuff_fclone_cache,
144 gfp_mask & ~__GFP_DMA);
146 skb = kmem_cache_alloc(skbuff_head_cache,
147 gfp_mask & ~__GFP_DMA);
152 /* Get the DATA. Size must match skb_add_mtu(). */
153 size = SKB_DATA_ALIGN(size);
154 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
158 memset(skb, 0, offsetof(struct sk_buff, truesize));
159 skb->truesize = size + sizeof(struct sk_buff);
160 atomic_set(&skb->users, 1);
164 skb->end = data + size;
166 struct sk_buff *child = skb + 1;
167 atomic_t *fclone_ref = (atomic_t *) (child + 1);
169 skb->fclone = SKB_FCLONE_ORIG;
170 atomic_set(fclone_ref, 1);
172 child->fclone = SKB_FCLONE_UNAVAILABLE;
174 atomic_set(&(skb_shinfo(skb)->dataref), 1);
175 skb_shinfo(skb)->nr_frags = 0;
176 skb_shinfo(skb)->tso_size = 0;
177 skb_shinfo(skb)->tso_segs = 0;
178 skb_shinfo(skb)->frag_list = NULL;
179 skb_shinfo(skb)->ufo_size = 0;
180 skb_shinfo(skb)->ip6_frag_id = 0;
184 kmem_cache_free(skbuff_head_cache, skb);
190 * alloc_skb_from_cache - allocate a network buffer
191 * @cp: kmem_cache from which to allocate the data area
192 * (object size must be big enough for @size bytes + skb overheads)
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
196 * Allocate a new &sk_buff. The returned buffer has no headroom and
197 * tail room of size bytes. The object has a reference count of one.
198 * The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
203 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
211 skb = kmem_cache_alloc(skbuff_head_cache,
212 gfp_mask & ~__GFP_DMA);
217 size = SKB_DATA_ALIGN(size);
218 data = kmem_cache_alloc(cp, gfp_mask);
222 memset(skb, 0, offsetof(struct sk_buff, truesize));
223 skb->truesize = size + sizeof(struct sk_buff);
224 atomic_set(&skb->users, 1);
228 skb->end = data + size;
230 atomic_set(&(skb_shinfo(skb)->dataref), 1);
231 skb_shinfo(skb)->nr_frags = 0;
232 skb_shinfo(skb)->tso_size = 0;
233 skb_shinfo(skb)->tso_segs = 0;
234 skb_shinfo(skb)->frag_list = NULL;
238 kmem_cache_free(skbuff_head_cache, skb);
244 static void skb_drop_fraglist(struct sk_buff *skb)
246 struct sk_buff *list = skb_shinfo(skb)->frag_list;
248 skb_shinfo(skb)->frag_list = NULL;
251 struct sk_buff *this = list;
257 static void skb_clone_fraglist(struct sk_buff *skb)
259 struct sk_buff *list;
261 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
265 void skb_release_data(struct sk_buff *skb)
268 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
269 &skb_shinfo(skb)->dataref)) {
270 if (skb_shinfo(skb)->nr_frags) {
272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
273 put_page(skb_shinfo(skb)->frags[i].page);
276 if (skb_shinfo(skb)->frag_list)
277 skb_drop_fraglist(skb);
284 * Free an skbuff by memory without cleaning the state.
286 void kfree_skbmem(struct sk_buff *skb)
288 struct sk_buff *other;
289 atomic_t *fclone_ref;
291 skb_release_data(skb);
292 switch (skb->fclone) {
293 case SKB_FCLONE_UNAVAILABLE:
294 kmem_cache_free(skbuff_head_cache, skb);
297 case SKB_FCLONE_ORIG:
298 fclone_ref = (atomic_t *) (skb + 2);
299 if (atomic_dec_and_test(fclone_ref))
300 kmem_cache_free(skbuff_fclone_cache, skb);
303 case SKB_FCLONE_CLONE:
304 fclone_ref = (atomic_t *) (skb + 1);
307 /* The clone portion is available for
308 * fast-cloning again.
310 skb->fclone = SKB_FCLONE_UNAVAILABLE;
312 if (atomic_dec_and_test(fclone_ref))
313 kmem_cache_free(skbuff_fclone_cache, other);
319 * __kfree_skb - private function
322 * Free an sk_buff. Release anything attached to the buffer.
323 * Clean the state. This is an internal helper function. Users should
324 * always call kfree_skb
327 void __kfree_skb(struct sk_buff *skb)
329 dst_release(skb->dst);
331 secpath_put(skb->sp);
333 if (skb->destructor) {
335 skb->destructor(skb);
337 #ifdef CONFIG_NETFILTER
338 nf_conntrack_put(skb->nfct);
339 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
340 nf_conntrack_put_reasm(skb->nfct_reasm);
342 #ifdef CONFIG_BRIDGE_NETFILTER
343 nf_bridge_put(skb->nf_bridge);
346 /* XXX: IS this still necessary? - JHS */
347 #ifdef CONFIG_NET_SCHED
349 #ifdef CONFIG_NET_CLS_ACT
358 * skb_clone - duplicate an sk_buff
359 * @skb: buffer to clone
360 * @gfp_mask: allocation priority
362 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
363 * copies share the same packet data but not structure. The new
364 * buffer has a reference count of 1. If the allocation fails the
365 * function returns %NULL otherwise the new buffer is returned.
367 * If this function is called from an interrupt gfp_mask() must be
371 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
376 if (skb->fclone == SKB_FCLONE_ORIG &&
377 n->fclone == SKB_FCLONE_UNAVAILABLE) {
378 atomic_t *fclone_ref = (atomic_t *) (n + 1);
379 n->fclone = SKB_FCLONE_CLONE;
380 atomic_inc(fclone_ref);
382 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
385 n->fclone = SKB_FCLONE_UNAVAILABLE;
388 #define C(x) n->x = skb->x
390 n->next = n->prev = NULL;
401 secpath_get(skb->sp);
403 memcpy(n->cb, skb->cb, sizeof(skb->cb));
414 n->destructor = NULL;
415 #ifdef CONFIG_NETFILTER
418 nf_conntrack_get(skb->nfct);
420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
422 nf_conntrack_get_reasm(skb->nfct_reasm);
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
427 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
429 nf_conntrack_get_reasm(skb->nfct_reasm);
431 #ifdef CONFIG_BRIDGE_NETFILTER
433 nf_bridge_get(skb->nf_bridge);
435 #endif /*CONFIG_NETFILTER*/
436 #ifdef CONFIG_NET_SCHED
438 #ifdef CONFIG_NET_CLS_ACT
439 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
440 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
441 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
447 atomic_set(&n->users, 1);
453 atomic_inc(&(skb_shinfo(skb)->dataref));
459 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
462 * Shift between the two data areas in bytes
464 unsigned long offset = new->data - old->data;
468 new->priority = old->priority;
469 new->protocol = old->protocol;
470 new->dst = dst_clone(old->dst);
472 new->sp = secpath_get(old->sp);
474 new->h.raw = old->h.raw + offset;
475 new->nh.raw = old->nh.raw + offset;
476 new->mac.raw = old->mac.raw + offset;
477 memcpy(new->cb, old->cb, sizeof(old->cb));
478 new->local_df = old->local_df;
479 new->fclone = SKB_FCLONE_UNAVAILABLE;
480 new->pkt_type = old->pkt_type;
481 new->tstamp = old->tstamp;
482 new->destructor = NULL;
483 #ifdef CONFIG_NETFILTER
484 new->nfmark = old->nfmark;
485 new->nfct = old->nfct;
486 nf_conntrack_get(old->nfct);
487 new->nfctinfo = old->nfctinfo;
488 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
489 new->nfct_reasm = old->nfct_reasm;
490 nf_conntrack_get_reasm(old->nfct_reasm);
492 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
493 new->ipvs_property = old->ipvs_property;
495 #ifdef CONFIG_BRIDGE_NETFILTER
496 new->nf_bridge = old->nf_bridge;
497 nf_bridge_get(old->nf_bridge);
500 #ifdef CONFIG_NET_SCHED
501 #ifdef CONFIG_NET_CLS_ACT
502 new->tc_verd = old->tc_verd;
504 new->tc_index = old->tc_index;
506 atomic_set(&new->users, 1);
507 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
508 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
512 * skb_copy - create private copy of an sk_buff
513 * @skb: buffer to copy
514 * @gfp_mask: allocation priority
516 * Make a copy of both an &sk_buff and its data. This is used when the
517 * caller wishes to modify the data and needs a private copy of the
518 * data to alter. Returns %NULL on failure or the pointer to the buffer
519 * on success. The returned buffer has a reference count of 1.
521 * As by-product this function converts non-linear &sk_buff to linear
522 * one, so that &sk_buff becomes completely private and caller is allowed
523 * to modify all the data of returned buffer. This means that this
524 * function is not recommended for use in circumstances when only
525 * header is going to be modified. Use pskb_copy() instead.
528 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
530 int headerlen = skb->data - skb->head;
532 * Allocate the copy buffer
534 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
539 /* Set the data pointer */
540 skb_reserve(n, headerlen);
541 /* Set the tail pointer and length */
542 skb_put(n, skb->len);
544 n->ip_summed = skb->ip_summed;
546 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
549 copy_skb_header(n, skb);
555 * pskb_copy - create copy of an sk_buff with private head.
556 * @skb: buffer to copy
557 * @gfp_mask: allocation priority
559 * Make a copy of both an &sk_buff and part of its data, located
560 * in header. Fragmented data remain shared. This is used when
561 * the caller wishes to modify only header of &sk_buff and needs
562 * private copy of the header to alter. Returns %NULL on failure
563 * or the pointer to the buffer on success.
564 * The returned buffer has a reference count of 1.
567 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
570 * Allocate the copy buffer
572 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
577 /* Set the data pointer */
578 skb_reserve(n, skb->data - skb->head);
579 /* Set the tail pointer and length */
580 skb_put(n, skb_headlen(skb));
582 memcpy(n->data, skb->data, n->len);
584 n->ip_summed = skb->ip_summed;
586 n->data_len = skb->data_len;
589 if (skb_shinfo(skb)->nr_frags) {
592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
593 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
594 get_page(skb_shinfo(n)->frags[i].page);
596 skb_shinfo(n)->nr_frags = i;
599 if (skb_shinfo(skb)->frag_list) {
600 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
601 skb_clone_fraglist(n);
604 copy_skb_header(n, skb);
610 * pskb_expand_head - reallocate header of &sk_buff
611 * @skb: buffer to reallocate
612 * @nhead: room to add at head
613 * @ntail: room to add at tail
614 * @gfp_mask: allocation priority
616 * Expands (or creates identical copy, if &nhead and &ntail are zero)
617 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
618 * reference count of 1. Returns zero in the case of success or error,
619 * if expansion failed. In the last case, &sk_buff is not changed.
621 * All the pointers pointing into skb header may change and must be
622 * reloaded after call to this function.
625 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
630 int size = nhead + (skb->end - skb->head) + ntail;
636 size = SKB_DATA_ALIGN(size);
638 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
642 /* Copy only real data... and, alas, header. This should be
643 * optimized for the cases when header is void. */
644 memcpy(data + nhead, skb->head, skb->tail - skb->head);
645 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
648 get_page(skb_shinfo(skb)->frags[i].page);
650 if (skb_shinfo(skb)->frag_list)
651 skb_clone_fraglist(skb);
653 skb_release_data(skb);
655 off = (data + nhead) - skb->head;
658 skb->end = data + size;
666 atomic_set(&skb_shinfo(skb)->dataref, 1);
673 /* Make private copy of skb with writable head and some headroom */
675 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
677 struct sk_buff *skb2;
678 int delta = headroom - skb_headroom(skb);
681 skb2 = pskb_copy(skb, GFP_ATOMIC);
683 skb2 = skb_clone(skb, GFP_ATOMIC);
684 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
695 * skb_copy_expand - copy and expand sk_buff
696 * @skb: buffer to copy
697 * @newheadroom: new free bytes at head
698 * @newtailroom: new free bytes at tail
699 * @gfp_mask: allocation priority
701 * Make a copy of both an &sk_buff and its data and while doing so
702 * allocate additional space.
704 * This is used when the caller wishes to modify the data and needs a
705 * private copy of the data to alter as well as more space for new fields.
706 * Returns %NULL on failure or the pointer to the buffer
707 * on success. The returned buffer has a reference count of 1.
709 * You must pass %GFP_ATOMIC as the allocation priority if this function
710 * is called from an interrupt.
712 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
713 * only by netfilter in the cases when checksum is recalculated? --ANK
715 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
716 int newheadroom, int newtailroom,
720 * Allocate the copy buffer
722 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
724 int head_copy_len, head_copy_off;
729 skb_reserve(n, newheadroom);
731 /* Set the tail pointer and length */
732 skb_put(n, skb->len);
734 head_copy_len = skb_headroom(skb);
736 if (newheadroom <= head_copy_len)
737 head_copy_len = newheadroom;
739 head_copy_off = newheadroom - head_copy_len;
741 /* Copy the linear header and data. */
742 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
743 skb->len + head_copy_len))
746 copy_skb_header(n, skb);
752 * skb_pad - zero pad the tail of an skb
753 * @skb: buffer to pad
756 * Ensure that a buffer is followed by a padding area that is zero
757 * filled. Used by network drivers which may DMA or transfer data
758 * beyond the buffer end onto the wire.
760 * May return NULL in out of memory cases.
763 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
765 struct sk_buff *nskb;
767 /* If the skbuff is non linear tailroom is always zero.. */
768 if (skb_tailroom(skb) >= pad) {
769 memset(skb->data+skb->len, 0, pad);
773 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
776 memset(nskb->data+nskb->len, 0, pad);
780 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
781 * If realloc==0 and trimming is impossible without change of data,
785 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
787 int offset = skb_headlen(skb);
788 int nfrags = skb_shinfo(skb)->nr_frags;
791 for (i = 0; i < nfrags; i++) {
792 int end = offset + skb_shinfo(skb)->frags[i].size;
794 if (skb_cloned(skb)) {
797 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
801 put_page(skb_shinfo(skb)->frags[i].page);
802 skb_shinfo(skb)->nr_frags--;
804 skb_shinfo(skb)->frags[i].size = len - offset;
811 skb->data_len -= skb->len - len;
814 if (len <= skb_headlen(skb)) {
817 skb->tail = skb->data + len;
818 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
819 skb_drop_fraglist(skb);
821 skb->data_len -= skb->len - len;
830 * __pskb_pull_tail - advance tail of skb header
831 * @skb: buffer to reallocate
832 * @delta: number of bytes to advance tail
834 * The function makes a sense only on a fragmented &sk_buff,
835 * it expands header moving its tail forward and copying necessary
836 * data from fragmented part.
838 * &sk_buff MUST have reference count of 1.
840 * Returns %NULL (and &sk_buff does not change) if pull failed
841 * or value of new tail of skb in the case of success.
843 * All the pointers pointing into skb header may change and must be
844 * reloaded after call to this function.
847 /* Moves tail of skb head forward, copying data from fragmented part,
848 * when it is necessary.
849 * 1. It may fail due to malloc failure.
850 * 2. It may change skb pointers.
852 * It is pretty complicated. Luckily, it is called only in exceptional cases.
854 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
856 /* If skb has not enough free space at tail, get new one
857 * plus 128 bytes for future expansions. If we have enough
858 * room at tail, reallocate without expansion only if skb is cloned.
860 int i, k, eat = (skb->tail + delta) - skb->end;
862 if (eat > 0 || skb_cloned(skb)) {
863 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
868 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
871 /* Optimization: no fragments, no reasons to preestimate
872 * size of pulled pages. Superb.
874 if (!skb_shinfo(skb)->frag_list)
877 /* Estimate size of pulled pages. */
879 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
880 if (skb_shinfo(skb)->frags[i].size >= eat)
882 eat -= skb_shinfo(skb)->frags[i].size;
885 /* If we need update frag list, we are in troubles.
886 * Certainly, it possible to add an offset to skb data,
887 * but taking into account that pulling is expected to
888 * be very rare operation, it is worth to fight against
889 * further bloating skb head and crucify ourselves here instead.
890 * Pure masohism, indeed. 8)8)
893 struct sk_buff *list = skb_shinfo(skb)->frag_list;
894 struct sk_buff *clone = NULL;
895 struct sk_buff *insp = NULL;
901 if (list->len <= eat) {
902 /* Eaten as whole. */
907 /* Eaten partially. */
909 if (skb_shared(list)) {
910 /* Sucks! We need to fork list. :-( */
911 clone = skb_clone(list, GFP_ATOMIC);
917 /* This may be pulled without
921 if (!pskb_pull(list, eat)) {
930 /* Free pulled out fragments. */
931 while ((list = skb_shinfo(skb)->frag_list) != insp) {
932 skb_shinfo(skb)->frag_list = list->next;
935 /* And insert new clone at head. */
938 skb_shinfo(skb)->frag_list = clone;
941 /* Success! Now we may commit changes to skb data. */
946 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
947 if (skb_shinfo(skb)->frags[i].size <= eat) {
948 put_page(skb_shinfo(skb)->frags[i].page);
949 eat -= skb_shinfo(skb)->frags[i].size;
951 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
953 skb_shinfo(skb)->frags[k].page_offset += eat;
954 skb_shinfo(skb)->frags[k].size -= eat;
960 skb_shinfo(skb)->nr_frags = k;
963 skb->data_len -= delta;
968 /* Copy some data bits from skb to kernel buffer. */
970 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
973 int start = skb_headlen(skb);
975 if (offset > (int)skb->len - len)
979 if ((copy = start - offset) > 0) {
982 memcpy(to, skb->data + offset, copy);
983 if ((len -= copy) == 0)
989 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
992 BUG_TRAP(start <= offset + len);
994 end = start + skb_shinfo(skb)->frags[i].size;
995 if ((copy = end - offset) > 0) {
1001 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1003 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1004 offset - start, copy);
1005 kunmap_skb_frag(vaddr);
1007 if ((len -= copy) == 0)
1015 if (skb_shinfo(skb)->frag_list) {
1016 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1018 for (; list; list = list->next) {
1021 BUG_TRAP(start <= offset + len);
1023 end = start + list->len;
1024 if ((copy = end - offset) > 0) {
1027 if (skb_copy_bits(list, offset - start,
1030 if ((len -= copy) == 0)
1046 * skb_store_bits - store bits from kernel buffer to skb
1047 * @skb: destination buffer
1048 * @offset: offset in destination
1049 * @from: source buffer
1050 * @len: number of bytes to copy
1052 * Copy the specified number of bytes from the source buffer to the
1053 * destination skb. This function handles all the messy bits of
1054 * traversing fragment lists and such.
1057 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1060 int start = skb_headlen(skb);
1062 if (offset > (int)skb->len - len)
1065 if ((copy = start - offset) > 0) {
1068 memcpy(skb->data + offset, from, copy);
1069 if ((len -= copy) == 0)
1075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1079 BUG_TRAP(start <= offset + len);
1081 end = start + frag->size;
1082 if ((copy = end - offset) > 0) {
1088 vaddr = kmap_skb_frag(frag);
1089 memcpy(vaddr + frag->page_offset + offset - start,
1091 kunmap_skb_frag(vaddr);
1093 if ((len -= copy) == 0)
1101 if (skb_shinfo(skb)->frag_list) {
1102 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1104 for (; list; list = list->next) {
1107 BUG_TRAP(start <= offset + len);
1109 end = start + list->len;
1110 if ((copy = end - offset) > 0) {
1113 if (skb_store_bits(list, offset - start,
1116 if ((len -= copy) == 0)
1131 EXPORT_SYMBOL(skb_store_bits);
1133 /* Checksum skb data. */
1135 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1136 int len, unsigned int csum)
1138 int start = skb_headlen(skb);
1139 int i, copy = start - offset;
1142 /* Checksum header. */
1146 csum = csum_partial(skb->data + offset, copy, csum);
1147 if ((len -= copy) == 0)
1153 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1156 BUG_TRAP(start <= offset + len);
1158 end = start + skb_shinfo(skb)->frags[i].size;
1159 if ((copy = end - offset) > 0) {
1162 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1166 vaddr = kmap_skb_frag(frag);
1167 csum2 = csum_partial(vaddr + frag->page_offset +
1168 offset - start, copy, 0);
1169 kunmap_skb_frag(vaddr);
1170 csum = csum_block_add(csum, csum2, pos);
1179 if (skb_shinfo(skb)->frag_list) {
1180 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1182 for (; list; list = list->next) {
1185 BUG_TRAP(start <= offset + len);
1187 end = start + list->len;
1188 if ((copy = end - offset) > 0) {
1192 csum2 = skb_checksum(list, offset - start,
1194 csum = csum_block_add(csum, csum2, pos);
1195 if ((len -= copy) == 0)
1209 /* Both of above in one bottle. */
1211 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1212 u8 *to, int len, unsigned int csum)
1214 int start = skb_headlen(skb);
1215 int i, copy = start - offset;
1222 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1224 if ((len -= copy) == 0)
1231 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1234 BUG_TRAP(start <= offset + len);
1236 end = start + skb_shinfo(skb)->frags[i].size;
1237 if ((copy = end - offset) > 0) {
1240 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1244 vaddr = kmap_skb_frag(frag);
1245 csum2 = csum_partial_copy_nocheck(vaddr +
1249 kunmap_skb_frag(vaddr);
1250 csum = csum_block_add(csum, csum2, pos);
1260 if (skb_shinfo(skb)->frag_list) {
1261 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1263 for (; list; list = list->next) {
1267 BUG_TRAP(start <= offset + len);
1269 end = start + list->len;
1270 if ((copy = end - offset) > 0) {
1273 csum2 = skb_copy_and_csum_bits(list,
1276 csum = csum_block_add(csum, csum2, pos);
1277 if ((len -= copy) == 0)
1291 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1296 if (skb->ip_summed == CHECKSUM_HW)
1297 csstart = skb->h.raw - skb->data;
1299 csstart = skb_headlen(skb);
1301 if (csstart > skb_headlen(skb))
1304 memcpy(to, skb->data, csstart);
1307 if (csstart != skb->len)
1308 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1309 skb->len - csstart, 0);
1311 if (skb->ip_summed == CHECKSUM_HW) {
1312 long csstuff = csstart + skb->csum;
1314 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1319 * skb_dequeue - remove from the head of the queue
1320 * @list: list to dequeue from
1322 * Remove the head of the list. The list lock is taken so the function
1323 * may be used safely with other locking list functions. The head item is
1324 * returned or %NULL if the list is empty.
1327 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1329 unsigned long flags;
1330 struct sk_buff *result;
1332 spin_lock_irqsave(&list->lock, flags);
1333 result = __skb_dequeue(list);
1334 spin_unlock_irqrestore(&list->lock, flags);
1339 * skb_dequeue_tail - remove from the tail of the queue
1340 * @list: list to dequeue from
1342 * Remove the tail of the list. The list lock is taken so the function
1343 * may be used safely with other locking list functions. The tail item is
1344 * returned or %NULL if the list is empty.
1346 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1348 unsigned long flags;
1349 struct sk_buff *result;
1351 spin_lock_irqsave(&list->lock, flags);
1352 result = __skb_dequeue_tail(list);
1353 spin_unlock_irqrestore(&list->lock, flags);
1358 * skb_queue_purge - empty a list
1359 * @list: list to empty
1361 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1362 * the list and one reference dropped. This function takes the list
1363 * lock and is atomic with respect to other list locking functions.
1365 void skb_queue_purge(struct sk_buff_head *list)
1367 struct sk_buff *skb;
1368 while ((skb = skb_dequeue(list)) != NULL)
1373 * skb_queue_head - queue a buffer at the list head
1374 * @list: list to use
1375 * @newsk: buffer to queue
1377 * Queue a buffer at the start of the list. This function takes the
1378 * list lock and can be used safely with other locking &sk_buff functions
1381 * A buffer cannot be placed on two lists at the same time.
1383 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1385 unsigned long flags;
1387 spin_lock_irqsave(&list->lock, flags);
1388 __skb_queue_head(list, newsk);
1389 spin_unlock_irqrestore(&list->lock, flags);
1393 * skb_queue_tail - queue a buffer at the list tail
1394 * @list: list to use
1395 * @newsk: buffer to queue
1397 * Queue a buffer at the tail of the list. This function takes the
1398 * list lock and can be used safely with other locking &sk_buff functions
1401 * A buffer cannot be placed on two lists at the same time.
1403 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1405 unsigned long flags;
1407 spin_lock_irqsave(&list->lock, flags);
1408 __skb_queue_tail(list, newsk);
1409 spin_unlock_irqrestore(&list->lock, flags);
1413 * skb_unlink - remove a buffer from a list
1414 * @skb: buffer to remove
1415 * @list: list to use
1417 * Remove a packet from a list. The list locks are taken and this
1418 * function is atomic with respect to other list locked calls
1420 * You must know what list the SKB is on.
1422 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1424 unsigned long flags;
1426 spin_lock_irqsave(&list->lock, flags);
1427 __skb_unlink(skb, list);
1428 spin_unlock_irqrestore(&list->lock, flags);
1432 * skb_append - append a buffer
1433 * @old: buffer to insert after
1434 * @newsk: buffer to insert
1435 * @list: list to use
1437 * Place a packet after a given packet in a list. The list locks are taken
1438 * and this function is atomic with respect to other list locked calls.
1439 * A buffer cannot be placed on two lists at the same time.
1441 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1443 unsigned long flags;
1445 spin_lock_irqsave(&list->lock, flags);
1446 __skb_append(old, newsk, list);
1447 spin_unlock_irqrestore(&list->lock, flags);
1452 * skb_insert - insert a buffer
1453 * @old: buffer to insert before
1454 * @newsk: buffer to insert
1455 * @list: list to use
1457 * Place a packet before a given packet in a list. The list locks are
1458 * taken and this function is atomic with respect to other list locked
1461 * A buffer cannot be placed on two lists at the same time.
1463 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1465 unsigned long flags;
1467 spin_lock_irqsave(&list->lock, flags);
1468 __skb_insert(newsk, old->prev, old, list);
1469 spin_unlock_irqrestore(&list->lock, flags);
1474 * Tune the memory allocator for a new MTU size.
1476 void skb_add_mtu(int mtu)
1478 /* Must match allocation in alloc_skb */
1479 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1481 kmem_add_cache_size(mtu);
1485 static inline void skb_split_inside_header(struct sk_buff *skb,
1486 struct sk_buff* skb1,
1487 const u32 len, const int pos)
1491 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1493 /* And move data appendix as is. */
1494 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1495 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1497 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1498 skb_shinfo(skb)->nr_frags = 0;
1499 skb1->data_len = skb->data_len;
1500 skb1->len += skb1->data_len;
1503 skb->tail = skb->data + len;
1506 static inline void skb_split_no_header(struct sk_buff *skb,
1507 struct sk_buff* skb1,
1508 const u32 len, int pos)
1511 const int nfrags = skb_shinfo(skb)->nr_frags;
1513 skb_shinfo(skb)->nr_frags = 0;
1514 skb1->len = skb1->data_len = skb->len - len;
1516 skb->data_len = len - pos;
1518 for (i = 0; i < nfrags; i++) {
1519 int size = skb_shinfo(skb)->frags[i].size;
1521 if (pos + size > len) {
1522 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1526 * We have two variants in this case:
1527 * 1. Move all the frag to the second
1528 * part, if it is possible. F.e.
1529 * this approach is mandatory for TUX,
1530 * where splitting is expensive.
1531 * 2. Split is accurately. We make this.
1533 get_page(skb_shinfo(skb)->frags[i].page);
1534 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1535 skb_shinfo(skb1)->frags[0].size -= len - pos;
1536 skb_shinfo(skb)->frags[i].size = len - pos;
1537 skb_shinfo(skb)->nr_frags++;
1541 skb_shinfo(skb)->nr_frags++;
1544 skb_shinfo(skb1)->nr_frags = k;
1548 * skb_split - Split fragmented skb to two parts at length len.
1549 * @skb: the buffer to split
1550 * @skb1: the buffer to receive the second part
1551 * @len: new length for skb
1553 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1555 int pos = skb_headlen(skb);
1557 if (len < pos) /* Split line is inside header. */
1558 skb_split_inside_header(skb, skb1, len, pos);
1559 else /* Second chunk has no header, nothing to copy. */
1560 skb_split_no_header(skb, skb1, len, pos);
1564 * skb_prepare_seq_read - Prepare a sequential read of skb data
1565 * @skb: the buffer to read
1566 * @from: lower offset of data to be read
1567 * @to: upper offset of data to be read
1568 * @st: state variable
1570 * Initializes the specified state variable. Must be called before
1571 * invoking skb_seq_read() for the first time.
1573 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1574 unsigned int to, struct skb_seq_state *st)
1576 st->lower_offset = from;
1577 st->upper_offset = to;
1578 st->root_skb = st->cur_skb = skb;
1579 st->frag_idx = st->stepped_offset = 0;
1580 st->frag_data = NULL;
1584 * skb_seq_read - Sequentially read skb data
1585 * @consumed: number of bytes consumed by the caller so far
1586 * @data: destination pointer for data to be returned
1587 * @st: state variable
1589 * Reads a block of skb data at &consumed relative to the
1590 * lower offset specified to skb_prepare_seq_read(). Assigns
1591 * the head of the data block to &data and returns the length
1592 * of the block or 0 if the end of the skb data or the upper
1593 * offset has been reached.
1595 * The caller is not required to consume all of the data
1596 * returned, i.e. &consumed is typically set to the number
1597 * of bytes already consumed and the next call to
1598 * skb_seq_read() will return the remaining part of the block.
1600 * Note: The size of each block of data returned can be arbitary,
1601 * this limitation is the cost for zerocopy seqeuental
1602 * reads of potentially non linear data.
1604 * Note: Fragment lists within fragments are not implemented
1605 * at the moment, state->root_skb could be replaced with
1606 * a stack for this purpose.
1608 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1609 struct skb_seq_state *st)
1611 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1614 if (unlikely(abs_offset >= st->upper_offset))
1618 block_limit = skb_headlen(st->cur_skb);
1620 if (abs_offset < block_limit) {
1621 *data = st->cur_skb->data + abs_offset;
1622 return block_limit - abs_offset;
1625 if (st->frag_idx == 0 && !st->frag_data)
1626 st->stepped_offset += skb_headlen(st->cur_skb);
1628 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1629 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1630 block_limit = frag->size + st->stepped_offset;
1632 if (abs_offset < block_limit) {
1634 st->frag_data = kmap_skb_frag(frag);
1636 *data = (u8 *) st->frag_data + frag->page_offset +
1637 (abs_offset - st->stepped_offset);
1639 return block_limit - abs_offset;
1642 if (st->frag_data) {
1643 kunmap_skb_frag(st->frag_data);
1644 st->frag_data = NULL;
1648 st->stepped_offset += frag->size;
1651 if (st->cur_skb->next) {
1652 st->cur_skb = st->cur_skb->next;
1655 } else if (st->root_skb == st->cur_skb &&
1656 skb_shinfo(st->root_skb)->frag_list) {
1657 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1665 * skb_abort_seq_read - Abort a sequential read of skb data
1666 * @st: state variable
1668 * Must be called if skb_seq_read() was not called until it
1671 void skb_abort_seq_read(struct skb_seq_state *st)
1674 kunmap_skb_frag(st->frag_data);
1677 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1679 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1680 struct ts_config *conf,
1681 struct ts_state *state)
1683 return skb_seq_read(offset, text, TS_SKB_CB(state));
1686 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1688 skb_abort_seq_read(TS_SKB_CB(state));
1692 * skb_find_text - Find a text pattern in skb data
1693 * @skb: the buffer to look in
1694 * @from: search offset
1696 * @config: textsearch configuration
1697 * @state: uninitialized textsearch state variable
1699 * Finds a pattern in the skb data according to the specified
1700 * textsearch configuration. Use textsearch_next() to retrieve
1701 * subsequent occurrences of the pattern. Returns the offset
1702 * to the first occurrence or UINT_MAX if no match was found.
1704 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1705 unsigned int to, struct ts_config *config,
1706 struct ts_state *state)
1708 config->get_next_block = skb_ts_get_next_block;
1709 config->finish = skb_ts_finish;
1711 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1713 return textsearch_find(config, state);
1717 * skb_append_datato_frags: - append the user data to a skb
1718 * @sk: sock structure
1719 * @skb: skb structure to be appened with user data.
1720 * @getfrag: call back function to be used for getting the user data
1721 * @from: pointer to user message iov
1722 * @length: length of the iov message
1724 * Description: This procedure append the user data in the fragment part
1725 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1727 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1728 int (*getfrag)(void *from, char *to, int offset,
1729 int len, int odd, struct sk_buff *skb),
1730 void *from, int length)
1733 skb_frag_t *frag = NULL;
1734 struct page *page = NULL;
1740 /* Return error if we don't have space for new frag */
1741 frg_cnt = skb_shinfo(skb)->nr_frags;
1742 if (frg_cnt >= MAX_SKB_FRAGS)
1745 /* allocate a new page for next frag */
1746 page = alloc_pages(sk->sk_allocation, 0);
1748 /* If alloc_page fails just return failure and caller will
1749 * free previous allocated pages by doing kfree_skb()
1754 /* initialize the next frag */
1755 sk->sk_sndmsg_page = page;
1756 sk->sk_sndmsg_off = 0;
1757 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1758 skb->truesize += PAGE_SIZE;
1759 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1761 /* get the new initialized frag */
1762 frg_cnt = skb_shinfo(skb)->nr_frags;
1763 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1765 /* copy the user data to page */
1766 left = PAGE_SIZE - frag->page_offset;
1767 copy = (length > left)? left : length;
1769 ret = getfrag(from, (page_address(frag->page) +
1770 frag->page_offset + frag->size),
1771 offset, copy, 0, skb);
1775 /* copy was successful so update the size parameters */
1776 sk->sk_sndmsg_off += copy;
1779 skb->data_len += copy;
1783 } while (length > 0);
1788 void __init skb_init(void)
1790 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1791 sizeof(struct sk_buff),
1795 if (!skbuff_head_cache)
1796 panic("cannot create skbuff cache");
1798 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1799 (2*sizeof(struct sk_buff)) +
1804 if (!skbuff_fclone_cache)
1805 panic("cannot create skbuff cache");
1808 EXPORT_SYMBOL(___pskb_trim);
1809 EXPORT_SYMBOL(__kfree_skb);
1810 EXPORT_SYMBOL(__pskb_pull_tail);
1811 EXPORT_SYMBOL(__alloc_skb);
1812 EXPORT_SYMBOL(pskb_copy);
1813 EXPORT_SYMBOL(pskb_expand_head);
1814 EXPORT_SYMBOL(skb_checksum);
1815 EXPORT_SYMBOL(skb_clone);
1816 EXPORT_SYMBOL(skb_clone_fraglist);
1817 EXPORT_SYMBOL(skb_copy);
1818 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1819 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1820 EXPORT_SYMBOL(skb_copy_bits);
1821 EXPORT_SYMBOL(skb_copy_expand);
1822 EXPORT_SYMBOL(skb_over_panic);
1823 EXPORT_SYMBOL(skb_pad);
1824 EXPORT_SYMBOL(skb_realloc_headroom);
1825 EXPORT_SYMBOL(skb_under_panic);
1826 EXPORT_SYMBOL(skb_dequeue);
1827 EXPORT_SYMBOL(skb_dequeue_tail);
1828 EXPORT_SYMBOL(skb_insert);
1829 EXPORT_SYMBOL(skb_queue_purge);
1830 EXPORT_SYMBOL(skb_queue_head);
1831 EXPORT_SYMBOL(skb_queue_tail);
1832 EXPORT_SYMBOL(skb_unlink);
1833 EXPORT_SYMBOL(skb_append);
1834 EXPORT_SYMBOL(skb_split);
1835 EXPORT_SYMBOL(skb_prepare_seq_read);
1836 EXPORT_SYMBOL(skb_seq_read);
1837 EXPORT_SYMBOL(skb_abort_seq_read);
1838 EXPORT_SYMBOL(skb_find_text);
1839 EXPORT_SYMBOL(skb_append_datato_frags);