Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         struct ipw_event log[log_len];
1237         u32 len = 0, i;
1238
1239         ipw_capture_event_log(priv, log_len, log);
1240
1241         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242         for (i = 0; i < log_len; i++)
1243                 len += snprintf(buf + len, PAGE_SIZE - len,
1244                                 "\n%08X%08X%08X",
1245                                 log[i].time, log[i].event, log[i].data);
1246         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247         return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253                           struct device_attribute *attr, char *buf)
1254 {
1255         struct ipw_priv *priv = dev_get_drvdata(d);
1256         u32 len = 0, i;
1257         if (!priv->error)
1258                 return 0;
1259         len += snprintf(buf + len, PAGE_SIZE - len,
1260                         "%08lX%08X%08X%08X",
1261                         priv->error->jiffies,
1262                         priv->error->status,
1263                         priv->error->config, priv->error->elem_len);
1264         for (i = 0; i < priv->error->elem_len; i++)
1265                 len += snprintf(buf + len, PAGE_SIZE - len,
1266                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1267                                 priv->error->elem[i].time,
1268                                 priv->error->elem[i].desc,
1269                                 priv->error->elem[i].blink1,
1270                                 priv->error->elem[i].blink2,
1271                                 priv->error->elem[i].link1,
1272                                 priv->error->elem[i].link2,
1273                                 priv->error->elem[i].data);
1274
1275         len += snprintf(buf + len, PAGE_SIZE - len,
1276                         "\n%08X", priv->error->log_len);
1277         for (i = 0; i < priv->error->log_len; i++)
1278                 len += snprintf(buf + len, PAGE_SIZE - len,
1279                                 "\n%08X%08X%08X",
1280                                 priv->error->log[i].time,
1281                                 priv->error->log[i].event,
1282                                 priv->error->log[i].data);
1283         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284         return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288                            struct device_attribute *attr,
1289                            const char *buf, size_t count)
1290 {
1291         struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293         kfree(priv->error);
1294         priv->error = NULL;
1295         return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301                             struct device_attribute *attr, char *buf)
1302 {
1303         struct ipw_priv *priv = dev_get_drvdata(d);
1304         u32 len = 0, i;
1305         if (!priv->cmdlog)
1306                 return 0;
1307         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309              i = (i + 1) % priv->cmdlog_len) {
1310                 len +=
1311                     snprintf(buf + len, PAGE_SIZE - len,
1312                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314                              priv->cmdlog[i].cmd.len);
1315                 len +=
1316                     snprintk_buf(buf + len, PAGE_SIZE - len,
1317                                  (u8 *) priv->cmdlog[i].cmd.param,
1318                                  priv->cmdlog[i].cmd.len);
1319                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320         }
1321         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322         return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331                          struct device_attribute *attr,
1332                          const char *buf, size_t count)
1333 {
1334         struct ipw_priv *priv = dev_get_drvdata(d);
1335         int rc = 0;
1336
1337         if (count < 1)
1338                 return -EINVAL;
1339
1340         switch (buf[0]) {
1341         case '0':
1342                 if (!rtap_iface)
1343                         return count;
1344
1345                 if (netif_running(priv->prom_net_dev)) {
1346                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1347                         return count;
1348                 }
1349
1350                 ipw_prom_free(priv);
1351                 rtap_iface = 0;
1352                 break;
1353
1354         case '1':
1355                 if (rtap_iface)
1356                         return count;
1357
1358                 rc = ipw_prom_alloc(priv);
1359                 if (!rc)
1360                         rtap_iface = 1;
1361                 break;
1362
1363         default:
1364                 return -EINVAL;
1365         }
1366
1367         if (rc) {
1368                 IPW_ERROR("Failed to register promiscuous network "
1369                           "device (error %d).\n", rc);
1370         }
1371
1372         return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376                         struct device_attribute *attr,
1377                         char *buf)
1378 {
1379         struct ipw_priv *priv = dev_get_drvdata(d);
1380         if (rtap_iface)
1381                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382         else {
1383                 buf[0] = '-';
1384                 buf[1] = '1';
1385                 buf[2] = '\0';
1386                 return 3;
1387         }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391                    store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394                          struct device_attribute *attr,
1395                          const char *buf, size_t count)
1396 {
1397         struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399         if (!priv->prom_priv) {
1400                 IPW_ERROR("Attempting to set filter without "
1401                           "rtap_iface enabled.\n");
1402                 return -EPERM;
1403         }
1404
1405         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408                        BIT_ARG16(priv->prom_priv->filter));
1409
1410         return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414                         struct device_attribute *attr,
1415                         char *buf)
1416 {
1417         struct ipw_priv *priv = dev_get_drvdata(d);
1418         return sprintf(buf, "0x%04X",
1419                        priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423                    store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427                              char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434                               const char *buf, size_t count)
1435 {
1436         struct ipw_priv *priv = dev_get_drvdata(d);
1437         struct net_device *dev = priv->net_dev;
1438         char buffer[] = "00000000";
1439         unsigned long len =
1440             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441         unsigned long val;
1442         char *p = buffer;
1443
1444         IPW_DEBUG_INFO("enter\n");
1445
1446         strncpy(buffer, buf, len);
1447         buffer[len] = 0;
1448
1449         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450                 p++;
1451                 if (p[0] == 'x' || p[0] == 'X')
1452                         p++;
1453                 val = simple_strtoul(p, &p, 16);
1454         } else
1455                 val = simple_strtoul(p, &p, 10);
1456         if (p == buffer) {
1457                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458         } else {
1459                 priv->ieee->scan_age = val;
1460                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461         }
1462
1463         IPW_DEBUG_INFO("exit\n");
1464         return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477                          const char *buf, size_t count)
1478 {
1479         struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481         IPW_DEBUG_INFO("enter\n");
1482
1483         if (count == 0)
1484                 return 0;
1485
1486         if (*buf == 0) {
1487                 IPW_DEBUG_LED("Disabling LED control.\n");
1488                 priv->config |= CFG_NO_LED;
1489                 ipw_led_shutdown(priv);
1490         } else {
1491                 IPW_DEBUG_LED("Enabling LED control.\n");
1492                 priv->config &= ~CFG_NO_LED;
1493                 ipw_led_init(priv);
1494         }
1495
1496         IPW_DEBUG_INFO("exit\n");
1497         return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503                            struct device_attribute *attr, char *buf)
1504 {
1505         struct ipw_priv *p = d->driver_data;
1506         return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512                         char *buf)
1513 {
1514         struct ipw_priv *p = d->driver_data;
1515         return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521                              struct device_attribute *attr, char *buf)
1522 {
1523         struct ipw_priv *priv = d->driver_data;
1524         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530                                   struct device_attribute *attr, char *buf)
1531 {
1532         u32 len = sizeof(u32), tmp = 0;
1533         struct ipw_priv *p = d->driver_data;
1534
1535         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536                 return 0;
1537
1538         return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544                         char *buf)
1545 {
1546         u32 len = sizeof(u32), tmp = 0;
1547         struct ipw_priv *p = d->driver_data;
1548
1549         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550                 return 0;
1551
1552         return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558  * Add a device attribute to view/control the delay between eeprom
1559  * operations.
1560  */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562                                  struct device_attribute *attr, char *buf)
1563 {
1564         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565         return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568                                   struct device_attribute *attr,
1569                                   const char *buf, size_t count)
1570 {
1571         struct ipw_priv *p = d->driver_data;
1572         sscanf(buf, "%i", &p->eeprom_delay);
1573         return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577                    show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580                                       struct device_attribute *attr, char *buf)
1581 {
1582         u32 reg = 0;
1583         struct ipw_priv *p = d->driver_data;
1584
1585         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586         return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589                                        struct device_attribute *attr,
1590                                        const char *buf, size_t count)
1591 {
1592         u32 reg;
1593         struct ipw_priv *p = d->driver_data;
1594
1595         sscanf(buf, "%x", &reg);
1596         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597         return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601                    show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604                                  struct device_attribute *attr, char *buf)
1605 {
1606         u32 reg = 0;
1607         struct ipw_priv *p = d->driver_data;
1608
1609         reg = ipw_read_reg32(p, 0x301100);
1610         return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613                                   struct device_attribute *attr,
1614                                   const char *buf, size_t count)
1615 {
1616         u32 reg;
1617         struct ipw_priv *p = d->driver_data;
1618
1619         sscanf(buf, "%x", &reg);
1620         ipw_write_reg32(p, 0x301100, reg);
1621         return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625                    show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628                                    struct device_attribute *attr, char *buf)
1629 {
1630         u32 reg = 0;
1631         struct ipw_priv *priv = d->driver_data;
1632
1633         if (priv->status & STATUS_INDIRECT_DWORD)
1634                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635         else
1636                 reg = 0;
1637
1638         return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641                                     struct device_attribute *attr,
1642                                     const char *buf, size_t count)
1643 {
1644         struct ipw_priv *priv = d->driver_data;
1645
1646         sscanf(buf, "%x", &priv->indirect_dword);
1647         priv->status |= STATUS_INDIRECT_DWORD;
1648         return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652                    show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655                                   struct device_attribute *attr, char *buf)
1656 {
1657         u8 reg = 0;
1658         struct ipw_priv *priv = d->driver_data;
1659
1660         if (priv->status & STATUS_INDIRECT_BYTE)
1661                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662         else
1663                 reg = 0;
1664
1665         return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668                                    struct device_attribute *attr,
1669                                    const char *buf, size_t count)
1670 {
1671         struct ipw_priv *priv = d->driver_data;
1672
1673         sscanf(buf, "%x", &priv->indirect_byte);
1674         priv->status |= STATUS_INDIRECT_BYTE;
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679                    show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682                                  struct device_attribute *attr, char *buf)
1683 {
1684         u32 reg = 0;
1685         struct ipw_priv *priv = d->driver_data;
1686
1687         if (priv->status & STATUS_DIRECT_DWORD)
1688                 reg = ipw_read32(priv, priv->direct_dword);
1689         else
1690                 reg = 0;
1691
1692         return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695                                   struct device_attribute *attr,
1696                                   const char *buf, size_t count)
1697 {
1698         struct ipw_priv *priv = d->driver_data;
1699
1700         sscanf(buf, "%x", &priv->direct_dword);
1701         priv->status |= STATUS_DIRECT_DWORD;
1702         return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706                    show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711                 priv->status |= STATUS_RF_KILL_HW;
1712         else
1713                 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719                             char *buf)
1720 {
1721         /* 0 - RF kill not enabled
1722            1 - SW based RF kill active (sysfs)
1723            2 - HW based RF kill active
1724            3 - Both HW and SW baed RF kill active */
1725         struct ipw_priv *priv = d->driver_data;
1726         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727             (rf_kill_active(priv) ? 0x2 : 0x0);
1728         return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733         if ((disable_radio ? 1 : 0) ==
1734             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735                 return 0;
1736
1737         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1738                           disable_radio ? "OFF" : "ON");
1739
1740         if (disable_radio) {
1741                 priv->status |= STATUS_RF_KILL_SW;
1742
1743                 if (priv->workqueue) {
1744                         cancel_delayed_work(&priv->request_scan);
1745                         cancel_delayed_work(&priv->scan_event);
1746                 }
1747                 queue_work(priv->workqueue, &priv->down);
1748         } else {
1749                 priv->status &= ~STATUS_RF_KILL_SW;
1750                 if (rf_kill_active(priv)) {
1751                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1752                                           "disabled by HW switch\n");
1753                         /* Make sure the RF_KILL check timer is running */
1754                         cancel_delayed_work(&priv->rf_kill);
1755                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1756                                            round_jiffies_relative(2 * HZ));
1757                 } else
1758                         queue_work(priv->workqueue, &priv->up);
1759         }
1760
1761         return 1;
1762 }
1763
1764 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1765                              const char *buf, size_t count)
1766 {
1767         struct ipw_priv *priv = d->driver_data;
1768
1769         ipw_radio_kill_sw(priv, buf[0] == '1');
1770
1771         return count;
1772 }
1773
1774 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1775
1776 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1777                                char *buf)
1778 {
1779         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1780         int pos = 0, len = 0;
1781         if (priv->config & CFG_SPEED_SCAN) {
1782                 while (priv->speed_scan[pos] != 0)
1783                         len += sprintf(&buf[len], "%d ",
1784                                        priv->speed_scan[pos++]);
1785                 return len + sprintf(&buf[len], "\n");
1786         }
1787
1788         return sprintf(buf, "0\n");
1789 }
1790
1791 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1792                                 const char *buf, size_t count)
1793 {
1794         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1795         int channel, pos = 0;
1796         const char *p = buf;
1797
1798         /* list of space separated channels to scan, optionally ending with 0 */
1799         while ((channel = simple_strtol(p, NULL, 0))) {
1800                 if (pos == MAX_SPEED_SCAN - 1) {
1801                         priv->speed_scan[pos] = 0;
1802                         break;
1803                 }
1804
1805                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1806                         priv->speed_scan[pos++] = channel;
1807                 else
1808                         IPW_WARNING("Skipping invalid channel request: %d\n",
1809                                     channel);
1810                 p = strchr(p, ' ');
1811                 if (!p)
1812                         break;
1813                 while (*p == ' ' || *p == '\t')
1814                         p++;
1815         }
1816
1817         if (pos == 0)
1818                 priv->config &= ~CFG_SPEED_SCAN;
1819         else {
1820                 priv->speed_scan_pos = 0;
1821                 priv->config |= CFG_SPEED_SCAN;
1822         }
1823
1824         return count;
1825 }
1826
1827 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1828                    store_speed_scan);
1829
1830 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1831                               char *buf)
1832 {
1833         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1834         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1835 }
1836
1837 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1838                                const char *buf, size_t count)
1839 {
1840         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1841         if (buf[0] == '1')
1842                 priv->config |= CFG_NET_STATS;
1843         else
1844                 priv->config &= ~CFG_NET_STATS;
1845
1846         return count;
1847 }
1848
1849 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1850                    show_net_stats, store_net_stats);
1851
1852 static ssize_t show_channels(struct device *d,
1853                              struct device_attribute *attr,
1854                              char *buf)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1858         int len = 0, i;
1859
1860         len = sprintf(&buf[len],
1861                       "Displaying %d channels in 2.4Ghz band "
1862                       "(802.11bg):\n", geo->bg_channels);
1863
1864         for (i = 0; i < geo->bg_channels; i++) {
1865                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1866                                geo->bg[i].channel,
1867                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1868                                " (radar spectrum)" : "",
1869                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1870                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1871                                ? "" : ", IBSS",
1872                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1873                                "passive only" : "active/passive",
1874                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1875                                "B" : "B/G");
1876         }
1877
1878         len += sprintf(&buf[len],
1879                        "Displaying %d channels in 5.2Ghz band "
1880                        "(802.11a):\n", geo->a_channels);
1881         for (i = 0; i < geo->a_channels; i++) {
1882                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1883                                geo->a[i].channel,
1884                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1885                                " (radar spectrum)" : "",
1886                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1887                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1888                                ? "" : ", IBSS",
1889                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1890                                "passive only" : "active/passive");
1891         }
1892
1893         return len;
1894 }
1895
1896 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1897
1898 static void notify_wx_assoc_event(struct ipw_priv *priv)
1899 {
1900         union iwreq_data wrqu;
1901         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1902         if (priv->status & STATUS_ASSOCIATED)
1903                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1904         else
1905                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1906         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1907 }
1908
1909 static void ipw_irq_tasklet(struct ipw_priv *priv)
1910 {
1911         u32 inta, inta_mask, handled = 0;
1912         unsigned long flags;
1913         int rc = 0;
1914
1915         spin_lock_irqsave(&priv->irq_lock, flags);
1916
1917         inta = ipw_read32(priv, IPW_INTA_RW);
1918         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1919         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1920
1921         /* Add any cached INTA values that need to be handled */
1922         inta |= priv->isr_inta;
1923
1924         spin_unlock_irqrestore(&priv->irq_lock, flags);
1925
1926         spin_lock_irqsave(&priv->lock, flags);
1927
1928         /* handle all the justifications for the interrupt */
1929         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1930                 ipw_rx(priv);
1931                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1932         }
1933
1934         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1935                 IPW_DEBUG_HC("Command completed.\n");
1936                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1937                 priv->status &= ~STATUS_HCMD_ACTIVE;
1938                 wake_up_interruptible(&priv->wait_command_queue);
1939                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1940         }
1941
1942         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1943                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1944                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1945                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1946         }
1947
1948         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1949                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1950                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1951                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1952         }
1953
1954         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1955                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1956                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1957                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1958         }
1959
1960         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1961                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1962                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1963                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1964         }
1965
1966         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1967                 IPW_WARNING("STATUS_CHANGE\n");
1968                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1969         }
1970
1971         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1972                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1973                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1974         }
1975
1976         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1977                 IPW_WARNING("HOST_CMD_DONE\n");
1978                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1979         }
1980
1981         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1982                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1983                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1984         }
1985
1986         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1987                 IPW_WARNING("PHY_OFF_DONE\n");
1988                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1989         }
1990
1991         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1992                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1993                 priv->status |= STATUS_RF_KILL_HW;
1994                 wake_up_interruptible(&priv->wait_command_queue);
1995                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1996                 cancel_delayed_work(&priv->request_scan);
1997                 cancel_delayed_work(&priv->scan_event);
1998                 schedule_work(&priv->link_down);
1999                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2000                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2004                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2005                 if (priv->error) {
2006                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2007                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2008                                 struct ipw_fw_error *error =
2009                                     ipw_alloc_error_log(priv);
2010                                 ipw_dump_error_log(priv, error);
2011                                 kfree(error);
2012                         }
2013                 } else {
2014                         priv->error = ipw_alloc_error_log(priv);
2015                         if (priv->error)
2016                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2017                         else
2018                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2019                                              "log.\n");
2020                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2021                                 ipw_dump_error_log(priv, priv->error);
2022                 }
2023
2024                 /* XXX: If hardware encryption is for WPA/WPA2,
2025                  * we have to notify the supplicant. */
2026                 if (priv->ieee->sec.encrypt) {
2027                         priv->status &= ~STATUS_ASSOCIATED;
2028                         notify_wx_assoc_event(priv);
2029                 }
2030
2031                 /* Keep the restart process from trying to send host
2032                  * commands by clearing the INIT status bit */
2033                 priv->status &= ~STATUS_INIT;
2034
2035                 /* Cancel currently queued command. */
2036                 priv->status &= ~STATUS_HCMD_ACTIVE;
2037                 wake_up_interruptible(&priv->wait_command_queue);
2038
2039                 queue_work(priv->workqueue, &priv->adapter_restart);
2040                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2041         }
2042
2043         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2044                 IPW_ERROR("Parity error\n");
2045                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2046         }
2047
2048         if (handled != inta) {
2049                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2050         }
2051
2052         spin_unlock_irqrestore(&priv->lock, flags);
2053
2054         /* enable all interrupts */
2055         ipw_enable_interrupts(priv);
2056 }
2057
2058 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2059 static char *get_cmd_string(u8 cmd)
2060 {
2061         switch (cmd) {
2062                 IPW_CMD(HOST_COMPLETE);
2063                 IPW_CMD(POWER_DOWN);
2064                 IPW_CMD(SYSTEM_CONFIG);
2065                 IPW_CMD(MULTICAST_ADDRESS);
2066                 IPW_CMD(SSID);
2067                 IPW_CMD(ADAPTER_ADDRESS);
2068                 IPW_CMD(PORT_TYPE);
2069                 IPW_CMD(RTS_THRESHOLD);
2070                 IPW_CMD(FRAG_THRESHOLD);
2071                 IPW_CMD(POWER_MODE);
2072                 IPW_CMD(WEP_KEY);
2073                 IPW_CMD(TGI_TX_KEY);
2074                 IPW_CMD(SCAN_REQUEST);
2075                 IPW_CMD(SCAN_REQUEST_EXT);
2076                 IPW_CMD(ASSOCIATE);
2077                 IPW_CMD(SUPPORTED_RATES);
2078                 IPW_CMD(SCAN_ABORT);
2079                 IPW_CMD(TX_FLUSH);
2080                 IPW_CMD(QOS_PARAMETERS);
2081                 IPW_CMD(DINO_CONFIG);
2082                 IPW_CMD(RSN_CAPABILITIES);
2083                 IPW_CMD(RX_KEY);
2084                 IPW_CMD(CARD_DISABLE);
2085                 IPW_CMD(SEED_NUMBER);
2086                 IPW_CMD(TX_POWER);
2087                 IPW_CMD(COUNTRY_INFO);
2088                 IPW_CMD(AIRONET_INFO);
2089                 IPW_CMD(AP_TX_POWER);
2090                 IPW_CMD(CCKM_INFO);
2091                 IPW_CMD(CCX_VER_INFO);
2092                 IPW_CMD(SET_CALIBRATION);
2093                 IPW_CMD(SENSITIVITY_CALIB);
2094                 IPW_CMD(RETRY_LIMIT);
2095                 IPW_CMD(IPW_PRE_POWER_DOWN);
2096                 IPW_CMD(VAP_BEACON_TEMPLATE);
2097                 IPW_CMD(VAP_DTIM_PERIOD);
2098                 IPW_CMD(EXT_SUPPORTED_RATES);
2099                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2100                 IPW_CMD(VAP_QUIET_INTERVALS);
2101                 IPW_CMD(VAP_CHANNEL_SWITCH);
2102                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2103                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2104                 IPW_CMD(VAP_CF_PARAM_SET);
2105                 IPW_CMD(VAP_SET_BEACONING_STATE);
2106                 IPW_CMD(MEASUREMENT);
2107                 IPW_CMD(POWER_CAPABILITY);
2108                 IPW_CMD(SUPPORTED_CHANNELS);
2109                 IPW_CMD(TPC_REPORT);
2110                 IPW_CMD(WME_INFO);
2111                 IPW_CMD(PRODUCTION_COMMAND);
2112         default:
2113                 return "UNKNOWN";
2114         }
2115 }
2116
2117 #define HOST_COMPLETE_TIMEOUT HZ
2118
2119 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2120 {
2121         int rc = 0;
2122         unsigned long flags;
2123
2124         spin_lock_irqsave(&priv->lock, flags);
2125         if (priv->status & STATUS_HCMD_ACTIVE) {
2126                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2127                           get_cmd_string(cmd->cmd));
2128                 spin_unlock_irqrestore(&priv->lock, flags);
2129                 return -EAGAIN;
2130         }
2131
2132         priv->status |= STATUS_HCMD_ACTIVE;
2133
2134         if (priv->cmdlog) {
2135                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2136                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2137                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2138                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2139                        cmd->len);
2140                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2141         }
2142
2143         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2144                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2145                      priv->status);
2146
2147 #ifndef DEBUG_CMD_WEP_KEY
2148         if (cmd->cmd == IPW_CMD_WEP_KEY)
2149                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2150         else
2151 #endif
2152                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2153
2154         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2155         if (rc) {
2156                 priv->status &= ~STATUS_HCMD_ACTIVE;
2157                 IPW_ERROR("Failed to send %s: Reason %d\n",
2158                           get_cmd_string(cmd->cmd), rc);
2159                 spin_unlock_irqrestore(&priv->lock, flags);
2160                 goto exit;
2161         }
2162         spin_unlock_irqrestore(&priv->lock, flags);
2163
2164         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2165                                               !(priv->
2166                                                 status & STATUS_HCMD_ACTIVE),
2167                                               HOST_COMPLETE_TIMEOUT);
2168         if (rc == 0) {
2169                 spin_lock_irqsave(&priv->lock, flags);
2170                 if (priv->status & STATUS_HCMD_ACTIVE) {
2171                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2172                                   get_cmd_string(cmd->cmd));
2173                         priv->status &= ~STATUS_HCMD_ACTIVE;
2174                         spin_unlock_irqrestore(&priv->lock, flags);
2175                         rc = -EIO;
2176                         goto exit;
2177                 }
2178                 spin_unlock_irqrestore(&priv->lock, flags);
2179         } else
2180                 rc = 0;
2181
2182         if (priv->status & STATUS_RF_KILL_HW) {
2183                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2184                           get_cmd_string(cmd->cmd));
2185                 rc = -EIO;
2186                 goto exit;
2187         }
2188
2189       exit:
2190         if (priv->cmdlog) {
2191                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2192                 priv->cmdlog_pos %= priv->cmdlog_len;
2193         }
2194         return rc;
2195 }
2196
2197 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2198 {
2199         struct host_cmd cmd = {
2200                 .cmd = command,
2201         };
2202
2203         return __ipw_send_cmd(priv, &cmd);
2204 }
2205
2206 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2207                             void *data)
2208 {
2209         struct host_cmd cmd = {
2210                 .cmd = command,
2211                 .len = len,
2212                 .param = data,
2213         };
2214
2215         return __ipw_send_cmd(priv, &cmd);
2216 }
2217
2218 static int ipw_send_host_complete(struct ipw_priv *priv)
2219 {
2220         if (!priv) {
2221                 IPW_ERROR("Invalid args\n");
2222                 return -1;
2223         }
2224
2225         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2226 }
2227
2228 static int ipw_send_system_config(struct ipw_priv *priv)
2229 {
2230         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2231                                 sizeof(priv->sys_config),
2232                                 &priv->sys_config);
2233 }
2234
2235 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2236 {
2237         if (!priv || !ssid) {
2238                 IPW_ERROR("Invalid args\n");
2239                 return -1;
2240         }
2241
2242         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2243                                 ssid);
2244 }
2245
2246 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2247 {
2248         if (!priv || !mac) {
2249                 IPW_ERROR("Invalid args\n");
2250                 return -1;
2251         }
2252
2253         IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2254                        priv->net_dev->name, print_mac(mac, mac));
2255
2256         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2257 }
2258
2259 /*
2260  * NOTE: This must be executed from our workqueue as it results in udelay
2261  * being called which may corrupt the keyboard if executed on default
2262  * workqueue
2263  */
2264 static void ipw_adapter_restart(void *adapter)
2265 {
2266         struct ipw_priv *priv = adapter;
2267
2268         if (priv->status & STATUS_RF_KILL_MASK)
2269                 return;
2270
2271         ipw_down(priv);
2272
2273         if (priv->assoc_network &&
2274             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2275                 ipw_remove_current_network(priv);
2276
2277         if (ipw_up(priv)) {
2278                 IPW_ERROR("Failed to up device\n");
2279                 return;
2280         }
2281 }
2282
2283 static void ipw_bg_adapter_restart(struct work_struct *work)
2284 {
2285         struct ipw_priv *priv =
2286                 container_of(work, struct ipw_priv, adapter_restart);
2287         mutex_lock(&priv->mutex);
2288         ipw_adapter_restart(priv);
2289         mutex_unlock(&priv->mutex);
2290 }
2291
2292 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2293
2294 static void ipw_scan_check(void *data)
2295 {
2296         struct ipw_priv *priv = data;
2297         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2298                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2299                                "adapter after (%dms).\n",
2300                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2301                 queue_work(priv->workqueue, &priv->adapter_restart);
2302         }
2303 }
2304
2305 static void ipw_bg_scan_check(struct work_struct *work)
2306 {
2307         struct ipw_priv *priv =
2308                 container_of(work, struct ipw_priv, scan_check.work);
2309         mutex_lock(&priv->mutex);
2310         ipw_scan_check(priv);
2311         mutex_unlock(&priv->mutex);
2312 }
2313
2314 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2315                                      struct ipw_scan_request_ext *request)
2316 {
2317         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2318                                 sizeof(*request), request);
2319 }
2320
2321 static int ipw_send_scan_abort(struct ipw_priv *priv)
2322 {
2323         if (!priv) {
2324                 IPW_ERROR("Invalid args\n");
2325                 return -1;
2326         }
2327
2328         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2329 }
2330
2331 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2332 {
2333         struct ipw_sensitivity_calib calib = {
2334                 .beacon_rssi_raw = cpu_to_le16(sens),
2335         };
2336
2337         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2338                                 &calib);
2339 }
2340
2341 static int ipw_send_associate(struct ipw_priv *priv,
2342                               struct ipw_associate *associate)
2343 {
2344         struct ipw_associate tmp_associate;
2345
2346         if (!priv || !associate) {
2347                 IPW_ERROR("Invalid args\n");
2348                 return -1;
2349         }
2350
2351         memcpy(&tmp_associate, associate, sizeof(*associate));
2352         tmp_associate.policy_support =
2353             cpu_to_le16(tmp_associate.policy_support);
2354         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2355         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2356         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2357         tmp_associate.listen_interval =
2358             cpu_to_le16(tmp_associate.listen_interval);
2359         tmp_associate.beacon_interval =
2360             cpu_to_le16(tmp_associate.beacon_interval);
2361         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2362
2363         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2364                                 &tmp_associate);
2365 }
2366
2367 static int ipw_send_supported_rates(struct ipw_priv *priv,
2368                                     struct ipw_supported_rates *rates)
2369 {
2370         if (!priv || !rates) {
2371                 IPW_ERROR("Invalid args\n");
2372                 return -1;
2373         }
2374
2375         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2376                                 rates);
2377 }
2378
2379 static int ipw_set_random_seed(struct ipw_priv *priv)
2380 {
2381         u32 val;
2382
2383         if (!priv) {
2384                 IPW_ERROR("Invalid args\n");
2385                 return -1;
2386         }
2387
2388         get_random_bytes(&val, sizeof(val));
2389
2390         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2391 }
2392
2393 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2394 {
2395         if (!priv) {
2396                 IPW_ERROR("Invalid args\n");
2397                 return -1;
2398         }
2399
2400         phy_off = cpu_to_le32(phy_off);
2401         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2402                                 &phy_off);
2403 }
2404
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2406 {
2407         if (!priv || !power) {
2408                 IPW_ERROR("Invalid args\n");
2409                 return -1;
2410         }
2411
2412         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2413 }
2414
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2416 {
2417         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418         struct ipw_tx_power tx_power;
2419         s8 max_power;
2420         int i;
2421
2422         memset(&tx_power, 0, sizeof(tx_power));
2423
2424         /* configure device for 'G' band */
2425         tx_power.ieee_mode = IPW_G_MODE;
2426         tx_power.num_channels = geo->bg_channels;
2427         for (i = 0; i < geo->bg_channels; i++) {
2428                 max_power = geo->bg[i].max_power;
2429                 tx_power.channels_tx_power[i].channel_number =
2430                     geo->bg[i].channel;
2431                 tx_power.channels_tx_power[i].tx_power = max_power ?
2432                     min(max_power, priv->tx_power) : priv->tx_power;
2433         }
2434         if (ipw_send_tx_power(priv, &tx_power))
2435                 return -EIO;
2436
2437         /* configure device to also handle 'B' band */
2438         tx_power.ieee_mode = IPW_B_MODE;
2439         if (ipw_send_tx_power(priv, &tx_power))
2440                 return -EIO;
2441
2442         /* configure device to also handle 'A' band */
2443         if (priv->ieee->abg_true) {
2444                 tx_power.ieee_mode = IPW_A_MODE;
2445                 tx_power.num_channels = geo->a_channels;
2446                 for (i = 0; i < tx_power.num_channels; i++) {
2447                         max_power = geo->a[i].max_power;
2448                         tx_power.channels_tx_power[i].channel_number =
2449                             geo->a[i].channel;
2450                         tx_power.channels_tx_power[i].tx_power = max_power ?
2451                             min(max_power, priv->tx_power) : priv->tx_power;
2452                 }
2453                 if (ipw_send_tx_power(priv, &tx_power))
2454                         return -EIO;
2455         }
2456         return 0;
2457 }
2458
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2460 {
2461         struct ipw_rts_threshold rts_threshold = {
2462                 .rts_threshold = cpu_to_le16(rts),
2463         };
2464
2465         if (!priv) {
2466                 IPW_ERROR("Invalid args\n");
2467                 return -1;
2468         }
2469
2470         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471                                 sizeof(rts_threshold), &rts_threshold);
2472 }
2473
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2475 {
2476         struct ipw_frag_threshold frag_threshold = {
2477                 .frag_threshold = cpu_to_le16(frag),
2478         };
2479
2480         if (!priv) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486                                 sizeof(frag_threshold), &frag_threshold);
2487 }
2488
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490 {
2491         u32 param;
2492
2493         if (!priv) {
2494                 IPW_ERROR("Invalid args\n");
2495                 return -1;
2496         }
2497
2498         /* If on battery, set to 3, if AC set to CAM, else user
2499          * level */
2500         switch (mode) {
2501         case IPW_POWER_BATTERY:
2502                 param = IPW_POWER_INDEX_3;
2503                 break;
2504         case IPW_POWER_AC:
2505                 param = IPW_POWER_MODE_CAM;
2506                 break;
2507         default:
2508                 param = mode;
2509                 break;
2510         }
2511
2512         param = cpu_to_le32(param);
2513         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2514                                 &param);
2515 }
2516
2517 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2518 {
2519         struct ipw_retry_limit retry_limit = {
2520                 .short_retry_limit = slimit,
2521                 .long_retry_limit = llimit
2522         };
2523
2524         if (!priv) {
2525                 IPW_ERROR("Invalid args\n");
2526                 return -1;
2527         }
2528
2529         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2530                                 &retry_limit);
2531 }
2532
2533 /*
2534  * The IPW device contains a Microwire compatible EEPROM that stores
2535  * various data like the MAC address.  Usually the firmware has exclusive
2536  * access to the eeprom, but during device initialization (before the
2537  * device driver has sent the HostComplete command to the firmware) the
2538  * device driver has read access to the EEPROM by way of indirect addressing
2539  * through a couple of memory mapped registers.
2540  *
2541  * The following is a simplified implementation for pulling data out of the
2542  * the eeprom, along with some helper functions to find information in
2543  * the per device private data's copy of the eeprom.
2544  *
2545  * NOTE: To better understand how these functions work (i.e what is a chip
2546  *       select and why do have to keep driving the eeprom clock?), read
2547  *       just about any data sheet for a Microwire compatible EEPROM.
2548  */
2549
2550 /* write a 32 bit value into the indirect accessor register */
2551 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2552 {
2553         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2554
2555         /* the eeprom requires some time to complete the operation */
2556         udelay(p->eeprom_delay);
2557
2558         return;
2559 }
2560
2561 /* perform a chip select operation */
2562 static void eeprom_cs(struct ipw_priv *priv)
2563 {
2564         eeprom_write_reg(priv, 0);
2565         eeprom_write_reg(priv, EEPROM_BIT_CS);
2566         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2567         eeprom_write_reg(priv, EEPROM_BIT_CS);
2568 }
2569
2570 /* perform a chip select operation */
2571 static void eeprom_disable_cs(struct ipw_priv *priv)
2572 {
2573         eeprom_write_reg(priv, EEPROM_BIT_CS);
2574         eeprom_write_reg(priv, 0);
2575         eeprom_write_reg(priv, EEPROM_BIT_SK);
2576 }
2577
2578 /* push a single bit down to the eeprom */
2579 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2580 {
2581         int d = (bit ? EEPROM_BIT_DI : 0);
2582         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2583         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2584 }
2585
2586 /* push an opcode followed by an address down to the eeprom */
2587 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2588 {
2589         int i;
2590
2591         eeprom_cs(priv);
2592         eeprom_write_bit(priv, 1);
2593         eeprom_write_bit(priv, op & 2);
2594         eeprom_write_bit(priv, op & 1);
2595         for (i = 7; i >= 0; i--) {
2596                 eeprom_write_bit(priv, addr & (1 << i));
2597         }
2598 }
2599
2600 /* pull 16 bits off the eeprom, one bit at a time */
2601 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2602 {
2603         int i;
2604         u16 r = 0;
2605
2606         /* Send READ Opcode */
2607         eeprom_op(priv, EEPROM_CMD_READ, addr);
2608
2609         /* Send dummy bit */
2610         eeprom_write_reg(priv, EEPROM_BIT_CS);
2611
2612         /* Read the byte off the eeprom one bit at a time */
2613         for (i = 0; i < 16; i++) {
2614                 u32 data = 0;
2615                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2616                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2618                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2619         }
2620
2621         /* Send another dummy bit */
2622         eeprom_write_reg(priv, 0);
2623         eeprom_disable_cs(priv);
2624
2625         return r;
2626 }
2627
2628 /* helper function for pulling the mac address out of the private */
2629 /* data's copy of the eeprom data                                 */
2630 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2631 {
2632         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2633 }
2634
2635 /*
2636  * Either the device driver (i.e. the host) or the firmware can
2637  * load eeprom data into the designated region in SRAM.  If neither
2638  * happens then the FW will shutdown with a fatal error.
2639  *
2640  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2641  * bit needs region of shared SRAM needs to be non-zero.
2642  */
2643 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2644 {
2645         int i;
2646         u16 *eeprom = (u16 *) priv->eeprom;
2647
2648         IPW_DEBUG_TRACE(">>\n");
2649
2650         /* read entire contents of eeprom into private buffer */
2651         for (i = 0; i < 128; i++)
2652                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2653
2654         /*
2655            If the data looks correct, then copy it to our private
2656            copy.  Otherwise let the firmware know to perform the operation
2657            on its own.
2658          */
2659         if (priv->eeprom[EEPROM_VERSION] != 0) {
2660                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2661
2662                 /* write the eeprom data to sram */
2663                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2664                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2665
2666                 /* Do not load eeprom data on fatal error or suspend */
2667                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2668         } else {
2669                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2670
2671                 /* Load eeprom data on fatal error or suspend */
2672                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2673         }
2674
2675         IPW_DEBUG_TRACE("<<\n");
2676 }
2677
2678 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2679 {
2680         count >>= 2;
2681         if (!count)
2682                 return;
2683         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2684         while (count--)
2685                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2686 }
2687
2688 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2689 {
2690         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2691                         CB_NUMBER_OF_ELEMENTS_SMALL *
2692                         sizeof(struct command_block));
2693 }
2694
2695 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2696 {                               /* start dma engine but no transfers yet */
2697
2698         IPW_DEBUG_FW(">> : \n");
2699
2700         /* Start the dma */
2701         ipw_fw_dma_reset_command_blocks(priv);
2702
2703         /* Write CB base address */
2704         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2705
2706         IPW_DEBUG_FW("<< : \n");
2707         return 0;
2708 }
2709
2710 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 {
2712         u32 control = 0;
2713
2714         IPW_DEBUG_FW(">> :\n");
2715
2716         /* set the Stop and Abort bit */
2717         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2718         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2719         priv->sram_desc.last_cb_index = 0;
2720
2721         IPW_DEBUG_FW("<< \n");
2722 }
2723
2724 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2725                                           struct command_block *cb)
2726 {
2727         u32 address =
2728             IPW_SHARED_SRAM_DMA_CONTROL +
2729             (sizeof(struct command_block) * index);
2730         IPW_DEBUG_FW(">> :\n");
2731
2732         ipw_write_indirect(priv, address, (u8 *) cb,
2733                            (int)sizeof(struct command_block));
2734
2735         IPW_DEBUG_FW("<< :\n");
2736         return 0;
2737
2738 }
2739
2740 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2741 {
2742         u32 control = 0;
2743         u32 index = 0;
2744
2745         IPW_DEBUG_FW(">> :\n");
2746
2747         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2748                 ipw_fw_dma_write_command_block(priv, index,
2749                                                &priv->sram_desc.cb_list[index]);
2750
2751         /* Enable the DMA in the CSR register */
2752         ipw_clear_bit(priv, IPW_RESET_REG,
2753                       IPW_RESET_REG_MASTER_DISABLED |
2754                       IPW_RESET_REG_STOP_MASTER);
2755
2756         /* Set the Start bit. */
2757         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2758         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759
2760         IPW_DEBUG_FW("<< :\n");
2761         return 0;
2762 }
2763
2764 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2765 {
2766         u32 address;
2767         u32 register_value = 0;
2768         u32 cb_fields_address = 0;
2769
2770         IPW_DEBUG_FW(">> :\n");
2771         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2772         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2773
2774         /* Read the DMA Controlor register */
2775         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2776         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2777
2778         /* Print the CB values */
2779         cb_fields_address = address;
2780         register_value = ipw_read_reg32(priv, cb_fields_address);
2781         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2782
2783         cb_fields_address += sizeof(u32);
2784         register_value = ipw_read_reg32(priv, cb_fields_address);
2785         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2786
2787         cb_fields_address += sizeof(u32);
2788         register_value = ipw_read_reg32(priv, cb_fields_address);
2789         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2790                           register_value);
2791
2792         cb_fields_address += sizeof(u32);
2793         register_value = ipw_read_reg32(priv, cb_fields_address);
2794         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2795
2796         IPW_DEBUG_FW(">> :\n");
2797 }
2798
2799 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2800 {
2801         u32 current_cb_address = 0;
2802         u32 current_cb_index = 0;
2803
2804         IPW_DEBUG_FW("<< :\n");
2805         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2806
2807         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2808             sizeof(struct command_block);
2809
2810         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2811                           current_cb_index, current_cb_address);
2812
2813         IPW_DEBUG_FW(">> :\n");
2814         return current_cb_index;
2815
2816 }
2817
2818 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2819                                         u32 src_address,
2820                                         u32 dest_address,
2821                                         u32 length,
2822                                         int interrupt_enabled, int is_last)
2823 {
2824
2825         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2826             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2827             CB_DEST_SIZE_LONG;
2828         struct command_block *cb;
2829         u32 last_cb_element = 0;
2830
2831         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2832                           src_address, dest_address, length);
2833
2834         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2835                 return -1;
2836
2837         last_cb_element = priv->sram_desc.last_cb_index;
2838         cb = &priv->sram_desc.cb_list[last_cb_element];
2839         priv->sram_desc.last_cb_index++;
2840
2841         /* Calculate the new CB control word */
2842         if (interrupt_enabled)
2843                 control |= CB_INT_ENABLED;
2844
2845         if (is_last)
2846                 control |= CB_LAST_VALID;
2847
2848         control |= length;
2849
2850         /* Calculate the CB Element's checksum value */
2851         cb->status = control ^ src_address ^ dest_address;
2852
2853         /* Copy the Source and Destination addresses */
2854         cb->dest_addr = dest_address;
2855         cb->source_addr = src_address;
2856
2857         /* Copy the Control Word last */
2858         cb->control = control;
2859
2860         return 0;
2861 }
2862
2863 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2864                                  u32 src_phys, u32 dest_address, u32 length)
2865 {
2866         u32 bytes_left = length;
2867         u32 src_offset = 0;
2868         u32 dest_offset = 0;
2869         int status = 0;
2870         IPW_DEBUG_FW(">> \n");
2871         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2872                           src_phys, dest_address, length);
2873         while (bytes_left > CB_MAX_LENGTH) {
2874                 status = ipw_fw_dma_add_command_block(priv,
2875                                                       src_phys + src_offset,
2876                                                       dest_address +
2877                                                       dest_offset,
2878                                                       CB_MAX_LENGTH, 0, 0);
2879                 if (status) {
2880                         IPW_DEBUG_FW_INFO(": Failed\n");
2881                         return -1;
2882                 } else
2883                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2884
2885                 src_offset += CB_MAX_LENGTH;
2886                 dest_offset += CB_MAX_LENGTH;
2887                 bytes_left -= CB_MAX_LENGTH;
2888         }
2889
2890         /* add the buffer tail */
2891         if (bytes_left > 0) {
2892                 status =
2893                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2894                                                  dest_address + dest_offset,
2895                                                  bytes_left, 0, 0);
2896                 if (status) {
2897                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2898                         return -1;
2899                 } else
2900                         IPW_DEBUG_FW_INFO
2901                             (": Adding new cb - the buffer tail\n");
2902         }
2903
2904         IPW_DEBUG_FW("<< \n");
2905         return 0;
2906 }
2907
2908 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2909 {
2910         u32 current_index = 0, previous_index;
2911         u32 watchdog = 0;
2912
2913         IPW_DEBUG_FW(">> : \n");
2914
2915         current_index = ipw_fw_dma_command_block_index(priv);
2916         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2917                           (int)priv->sram_desc.last_cb_index);
2918
2919         while (current_index < priv->sram_desc.last_cb_index) {
2920                 udelay(50);
2921                 previous_index = current_index;
2922                 current_index = ipw_fw_dma_command_block_index(priv);
2923
2924                 if (previous_index < current_index) {
2925                         watchdog = 0;
2926                         continue;
2927                 }
2928                 if (++watchdog > 400) {
2929                         IPW_DEBUG_FW_INFO("Timeout\n");
2930                         ipw_fw_dma_dump_command_block(priv);
2931                         ipw_fw_dma_abort(priv);
2932                         return -1;
2933                 }
2934         }
2935
2936         ipw_fw_dma_abort(priv);
2937
2938         /*Disable the DMA in the CSR register */
2939         ipw_set_bit(priv, IPW_RESET_REG,
2940                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2941
2942         IPW_DEBUG_FW("<< dmaWaitSync \n");
2943         return 0;
2944 }
2945
2946 static void ipw_remove_current_network(struct ipw_priv *priv)
2947 {
2948         struct list_head *element, *safe;
2949         struct ieee80211_network *network = NULL;
2950         unsigned long flags;
2951
2952         spin_lock_irqsave(&priv->ieee->lock, flags);
2953         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2954                 network = list_entry(element, struct ieee80211_network, list);
2955                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2956                         list_del(element);
2957                         list_add_tail(&network->list,
2958                                       &priv->ieee->network_free_list);
2959                 }
2960         }
2961         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2962 }
2963
2964 /**
2965  * Check that card is still alive.
2966  * Reads debug register from domain0.
2967  * If card is present, pre-defined value should
2968  * be found there.
2969  *
2970  * @param priv
2971  * @return 1 if card is present, 0 otherwise
2972  */
2973 static inline int ipw_alive(struct ipw_priv *priv)
2974 {
2975         return ipw_read32(priv, 0x90) == 0xd55555d5;
2976 }
2977
2978 /* timeout in msec, attempted in 10-msec quanta */
2979 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2980                                int timeout)
2981 {
2982         int i = 0;
2983
2984         do {
2985                 if ((ipw_read32(priv, addr) & mask) == mask)
2986                         return i;
2987                 mdelay(10);
2988                 i += 10;
2989         } while (i < timeout);
2990
2991         return -ETIME;
2992 }
2993
2994 /* These functions load the firmware and micro code for the operation of
2995  * the ipw hardware.  It assumes the buffer has all the bits for the
2996  * image and the caller is handling the memory allocation and clean up.
2997  */
2998
2999 static int ipw_stop_master(struct ipw_priv *priv)
3000 {
3001         int rc;
3002
3003         IPW_DEBUG_TRACE(">> \n");
3004         /* stop master. typical delay - 0 */
3005         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3006
3007         /* timeout is in msec, polled in 10-msec quanta */
3008         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3009                           IPW_RESET_REG_MASTER_DISABLED, 100);
3010         if (rc < 0) {
3011                 IPW_ERROR("wait for stop master failed after 100ms\n");
3012                 return -1;
3013         }
3014
3015         IPW_DEBUG_INFO("stop master %dms\n", rc);
3016
3017         return rc;
3018 }
3019
3020 static void ipw_arc_release(struct ipw_priv *priv)
3021 {
3022         IPW_DEBUG_TRACE(">> \n");
3023         mdelay(5);
3024
3025         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3026
3027         /* no one knows timing, for safety add some delay */
3028         mdelay(5);
3029 }
3030
3031 struct fw_chunk {
3032         u32 address;
3033         u32 length;
3034 };
3035
3036 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3037 {
3038         int rc = 0, i, addr;
3039         u8 cr = 0;
3040         u16 *image;
3041
3042         image = (u16 *) data;
3043
3044         IPW_DEBUG_TRACE(">> \n");
3045
3046         rc = ipw_stop_master(priv);
3047
3048         if (rc < 0)
3049                 return rc;
3050
3051         for (addr = IPW_SHARED_LOWER_BOUND;
3052              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3053                 ipw_write32(priv, addr, 0);
3054         }
3055
3056         /* no ucode (yet) */
3057         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3058         /* destroy DMA queues */
3059         /* reset sequence */
3060
3061         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3062         ipw_arc_release(priv);
3063         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3064         mdelay(1);
3065
3066         /* reset PHY */
3067         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3068         mdelay(1);
3069
3070         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3071         mdelay(1);
3072
3073         /* enable ucode store */
3074         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3075         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3076         mdelay(1);
3077
3078         /* write ucode */
3079         /**
3080          * @bug
3081          * Do NOT set indirect address register once and then
3082          * store data to indirect data register in the loop.
3083          * It seems very reasonable, but in this case DINO do not
3084          * accept ucode. It is essential to set address each time.
3085          */
3086         /* load new ipw uCode */
3087         for (i = 0; i < len / 2; i++)
3088                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3089                                 cpu_to_le16(image[i]));
3090
3091         /* enable DINO */
3092         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3093         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3094
3095         /* this is where the igx / win driver deveates from the VAP driver. */
3096
3097         /* wait for alive response */
3098         for (i = 0; i < 100; i++) {
3099                 /* poll for incoming data */
3100                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3101                 if (cr & DINO_RXFIFO_DATA)
3102                         break;
3103                 mdelay(1);
3104         }
3105
3106         if (cr & DINO_RXFIFO_DATA) {
3107                 /* alive_command_responce size is NOT multiple of 4 */
3108                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3109
3110                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3111                         response_buffer[i] =
3112                             le32_to_cpu(ipw_read_reg32(priv,
3113                                                        IPW_BASEBAND_RX_FIFO_READ));
3114                 memcpy(&priv->dino_alive, response_buffer,
3115                        sizeof(priv->dino_alive));
3116                 if (priv->dino_alive.alive_command == 1
3117                     && priv->dino_alive.ucode_valid == 1) {
3118                         rc = 0;
3119                         IPW_DEBUG_INFO
3120                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3121                              "of %02d/%02d/%02d %02d:%02d\n",
3122                              priv->dino_alive.software_revision,
3123                              priv->dino_alive.software_revision,
3124                              priv->dino_alive.device_identifier,
3125                              priv->dino_alive.device_identifier,
3126                              priv->dino_alive.time_stamp[0],
3127                              priv->dino_alive.time_stamp[1],
3128                              priv->dino_alive.time_stamp[2],
3129                              priv->dino_alive.time_stamp[3],
3130                              priv->dino_alive.time_stamp[4]);
3131                 } else {
3132                         IPW_DEBUG_INFO("Microcode is not alive\n");
3133                         rc = -EINVAL;
3134                 }
3135         } else {
3136                 IPW_DEBUG_INFO("No alive response from DINO\n");
3137                 rc = -ETIME;
3138         }
3139
3140         /* disable DINO, otherwise for some reason
3141            firmware have problem getting alive resp. */
3142         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3143
3144         return rc;
3145 }
3146
3147 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 {
3149         int rc = -1;
3150         int offset = 0;
3151         struct fw_chunk *chunk;
3152         dma_addr_t shared_phys;
3153         u8 *shared_virt;
3154
3155         IPW_DEBUG_TRACE("<< : \n");
3156         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3157
3158         if (!shared_virt)
3159                 return -ENOMEM;
3160
3161         memmove(shared_virt, data, len);
3162
3163         /* Start the Dma */
3164         rc = ipw_fw_dma_enable(priv);
3165
3166         if (priv->sram_desc.last_cb_index > 0) {
3167                 /* the DMA is already ready this would be a bug. */
3168                 BUG();
3169                 goto out;
3170         }
3171
3172         do {
3173                 chunk = (struct fw_chunk *)(data + offset);
3174                 offset += sizeof(struct fw_chunk);
3175                 /* build DMA packet and queue up for sending */
3176                 /* dma to chunk->address, the chunk->length bytes from data +
3177                  * offeset*/
3178                 /* Dma loading */
3179                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3180                                            le32_to_cpu(chunk->address),
3181                                            le32_to_cpu(chunk->length));
3182                 if (rc) {
3183                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3184                         goto out;
3185                 }
3186
3187                 offset += le32_to_cpu(chunk->length);
3188         } while (offset < len);
3189
3190         /* Run the DMA and wait for the answer */
3191         rc = ipw_fw_dma_kick(priv);
3192         if (rc) {
3193                 IPW_ERROR("dmaKick Failed\n");
3194                 goto out;
3195         }
3196
3197         rc = ipw_fw_dma_wait(priv);
3198         if (rc) {
3199                 IPW_ERROR("dmaWaitSync Failed\n");
3200                 goto out;
3201         }
3202       out:
3203         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3204         return rc;
3205 }
3206
3207 /* stop nic */
3208 static int ipw_stop_nic(struct ipw_priv *priv)
3209 {
3210         int rc = 0;
3211
3212         /* stop */
3213         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3214
3215         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3216                           IPW_RESET_REG_MASTER_DISABLED, 500);
3217         if (rc < 0) {
3218                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3219                 return rc;
3220         }
3221
3222         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3223
3224         return rc;
3225 }
3226
3227 static void ipw_start_nic(struct ipw_priv *priv)
3228 {
3229         IPW_DEBUG_TRACE(">>\n");
3230
3231         /* prvHwStartNic  release ARC */
3232         ipw_clear_bit(priv, IPW_RESET_REG,
3233                       IPW_RESET_REG_MASTER_DISABLED |
3234                       IPW_RESET_REG_STOP_MASTER |
3235                       CBD_RESET_REG_PRINCETON_RESET);
3236
3237         /* enable power management */
3238         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3239                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3240
3241         IPW_DEBUG_TRACE("<<\n");
3242 }
3243
3244 static int ipw_init_nic(struct ipw_priv *priv)
3245 {
3246         int rc;
3247
3248         IPW_DEBUG_TRACE(">>\n");
3249         /* reset */
3250         /*prvHwInitNic */
3251         /* set "initialization complete" bit to move adapter to D0 state */
3252         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3253
3254         /* low-level PLL activation */
3255         ipw_write32(priv, IPW_READ_INT_REGISTER,
3256                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3257
3258         /* wait for clock stabilization */
3259         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3260                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3261         if (rc < 0)
3262                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3263
3264         /* assert SW reset */
3265         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266
3267         udelay(10);
3268
3269         /* set "initialization complete" bit to move adapter to D0 state */
3270         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3271
3272         IPW_DEBUG_TRACE(">>\n");
3273         return 0;
3274 }
3275
3276 /* Call this function from process context, it will sleep in request_firmware.
3277  * Probe is an ok place to call this from.
3278  */
3279 static int ipw_reset_nic(struct ipw_priv *priv)
3280 {
3281         int rc = 0;
3282         unsigned long flags;
3283
3284         IPW_DEBUG_TRACE(">>\n");
3285
3286         rc = ipw_init_nic(priv);
3287
3288         spin_lock_irqsave(&priv->lock, flags);
3289         /* Clear the 'host command active' bit... */
3290         priv->status &= ~STATUS_HCMD_ACTIVE;
3291         wake_up_interruptible(&priv->wait_command_queue);
3292         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3293         wake_up_interruptible(&priv->wait_state);
3294         spin_unlock_irqrestore(&priv->lock, flags);
3295
3296         IPW_DEBUG_TRACE("<<\n");
3297         return rc;
3298 }
3299
3300
3301 struct ipw_fw {
3302         __le32 ver;
3303         __le32 boot_size;
3304         __le32 ucode_size;
3305         __le32 fw_size;
3306         u8 data[0];
3307 };
3308
3309 static int ipw_get_fw(struct ipw_priv *priv,
3310                       const struct firmware **raw, const char *name)
3311 {
3312         struct ipw_fw *fw;
3313         int rc;
3314
3315         /* ask firmware_class module to get the boot firmware off disk */
3316         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3317         if (rc < 0) {
3318                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3319                 return rc;
3320         }
3321
3322         if ((*raw)->size < sizeof(*fw)) {
3323                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3324                 return -EINVAL;
3325         }
3326
3327         fw = (void *)(*raw)->data;
3328
3329         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3330             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3331                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3332                           name, (*raw)->size);
3333                 return -EINVAL;
3334         }
3335
3336         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3337                        name,
3338                        le32_to_cpu(fw->ver) >> 16,
3339                        le32_to_cpu(fw->ver) & 0xff,
3340                        (*raw)->size - sizeof(*fw));
3341         return 0;
3342 }
3343
3344 #define IPW_RX_BUF_SIZE (3000)
3345
3346 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3347                                       struct ipw_rx_queue *rxq)
3348 {
3349         unsigned long flags;
3350         int i;
3351
3352         spin_lock_irqsave(&rxq->lock, flags);
3353
3354         INIT_LIST_HEAD(&rxq->rx_free);
3355         INIT_LIST_HEAD(&rxq->rx_used);
3356
3357         /* Fill the rx_used queue with _all_ of the Rx buffers */
3358         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3359                 /* In the reset function, these buffers may have been allocated
3360                  * to an SKB, so we need to unmap and free potential storage */
3361                 if (rxq->pool[i].skb != NULL) {
3362                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3363                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3364                         dev_kfree_skb(rxq->pool[i].skb);
3365                         rxq->pool[i].skb = NULL;
3366                 }
3367                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3368         }
3369
3370         /* Set us so that we have processed and used all buffers, but have
3371          * not restocked the Rx queue with fresh buffers */
3372         rxq->read = rxq->write = 0;
3373         rxq->processed = RX_QUEUE_SIZE - 1;
3374         rxq->free_count = 0;
3375         spin_unlock_irqrestore(&rxq->lock, flags);
3376 }
3377
3378 #ifdef CONFIG_PM
3379 static int fw_loaded = 0;
3380 static const struct firmware *raw = NULL;
3381
3382 static void free_firmware(void)
3383 {
3384         if (fw_loaded) {
3385                 release_firmware(raw);
3386                 raw = NULL;
3387                 fw_loaded = 0;
3388         }
3389 }
3390 #else
3391 #define free_firmware() do {} while (0)
3392 #endif
3393
3394 static int ipw_load(struct ipw_priv *priv)
3395 {
3396 #ifndef CONFIG_PM
3397         const struct firmware *raw = NULL;
3398 #endif
3399         struct ipw_fw *fw;
3400         u8 *boot_img, *ucode_img, *fw_img;
3401         u8 *name = NULL;
3402         int rc = 0, retries = 3;
3403
3404         switch (priv->ieee->iw_mode) {
3405         case IW_MODE_ADHOC:
3406                 name = "ipw2200-ibss.fw";
3407                 break;
3408 #ifdef CONFIG_IPW2200_MONITOR
3409         case IW_MODE_MONITOR:
3410                 name = "ipw2200-sniffer.fw";
3411                 break;
3412 #endif
3413         case IW_MODE_INFRA:
3414                 name = "ipw2200-bss.fw";
3415                 break;
3416         }
3417
3418         if (!name) {
3419                 rc = -EINVAL;
3420                 goto error;
3421         }
3422
3423 #ifdef CONFIG_PM
3424         if (!fw_loaded) {
3425 #endif
3426                 rc = ipw_get_fw(priv, &raw, name);
3427                 if (rc < 0)
3428                         goto error;
3429 #ifdef CONFIG_PM
3430         }
3431 #endif
3432
3433         fw = (void *)raw->data;
3434         boot_img = &fw->data[0];
3435         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3436         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3437                            le32_to_cpu(fw->ucode_size)];
3438
3439         if (rc < 0)
3440                 goto error;
3441
3442         if (!priv->rxq)
3443                 priv->rxq = ipw_rx_queue_alloc(priv);
3444         else
3445                 ipw_rx_queue_reset(priv, priv->rxq);
3446         if (!priv->rxq) {
3447                 IPW_ERROR("Unable to initialize Rx queue\n");
3448                 goto error;
3449         }
3450
3451       retry:
3452         /* Ensure interrupts are disabled */
3453         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3454         priv->status &= ~STATUS_INT_ENABLED;
3455
3456         /* ack pending interrupts */
3457         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3458
3459         ipw_stop_nic(priv);
3460
3461         rc = ipw_reset_nic(priv);
3462         if (rc < 0) {
3463                 IPW_ERROR("Unable to reset NIC\n");
3464                 goto error;
3465         }
3466
3467         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3468                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3469
3470         /* DMA the initial boot firmware into the device */
3471         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3472         if (rc < 0) {
3473                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3474                 goto error;
3475         }
3476
3477         /* kick start the device */
3478         ipw_start_nic(priv);
3479
3480         /* wait for the device to finish its initial startup sequence */
3481         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3482                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3483         if (rc < 0) {
3484                 IPW_ERROR("device failed to boot initial fw image\n");
3485                 goto error;
3486         }
3487         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3488
3489         /* ack fw init done interrupt */
3490         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3491
3492         /* DMA the ucode into the device */
3493         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3494         if (rc < 0) {
3495                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3496                 goto error;
3497         }
3498
3499         /* stop nic */
3500         ipw_stop_nic(priv);
3501
3502         /* DMA bss firmware into the device */
3503         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3504         if (rc < 0) {
3505                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3506                 goto error;
3507         }
3508 #ifdef CONFIG_PM
3509         fw_loaded = 1;
3510 #endif
3511
3512         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3513
3514         rc = ipw_queue_reset(priv);
3515         if (rc < 0) {
3516                 IPW_ERROR("Unable to initialize queues\n");
3517                 goto error;
3518         }
3519
3520         /* Ensure interrupts are disabled */
3521         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3522         /* ack pending interrupts */
3523         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3524
3525         /* kick start the device */
3526         ipw_start_nic(priv);
3527
3528         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3529                 if (retries > 0) {
3530                         IPW_WARNING("Parity error.  Retrying init.\n");
3531                         retries--;
3532                         goto retry;
3533                 }
3534
3535                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3536                 rc = -EIO;
3537                 goto error;
3538         }
3539
3540         /* wait for the device */
3541         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3542                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3543         if (rc < 0) {
3544                 IPW_ERROR("device failed to start within 500ms\n");
3545                 goto error;
3546         }
3547         IPW_DEBUG_INFO("device response after %dms\n", rc);
3548
3549         /* ack fw init done interrupt */
3550         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3551
3552         /* read eeprom data and initialize the eeprom region of sram */
3553         priv->eeprom_delay = 1;
3554         ipw_eeprom_init_sram(priv);
3555
3556         /* enable interrupts */
3557         ipw_enable_interrupts(priv);
3558
3559         /* Ensure our queue has valid packets */
3560         ipw_rx_queue_replenish(priv);
3561
3562         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3563
3564         /* ack pending interrupts */
3565         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3566
3567 #ifndef CONFIG_PM
3568         release_firmware(raw);
3569 #endif
3570         return 0;
3571
3572       error:
3573         if (priv->rxq) {
3574                 ipw_rx_queue_free(priv, priv->rxq);
3575                 priv->rxq = NULL;
3576         }
3577         ipw_tx_queue_free(priv);
3578         if (raw)
3579                 release_firmware(raw);
3580 #ifdef CONFIG_PM
3581         fw_loaded = 0;
3582         raw = NULL;
3583 #endif
3584
3585         return rc;
3586 }
3587
3588 /**
3589  * DMA services
3590  *
3591  * Theory of operation
3592  *
3593  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3594  * 2 empty entries always kept in the buffer to protect from overflow.
3595  *
3596  * For Tx queue, there are low mark and high mark limits. If, after queuing
3597  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3598  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3599  * Tx queue resumed.
3600  *
3601  * The IPW operates with six queues, one receive queue in the device's
3602  * sram, one transmit queue for sending commands to the device firmware,
3603  * and four transmit queues for data.
3604  *
3605  * The four transmit queues allow for performing quality of service (qos)
3606  * transmissions as per the 802.11 protocol.  Currently Linux does not
3607  * provide a mechanism to the user for utilizing prioritized queues, so
3608  * we only utilize the first data transmit queue (queue1).
3609  */
3610
3611 /**
3612  * Driver allocates buffers of this size for Rx
3613  */
3614
3615 static inline int ipw_queue_space(const struct clx2_queue *q)
3616 {
3617         int s = q->last_used - q->first_empty;
3618         if (s <= 0)
3619                 s += q->n_bd;
3620         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3621         if (s < 0)
3622                 s = 0;
3623         return s;
3624 }
3625
3626 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3627 {
3628         return (++index == n_bd) ? 0 : index;
3629 }
3630
3631 /**
3632  * Initialize common DMA queue structure
3633  *
3634  * @param q                queue to init
3635  * @param count            Number of BD's to allocate. Should be power of 2
3636  * @param read_register    Address for 'read' register
3637  *                         (not offset within BAR, full address)
3638  * @param write_register   Address for 'write' register
3639  *                         (not offset within BAR, full address)
3640  * @param base_register    Address for 'base' register
3641  *                         (not offset within BAR, full address)
3642  * @param size             Address for 'size' register
3643  *                         (not offset within BAR, full address)
3644  */
3645 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3646                            int count, u32 read, u32 write, u32 base, u32 size)
3647 {
3648         q->n_bd = count;
3649
3650         q->low_mark = q->n_bd / 4;
3651         if (q->low_mark < 4)
3652                 q->low_mark = 4;
3653
3654         q->high_mark = q->n_bd / 8;
3655         if (q->high_mark < 2)
3656                 q->high_mark = 2;
3657
3658         q->first_empty = q->last_used = 0;
3659         q->reg_r = read;
3660         q->reg_w = write;
3661
3662         ipw_write32(priv, base, q->dma_addr);
3663         ipw_write32(priv, size, count);
3664         ipw_write32(priv, read, 0);
3665         ipw_write32(priv, write, 0);
3666
3667         _ipw_read32(priv, 0x90);
3668 }
3669
3670 static int ipw_queue_tx_init(struct ipw_priv *priv,
3671                              struct clx2_tx_queue *q,
3672                              int count, u32 read, u32 write, u32 base, u32 size)
3673 {
3674         struct pci_dev *dev = priv->pci_dev;
3675
3676         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3677         if (!q->txb) {
3678                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3679                 return -ENOMEM;
3680         }
3681
3682         q->bd =
3683             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3684         if (!q->bd) {
3685                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3686                           sizeof(q->bd[0]) * count);
3687                 kfree(q->txb);
3688                 q->txb = NULL;
3689                 return -ENOMEM;
3690         }
3691
3692         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3693         return 0;
3694 }
3695
3696 /**
3697  * Free one TFD, those at index [txq->q.last_used].
3698  * Do NOT advance any indexes
3699  *
3700  * @param dev
3701  * @param txq
3702  */
3703 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3704                                   struct clx2_tx_queue *txq)
3705 {
3706         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3707         struct pci_dev *dev = priv->pci_dev;
3708         int i;
3709
3710         /* classify bd */
3711         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3712                 /* nothing to cleanup after for host commands */
3713                 return;
3714
3715         /* sanity check */
3716         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3717                 IPW_ERROR("Too many chunks: %i\n",
3718                           le32_to_cpu(bd->u.data.num_chunks));
3719                 /** @todo issue fatal error, it is quite serious situation */
3720                 return;
3721         }
3722
3723         /* unmap chunks if any */
3724         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3725                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3726                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3727                                  PCI_DMA_TODEVICE);
3728                 if (txq->txb[txq->q.last_used]) {
3729                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3730                         txq->txb[txq->q.last_used] = NULL;
3731                 }
3732         }
3733 }
3734
3735 /**
3736  * Deallocate DMA queue.
3737  *
3738  * Empty queue by removing and destroying all BD's.
3739  * Free all buffers.
3740  *
3741  * @param dev
3742  * @param q
3743  */
3744 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3745 {
3746         struct clx2_queue *q = &txq->q;
3747         struct pci_dev *dev = priv->pci_dev;
3748
3749         if (q->n_bd == 0)
3750                 return;
3751
3752         /* first, empty all BD's */
3753         for (; q->first_empty != q->last_used;
3754              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3755                 ipw_queue_tx_free_tfd(priv, txq);
3756         }
3757
3758         /* free buffers belonging to queue itself */
3759         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3760                             q->dma_addr);
3761         kfree(txq->txb);
3762
3763         /* 0 fill whole structure */
3764         memset(txq, 0, sizeof(*txq));
3765 }
3766
3767 /**
3768  * Destroy all DMA queues and structures
3769  *
3770  * @param priv
3771  */
3772 static void ipw_tx_queue_free(struct ipw_priv *priv)
3773 {
3774         /* Tx CMD queue */
3775         ipw_queue_tx_free(priv, &priv->txq_cmd);
3776
3777         /* Tx queues */
3778         ipw_queue_tx_free(priv, &priv->txq[0]);
3779         ipw_queue_tx_free(priv, &priv->txq[1]);
3780         ipw_queue_tx_free(priv, &priv->txq[2]);
3781         ipw_queue_tx_free(priv, &priv->txq[3]);
3782 }
3783
3784 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3785 {
3786         /* First 3 bytes are manufacturer */
3787         bssid[0] = priv->mac_addr[0];
3788         bssid[1] = priv->mac_addr[1];
3789         bssid[2] = priv->mac_addr[2];
3790
3791         /* Last bytes are random */
3792         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3793
3794         bssid[0] &= 0xfe;       /* clear multicast bit */
3795         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3796 }
3797
3798 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3799 {
3800         struct ipw_station_entry entry;
3801         int i;
3802         DECLARE_MAC_BUF(mac);
3803
3804         for (i = 0; i < priv->num_stations; i++) {
3805                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3806                         /* Another node is active in network */
3807                         priv->missed_adhoc_beacons = 0;
3808                         if (!(priv->config & CFG_STATIC_CHANNEL))
3809                                 /* when other nodes drop out, we drop out */
3810                                 priv->config &= ~CFG_ADHOC_PERSIST;
3811
3812                         return i;
3813                 }
3814         }
3815
3816         if (i == MAX_STATIONS)
3817                 return IPW_INVALID_STATION;
3818
3819         IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3820
3821         entry.reserved = 0;
3822         entry.support_mode = 0;
3823         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3824         memcpy(priv->stations[i], bssid, ETH_ALEN);
3825         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3826                          &entry, sizeof(entry));
3827         priv->num_stations++;
3828
3829         return i;
3830 }
3831
3832 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3833 {
3834         int i;
3835
3836         for (i = 0; i < priv->num_stations; i++)
3837                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3838                         return i;
3839
3840         return IPW_INVALID_STATION;
3841 }
3842
3843 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3844 {
3845         int err;
3846         DECLARE_MAC_BUF(mac);
3847
3848         if (priv->status & STATUS_ASSOCIATING) {
3849                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3850                 queue_work(priv->workqueue, &priv->disassociate);
3851                 return;
3852         }
3853
3854         if (!(priv->status & STATUS_ASSOCIATED)) {
3855                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3856                 return;
3857         }
3858
3859         IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3860                         "on channel %d.\n",
3861                         print_mac(mac, priv->assoc_request.bssid),
3862                         priv->assoc_request.channel);
3863
3864         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3865         priv->status |= STATUS_DISASSOCIATING;
3866
3867         if (quiet)
3868                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3869         else
3870                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3871
3872         err = ipw_send_associate(priv, &priv->assoc_request);
3873         if (err) {
3874                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3875                              "failed.\n");
3876                 return;
3877         }
3878
3879 }
3880
3881 static int ipw_disassociate(void *data)
3882 {
3883         struct ipw_priv *priv = data;
3884         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3885                 return 0;
3886         ipw_send_disassociate(data, 0);
3887         return 1;
3888 }
3889
3890 static void ipw_bg_disassociate(struct work_struct *work)
3891 {
3892         struct ipw_priv *priv =
3893                 container_of(work, struct ipw_priv, disassociate);
3894         mutex_lock(&priv->mutex);
3895         ipw_disassociate(priv);
3896         mutex_unlock(&priv->mutex);
3897 }
3898
3899 static void ipw_system_config(struct work_struct *work)
3900 {
3901         struct ipw_priv *priv =
3902                 container_of(work, struct ipw_priv, system_config);
3903
3904 #ifdef CONFIG_IPW2200_PROMISCUOUS
3905         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3906                 priv->sys_config.accept_all_data_frames = 1;
3907                 priv->sys_config.accept_non_directed_frames = 1;
3908                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3909                 priv->sys_config.accept_all_mgmt_frames = 1;
3910         }
3911 #endif
3912
3913         ipw_send_system_config(priv);
3914 }
3915
3916 struct ipw_status_code {
3917         u16 status;
3918         const char *reason;
3919 };
3920
3921 static const struct ipw_status_code ipw_status_codes[] = {
3922         {0x00, "Successful"},
3923         {0x01, "Unspecified failure"},
3924         {0x0A, "Cannot support all requested capabilities in the "
3925          "Capability information field"},
3926         {0x0B, "Reassociation denied due to inability to confirm that "
3927          "association exists"},
3928         {0x0C, "Association denied due to reason outside the scope of this "
3929          "standard"},
3930         {0x0D,
3931          "Responding station does not support the specified authentication "
3932          "algorithm"},
3933         {0x0E,
3934          "Received an Authentication frame with authentication sequence "
3935          "transaction sequence number out of expected sequence"},
3936         {0x0F, "Authentication rejected because of challenge failure"},
3937         {0x10, "Authentication rejected due to timeout waiting for next "
3938          "frame in sequence"},
3939         {0x11, "Association denied because AP is unable to handle additional "
3940          "associated stations"},
3941         {0x12,
3942          "Association denied due to requesting station not supporting all "
3943          "of the datarates in the BSSBasicServiceSet Parameter"},
3944         {0x13,
3945          "Association denied due to requesting station not supporting "
3946          "short preamble operation"},
3947         {0x14,
3948          "Association denied due to requesting station not supporting "
3949          "PBCC encoding"},
3950         {0x15,
3951          "Association denied due to requesting station not supporting "
3952          "channel agility"},
3953         {0x19,
3954          "Association denied due to requesting station not supporting "
3955          "short slot operation"},
3956         {0x1A,
3957          "Association denied due to requesting station not supporting "
3958          "DSSS-OFDM operation"},
3959         {0x28, "Invalid Information Element"},
3960         {0x29, "Group Cipher is not valid"},
3961         {0x2A, "Pairwise Cipher is not valid"},
3962         {0x2B, "AKMP is not valid"},
3963         {0x2C, "Unsupported RSN IE version"},
3964         {0x2D, "Invalid RSN IE Capabilities"},
3965         {0x2E, "Cipher suite is rejected per security policy"},
3966 };
3967
3968 static const char *ipw_get_status_code(u16 status)
3969 {
3970         int i;
3971         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3972                 if (ipw_status_codes[i].status == (status & 0xff))
3973                         return ipw_status_codes[i].reason;
3974         return "Unknown status value.";
3975 }
3976
3977 static void inline average_init(struct average *avg)
3978 {
3979         memset(avg, 0, sizeof(*avg));
3980 }
3981
3982 #define DEPTH_RSSI 8
3983 #define DEPTH_NOISE 16
3984 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3985 {
3986         return ((depth-1)*prev_avg +  val)/depth;
3987 }
3988
3989 static void average_add(struct average *avg, s16 val)
3990 {
3991         avg->sum -= avg->entries[avg->pos];
3992         avg->sum += val;
3993         avg->entries[avg->pos++] = val;
3994         if (unlikely(avg->pos == AVG_ENTRIES)) {
3995                 avg->init = 1;
3996                 avg->pos = 0;
3997         }
3998 }
3999
4000 static s16 average_value(struct average *avg)
4001 {
4002         if (!unlikely(avg->init)) {
4003                 if (avg->pos)
4004                         return avg->sum / avg->pos;
4005                 return 0;
4006         }
4007
4008         return avg->sum / AVG_ENTRIES;
4009 }
4010
4011 static void ipw_reset_stats(struct ipw_priv *priv)
4012 {
4013         u32 len = sizeof(u32);
4014
4015         priv->quality = 0;
4016
4017         average_init(&priv->average_missed_beacons);
4018         priv->exp_avg_rssi = -60;
4019         priv->exp_avg_noise = -85 + 0x100;
4020
4021         priv->last_rate = 0;
4022         priv->last_missed_beacons = 0;
4023         priv->last_rx_packets = 0;
4024         priv->last_tx_packets = 0;
4025         priv->last_tx_failures = 0;
4026
4027         /* Firmware managed, reset only when NIC is restarted, so we have to
4028          * normalize on the current value */
4029         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4030                         &priv->last_rx_err, &len);
4031         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4032                         &priv->last_tx_failures, &len);
4033
4034         /* Driver managed, reset with each association */
4035         priv->missed_adhoc_beacons = 0;
4036         priv->missed_beacons = 0;
4037         priv->tx_packets = 0;
4038         priv->rx_packets = 0;
4039
4040 }
4041
4042 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4043 {
4044         u32 i = 0x80000000;
4045         u32 mask = priv->rates_mask;
4046         /* If currently associated in B mode, restrict the maximum
4047          * rate match to B rates */
4048         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4049                 mask &= IEEE80211_CCK_RATES_MASK;
4050
4051         /* TODO: Verify that the rate is supported by the current rates
4052          * list. */
4053
4054         while (i && !(mask & i))
4055                 i >>= 1;
4056         switch (i) {
4057         case IEEE80211_CCK_RATE_1MB_MASK:
4058                 return 1000000;
4059         case IEEE80211_CCK_RATE_2MB_MASK:
4060                 return 2000000;
4061         case IEEE80211_CCK_RATE_5MB_MASK:
4062                 return 5500000;
4063         case IEEE80211_OFDM_RATE_6MB_MASK:
4064                 return 6000000;
4065         case IEEE80211_OFDM_RATE_9MB_MASK:
4066                 return 9000000;
4067         case IEEE80211_CCK_RATE_11MB_MASK:
4068                 return 11000000;
4069         case IEEE80211_OFDM_RATE_12MB_MASK:
4070                 return 12000000;
4071         case IEEE80211_OFDM_RATE_18MB_MASK:
4072                 return 18000000;
4073         case IEEE80211_OFDM_RATE_24MB_MASK:
4074                 return 24000000;
4075         case IEEE80211_OFDM_RATE_36MB_MASK:
4076                 return 36000000;
4077         case IEEE80211_OFDM_RATE_48MB_MASK:
4078                 return 48000000;
4079         case IEEE80211_OFDM_RATE_54MB_MASK:
4080                 return 54000000;
4081         }
4082
4083         if (priv->ieee->mode == IEEE_B)
4084                 return 11000000;
4085         else
4086                 return 54000000;
4087 }
4088
4089 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4090 {
4091         u32 rate, len = sizeof(rate);
4092         int err;
4093
4094         if (!(priv->status & STATUS_ASSOCIATED))
4095                 return 0;
4096
4097         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4098                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4099                                       &len);
4100                 if (err) {
4101                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4102                         return 0;
4103                 }
4104         } else
4105                 return ipw_get_max_rate(priv);
4106
4107         switch (rate) {
4108         case IPW_TX_RATE_1MB:
4109                 return 1000000;
4110         case IPW_TX_RATE_2MB:
4111                 return 2000000;
4112         case IPW_TX_RATE_5MB:
4113                 return 5500000;
4114         case IPW_TX_RATE_6MB:
4115                 return 6000000;
4116         case IPW_TX_RATE_9MB:
4117                 return 9000000;
4118         case IPW_TX_RATE_11MB:
4119                 return 11000000;
4120         case IPW_TX_RATE_12MB:
4121                 return 12000000;
4122         case IPW_TX_RATE_18MB:
4123                 return 18000000;
4124         case IPW_TX_RATE_24MB:
4125                 return 24000000;
4126         case IPW_TX_RATE_36MB:
4127                 return 36000000;
4128         case IPW_TX_RATE_48MB:
4129                 return 48000000;
4130         case IPW_TX_RATE_54MB:
4131                 return 54000000;
4132         }
4133
4134         return 0;
4135 }
4136
4137 #define IPW_STATS_INTERVAL (2 * HZ)
4138 static void ipw_gather_stats(struct ipw_priv *priv)
4139 {
4140         u32 rx_err, rx_err_delta, rx_packets_delta;
4141         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4142         u32 missed_beacons_percent, missed_beacons_delta;
4143         u32 quality = 0;
4144         u32 len = sizeof(u32);
4145         s16 rssi;
4146         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4147             rate_quality;
4148         u32 max_rate;
4149
4150         if (!(priv->status & STATUS_ASSOCIATED)) {
4151                 priv->quality = 0;
4152                 return;
4153         }
4154
4155         /* Update the statistics */
4156         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4157                         &priv->missed_beacons, &len);
4158         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4159         priv->last_missed_beacons = priv->missed_beacons;
4160         if (priv->assoc_request.beacon_interval) {
4161                 missed_beacons_percent = missed_beacons_delta *
4162                     (HZ * priv->assoc_request.beacon_interval) /
4163                     (IPW_STATS_INTERVAL * 10);
4164         } else {
4165                 missed_beacons_percent = 0;
4166         }
4167         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4168
4169         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4170         rx_err_delta = rx_err - priv->last_rx_err;
4171         priv->last_rx_err = rx_err;
4172
4173         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4174         tx_failures_delta = tx_failures - priv->last_tx_failures;
4175         priv->last_tx_failures = tx_failures;
4176
4177         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4178         priv->last_rx_packets = priv->rx_packets;
4179
4180         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4181         priv->last_tx_packets = priv->tx_packets;
4182
4183         /* Calculate quality based on the following:
4184          *
4185          * Missed beacon: 100% = 0, 0% = 70% missed
4186          * Rate: 60% = 1Mbs, 100% = Max
4187          * Rx and Tx errors represent a straight % of total Rx/Tx
4188          * RSSI: 100% = > -50,  0% = < -80
4189          * Rx errors: 100% = 0, 0% = 50% missed
4190          *
4191          * The lowest computed quality is used.
4192          *
4193          */
4194 #define BEACON_THRESHOLD 5
4195         beacon_quality = 100 - missed_beacons_percent;
4196         if (beacon_quality < BEACON_THRESHOLD)
4197                 beacon_quality = 0;
4198         else
4199                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4200                     (100 - BEACON_THRESHOLD);
4201         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4202                         beacon_quality, missed_beacons_percent);
4203
4204         priv->last_rate = ipw_get_current_rate(priv);
4205         max_rate = ipw_get_max_rate(priv);
4206         rate_quality = priv->last_rate * 40 / max_rate + 60;
4207         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4208                         rate_quality, priv->last_rate / 1000000);
4209
4210         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4211                 rx_quality = 100 - (rx_err_delta * 100) /
4212                     (rx_packets_delta + rx_err_delta);
4213         else
4214                 rx_quality = 100;
4215         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4216                         rx_quality, rx_err_delta, rx_packets_delta);
4217
4218         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4219                 tx_quality = 100 - (tx_failures_delta * 100) /
4220                     (tx_packets_delta + tx_failures_delta);
4221         else
4222                 tx_quality = 100;
4223         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4224                         tx_quality, tx_failures_delta, tx_packets_delta);
4225
4226         rssi = priv->exp_avg_rssi;
4227         signal_quality =
4228             (100 *
4229              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4231              (priv->ieee->perfect_rssi - rssi) *
4232              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4233               62 * (priv->ieee->perfect_rssi - rssi))) /
4234             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4235              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4236         if (signal_quality > 100)
4237                 signal_quality = 100;
4238         else if (signal_quality < 1)
4239                 signal_quality = 0;
4240
4241         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4242                         signal_quality, rssi);
4243
4244         quality = min(beacon_quality,
4245                       min(rate_quality,
4246                           min(tx_quality, min(rx_quality, signal_quality))));
4247         if (quality == beacon_quality)
4248                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4249                                 quality);
4250         if (quality == rate_quality)
4251                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4252                                 quality);
4253         if (quality == tx_quality)
4254                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4255                                 quality);
4256         if (quality == rx_quality)
4257                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4258                                 quality);
4259         if (quality == signal_quality)
4260                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4261                                 quality);
4262
4263         priv->quality = quality;
4264
4265         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4266                            IPW_STATS_INTERVAL);
4267 }
4268
4269 static void ipw_bg_gather_stats(struct work_struct *work)
4270 {
4271         struct ipw_priv *priv =
4272                 container_of(work, struct ipw_priv, gather_stats.work);
4273         mutex_lock(&priv->mutex);
4274         ipw_gather_stats(priv);
4275         mutex_unlock(&priv->mutex);
4276 }
4277
4278 /* Missed beacon behavior:
4279  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4280  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4281  * Above disassociate threshold, give up and stop scanning.
4282  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4283 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4284                                             int missed_count)
4285 {
4286         priv->notif_missed_beacons = missed_count;
4287
4288         if (missed_count > priv->disassociate_threshold &&
4289             priv->status & STATUS_ASSOCIATED) {
4290                 /* If associated and we've hit the missed
4291                  * beacon threshold, disassociate, turn
4292                  * off roaming, and abort any active scans */
4293                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4294                           IPW_DL_STATE | IPW_DL_ASSOC,
4295                           "Missed beacon: %d - disassociate\n", missed_count);
4296                 priv->status &= ~STATUS_ROAMING;
4297                 if (priv->status & STATUS_SCANNING) {
4298                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4299                                   IPW_DL_STATE,
4300                                   "Aborting scan with missed beacon.\n");
4301                         queue_work(priv->workqueue, &priv->abort_scan);
4302                 }
4303
4304                 queue_work(priv->workqueue, &priv->disassociate);
4305                 return;
4306         }
4307
4308         if (priv->status & STATUS_ROAMING) {
4309                 /* If we are currently roaming, then just
4310                  * print a debug statement... */
4311                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4312                           "Missed beacon: %d - roam in progress\n",
4313                           missed_count);
4314                 return;
4315         }
4316
4317         if (roaming &&
4318             (missed_count > priv->roaming_threshold &&
4319              missed_count <= priv->disassociate_threshold)) {
4320                 /* If we are not already roaming, set the ROAM
4321                  * bit in the status and kick off a scan.
4322                  * This can happen several times before we reach
4323                  * disassociate_threshold. */
4324                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4325                           "Missed beacon: %d - initiate "
4326                           "roaming\n", missed_count);
4327                 if (!(priv->status & STATUS_ROAMING)) {
4328                         priv->status |= STATUS_ROAMING;
4329                         if (!(priv->status & STATUS_SCANNING))
4330                                 queue_delayed_work(priv->workqueue,
4331                                                    &priv->request_scan, 0);
4332                 }
4333                 return;
4334         }
4335
4336         if (priv->status & STATUS_SCANNING) {
4337                 /* Stop scan to keep fw from getting
4338                  * stuck (only if we aren't roaming --
4339                  * otherwise we'll never scan more than 2 or 3
4340                  * channels..) */
4341                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4342                           "Aborting scan with missed beacon.\n");
4343                 queue_work(priv->workqueue, &priv->abort_scan);
4344         }
4345
4346         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4347 }
4348
4349 static void ipw_scan_event(struct work_struct *work)
4350 {
4351         union iwreq_data wrqu;
4352
4353         struct ipw_priv *priv =
4354                 container_of(work, struct ipw_priv, scan_event.work);
4355
4356         wrqu.data.length = 0;
4357         wrqu.data.flags = 0;
4358         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4359 }
4360
4361 static void handle_scan_event(struct ipw_priv *priv)
4362 {
4363         /* Only userspace-requested scan completion events go out immediately */
4364         if (!priv->user_requested_scan) {
4365                 if (!delayed_work_pending(&priv->scan_event))
4366                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4367                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4368         } else {
4369                 union iwreq_data wrqu;
4370
4371                 priv->user_requested_scan = 0;
4372                 cancel_delayed_work(&priv->scan_event);
4373
4374                 wrqu.data.length = 0;
4375                 wrqu.data.flags = 0;
4376                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4377         }
4378 }
4379
4380 /**
4381  * Handle host notification packet.
4382  * Called from interrupt routine
4383  */
4384 static void ipw_rx_notification(struct ipw_priv *priv,
4385                                        struct ipw_rx_notification *notif)
4386 {
4387         DECLARE_MAC_BUF(mac);
4388         notif->size = le16_to_cpu(notif->size);
4389
4390         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4391
4392         switch (notif->subtype) {
4393         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4394                         struct notif_association *assoc = &notif->u.assoc;
4395
4396                         switch (assoc->state) {
4397                         case CMAS_ASSOCIATED:{
4398                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4399                                                   IPW_DL_ASSOC,
4400                                                   "associated: '%s' %s"
4401                                                   " \n",
4402                                                   escape_essid(priv->essid,
4403                                                                priv->essid_len),
4404                                                   print_mac(mac, priv->bssid));
4405
4406                                         switch (priv->ieee->iw_mode) {
4407                                         case IW_MODE_INFRA:
4408                                                 memcpy(priv->ieee->bssid,
4409                                                        priv->bssid, ETH_ALEN);
4410                                                 break;
4411
4412                                         case IW_MODE_ADHOC:
4413                                                 memcpy(priv->ieee->bssid,
4414                                                        priv->bssid, ETH_ALEN);
4415
4416                                                 /* clear out the station table */
4417                                                 priv->num_stations = 0;
4418
4419                                                 IPW_DEBUG_ASSOC
4420                                                     ("queueing adhoc check\n");
4421                                                 queue_delayed_work(priv->
4422                                                                    workqueue,
4423                                                                    &priv->
4424                                                                    adhoc_check,
4425                                                                    priv->
4426                                                                    assoc_request.
4427                                                                    beacon_interval);
4428                                                 break;
4429                                         }
4430
4431                                         priv->status &= ~STATUS_ASSOCIATING;
4432                                         priv->status |= STATUS_ASSOCIATED;
4433                                         queue_work(priv->workqueue,
4434                                                    &priv->system_config);
4435
4436 #ifdef CONFIG_IPW2200_QOS
4437 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4438                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4439                                         if ((priv->status & STATUS_AUTH) &&
4440                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4441                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4442                                                 if ((sizeof
4443                                                      (struct
4444                                                       ieee80211_assoc_response)
4445                                                      <= notif->size)
4446                                                     && (notif->size <= 2314)) {
4447                                                         struct
4448                                                         ieee80211_rx_stats
4449                                                             stats = {
4450                                                                 .len =
4451                                                                     notif->
4452                                                                     size - 1,
4453                                                         };
4454
4455                                                         IPW_DEBUG_QOS
4456                                                             ("QoS Associate "
4457                                                              "size %d\n",
4458                                                              notif->size);
4459                                                         ieee80211_rx_mgt(priv->
4460                                                                          ieee,
4461                                                                          (struct
4462                                                                           ieee80211_hdr_4addr
4463                                                                           *)
4464                                                                          &notif->u.raw, &stats);
4465                                                 }
4466                                         }
4467 #endif
4468
4469                                         schedule_work(&priv->link_up);
4470
4471                                         break;
4472                                 }
4473
4474                         case CMAS_AUTHENTICATED:{
4475                                         if (priv->
4476                                             status & (STATUS_ASSOCIATED |
4477                                                       STATUS_AUTH)) {
4478                                                 struct notif_authenticate *auth
4479                                                     = &notif->u.auth;
4480                                                 IPW_DEBUG(IPW_DL_NOTIF |
4481                                                           IPW_DL_STATE |
4482                                                           IPW_DL_ASSOC,
4483                                                           "deauthenticated: '%s' "
4484                                                           "%s"
4485                                                           ": (0x%04X) - %s \n",
4486                                                           escape_essid(priv->
4487                                                                        essid,
4488                                                                        priv->
4489                                                                        essid_len),
4490                                                           print_mac(mac, priv->bssid),
4491                                                           ntohs(auth->status),
4492                                                           ipw_get_status_code
4493                                                           (ntohs
4494                                                            (auth->status)));
4495
4496                                                 priv->status &=
4497                                                     ~(STATUS_ASSOCIATING |
4498                                                       STATUS_AUTH |
4499                                                       STATUS_ASSOCIATED);
4500
4501                                                 schedule_work(&priv->link_down);
4502                                                 break;
4503                                         }
4504
4505                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4506                                                   IPW_DL_ASSOC,
4507                                                   "authenticated: '%s' %s"
4508                                                   "\n",
4509                                                   escape_essid(priv->essid,
4510                                                                priv->essid_len),
4511                                                   print_mac(mac, priv->bssid));
4512                                         break;
4513                                 }
4514
4515                         case CMAS_INIT:{
4516                                         if (priv->status & STATUS_AUTH) {
4517                                                 struct
4518                                                     ieee80211_assoc_response
4519                                                 *resp;
4520                                                 resp =
4521                                                     (struct
4522                                                      ieee80211_assoc_response
4523                                                      *)&notif->u.raw;
4524                                                 IPW_DEBUG(IPW_DL_NOTIF |
4525                                                           IPW_DL_STATE |
4526                                                           IPW_DL_ASSOC,
4527                                                           "association failed (0x%04X): %s\n",
4528                                                           ntohs(resp->status),
4529                                                           ipw_get_status_code
4530                                                           (ntohs
4531                                                            (resp->status)));
4532                                         }
4533
4534                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535                                                   IPW_DL_ASSOC,
4536                                                   "disassociated: '%s' %s"
4537                                                   " \n",
4538                                                   escape_essid(priv->essid,
4539                                                                priv->essid_len),
4540                                                   print_mac(mac, priv->bssid));
4541
4542                                         priv->status &=
4543                                             ~(STATUS_DISASSOCIATING |
4544                                               STATUS_ASSOCIATING |
4545                                               STATUS_ASSOCIATED | STATUS_AUTH);
4546                                         if (priv->assoc_network
4547                                             && (priv->assoc_network->
4548                                                 capability &
4549                                                 WLAN_CAPABILITY_IBSS))
4550                                                 ipw_remove_current_network
4551                                                     (priv);
4552
4553                                         schedule_work(&priv->link_down);
4554
4555                                         break;
4556                                 }
4557
4558                         case CMAS_RX_ASSOC_RESP:
4559                                 break;
4560
4561                         default:
4562                                 IPW_ERROR("assoc: unknown (%d)\n",
4563                                           assoc->state);
4564                                 break;
4565                         }
4566
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4571                         struct notif_authenticate *auth = &notif->u.auth;
4572                         switch (auth->state) {
4573                         case CMAS_AUTHENTICATED:
4574                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4575                                           "authenticated: '%s' %s \n",
4576                                           escape_essid(priv->essid,
4577                                                        priv->essid_len),
4578                                           print_mac(mac, priv->bssid));
4579                                 priv->status |= STATUS_AUTH;
4580                                 break;
4581
4582                         case CMAS_INIT:
4583                                 if (priv->status & STATUS_AUTH) {
4584                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4585                                                   IPW_DL_ASSOC,
4586                                                   "authentication failed (0x%04X): %s\n",
4587                                                   ntohs(auth->status),
4588                                                   ipw_get_status_code(ntohs
4589                                                                       (auth->
4590                                                                        status)));
4591                                 }
4592                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4593                                           IPW_DL_ASSOC,
4594                                           "deauthenticated: '%s' %s\n",
4595                                           escape_essid(priv->essid,
4596                                                        priv->essid_len),
4597                                           print_mac(mac, priv->bssid));
4598
4599                                 priv->status &= ~(STATUS_ASSOCIATING |
4600                                                   STATUS_AUTH |
4601                                                   STATUS_ASSOCIATED);
4602
4603                                 schedule_work(&priv->link_down);
4604                                 break;
4605
4606                         case CMAS_TX_AUTH_SEQ_1:
4607                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4609                                 break;
4610                         case CMAS_RX_AUTH_SEQ_2:
4611                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4613                                 break;
4614                         case CMAS_AUTH_SEQ_1_PASS:
4615                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4616                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4617                                 break;
4618                         case CMAS_AUTH_SEQ_1_FAIL:
4619                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4620                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4621                                 break;
4622                         case CMAS_TX_AUTH_SEQ_3:
4623                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4624                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4625                                 break;
4626                         case CMAS_RX_AUTH_SEQ_4:
4627                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4629                                 break;
4630                         case CMAS_AUTH_SEQ_2_PASS:
4631                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4633                                 break;
4634                         case CMAS_AUTH_SEQ_2_FAIL:
4635                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4637                                 break;
4638                         case CMAS_TX_ASSOC:
4639                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4641                                 break;
4642                         case CMAS_RX_ASSOC_RESP:
4643                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4645
4646                                 break;
4647                         case CMAS_ASSOCIATED:
4648                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4650                                 break;
4651                         default:
4652                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4653                                                 auth->state);
4654                                 break;
4655                         }
4656                         break;
4657                 }
4658
4659         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4660                         struct notif_channel_result *x =
4661                             &notif->u.channel_result;
4662
4663                         if (notif->size == sizeof(*x)) {
4664                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4665                                                x->channel_num);
4666                         } else {
4667                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4668                                                "(should be %zd)\n",
4669                                                notif->size, sizeof(*x));
4670                         }
4671                         break;
4672                 }
4673
4674         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4675                         struct notif_scan_complete *x = &notif->u.scan_complete;
4676                         if (notif->size == sizeof(*x)) {
4677                                 IPW_DEBUG_SCAN
4678                                     ("Scan completed: type %d, %d channels, "
4679                                      "%d status\n", x->scan_type,
4680                                      x->num_channels, x->status);
4681                         } else {
4682                                 IPW_ERROR("Scan completed of wrong size %d "
4683                                           "(should be %zd)\n",
4684                                           notif->size, sizeof(*x));
4685                         }
4686
4687                         priv->status &=
4688                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4689
4690                         wake_up_interruptible(&priv->wait_state);
4691                         cancel_delayed_work(&priv->scan_check);
4692
4693                         if (priv->status & STATUS_EXIT_PENDING)
4694                                 break;
4695
4696                         priv->ieee->scans++;
4697
4698 #ifdef CONFIG_IPW2200_MONITOR
4699                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4700                                 priv->status |= STATUS_SCAN_FORCED;
4701                                 queue_delayed_work(priv->workqueue,
4702                                                    &priv->request_scan, 0);
4703                                 break;
4704                         }
4705                         priv->status &= ~STATUS_SCAN_FORCED;
4706 #endif                          /* CONFIG_IPW2200_MONITOR */
4707
4708                         if (!(priv->status & (STATUS_ASSOCIATED |
4709                                               STATUS_ASSOCIATING |
4710                                               STATUS_ROAMING |
4711                                               STATUS_DISASSOCIATING)))
4712                                 queue_work(priv->workqueue, &priv->associate);
4713                         else if (priv->status & STATUS_ROAMING) {
4714                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4715                                         /* If a scan completed and we are in roam mode, then
4716                                          * the scan that completed was the one requested as a
4717                                          * result of entering roam... so, schedule the
4718                                          * roam work */
4719                                         queue_work(priv->workqueue,
4720                                                    &priv->roam);
4721                                 else
4722                                         /* Don't schedule if we aborted the scan */
4723                                         priv->status &= ~STATUS_ROAMING;
4724                         } else if (priv->status & STATUS_SCAN_PENDING)
4725                                 queue_delayed_work(priv->workqueue,
4726                                                    &priv->request_scan, 0);
4727                         else if (priv->config & CFG_BACKGROUND_SCAN
4728                                  && priv->status & STATUS_ASSOCIATED)
4729                                 queue_delayed_work(priv->workqueue,
4730                                                    &priv->request_scan,
4731                                                    round_jiffies_relative(HZ));
4732
4733                         /* Send an empty event to user space.
4734                          * We don't send the received data on the event because
4735                          * it would require us to do complex transcoding, and
4736                          * we want to minimise the work done in the irq handler
4737                          * Use a request to extract the data.
4738                          * Also, we generate this even for any scan, regardless
4739                          * on how the scan was initiated. User space can just
4740                          * sync on periodic scan to get fresh data...
4741                          * Jean II */
4742                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4743                                 handle_scan_event(priv);
4744                         break;
4745                 }
4746
4747         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4748                         struct notif_frag_length *x = &notif->u.frag_len;
4749
4750                         if (notif->size == sizeof(*x))
4751                                 IPW_ERROR("Frag length: %d\n",
4752                                           le16_to_cpu(x->frag_length));
4753                         else
4754                                 IPW_ERROR("Frag length of wrong size %d "
4755                                           "(should be %zd)\n",
4756                                           notif->size, sizeof(*x));
4757                         break;
4758                 }
4759
4760         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4761                         struct notif_link_deterioration *x =
4762                             &notif->u.link_deterioration;
4763
4764                         if (notif->size == sizeof(*x)) {
4765                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4766                                         "link deterioration: type %d, cnt %d\n",
4767                                         x->silence_notification_type,
4768                                         x->silence_count);
4769                                 memcpy(&priv->last_link_deterioration, x,
4770                                        sizeof(*x));
4771                         } else {
4772                                 IPW_ERROR("Link Deterioration of wrong size %d "
4773                                           "(should be %zd)\n",
4774                                           notif->size, sizeof(*x));
4775                         }
4776                         break;
4777                 }
4778
4779         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4780                         IPW_ERROR("Dino config\n");
4781                         if (priv->hcmd
4782                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4783                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4784
4785                         break;
4786                 }
4787
4788         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4789                         struct notif_beacon_state *x = &notif->u.beacon_state;
4790                         if (notif->size != sizeof(*x)) {
4791                                 IPW_ERROR
4792                                     ("Beacon state of wrong size %d (should "
4793                                      "be %zd)\n", notif->size, sizeof(*x));
4794                                 break;
4795                         }
4796
4797                         if (le32_to_cpu(x->state) ==
4798                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4799                                 ipw_handle_missed_beacon(priv,
4800                                                          le32_to_cpu(x->
4801                                                                      number));
4802
4803                         break;
4804                 }
4805
4806         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4807                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4808                         if (notif->size == sizeof(*x)) {
4809                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4810                                           "0x%02x station %d\n",
4811                                           x->key_state, x->security_type,
4812                                           x->station_index);
4813                                 break;
4814                         }
4815
4816                         IPW_ERROR
4817                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4818                              notif->size, sizeof(*x));
4819                         break;
4820                 }
4821
4822         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4823                         struct notif_calibration *x = &notif->u.calibration;
4824
4825                         if (notif->size == sizeof(*x)) {
4826                                 memcpy(&priv->calib, x, sizeof(*x));
4827                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4828                                 break;
4829                         }
4830
4831                         IPW_ERROR
4832                             ("Calibration of wrong size %d (should be %zd)\n",
4833                              notif->size, sizeof(*x));
4834                         break;
4835                 }
4836
4837         case HOST_NOTIFICATION_NOISE_STATS:{
4838                         if (notif->size == sizeof(u32)) {
4839                                 priv->exp_avg_noise =
4840                                     exponential_average(priv->exp_avg_noise,
4841                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4842                                     DEPTH_NOISE);
4843                                 break;
4844                         }
4845
4846                         IPW_ERROR
4847                             ("Noise stat is wrong size %d (should be %zd)\n",
4848                              notif->size, sizeof(u32));
4849                         break;
4850                 }
4851
4852         default:
4853                 IPW_DEBUG_NOTIF("Unknown notification: "
4854                                 "subtype=%d,flags=0x%2x,size=%d\n",
4855                                 notif->subtype, notif->flags, notif->size);
4856         }
4857 }
4858
4859 /**
4860  * Destroys all DMA structures and initialise them again
4861  *
4862  * @param priv
4863  * @return error code
4864  */
4865 static int ipw_queue_reset(struct ipw_priv *priv)
4866 {
4867         int rc = 0;
4868         /** @todo customize queue sizes */
4869         int nTx = 64, nTxCmd = 8;
4870         ipw_tx_queue_free(priv);
4871         /* Tx CMD queue */
4872         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4873                                IPW_TX_CMD_QUEUE_READ_INDEX,
4874                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4875                                IPW_TX_CMD_QUEUE_BD_BASE,
4876                                IPW_TX_CMD_QUEUE_BD_SIZE);
4877         if (rc) {
4878                 IPW_ERROR("Tx Cmd queue init failed\n");
4879                 goto error;
4880         }
4881         /* Tx queue(s) */
4882         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4883                                IPW_TX_QUEUE_0_READ_INDEX,
4884                                IPW_TX_QUEUE_0_WRITE_INDEX,
4885                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4886         if (rc) {
4887                 IPW_ERROR("Tx 0 queue init failed\n");
4888                 goto error;
4889         }
4890         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4891                                IPW_TX_QUEUE_1_READ_INDEX,
4892                                IPW_TX_QUEUE_1_WRITE_INDEX,
4893                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4894         if (rc) {
4895                 IPW_ERROR("Tx 1 queue init failed\n");
4896                 goto error;
4897         }
4898         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4899                                IPW_TX_QUEUE_2_READ_INDEX,
4900                                IPW_TX_QUEUE_2_WRITE_INDEX,
4901                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4902         if (rc) {
4903                 IPW_ERROR("Tx 2 queue init failed\n");
4904                 goto error;
4905         }
4906         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4907                                IPW_TX_QUEUE_3_READ_INDEX,
4908                                IPW_TX_QUEUE_3_WRITE_INDEX,
4909                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4910         if (rc) {
4911                 IPW_ERROR("Tx 3 queue init failed\n");
4912                 goto error;
4913         }
4914         /* statistics */
4915         priv->rx_bufs_min = 0;
4916         priv->rx_pend_max = 0;
4917         return rc;
4918
4919       error:
4920         ipw_tx_queue_free(priv);
4921         return rc;
4922 }
4923
4924 /**
4925  * Reclaim Tx queue entries no more used by NIC.
4926  *
4927  * When FW adwances 'R' index, all entries between old and
4928  * new 'R' index need to be reclaimed. As result, some free space
4929  * forms. If there is enough free space (> low mark), wake Tx queue.
4930  *
4931  * @note Need to protect against garbage in 'R' index
4932  * @param priv
4933  * @param txq
4934  * @param qindex
4935  * @return Number of used entries remains in the queue
4936  */
4937 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4938                                 struct clx2_tx_queue *txq, int qindex)
4939 {
4940         u32 hw_tail;
4941         int used;
4942         struct clx2_queue *q = &txq->q;
4943
4944         hw_tail = ipw_read32(priv, q->reg_r);
4945         if (hw_tail >= q->n_bd) {
4946                 IPW_ERROR
4947                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4948                      hw_tail, q->n_bd);
4949                 goto done;
4950         }
4951         for (; q->last_used != hw_tail;
4952              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4953                 ipw_queue_tx_free_tfd(priv, txq);
4954                 priv->tx_packets++;
4955         }
4956       done:
4957         if ((ipw_queue_space(q) > q->low_mark) &&
4958             (qindex >= 0) &&
4959             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4960                 netif_wake_queue(priv->net_dev);
4961         used = q->first_empty - q->last_used;
4962         if (used < 0)
4963                 used += q->n_bd;
4964
4965         return used;
4966 }
4967
4968 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4969                              int len, int sync)
4970 {
4971         struct clx2_tx_queue *txq = &priv->txq_cmd;
4972         struct clx2_queue *q = &txq->q;
4973         struct tfd_frame *tfd;
4974
4975         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4976                 IPW_ERROR("No space for Tx\n");
4977                 return -EBUSY;
4978         }
4979
4980         tfd = &txq->bd[q->first_empty];
4981         txq->txb[q->first_empty] = NULL;
4982
4983         memset(tfd, 0, sizeof(*tfd));
4984         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4985         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4986         priv->hcmd_seq++;
4987         tfd->u.cmd.index = hcmd;
4988         tfd->u.cmd.length = len;
4989         memcpy(tfd->u.cmd.payload, buf, len);
4990         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4991         ipw_write32(priv, q->reg_w, q->first_empty);
4992         _ipw_read32(priv, 0x90);
4993
4994         return 0;
4995 }
4996
4997 /*
4998  * Rx theory of operation
4999  *
5000  * The host allocates 32 DMA target addresses and passes the host address
5001  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5002  * 0 to 31
5003  *
5004  * Rx Queue Indexes
5005  * The host/firmware share two index registers for managing the Rx buffers.
5006  *
5007  * The READ index maps to the first position that the firmware may be writing
5008  * to -- the driver can read up to (but not including) this position and get
5009  * good data.
5010  * The READ index is managed by the firmware once the card is enabled.
5011  *
5012  * The WRITE index maps to the last position the driver has read from -- the
5013  * position preceding WRITE is the last slot the firmware can place a packet.
5014  *
5015  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5016  * WRITE = READ.
5017  *
5018  * During initialization the host sets up the READ queue position to the first
5019  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5020  *
5021  * When the firmware places a packet in a buffer it will advance the READ index
5022  * and fire the RX interrupt.  The driver can then query the READ index and
5023  * process as many packets as possible, moving the WRITE index forward as it
5024  * resets the Rx queue buffers with new memory.
5025  *
5026  * The management in the driver is as follows:
5027  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5028  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5029  *   to replensish the ipw->rxq->rx_free.
5030  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5031  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5032  *   'processed' and 'read' driver indexes as well)
5033  * + A received packet is processed and handed to the kernel network stack,
5034  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5035  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5036  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5037  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5038  *   were enough free buffers and RX_STALLED is set it is cleared.
5039  *
5040  *
5041  * Driver sequence:
5042  *
5043  * ipw_rx_queue_alloc()       Allocates rx_free
5044  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5045  *                            ipw_rx_queue_restock
5046  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5047  *                            queue, updates firmware pointers, and updates
5048  *                            the WRITE index.  If insufficient rx_free buffers
5049  *                            are available, schedules ipw_rx_queue_replenish
5050  *
5051  * -- enable interrupts --
5052  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5053  *                            READ INDEX, detaching the SKB from the pool.
5054  *                            Moves the packet buffer from queue to rx_used.
5055  *                            Calls ipw_rx_queue_restock to refill any empty
5056  *                            slots.
5057  * ...
5058  *
5059  */
5060
5061 /*
5062  * If there are slots in the RX queue that  need to be restocked,
5063  * and we have free pre-allocated buffers, fill the ranks as much
5064  * as we can pulling from rx_free.
5065  *
5066  * This moves the 'write' index forward to catch up with 'processed', and
5067  * also updates the memory address in the firmware to reference the new
5068  * target buffer.
5069  */
5070 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5071 {
5072         struct ipw_rx_queue *rxq = priv->rxq;
5073         struct list_head *element;
5074         struct ipw_rx_mem_buffer *rxb;
5075         unsigned long flags;
5076         int write;
5077
5078         spin_lock_irqsave(&rxq->lock, flags);
5079         write = rxq->write;
5080         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5081                 element = rxq->rx_free.next;
5082                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5083                 list_del(element);
5084
5085                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5086                             rxb->dma_addr);
5087                 rxq->queue[rxq->write] = rxb;
5088                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5089                 rxq->free_count--;
5090         }
5091         spin_unlock_irqrestore(&rxq->lock, flags);
5092
5093         /* If the pre-allocated buffer pool is dropping low, schedule to
5094          * refill it */
5095         if (rxq->free_count <= RX_LOW_WATERMARK)
5096                 queue_work(priv->workqueue, &priv->rx_replenish);
5097
5098         /* If we've added more space for the firmware to place data, tell it */
5099         if (write != rxq->write)
5100                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5101 }
5102
5103 /*
5104  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5105  * Also restock the Rx queue via ipw_rx_queue_restock.
5106  *
5107  * This is called as a scheduled work item (except for during intialization)
5108  */
5109 static void ipw_rx_queue_replenish(void *data)
5110 {
5111         struct ipw_priv *priv = data;
5112         struct ipw_rx_queue *rxq = priv->rxq;
5113         struct list_head *element;
5114         struct ipw_rx_mem_buffer *rxb;
5115         unsigned long flags;
5116
5117         spin_lock_irqsave(&rxq->lock, flags);
5118         while (!list_empty(&rxq->rx_used)) {
5119                 element = rxq->rx_used.next;
5120                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5121                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5122                 if (!rxb->skb) {
5123                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5124                                priv->net_dev->name);
5125                         /* We don't reschedule replenish work here -- we will
5126                          * call the restock method and if it still needs
5127                          * more buffers it will schedule replenish */
5128                         break;
5129                 }
5130                 list_del(element);
5131
5132                 rxb->dma_addr =
5133                     pci_map_single(priv->pci_dev, rxb->skb->data,
5134                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5135
5136                 list_add_tail(&rxb->list, &rxq->rx_free);
5137                 rxq->free_count++;
5138         }
5139         spin_unlock_irqrestore(&rxq->lock, flags);
5140
5141         ipw_rx_queue_restock(priv);
5142 }
5143
5144 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5145 {
5146         struct ipw_priv *priv =
5147                 container_of(work, struct ipw_priv, rx_replenish);
5148         mutex_lock(&priv->mutex);
5149         ipw_rx_queue_replenish(priv);
5150         mutex_unlock(&priv->mutex);
5151 }
5152
5153 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5154  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5155  * This free routine walks the list of POOL entries and if SKB is set to
5156  * non NULL it is unmapped and freed
5157  */
5158 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5159 {
5160         int i;
5161
5162         if (!rxq)
5163                 return;
5164
5165         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5166                 if (rxq->pool[i].skb != NULL) {
5167                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5168                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5169                         dev_kfree_skb(rxq->pool[i].skb);
5170                 }
5171         }
5172
5173         kfree(rxq);
5174 }
5175
5176 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5177 {
5178         struct ipw_rx_queue *rxq;
5179         int i;
5180
5181         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5182         if (unlikely(!rxq)) {
5183                 IPW_ERROR("memory allocation failed\n");
5184                 return NULL;
5185         }
5186         spin_lock_init(&rxq->lock);
5187         INIT_LIST_HEAD(&rxq->rx_free);
5188         INIT_LIST_HEAD(&rxq->rx_used);
5189
5190         /* Fill the rx_used queue with _all_ of the Rx buffers */
5191         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5192                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5193
5194         /* Set us so that we have processed and used all buffers, but have
5195          * not restocked the Rx queue with fresh buffers */
5196         rxq->read = rxq->write = 0;
5197         rxq->processed = RX_QUEUE_SIZE - 1;
5198         rxq->free_count = 0;
5199
5200         return rxq;
5201 }
5202
5203 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5204 {
5205         rate &= ~IEEE80211_BASIC_RATE_MASK;
5206         if (ieee_mode == IEEE_A) {
5207                 switch (rate) {
5208                 case IEEE80211_OFDM_RATE_6MB:
5209                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5210                             1 : 0;
5211                 case IEEE80211_OFDM_RATE_9MB:
5212                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5213                             1 : 0;
5214                 case IEEE80211_OFDM_RATE_12MB:
5215                         return priv->
5216                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5217                 case IEEE80211_OFDM_RATE_18MB:
5218                         return priv->
5219                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5220                 case IEEE80211_OFDM_RATE_24MB:
5221                         return priv->
5222                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5223                 case IEEE80211_OFDM_RATE_36MB:
5224                         return priv->
5225                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5226                 case IEEE80211_OFDM_RATE_48MB:
5227                         return priv->
5228                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5229                 case IEEE80211_OFDM_RATE_54MB:
5230                         return priv->
5231                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5232                 default:
5233                         return 0;
5234                 }
5235         }
5236
5237         /* B and G mixed */
5238         switch (rate) {
5239         case IEEE80211_CCK_RATE_1MB:
5240                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5241         case IEEE80211_CCK_RATE_2MB:
5242                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5243         case IEEE80211_CCK_RATE_5MB:
5244                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5245         case IEEE80211_CCK_RATE_11MB:
5246                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5247         }
5248
5249         /* If we are limited to B modulations, bail at this point */
5250         if (ieee_mode == IEEE_B)
5251                 return 0;
5252
5253         /* G */
5254         switch (rate) {
5255         case IEEE80211_OFDM_RATE_6MB:
5256                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5257         case IEEE80211_OFDM_RATE_9MB:
5258                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5259         case IEEE80211_OFDM_RATE_12MB:
5260                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5261         case IEEE80211_OFDM_RATE_18MB:
5262                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5263         case IEEE80211_OFDM_RATE_24MB:
5264                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5265         case IEEE80211_OFDM_RATE_36MB:
5266                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5267         case IEEE80211_OFDM_RATE_48MB:
5268                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5269         case IEEE80211_OFDM_RATE_54MB:
5270                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5271         }
5272
5273         return 0;
5274 }
5275
5276 static int ipw_compatible_rates(struct ipw_priv *priv,
5277                                 const struct ieee80211_network *network,
5278                                 struct ipw_supported_rates *rates)
5279 {
5280         int num_rates, i;
5281
5282         memset(rates, 0, sizeof(*rates));
5283         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5284         rates->num_rates = 0;
5285         for (i = 0; i < num_rates; i++) {
5286                 if (!ipw_is_rate_in_mask(priv, network->mode,
5287                                          network->rates[i])) {
5288
5289                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5290                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5291                                                "rate %02X\n",
5292                                                network->rates[i]);
5293                                 rates->supported_rates[rates->num_rates++] =
5294                                     network->rates[i];
5295                                 continue;
5296                         }
5297
5298                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5299                                        network->rates[i], priv->rates_mask);
5300                         continue;
5301                 }
5302
5303                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5304         }
5305
5306         num_rates = min(network->rates_ex_len,
5307                         (u8) (IPW_MAX_RATES - num_rates));
5308         for (i = 0; i < num_rates; i++) {
5309                 if (!ipw_is_rate_in_mask(priv, network->mode,
5310                                          network->rates_ex[i])) {
5311                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5312                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5313                                                "rate %02X\n",
5314                                                network->rates_ex[i]);
5315                                 rates->supported_rates[rates->num_rates++] =
5316                                     network->rates[i];
5317                                 continue;
5318                         }
5319
5320                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5321                                        network->rates_ex[i], priv->rates_mask);
5322                         continue;
5323                 }
5324
5325                 rates->supported_rates[rates->num_rates++] =
5326                     network->rates_ex[i];
5327         }
5328
5329         return 1;
5330 }
5331
5332 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5333                                   const struct ipw_supported_rates *src)
5334 {
5335         u8 i;
5336         for (i = 0; i < src->num_rates; i++)
5337                 dest->supported_rates[i] = src->supported_rates[i];
5338         dest->num_rates = src->num_rates;
5339 }
5340
5341 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5342  * mask should ever be used -- right now all callers to add the scan rates are
5343  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5344 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5345                                    u8 modulation, u32 rate_mask)
5346 {
5347         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5348             IEEE80211_BASIC_RATE_MASK : 0;
5349
5350         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5351                 rates->supported_rates[rates->num_rates++] =
5352                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5353
5354         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5355                 rates->supported_rates[rates->num_rates++] =
5356                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5357
5358         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5359                 rates->supported_rates[rates->num_rates++] = basic_mask |
5360                     IEEE80211_CCK_RATE_5MB;
5361
5362         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5363                 rates->supported_rates[rates->num_rates++] = basic_mask |
5364                     IEEE80211_CCK_RATE_11MB;
5365 }
5366
5367 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5368                                     u8 modulation, u32 rate_mask)
5369 {
5370         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5371             IEEE80211_BASIC_RATE_MASK : 0;
5372
5373         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5374                 rates->supported_rates[rates->num_rates++] = basic_mask |
5375                     IEEE80211_OFDM_RATE_6MB;
5376
5377         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5378                 rates->supported_rates[rates->num_rates++] =
5379                     IEEE80211_OFDM_RATE_9MB;
5380
5381         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5382                 rates->supported_rates[rates->num_rates++] = basic_mask |
5383                     IEEE80211_OFDM_RATE_12MB;
5384
5385         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5386                 rates->supported_rates[rates->num_rates++] =
5387                     IEEE80211_OFDM_RATE_18MB;
5388
5389         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5390                 rates->supported_rates[rates->num_rates++] = basic_mask |
5391                     IEEE80211_OFDM_RATE_24MB;
5392
5393         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5394                 rates->supported_rates[rates->num_rates++] =
5395                     IEEE80211_OFDM_RATE_36MB;
5396
5397         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5398                 rates->supported_rates[rates->num_rates++] =
5399                     IEEE80211_OFDM_RATE_48MB;
5400
5401         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5402                 rates->supported_rates[rates->num_rates++] =
5403                     IEEE80211_OFDM_RATE_54MB;
5404 }
5405
5406 struct ipw_network_match {
5407         struct ieee80211_network *network;
5408         struct ipw_supported_rates rates;
5409 };
5410
5411 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5412                                   struct ipw_network_match *match,
5413                                   struct ieee80211_network *network,
5414                                   int roaming)
5415 {
5416         struct ipw_supported_rates rates;
5417         DECLARE_MAC_BUF(mac);
5418         DECLARE_MAC_BUF(mac2);
5419
5420         /* Verify that this network's capability is compatible with the
5421          * current mode (AdHoc or Infrastructure) */
5422         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5423              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5424                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5425                                 "capability mismatch.\n",
5426                                 escape_essid(network->ssid, network->ssid_len),
5427                                 print_mac(mac, network->bssid));
5428                 return 0;
5429         }
5430
5431         /* If we do not have an ESSID for this AP, we can not associate with
5432          * it */
5433         if (network->flags & NETWORK_EMPTY_ESSID) {
5434                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5435                                 "because of hidden ESSID.\n",
5436                                 escape_essid(network->ssid, network->ssid_len),
5437                                 print_mac(mac, network->bssid));
5438                 return 0;
5439         }
5440
5441         if (unlikely(roaming)) {
5442                 /* If we are roaming, then ensure check if this is a valid
5443                  * network to try and roam to */
5444                 if ((network->ssid_len != match->network->ssid_len) ||
5445                     memcmp(network->ssid, match->network->ssid,
5446                            network->ssid_len)) {
5447                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5448                                         "because of non-network ESSID.\n",
5449                                         escape_essid(network->ssid,
5450                                                      network->ssid_len),
5451                                         print_mac(mac, network->bssid));
5452                         return 0;
5453                 }
5454         } else {
5455                 /* If an ESSID has been configured then compare the broadcast
5456                  * ESSID to ours */
5457                 if ((priv->config & CFG_STATIC_ESSID) &&
5458                     ((network->ssid_len != priv->essid_len) ||
5459                      memcmp(network->ssid, priv->essid,
5460                             min(network->ssid_len, priv->essid_len)))) {
5461                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5462
5463                         strncpy(escaped,
5464                                 escape_essid(network->ssid, network->ssid_len),
5465                                 sizeof(escaped));
5466                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5467                                         "because of ESSID mismatch: '%s'.\n",
5468                                         escaped, print_mac(mac, network->bssid),
5469                                         escape_essid(priv->essid,
5470                                                      priv->essid_len));
5471                         return 0;
5472                 }
5473         }
5474
5475         /* If the old network rate is better than this one, don't bother
5476          * testing everything else. */
5477
5478         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5479                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5480                                 "current network.\n",
5481                                 escape_essid(match->network->ssid,
5482                                              match->network->ssid_len));
5483                 return 0;
5484         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5485                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5486                                 "current network.\n",
5487                                 escape_essid(match->network->ssid,
5488                                              match->network->ssid_len));
5489                 return 0;
5490         }
5491
5492         /* Now go through and see if the requested network is valid... */
5493         if (priv->ieee->scan_age != 0 &&
5494             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5495                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5496                                 "because of age: %ums.\n",
5497                                 escape_essid(network->ssid, network->ssid_len),
5498                                 print_mac(mac, network->bssid),
5499                                 jiffies_to_msecs(jiffies -
5500                                                  network->last_scanned));
5501                 return 0;
5502         }
5503
5504         if ((priv->config & CFG_STATIC_CHANNEL) &&
5505             (network->channel != priv->channel)) {
5506                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5507                                 "because of channel mismatch: %d != %d.\n",
5508                                 escape_essid(network->ssid, network->ssid_len),
5509                                 print_mac(mac, network->bssid),
5510                                 network->channel, priv->channel);
5511                 return 0;
5512         }
5513
5514         /* Verify privacy compatability */
5515         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5516             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5517                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5518                                 "because of privacy mismatch: %s != %s.\n",
5519                                 escape_essid(network->ssid, network->ssid_len),
5520                                 print_mac(mac, network->bssid),
5521                                 priv->
5522                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5523                                 network->
5524                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5525                                 "off");
5526                 return 0;
5527         }
5528
5529         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5530                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5531                                 "because of the same BSSID match: %s"
5532                                 ".\n", escape_essid(network->ssid,
5533                                                     network->ssid_len),
5534                                 print_mac(mac, network->bssid),
5535                                 print_mac(mac2, priv->bssid));
5536                 return 0;
5537         }
5538
5539         /* Filter out any incompatible freq / mode combinations */
5540         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5541                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5542                                 "because of invalid frequency/mode "
5543                                 "combination.\n",
5544                                 escape_essid(network->ssid, network->ssid_len),
5545                                 print_mac(mac, network->bssid));
5546                 return 0;
5547         }
5548
5549         /* Ensure that the rates supported by the driver are compatible with
5550          * this AP, including verification of basic rates (mandatory) */
5551         if (!ipw_compatible_rates(priv, network, &rates)) {
5552                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5553                                 "because configured rate mask excludes "
5554                                 "AP mandatory rate.\n",
5555                                 escape_essid(network->ssid, network->ssid_len),
5556                                 print_mac(mac, network->bssid));
5557                 return 0;
5558         }
5559
5560         if (rates.num_rates == 0) {
5561                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5562                                 "because of no compatible rates.\n",
5563                                 escape_essid(network->ssid, network->ssid_len),
5564                                 print_mac(mac, network->bssid));
5565                 return 0;
5566         }
5567
5568         /* TODO: Perform any further minimal comparititive tests.  We do not
5569          * want to put too much policy logic here; intelligent scan selection
5570          * should occur within a generic IEEE 802.11 user space tool.  */
5571
5572         /* Set up 'new' AP to this network */
5573         ipw_copy_rates(&match->rates, &rates);
5574         match->network = network;
5575         IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5576                         escape_essid(network->ssid, network->ssid_len),
5577                         print_mac(mac, network->bssid));
5578
5579         return 1;
5580 }
5581
5582 static void ipw_merge_adhoc_network(struct work_struct *work)
5583 {
5584         struct ipw_priv *priv =
5585                 container_of(work, struct ipw_priv, merge_networks);
5586         struct ieee80211_network *network = NULL;
5587         struct ipw_network_match match = {
5588                 .network = priv->assoc_network
5589         };
5590
5591         if ((priv->status & STATUS_ASSOCIATED) &&
5592             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5593                 /* First pass through ROAM process -- look for a better
5594                  * network */
5595                 unsigned long flags;
5596
5597                 spin_lock_irqsave(&priv->ieee->lock, flags);
5598                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5599                         if (network != priv->assoc_network)
5600                                 ipw_find_adhoc_network(priv, &match, network,
5601                                                        1);
5602                 }
5603                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5604
5605                 if (match.network == priv->assoc_network) {
5606                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5607                                         "merge to.\n");
5608                         return;
5609                 }
5610
5611                 mutex_lock(&priv->mutex);
5612                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5613                         IPW_DEBUG_MERGE("remove network %s\n",
5614                                         escape_essid(priv->essid,
5615                                                      priv->essid_len));
5616                         ipw_remove_current_network(priv);
5617                 }
5618
5619                 ipw_disassociate(priv);
5620                 priv->assoc_network = match.network;
5621                 mutex_unlock(&priv->mutex);
5622                 return;
5623         }
5624 }
5625
5626 static int ipw_best_network(struct ipw_priv *priv,
5627                             struct ipw_network_match *match,
5628                             struct ieee80211_network *network, int roaming)
5629 {
5630         struct ipw_supported_rates rates;
5631         DECLARE_MAC_BUF(mac);
5632
5633         /* Verify that this network's capability is compatible with the
5634          * current mode (AdHoc or Infrastructure) */
5635         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5636              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5637             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5638              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5639                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5640                                 "capability mismatch.\n",
5641                                 escape_essid(network->ssid, network->ssid_len),
5642                                 print_mac(mac, network->bssid));
5643                 return 0;
5644         }
5645
5646         /* If we do not have an ESSID for this AP, we can not associate with
5647          * it */
5648         if (network->flags & NETWORK_EMPTY_ESSID) {
5649                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5650                                 "because of hidden ESSID.\n",
5651                                 escape_essid(network->ssid, network->ssid_len),
5652                                 print_mac(mac, network->bssid));
5653                 return 0;
5654         }
5655
5656         if (unlikely(roaming)) {
5657                 /* If we are roaming, then ensure check if this is a valid
5658                  * network to try and roam to */
5659                 if ((network->ssid_len != match->network->ssid_len) ||
5660                     memcmp(network->ssid, match->network->ssid,
5661                            network->ssid_len)) {
5662                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5663                                         "because of non-network ESSID.\n",
5664                                         escape_essid(network->ssid,
5665                                                      network->ssid_len),
5666                                         print_mac(mac, network->bssid));
5667                         return 0;
5668                 }
5669         } else {
5670                 /* If an ESSID has been configured then compare the broadcast
5671                  * ESSID to ours */
5672                 if ((priv->config & CFG_STATIC_ESSID) &&
5673                     ((network->ssid_len != priv->essid_len) ||
5674                      memcmp(network->ssid, priv->essid,
5675                             min(network->ssid_len, priv->essid_len)))) {
5676                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5677                         strncpy(escaped,
5678                                 escape_essid(network->ssid, network->ssid_len),
5679                                 sizeof(escaped));
5680                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5681                                         "because of ESSID mismatch: '%s'.\n",
5682                                         escaped, print_mac(mac, network->bssid),
5683                                         escape_essid(priv->essid,
5684                                                      priv->essid_len));
5685                         return 0;
5686                 }
5687         }
5688
5689         /* If the old network rate is better than this one, don't bother
5690          * testing everything else. */
5691         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5692                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693                 strncpy(escaped,
5694                         escape_essid(network->ssid, network->ssid_len),
5695                         sizeof(escaped));
5696                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5697                                 "'%s (%s)' has a stronger signal.\n",
5698                                 escaped, print_mac(mac, network->bssid),
5699                                 escape_essid(match->network->ssid,
5700                                              match->network->ssid_len),
5701                                 print_mac(mac, match->network->bssid));
5702                 return 0;
5703         }
5704
5705         /* If this network has already had an association attempt within the
5706          * last 3 seconds, do not try and associate again... */
5707         if (network->last_associate &&
5708             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5709                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5710                                 "because of storming (%ums since last "
5711                                 "assoc attempt).\n",
5712                                 escape_essid(network->ssid, network->ssid_len),
5713                                 print_mac(mac, network->bssid),
5714                                 jiffies_to_msecs(jiffies -
5715                                                  network->last_associate));
5716                 return 0;
5717         }
5718
5719         /* Now go through and see if the requested network is valid... */
5720         if (priv->ieee->scan_age != 0 &&
5721             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5722                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5723                                 "because of age: %ums.\n",
5724                                 escape_essid(network->ssid, network->ssid_len),
5725                                 print_mac(mac, network->bssid),
5726                                 jiffies_to_msecs(jiffies -
5727                                                  network->last_scanned));
5728                 return 0;
5729         }
5730
5731         if ((priv->config & CFG_STATIC_CHANNEL) &&
5732             (network->channel != priv->channel)) {
5733                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5734                                 "because of channel mismatch: %d != %d.\n",
5735                                 escape_essid(network->ssid, network->ssid_len),
5736                                 print_mac(mac, network->bssid),
5737                                 network->channel, priv->channel);
5738                 return 0;
5739         }
5740
5741         /* Verify privacy compatability */
5742         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5743             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5744                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5745                                 "because of privacy mismatch: %s != %s.\n",
5746                                 escape_essid(network->ssid, network->ssid_len),
5747                                 print_mac(mac, network->bssid),
5748                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5749                                 "off",
5750                                 network->capability &
5751                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5752                 return 0;
5753         }
5754
5755         if ((priv->config & CFG_STATIC_BSSID) &&
5756             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5757                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5758                                 "because of BSSID mismatch: %s.\n",
5759                                 escape_essid(network->ssid, network->ssid_len),
5760                                 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5761                 return 0;
5762         }
5763
5764         /* Filter out any incompatible freq / mode combinations */
5765         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5766                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5767                                 "because of invalid frequency/mode "
5768                                 "combination.\n",
5769                                 escape_essid(network->ssid, network->ssid_len),
5770                                 print_mac(mac, network->bssid));
5771                 return 0;
5772         }
5773
5774         /* Filter out invalid channel in current GEO */
5775         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5776                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5777                                 "because of invalid channel in current GEO\n",
5778                                 escape_essid(network->ssid, network->ssid_len),
5779                                 print_mac(mac, network->bssid));
5780                 return 0;
5781         }
5782
5783         /* Ensure that the rates supported by the driver are compatible with
5784          * this AP, including verification of basic rates (mandatory) */
5785         if (!ipw_compatible_rates(priv, network, &rates)) {
5786                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5787                                 "because configured rate mask excludes "
5788                                 "AP mandatory rate.\n",
5789                                 escape_essid(network->ssid, network->ssid_len),
5790                                 print_mac(mac, network->bssid));
5791                 return 0;
5792         }
5793
5794         if (rates.num_rates == 0) {
5795                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5796                                 "because of no compatible rates.\n",
5797                                 escape_essid(network->ssid, network->ssid_len),
5798                                 print_mac(mac, network->bssid));
5799                 return 0;
5800         }
5801
5802         /* TODO: Perform any further minimal comparititive tests.  We do not
5803          * want to put too much policy logic here; intelligent scan selection
5804          * should occur within a generic IEEE 802.11 user space tool.  */
5805
5806         /* Set up 'new' AP to this network */
5807         ipw_copy_rates(&match->rates, &rates);
5808         match->network = network;
5809
5810         IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5811                         escape_essid(network->ssid, network->ssid_len),
5812                         print_mac(mac, network->bssid));
5813
5814         return 1;
5815 }
5816
5817 static void ipw_adhoc_create(struct ipw_priv *priv,
5818                              struct ieee80211_network *network)
5819 {
5820         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5821         int i;
5822
5823         /*
5824          * For the purposes of scanning, we can set our wireless mode
5825          * to trigger scans across combinations of bands, but when it
5826          * comes to creating a new ad-hoc network, we have tell the FW
5827          * exactly which band to use.
5828          *
5829          * We also have the possibility of an invalid channel for the
5830          * chossen band.  Attempting to create a new ad-hoc network
5831          * with an invalid channel for wireless mode will trigger a
5832          * FW fatal error.
5833          *
5834          */
5835         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5836         case IEEE80211_52GHZ_BAND:
5837                 network->mode = IEEE_A;
5838                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5839                 BUG_ON(i == -1);
5840                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5841                         IPW_WARNING("Overriding invalid channel\n");
5842                         priv->channel = geo->a[0].channel;
5843                 }
5844                 break;
5845
5846         case IEEE80211_24GHZ_BAND:
5847                 if (priv->ieee->mode & IEEE_G)
5848                         network->mode = IEEE_G;
5849                 else
5850                         network->mode = IEEE_B;
5851                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5852                 BUG_ON(i == -1);
5853                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5854                         IPW_WARNING("Overriding invalid channel\n");
5855                         priv->channel = geo->bg[0].channel;
5856                 }
5857                 break;
5858
5859         default:
5860                 IPW_WARNING("Overriding invalid channel\n");
5861                 if (priv->ieee->mode & IEEE_A) {
5862                         network->mode = IEEE_A;
5863                         priv->channel = geo->a[0].channel;
5864                 } else if (priv->ieee->mode & IEEE_G) {
5865                         network->mode = IEEE_G;
5866                         priv->channel = geo->bg[0].channel;
5867                 } else {
5868                         network->mode = IEEE_B;
5869                         priv->channel = geo->bg[0].channel;
5870                 }
5871                 break;
5872         }
5873
5874         network->channel = priv->channel;
5875         priv->config |= CFG_ADHOC_PERSIST;
5876         ipw_create_bssid(priv, network->bssid);
5877         network->ssid_len = priv->essid_len;
5878         memcpy(network->ssid, priv->essid, priv->essid_len);
5879         memset(&network->stats, 0, sizeof(network->stats));
5880         network->capability = WLAN_CAPABILITY_IBSS;
5881         if (!(priv->config & CFG_PREAMBLE_LONG))
5882                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5883         if (priv->capability & CAP_PRIVACY_ON)
5884                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5885         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5886         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5887         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5888         memcpy(network->rates_ex,
5889                &priv->rates.supported_rates[network->rates_len],
5890                network->rates_ex_len);
5891         network->last_scanned = 0;
5892         network->flags = 0;
5893         network->last_associate = 0;
5894         network->time_stamp[0] = 0;
5895         network->time_stamp[1] = 0;
5896         network->beacon_interval = 100; /* Default */
5897         network->listen_interval = 10;  /* Default */
5898         network->atim_window = 0;       /* Default */
5899         network->wpa_ie_len = 0;
5900         network->rsn_ie_len = 0;
5901 }
5902
5903 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5904 {
5905         struct ipw_tgi_tx_key key;
5906
5907         if (!(priv->ieee->sec.flags & (1 << index)))
5908                 return;
5909
5910         key.key_id = index;
5911         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5912         key.security_type = type;
5913         key.station_index = 0;  /* always 0 for BSS */
5914         key.flags = 0;
5915         /* 0 for new key; previous value of counter (after fatal error) */
5916         key.tx_counter[0] = cpu_to_le32(0);
5917         key.tx_counter[1] = cpu_to_le32(0);
5918
5919         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5920 }
5921
5922 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5923 {
5924         struct ipw_wep_key key;
5925         int i;
5926
5927         key.cmd_id = DINO_CMD_WEP_KEY;
5928         key.seq_num = 0;
5929
5930         /* Note: AES keys cannot be set for multiple times.
5931          * Only set it at the first time. */
5932         for (i = 0; i < 4; i++) {
5933                 key.key_index = i | type;
5934                 if (!(priv->ieee->sec.flags & (1 << i))) {
5935                         key.key_size = 0;
5936                         continue;
5937                 }
5938
5939                 key.key_size = priv->ieee->sec.key_sizes[i];
5940                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5941
5942                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5943         }
5944 }
5945
5946 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5947 {
5948         if (priv->ieee->host_encrypt)
5949                 return;
5950
5951         switch (level) {
5952         case SEC_LEVEL_3:
5953                 priv->sys_config.disable_unicast_decryption = 0;
5954                 priv->ieee->host_decrypt = 0;
5955                 break;
5956         case SEC_LEVEL_2:
5957                 priv->sys_config.disable_unicast_decryption = 1;
5958                 priv->ieee->host_decrypt = 1;
5959                 break;
5960         case SEC_LEVEL_1:
5961                 priv->sys_config.disable_unicast_decryption = 0;
5962                 priv->ieee->host_decrypt = 0;
5963                 break;
5964         case SEC_LEVEL_0:
5965                 priv->sys_config.disable_unicast_decryption = 1;
5966                 break;
5967         default:
5968                 break;
5969         }
5970 }
5971
5972 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5973 {
5974         if (priv->ieee->host_encrypt)
5975                 return;
5976
5977         switch (level) {
5978         case SEC_LEVEL_3:
5979                 priv->sys_config.disable_multicast_decryption = 0;
5980                 break;
5981         case SEC_LEVEL_2:
5982                 priv->sys_config.disable_multicast_decryption = 1;
5983                 break;
5984         case SEC_LEVEL_1:
5985                 priv->sys_config.disable_multicast_decryption = 0;
5986                 break;
5987         case SEC_LEVEL_0:
5988                 priv->sys_config.disable_multicast_decryption = 1;
5989                 break;
5990         default:
5991                 break;
5992         }
5993 }
5994
5995 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5996 {
5997         switch (priv->ieee->sec.level) {
5998         case SEC_LEVEL_3:
5999                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6000                         ipw_send_tgi_tx_key(priv,
6001                                             DCT_FLAG_EXT_SECURITY_CCM,
6002                                             priv->ieee->sec.active_key);
6003
6004                 if (!priv->ieee->host_mc_decrypt)
6005                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6006                 break;
6007         case SEC_LEVEL_2:
6008                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6009                         ipw_send_tgi_tx_key(priv,
6010                                             DCT_FLAG_EXT_SECURITY_TKIP,
6011                                             priv->ieee->sec.active_key);
6012                 break;
6013         case SEC_LEVEL_1:
6014                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6015                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6016                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6017                 break;
6018         case SEC_LEVEL_0:
6019         default:
6020                 break;
6021         }
6022 }
6023
6024 static void ipw_adhoc_check(void *data)
6025 {
6026         struct ipw_priv *priv = data;
6027
6028         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6029             !(priv->config & CFG_ADHOC_PERSIST)) {
6030                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6031                           IPW_DL_STATE | IPW_DL_ASSOC,
6032                           "Missed beacon: %d - disassociate\n",
6033                           priv->missed_adhoc_beacons);
6034                 ipw_remove_current_network(priv);
6035                 ipw_disassociate(priv);
6036                 return;
6037         }
6038
6039         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6040                            priv->assoc_request.beacon_interval);
6041 }
6042
6043 static void ipw_bg_adhoc_check(struct work_struct *work)
6044 {
6045         struct ipw_priv *priv =
6046                 container_of(work, struct ipw_priv, adhoc_check.work);
6047         mutex_lock(&priv->mutex);
6048         ipw_adhoc_check(priv);
6049         mutex_unlock(&priv->mutex);
6050 }
6051
6052 static void ipw_debug_config(struct ipw_priv *priv)
6053 {
6054         DECLARE_MAC_BUF(mac);
6055         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6056                        "[CFG 0x%08X]\n", priv->config);
6057         if (priv->config & CFG_STATIC_CHANNEL)
6058                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6059         else
6060                 IPW_DEBUG_INFO("Channel unlocked.\n");
6061         if (priv->config & CFG_STATIC_ESSID)
6062                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6063                                escape_essid(priv->essid, priv->essid_len));
6064         else
6065                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6066         if (priv->config & CFG_STATIC_BSSID)
6067                 IPW_DEBUG_INFO("BSSID locked to %s\n",
6068                                print_mac(mac, priv->bssid));
6069         else
6070                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6071         if (priv->capability & CAP_PRIVACY_ON)
6072                 IPW_DEBUG_INFO("PRIVACY on\n");
6073         else
6074                 IPW_DEBUG_INFO("PRIVACY off\n");
6075         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6076 }
6077
6078 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6079 {
6080         /* TODO: Verify that this works... */
6081         struct ipw_fixed_rate fr = {
6082                 .tx_rates = priv->rates_mask
6083         };
6084         u32 reg;
6085         u16 mask = 0;
6086
6087         /* Identify 'current FW band' and match it with the fixed
6088          * Tx rates */
6089
6090         switch (priv->ieee->freq_band) {
6091         case IEEE80211_52GHZ_BAND:      /* A only */
6092                 /* IEEE_A */
6093                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6094                         /* Invalid fixed rate mask */
6095                         IPW_DEBUG_WX
6096                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6097                         fr.tx_rates = 0;
6098                         break;
6099                 }
6100
6101                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6102                 break;
6103
6104         default:                /* 2.4Ghz or Mixed */
6105                 /* IEEE_B */
6106                 if (mode == IEEE_B) {
6107                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6108                                 /* Invalid fixed rate mask */
6109                                 IPW_DEBUG_WX
6110                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6111                                 fr.tx_rates = 0;
6112                         }
6113                         break;
6114                 }
6115
6116                 /* IEEE_G */
6117                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6118                                     IEEE80211_OFDM_RATES_MASK)) {
6119                         /* Invalid fixed rate mask */
6120                         IPW_DEBUG_WX
6121                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122                         fr.tx_rates = 0;
6123                         break;
6124                 }
6125
6126                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6127                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6128                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6129                 }
6130
6131                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6132                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6133                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6134                 }
6135
6136                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6137                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6138                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6139                 }
6140
6141                 fr.tx_rates |= mask;
6142                 break;
6143         }
6144
6145         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6146         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6147 }
6148
6149 static void ipw_abort_scan(struct ipw_priv *priv)
6150 {
6151         int err;
6152
6153         if (priv->status & STATUS_SCAN_ABORTING) {
6154                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6155                 return;
6156         }
6157         priv->status |= STATUS_SCAN_ABORTING;
6158
6159         err = ipw_send_scan_abort(priv);
6160         if (err)
6161                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6162 }
6163
6164 static void ipw_add_scan_channels(struct ipw_priv *priv,
6165                                   struct ipw_scan_request_ext *scan,
6166                                   int scan_type)
6167 {
6168         int channel_index = 0;
6169         const struct ieee80211_geo *geo;
6170         int i;
6171
6172         geo = ieee80211_get_geo(priv->ieee);
6173
6174         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6175                 int start = channel_index;
6176                 for (i = 0; i < geo->a_channels; i++) {
6177                         if ((priv->status & STATUS_ASSOCIATED) &&
6178                             geo->a[i].channel == priv->channel)
6179                                 continue;
6180                         channel_index++;
6181                         scan->channels_list[channel_index] = geo->a[i].channel;
6182                         ipw_set_scan_type(scan, channel_index,
6183                                           geo->a[i].
6184                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6185                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6186                                           scan_type);
6187                 }
6188
6189                 if (start != channel_index) {
6190                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6191                             (channel_index - start);
6192                         channel_index++;
6193                 }
6194         }
6195
6196         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6197                 int start = channel_index;
6198                 if (priv->config & CFG_SPEED_SCAN) {
6199                         int index;
6200                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6201                                 /* nop out the list */
6202                                 [0] = 0
6203                         };
6204
6205                         u8 channel;
6206                         while (channel_index < IPW_SCAN_CHANNELS) {
6207                                 channel =
6208                                     priv->speed_scan[priv->speed_scan_pos];
6209                                 if (channel == 0) {
6210                                         priv->speed_scan_pos = 0;
6211                                         channel = priv->speed_scan[0];
6212                                 }
6213                                 if ((priv->status & STATUS_ASSOCIATED) &&
6214                                     channel == priv->channel) {
6215                                         priv->speed_scan_pos++;
6216                                         continue;
6217                                 }
6218
6219                                 /* If this channel has already been
6220                                  * added in scan, break from loop
6221                                  * and this will be the first channel
6222                                  * in the next scan.
6223                                  */
6224                                 if (channels[channel - 1] != 0)
6225                                         break;
6226
6227                                 channels[channel - 1] = 1;
6228                                 priv->speed_scan_pos++;
6229                                 channel_index++;
6230                                 scan->channels_list[channel_index] = channel;
6231                                 index =
6232                                     ieee80211_channel_to_index(priv->ieee, channel);
6233                                 ipw_set_scan_type(scan, channel_index,
6234                                                   geo->bg[index].
6235                                                   flags &
6236                                                   IEEE80211_CH_PASSIVE_ONLY ?
6237                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6238                                                   : scan_type);
6239                         }
6240                 } else {
6241                         for (i = 0; i < geo->bg_channels; i++) {
6242                                 if ((priv->status & STATUS_ASSOCIATED) &&
6243                                     geo->bg[i].channel == priv->channel)
6244                                         continue;
6245                                 channel_index++;
6246                                 scan->channels_list[channel_index] =
6247                                     geo->bg[i].channel;
6248                                 ipw_set_scan_type(scan, channel_index,
6249                                                   geo->bg[i].
6250                                                   flags &
6251                                                   IEEE80211_CH_PASSIVE_ONLY ?
6252                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6253                                                   : scan_type);
6254                         }
6255                 }
6256
6257                 if (start != channel_index) {
6258                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6259                             (channel_index - start);
6260                 }
6261         }
6262 }
6263
6264 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6265 {
6266         struct ipw_scan_request_ext scan;
6267         int err = 0, scan_type;
6268
6269         if (!(priv->status & STATUS_INIT) ||
6270             (priv->status & STATUS_EXIT_PENDING))
6271                 return 0;
6272
6273         mutex_lock(&priv->mutex);
6274
6275         if (priv->status & STATUS_SCANNING) {
6276                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6277                 priv->status |= STATUS_SCAN_PENDING;
6278                 goto done;
6279         }
6280
6281         if (!(priv->status & STATUS_SCAN_FORCED) &&
6282             priv->status & STATUS_SCAN_ABORTING) {
6283                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6284                 priv->status |= STATUS_SCAN_PENDING;
6285                 goto done;
6286         }
6287
6288         if (priv->status & STATUS_RF_KILL_MASK) {
6289                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6290                 priv->status |= STATUS_SCAN_PENDING;
6291                 goto done;
6292         }
6293
6294         memset(&scan, 0, sizeof(scan));
6295         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6296
6297         if (type == IW_SCAN_TYPE_PASSIVE) {
6298                 IPW_DEBUG_WX("use passive scanning\n");
6299                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6300                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6301                         cpu_to_le16(120);
6302                 ipw_add_scan_channels(priv, &scan, scan_type);
6303                 goto send_request;
6304         }
6305
6306         /* Use active scan by default. */
6307         if (priv->config & CFG_SPEED_SCAN)
6308                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6309                         cpu_to_le16(30);
6310         else
6311                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6312                         cpu_to_le16(20);
6313
6314         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6315                 cpu_to_le16(20);
6316
6317         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6318
6319 #ifdef CONFIG_IPW2200_MONITOR
6320         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6321                 u8 channel;
6322                 u8 band = 0;
6323
6324                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6325                 case IEEE80211_52GHZ_BAND:
6326                         band = (u8) (IPW_A_MODE << 6) | 1;
6327                         channel = priv->channel;
6328                         break;
6329
6330                 case IEEE80211_24GHZ_BAND:
6331                         band = (u8) (IPW_B_MODE << 6) | 1;
6332                         channel = priv->channel;
6333                         break;
6334
6335                 default:
6336                         band = (u8) (IPW_B_MODE << 6) | 1;
6337                         channel = 9;
6338                         break;
6339                 }
6340
6341                 scan.channels_list[0] = band;
6342                 scan.channels_list[1] = channel;
6343                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6344
6345                 /* NOTE:  The card will sit on this channel for this time
6346                  * period.  Scan aborts are timing sensitive and frequently
6347                  * result in firmware restarts.  As such, it is best to
6348                  * set a small dwell_time here and just keep re-issuing
6349                  * scans.  Otherwise fast channel hopping will not actually
6350                  * hop channels.
6351                  *
6352                  * TODO: Move SPEED SCAN support to all modes and bands */
6353                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6354                         cpu_to_le16(2000);
6355         } else {
6356 #endif                          /* CONFIG_IPW2200_MONITOR */
6357                 /* If we are roaming, then make this a directed scan for the
6358                  * current network.  Otherwise, ensure that every other scan
6359                  * is a fast channel hop scan */
6360                 if ((priv->status & STATUS_ROAMING)
6361                     || (!(priv->status & STATUS_ASSOCIATED)
6362                         && (priv->config & CFG_STATIC_ESSID)
6363                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6364                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6365                         if (err) {
6366                                 IPW_DEBUG_HC("Attempt to send SSID command "
6367                                              "failed.\n");
6368                                 goto done;
6369                         }
6370
6371                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6372                 } else
6373                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6374
6375                 ipw_add_scan_channels(priv, &scan, scan_type);
6376 #ifdef CONFIG_IPW2200_MONITOR
6377         }
6378 #endif
6379
6380 send_request:
6381         err = ipw_send_scan_request_ext(priv, &scan);
6382         if (err) {
6383                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6384                 goto done;
6385         }
6386
6387         priv->status |= STATUS_SCANNING;
6388         priv->status &= ~STATUS_SCAN_PENDING;
6389         queue_delayed_work(priv->workqueue, &priv->scan_check,
6390                            IPW_SCAN_CHECK_WATCHDOG);
6391 done:
6392         mutex_unlock(&priv->mutex);
6393         return err;
6394 }
6395
6396 static void ipw_request_passive_scan(struct work_struct *work)
6397 {
6398         struct ipw_priv *priv =
6399                 container_of(work, struct ipw_priv, request_passive_scan);
6400         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6401 }
6402
6403 static void ipw_request_scan(struct work_struct *work)
6404 {
6405         struct ipw_priv *priv =
6406                 container_of(work, struct ipw_priv, request_scan.work);
6407         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6408 }
6409
6410 static void ipw_bg_abort_scan(struct work_struct *work)
6411 {
6412         struct ipw_priv *priv =
6413                 container_of(work, struct ipw_priv, abort_scan);
6414         mutex_lock(&priv->mutex);
6415         ipw_abort_scan(priv);
6416         mutex_unlock(&priv->mutex);
6417 }
6418
6419 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6420 {
6421         /* This is called when wpa_supplicant loads and closes the driver
6422          * interface. */
6423         priv->ieee->wpa_enabled = value;
6424         return 0;
6425 }
6426
6427 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6428 {
6429         struct ieee80211_device *ieee = priv->ieee;
6430         struct ieee80211_security sec = {
6431                 .flags = SEC_AUTH_MODE,
6432         };
6433         int ret = 0;
6434
6435         if (value & IW_AUTH_ALG_SHARED_KEY) {
6436                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6437                 ieee->open_wep = 0;
6438         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6439                 sec.auth_mode = WLAN_AUTH_OPEN;
6440                 ieee->open_wep = 1;
6441         } else if (value & IW_AUTH_ALG_LEAP) {
6442                 sec.auth_mode = WLAN_AUTH_LEAP;
6443                 ieee->open_wep = 1;
6444         } else
6445                 return -EINVAL;
6446
6447         if (ieee->set_security)
6448                 ieee->set_security(ieee->dev, &sec);
6449         else
6450                 ret = -EOPNOTSUPP;
6451
6452         return ret;
6453 }
6454
6455 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6456                                 int wpa_ie_len)
6457 {
6458         /* make sure WPA is enabled */
6459         ipw_wpa_enable(priv, 1);
6460 }
6461
6462 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6463                             char *capabilities, int length)
6464 {
6465         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6466
6467         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6468                                 capabilities);
6469 }
6470
6471 /*
6472  * WE-18 support
6473  */
6474
6475 /* SIOCSIWGENIE */
6476 static int ipw_wx_set_genie(struct net_device *dev,
6477                             struct iw_request_info *info,
6478                             union iwreq_data *wrqu, char *extra)
6479 {
6480         struct ipw_priv *priv = ieee80211_priv(dev);
6481         struct ieee80211_device *ieee = priv->ieee;
6482         u8 *buf;
6483         int err = 0;
6484
6485         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6486             (wrqu->data.length && extra == NULL))
6487                 return -EINVAL;
6488
6489         if (wrqu->data.length) {
6490                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6491                 if (buf == NULL) {
6492                         err = -ENOMEM;
6493                         goto out;
6494                 }
6495
6496                 memcpy(buf, extra, wrqu->data.length);
6497                 kfree(ieee->wpa_ie);
6498                 ieee->wpa_ie = buf;
6499                 ieee->wpa_ie_len = wrqu->data.length;
6500         } else {
6501                 kfree(ieee->wpa_ie);
6502                 ieee->wpa_ie = NULL;
6503                 ieee->wpa_ie_len = 0;
6504         }
6505
6506         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6507       out:
6508         return err;
6509 }
6510
6511 /* SIOCGIWGENIE */
6512 static int ipw_wx_get_genie(struct net_device *dev,
6513                             struct iw_request_info *info,
6514                             union iwreq_data *wrqu, char *extra)
6515 {
6516         struct ipw_priv *priv = ieee80211_priv(dev);
6517         struct ieee80211_device *ieee = priv->ieee;
6518         int err = 0;
6519
6520         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6521                 wrqu->data.length = 0;
6522                 goto out;
6523         }
6524
6525         if (wrqu->data.length < ieee->wpa_ie_len) {
6526                 err = -E2BIG;
6527                 goto out;
6528         }
6529
6530         wrqu->data.length = ieee->wpa_ie_len;
6531         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6532
6533       out:
6534         return err;
6535 }
6536
6537 static int wext_cipher2level(int cipher)
6538 {
6539         switch (cipher) {
6540         case IW_AUTH_CIPHER_NONE:
6541                 return SEC_LEVEL_0;
6542         case IW_AUTH_CIPHER_WEP40:
6543         case IW_AUTH_CIPHER_WEP104:
6544                 return SEC_LEVEL_1;
6545         case IW_AUTH_CIPHER_TKIP:
6546                 return SEC_LEVEL_2;
6547         case IW_AUTH_CIPHER_CCMP:
6548                 return SEC_LEVEL_3;
6549         default:
6550                 return -1;
6551         }
6552 }
6553
6554 /* SIOCSIWAUTH */
6555 static int ipw_wx_set_auth(struct net_device *dev,
6556                            struct iw_request_info *info,
6557                            union iwreq_data *wrqu, char *extra)
6558 {
6559         struct ipw_priv *priv = ieee80211_priv(dev);
6560         struct ieee80211_device *ieee = priv->ieee;
6561         struct iw_param *param = &wrqu->param;
6562         struct ieee80211_crypt_data *crypt;
6563         unsigned long flags;
6564         int ret = 0;
6565
6566         switch (param->flags & IW_AUTH_INDEX) {
6567         case IW_AUTH_WPA_VERSION:
6568                 break;
6569         case IW_AUTH_CIPHER_PAIRWISE:
6570                 ipw_set_hw_decrypt_unicast(priv,
6571                                            wext_cipher2level(param->value));
6572                 break;
6573         case IW_AUTH_CIPHER_GROUP:
6574                 ipw_set_hw_decrypt_multicast(priv,
6575                                              wext_cipher2level(param->value));
6576                 break;
6577         case IW_AUTH_KEY_MGMT:
6578                 /*
6579                  * ipw2200 does not use these parameters
6580                  */
6581                 break;
6582
6583         case IW_AUTH_TKIP_COUNTERMEASURES:
6584                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6585                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6586                         break;
6587
6588                 flags = crypt->ops->get_flags(crypt->priv);
6589
6590                 if (param->value)
6591                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6592                 else
6593                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6594
6595                 crypt->ops->set_flags(flags, crypt->priv);
6596
6597                 break;
6598
6599         case IW_AUTH_DROP_UNENCRYPTED:{
6600                         /* HACK:
6601                          *
6602                          * wpa_supplicant calls set_wpa_enabled when the driver
6603                          * is loaded and unloaded, regardless of if WPA is being
6604                          * used.  No other calls are made which can be used to
6605                          * determine if encryption will be used or not prior to
6606                          * association being expected.  If encryption is not being
6607                          * used, drop_unencrypted is set to false, else true -- we
6608                          * can use this to determine if the CAP_PRIVACY_ON bit should
6609                          * be set.
6610                          */
6611                         struct ieee80211_security sec = {
6612                                 .flags = SEC_ENABLED,
6613                                 .enabled = param->value,
6614                         };
6615                         priv->ieee->drop_unencrypted = param->value;
6616                         /* We only change SEC_LEVEL for open mode. Others
6617                          * are set by ipw_wpa_set_encryption.
6618                          */
6619                         if (!param->value) {
6620                                 sec.flags |= SEC_LEVEL;
6621                                 sec.level = SEC_LEVEL_0;
6622                         } else {
6623                                 sec.flags |= SEC_LEVEL;
6624                                 sec.level = SEC_LEVEL_1;
6625                         }
6626                         if (priv->ieee->set_security)
6627                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6628                         break;
6629                 }
6630
6631         case IW_AUTH_80211_AUTH_ALG:
6632                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6633                 break;
6634
6635         case IW_AUTH_WPA_ENABLED:
6636                 ret = ipw_wpa_enable(priv, param->value);
6637                 ipw_disassociate(priv);
6638                 break;
6639
6640         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6641                 ieee->ieee802_1x = param->value;
6642                 break;
6643
6644         case IW_AUTH_PRIVACY_INVOKED:
6645                 ieee->privacy_invoked = param->value;
6646                 break;
6647
6648         default:
6649                 return -EOPNOTSUPP;
6650         }
6651         return ret;
6652 }
6653
6654 /* SIOCGIWAUTH */
6655 static int ipw_wx_get_auth(struct net_device *dev,
6656                            struct iw_request_info *info,
6657                            union iwreq_data *wrqu, char *extra)
6658 {
6659         struct ipw_priv *priv = ieee80211_priv(dev);
6660         struct ieee80211_device *ieee = priv->ieee;
6661         struct ieee80211_crypt_data *crypt;
6662         struct iw_param *param = &wrqu->param;
6663         int ret = 0;
6664
6665         switch (param->flags & IW_AUTH_INDEX) {
6666         case IW_AUTH_WPA_VERSION:
6667         case IW_AUTH_CIPHER_PAIRWISE:
6668         case IW_AUTH_CIPHER_GROUP:
6669         case IW_AUTH_KEY_MGMT:
6670                 /*
6671                  * wpa_supplicant will control these internally
6672                  */
6673                 ret = -EOPNOTSUPP;
6674                 break;
6675
6676         case IW_AUTH_TKIP_COUNTERMEASURES:
6677                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6678                 if (!crypt || !crypt->ops->get_flags)
6679                         break;
6680
6681                 param->value = (crypt->ops->get_flags(crypt->priv) &
6682                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6683
6684                 break;
6685
6686         case IW_AUTH_DROP_UNENCRYPTED:
6687                 param->value = ieee->drop_unencrypted;
6688                 break;
6689
6690         case IW_AUTH_80211_AUTH_ALG:
6691                 param->value = ieee->sec.auth_mode;
6692                 break;
6693
6694         case IW_AUTH_WPA_ENABLED:
6695                 param->value = ieee->wpa_enabled;
6696                 break;
6697
6698         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6699                 param->value = ieee->ieee802_1x;
6700                 break;
6701
6702         case IW_AUTH_ROAMING_CONTROL:
6703         case IW_AUTH_PRIVACY_INVOKED:
6704                 param->value = ieee->privacy_invoked;
6705                 break;
6706
6707         default:
6708                 return -EOPNOTSUPP;
6709         }
6710         return 0;
6711 }
6712
6713 /* SIOCSIWENCODEEXT */
6714 static int ipw_wx_set_encodeext(struct net_device *dev,
6715                                 struct iw_request_info *info,
6716                                 union iwreq_data *wrqu, char *extra)
6717 {
6718         struct ipw_priv *priv = ieee80211_priv(dev);
6719         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6720
6721         if (hwcrypto) {
6722                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6723                         /* IPW HW can't build TKIP MIC,
6724                            host decryption still needed */
6725                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6726                                 priv->ieee->host_mc_decrypt = 1;
6727                         else {
6728                                 priv->ieee->host_encrypt = 0;
6729                                 priv->ieee->host_encrypt_msdu = 1;
6730                                 priv->ieee->host_decrypt = 1;
6731                         }
6732                 } else {
6733                         priv->ieee->host_encrypt = 0;
6734                         priv->ieee->host_encrypt_msdu = 0;
6735                         priv->ieee->host_decrypt = 0;
6736                         priv->ieee->host_mc_decrypt = 0;
6737                 }
6738         }
6739
6740         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6741 }
6742
6743 /* SIOCGIWENCODEEXT */
6744 static int ipw_wx_get_encodeext(struct net_device *dev,
6745                                 struct iw_request_info *info,
6746                                 union iwreq_data *wrqu, char *extra)
6747 {
6748         struct ipw_priv *priv = ieee80211_priv(dev);
6749         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6750 }
6751
6752 /* SIOCSIWMLME */
6753 static int ipw_wx_set_mlme(struct net_device *dev,
6754                            struct iw_request_info *info,
6755                            union iwreq_data *wrqu, char *extra)
6756 {
6757         struct ipw_priv *priv = ieee80211_priv(dev);
6758         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6759         u16 reason;
6760
6761         reason = cpu_to_le16(mlme->reason_code);
6762
6763         switch (mlme->cmd) {
6764         case IW_MLME_DEAUTH:
6765                 /* silently ignore */
6766                 break;
6767
6768         case IW_MLME_DISASSOC:
6769                 ipw_disassociate(priv);
6770                 break;
6771
6772         default:
6773                 return -EOPNOTSUPP;
6774         }
6775         return 0;
6776 }
6777
6778 #ifdef CONFIG_IPW2200_QOS
6779
6780 /* QoS */
6781 /*
6782 * get the modulation type of the current network or
6783 * the card current mode
6784 */
6785 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6786 {
6787         u8 mode = 0;
6788
6789         if (priv->status & STATUS_ASSOCIATED) {
6790                 unsigned long flags;
6791
6792                 spin_lock_irqsave(&priv->ieee->lock, flags);
6793                 mode = priv->assoc_network->mode;
6794                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6795         } else {
6796                 mode = priv->ieee->mode;
6797         }
6798         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6799         return mode;
6800 }
6801
6802 /*
6803 * Handle management frame beacon and probe response
6804 */
6805 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6806                                          int active_network,
6807                                          struct ieee80211_network *network)
6808 {
6809         u32 size = sizeof(struct ieee80211_qos_parameters);
6810
6811         if (network->capability & WLAN_CAPABILITY_IBSS)
6812                 network->qos_data.active = network->qos_data.supported;
6813
6814         if (network->flags & NETWORK_HAS_QOS_MASK) {
6815                 if (active_network &&
6816                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6817                         network->qos_data.active = network->qos_data.supported;
6818
6819                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6820                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6821                     (network->qos_data.old_param_count !=
6822                      network->qos_data.param_count)) {
6823                         network->qos_data.old_param_count =
6824                             network->qos_data.param_count;
6825                         schedule_work(&priv->qos_activate);
6826                         IPW_DEBUG_QOS("QoS parameters change call "
6827                                       "qos_activate\n");
6828                 }
6829         } else {
6830                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6831                         memcpy(&network->qos_data.parameters,
6832                                &def_parameters_CCK, size);
6833                 else
6834                         memcpy(&network->qos_data.parameters,
6835                                &def_parameters_OFDM, size);
6836
6837                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6838                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6839                         schedule_work(&priv->qos_activate);
6840                 }
6841
6842                 network->qos_data.active = 0;
6843                 network->qos_data.supported = 0;
6844         }
6845         if ((priv->status & STATUS_ASSOCIATED) &&
6846             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6847                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6848                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6849                             !(network->flags & NETWORK_EMPTY_ESSID))
6850                                 if ((network->ssid_len ==
6851                                      priv->assoc_network->ssid_len) &&
6852                                     !memcmp(network->ssid,
6853                                             priv->assoc_network->ssid,
6854                                             network->ssid_len)) {
6855                                         queue_work(priv->workqueue,
6856                                                    &priv->merge_networks);
6857                                 }
6858         }
6859
6860         return 0;
6861 }
6862
6863 /*
6864 * This function set up the firmware to support QoS. It sends
6865 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6866 */
6867 static int ipw_qos_activate(struct ipw_priv *priv,
6868                             struct ieee80211_qos_data *qos_network_data)
6869 {
6870         int err;
6871         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6872         struct ieee80211_qos_parameters *active_one = NULL;
6873         u32 size = sizeof(struct ieee80211_qos_parameters);
6874         u32 burst_duration;
6875         int i;
6876         u8 type;
6877
6878         type = ipw_qos_current_mode(priv);
6879
6880         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6881         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6882         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6883         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6884
6885         if (qos_network_data == NULL) {
6886                 if (type == IEEE_B) {
6887                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6888                         active_one = &def_parameters_CCK;
6889                 } else
6890                         active_one = &def_parameters_OFDM;
6891
6892                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6893                 burst_duration = ipw_qos_get_burst_duration(priv);
6894                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6895                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6896                             (u16)burst_duration;
6897         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6898                 if (type == IEEE_B) {
6899                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6900                                       type);
6901                         if (priv->qos_data.qos_enable == 0)
6902                                 active_one = &def_parameters_CCK;
6903                         else
6904                                 active_one = priv->qos_data.def_qos_parm_CCK;
6905                 } else {
6906                         if (priv->qos_data.qos_enable == 0)
6907                                 active_one = &def_parameters_OFDM;
6908                         else
6909                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6910                 }
6911                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6912         } else {
6913                 unsigned long flags;
6914                 int active;
6915
6916                 spin_lock_irqsave(&priv->ieee->lock, flags);
6917                 active_one = &(qos_network_data->parameters);
6918                 qos_network_data->old_param_count =
6919                     qos_network_data->param_count;
6920                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6921                 active = qos_network_data->supported;
6922                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6923
6924                 if (active == 0) {
6925                         burst_duration = ipw_qos_get_burst_duration(priv);
6926                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6927                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6928                                     tx_op_limit[i] = (u16)burst_duration;
6929                 }
6930         }
6931
6932         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6933         for (i = 0; i < 3; i++) {
6934                 int j;
6935                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6936                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6937                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6938                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6939                 }
6940         }
6941
6942         err = ipw_send_qos_params_command(priv,
6943                                           (struct ieee80211_qos_parameters *)
6944                                           &(qos_parameters[0]));
6945         if (err)
6946                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6947
6948         return err;
6949 }
6950
6951 /*
6952 * send IPW_CMD_WME_INFO to the firmware
6953 */
6954 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6955 {
6956         int ret = 0;
6957         struct ieee80211_qos_information_element qos_info;
6958
6959         if (priv == NULL)
6960                 return -1;
6961
6962         qos_info.elementID = QOS_ELEMENT_ID;
6963         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6964
6965         qos_info.version = QOS_VERSION_1;
6966         qos_info.ac_info = 0;
6967
6968         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6969         qos_info.qui_type = QOS_OUI_TYPE;
6970         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6971
6972         ret = ipw_send_qos_info_command(priv, &qos_info);
6973         if (ret != 0) {
6974                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6975         }
6976         return ret;
6977 }
6978
6979 /*
6980 * Set the QoS parameter with the association request structure
6981 */
6982 static int ipw_qos_association(struct ipw_priv *priv,
6983                                struct ieee80211_network *network)
6984 {
6985         int err = 0;
6986         struct ieee80211_qos_data *qos_data = NULL;
6987         struct ieee80211_qos_data ibss_data = {
6988                 .supported = 1,
6989                 .active = 1,
6990         };
6991
6992         switch (priv->ieee->iw_mode) {
6993         case IW_MODE_ADHOC:
6994                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6995
6996                 qos_data = &ibss_data;
6997                 break;
6998
6999         case IW_MODE_INFRA:
7000                 qos_data = &network->qos_data;
7001                 break;
7002
7003         default:
7004                 BUG();
7005                 break;
7006         }
7007
7008         err = ipw_qos_activate(priv, qos_data);
7009         if (err) {
7010                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7011                 return err;
7012         }
7013
7014         if (priv->qos_data.qos_enable && qos_data->supported) {
7015                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7016                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7017                 return ipw_qos_set_info_element(priv);
7018         }
7019
7020         return 0;
7021 }
7022
7023 /*
7024 * handling the beaconing responses. if we get different QoS setting
7025 * off the network from the associated setting, adjust the QoS
7026 * setting
7027 */
7028 static int ipw_qos_association_resp(struct ipw_priv *priv,
7029                                     struct ieee80211_network *network)
7030 {
7031         int ret = 0;
7032         unsigned long flags;
7033         u32 size = sizeof(struct ieee80211_qos_parameters);
7034         int set_qos_param = 0;
7035
7036         if ((priv == NULL) || (network == NULL) ||
7037             (priv->assoc_network == NULL))
7038                 return ret;
7039
7040         if (!(priv->status & STATUS_ASSOCIATED))
7041                 return ret;
7042
7043         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7044                 return ret;
7045
7046         spin_lock_irqsave(&priv->ieee->lock, flags);
7047         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7048                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7049                        sizeof(struct ieee80211_qos_data));
7050                 priv->assoc_network->qos_data.active = 1;
7051                 if ((network->qos_data.old_param_count !=
7052                      network->qos_data.param_count)) {
7053                         set_qos_param = 1;
7054                         network->qos_data.old_param_count =
7055                             network->qos_data.param_count;
7056                 }
7057
7058         } else {
7059                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7060                         memcpy(&priv->assoc_network->qos_data.parameters,
7061                                &def_parameters_CCK, size);
7062                 else
7063                         memcpy(&priv->assoc_network->qos_data.parameters,
7064                                &def_parameters_OFDM, size);
7065                 priv->assoc_network->qos_data.active = 0;
7066                 priv->assoc_network->qos_data.supported = 0;
7067                 set_qos_param = 1;
7068         }
7069
7070         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7071
7072         if (set_qos_param == 1)
7073                 schedule_work(&priv->qos_activate);
7074
7075         return ret;
7076 }
7077
7078 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7079 {
7080         u32 ret = 0;
7081
7082         if ((priv == NULL))
7083                 return 0;
7084
7085         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7086                 ret = priv->qos_data.burst_duration_CCK;
7087         else
7088                 ret = priv->qos_data.burst_duration_OFDM;
7089
7090         return ret;
7091 }
7092
7093 /*
7094 * Initialize the setting of QoS global
7095 */
7096 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7097                          int burst_enable, u32 burst_duration_CCK,
7098                          u32 burst_duration_OFDM)
7099 {
7100         priv->qos_data.qos_enable = enable;
7101
7102         if (priv->qos_data.qos_enable) {
7103                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7104                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7105                 IPW_DEBUG_QOS("QoS is enabled\n");
7106         } else {
7107                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7108                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7109                 IPW_DEBUG_QOS("QoS is not enabled\n");
7110         }
7111
7112         priv->qos_data.burst_enable = burst_enable;
7113
7114         if (burst_enable) {
7115                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7116                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7117         } else {
7118                 priv->qos_data.burst_duration_CCK = 0;
7119                 priv->qos_data.burst_duration_OFDM = 0;
7120         }
7121 }
7122
7123 /*
7124 * map the packet priority to the right TX Queue
7125 */
7126 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7127 {
7128         if (priority > 7 || !priv->qos_data.qos_enable)
7129                 priority = 0;
7130
7131         return from_priority_to_tx_queue[priority] - 1;
7132 }
7133
7134 static int ipw_is_qos_active(struct net_device *dev,
7135                              struct sk_buff *skb)
7136 {
7137         struct ipw_priv *priv = ieee80211_priv(dev);
7138         struct ieee80211_qos_data *qos_data = NULL;
7139         int active, supported;
7140         u8 *daddr = skb->data + ETH_ALEN;
7141         int unicast = !is_multicast_ether_addr(daddr);
7142
7143         if (!(priv->status & STATUS_ASSOCIATED))
7144                 return 0;
7145
7146         qos_data = &priv->assoc_network->qos_data;
7147
7148         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7149                 if (unicast == 0)
7150                         qos_data->active = 0;
7151                 else
7152                         qos_data->active = qos_data->supported;
7153         }
7154         active = qos_data->active;
7155         supported = qos_data->supported;
7156         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7157                       "unicast %d\n",
7158                       priv->qos_data.qos_enable, active, supported, unicast);
7159         if (active && priv->qos_data.qos_enable)
7160                 return 1;
7161
7162         return 0;
7163
7164 }
7165 /*
7166 * add QoS parameter to the TX command
7167 */
7168 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7169                                         u16 priority,
7170                                         struct tfd_data *tfd)
7171 {
7172         int tx_queue_id = 0;
7173
7174
7175         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7176         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7177
7178         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7179                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7180                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7181         }
7182         return 0;
7183 }
7184
7185 /*
7186 * background support to run QoS activate functionality
7187 */
7188 static void ipw_bg_qos_activate(struct work_struct *work)
7189 {
7190         struct ipw_priv *priv =
7191                 container_of(work, struct ipw_priv, qos_activate);
7192
7193         if (priv == NULL)
7194                 return;
7195
7196         mutex_lock(&priv->mutex);
7197
7198         if (priv->status & STATUS_ASSOCIATED)
7199                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7200
7201         mutex_unlock(&priv->mutex);
7202 }
7203
7204 static int ipw_handle_probe_response(struct net_device *dev,
7205                                      struct ieee80211_probe_response *resp,
7206                                      struct ieee80211_network *network)
7207 {
7208         struct ipw_priv *priv = ieee80211_priv(dev);
7209         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7210                               (network == priv->assoc_network));
7211
7212         ipw_qos_handle_probe_response(priv, active_network, network);
7213
7214         return 0;
7215 }
7216
7217 static int ipw_handle_beacon(struct net_device *dev,
7218                              struct ieee80211_beacon *resp,
7219                              struct ieee80211_network *network)
7220 {
7221         struct ipw_priv *priv = ieee80211_priv(dev);
7222         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7223                               (network == priv->assoc_network));
7224
7225         ipw_qos_handle_probe_response(priv, active_network, network);
7226
7227         return 0;
7228 }
7229
7230 static int ipw_handle_assoc_response(struct net_device *dev,
7231                                      struct ieee80211_assoc_response *resp,
7232                                      struct ieee80211_network *network)
7233 {
7234         struct ipw_priv *priv = ieee80211_priv(dev);
7235         ipw_qos_association_resp(priv, network);
7236         return 0;
7237 }
7238
7239 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7240                                        *qos_param)
7241 {
7242         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7243                                 sizeof(*qos_param) * 3, qos_param);
7244 }
7245
7246 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7247                                      *qos_param)
7248 {
7249         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7250                                 qos_param);
7251 }
7252
7253 #endif                          /* CONFIG_IPW2200_QOS */
7254
7255 static int ipw_associate_network(struct ipw_priv *priv,
7256                                  struct ieee80211_network *network,
7257                                  struct ipw_supported_rates *rates, int roaming)
7258 {
7259         int err;
7260         DECLARE_MAC_BUF(mac);
7261
7262         if (priv->config & CFG_FIXED_RATE)
7263                 ipw_set_fixed_rate(priv, network->mode);
7264
7265         if (!(priv->config & CFG_STATIC_ESSID)) {
7266                 priv->essid_len = min(network->ssid_len,
7267                                       (u8) IW_ESSID_MAX_SIZE);
7268                 memcpy(priv->essid, network->ssid, priv->essid_len);
7269         }
7270
7271         network->last_associate = jiffies;
7272
7273         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7274         priv->assoc_request.channel = network->channel;
7275         priv->assoc_request.auth_key = 0;
7276
7277         if ((priv->capability & CAP_PRIVACY_ON) &&
7278             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7279                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7280                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7281
7282                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7283                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7284
7285         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7286                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7287                 priv->assoc_request.auth_type = AUTH_LEAP;
7288         else
7289                 priv->assoc_request.auth_type = AUTH_OPEN;
7290
7291         if (priv->ieee->wpa_ie_len) {
7292                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7293                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7294                                  priv->ieee->wpa_ie_len);
7295         }
7296
7297         /*
7298          * It is valid for our ieee device to support multiple modes, but
7299          * when it comes to associating to a given network we have to choose
7300          * just one mode.
7301          */
7302         if (network->mode & priv->ieee->mode & IEEE_A)
7303                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7304         else if (network->mode & priv->ieee->mode & IEEE_G)
7305                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7306         else if (network->mode & priv->ieee->mode & IEEE_B)
7307                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7308
7309         priv->assoc_request.capability = network->capability;
7310         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7311             && !(priv->config & CFG_PREAMBLE_LONG)) {
7312                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7313         } else {
7314                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7315
7316                 /* Clear the short preamble if we won't be supporting it */
7317                 priv->assoc_request.capability &=
7318                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7319         }
7320
7321         /* Clear capability bits that aren't used in Ad Hoc */
7322         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7323                 priv->assoc_request.capability &=
7324                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7325
7326         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7327                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7328                         roaming ? "Rea" : "A",
7329                         escape_essid(priv->essid, priv->essid_len),
7330                         network->channel,
7331                         ipw_modes[priv->assoc_request.ieee_mode],
7332                         rates->num_rates,
7333                         (priv->assoc_request.preamble_length ==
7334                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7335                         network->capability &
7336                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7337                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7338                         priv->capability & CAP_PRIVACY_ON ?
7339                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7340                          "(open)") : "",
7341                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7342                         priv->capability & CAP_PRIVACY_ON ?
7343                         '1' + priv->ieee->sec.active_key : '.',
7344                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7345
7346         priv->assoc_request.beacon_interval = network->beacon_interval;
7347         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7348             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7349                 priv->assoc_request.assoc_type = HC_IBSS_START;
7350                 priv->assoc_request.assoc_tsf_msw = 0;
7351                 priv->assoc_request.assoc_tsf_lsw = 0;
7352         } else {
7353                 if (unlikely(roaming))
7354                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7355                 else
7356                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7357                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7358                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7359         }
7360
7361         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7362
7363         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7364                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7365                 priv->assoc_request.atim_window = network->atim_window;
7366         } else {
7367                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7368                 priv->assoc_request.atim_window = 0;
7369         }
7370
7371         priv->assoc_request.listen_interval = network->listen_interval;
7372
7373         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7374         if (err) {
7375                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7376                 return err;
7377         }
7378
7379         rates->ieee_mode = priv->assoc_request.ieee_mode;
7380         rates->purpose = IPW_RATE_CONNECT;
7381         ipw_send_supported_rates(priv, rates);
7382
7383         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7384                 priv->sys_config.dot11g_auto_detection = 1;
7385         else
7386                 priv->sys_config.dot11g_auto_detection = 0;
7387
7388         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7389                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7390         else
7391                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7392
7393         err = ipw_send_system_config(priv);
7394         if (err) {
7395                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7396                 return err;
7397         }
7398
7399         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7400         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7401         if (err) {
7402                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7403                 return err;
7404         }
7405
7406         /*
7407          * If preemption is enabled, it is possible for the association
7408          * to complete before we return from ipw_send_associate.  Therefore
7409          * we have to be sure and update our priviate data first.
7410          */
7411         priv->channel = network->channel;
7412         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7413         priv->status |= STATUS_ASSOCIATING;
7414         priv->status &= ~STATUS_SECURITY_UPDATED;
7415
7416         priv->assoc_network = network;
7417
7418 #ifdef CONFIG_IPW2200_QOS
7419         ipw_qos_association(priv, network);
7420 #endif
7421
7422         err = ipw_send_associate(priv, &priv->assoc_request);
7423         if (err) {
7424                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7425                 return err;
7426         }
7427
7428         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7429                   escape_essid(priv->essid, priv->essid_len),
7430                   print_mac(mac, priv->bssid));
7431
7432         return 0;
7433 }
7434
7435 static void ipw_roam(void *data)
7436 {
7437         struct ipw_priv *priv = data;
7438         struct ieee80211_network *network = NULL;
7439         struct ipw_network_match match = {
7440                 .network = priv->assoc_network
7441         };
7442
7443         /* The roaming process is as follows:
7444          *
7445          * 1.  Missed beacon threshold triggers the roaming process by
7446          *     setting the status ROAM bit and requesting a scan.
7447          * 2.  When the scan completes, it schedules the ROAM work
7448          * 3.  The ROAM work looks at all of the known networks for one that
7449          *     is a better network than the currently associated.  If none
7450          *     found, the ROAM process is over (ROAM bit cleared)
7451          * 4.  If a better network is found, a disassociation request is
7452          *     sent.
7453          * 5.  When the disassociation completes, the roam work is again
7454          *     scheduled.  The second time through, the driver is no longer
7455          *     associated, and the newly selected network is sent an
7456          *     association request.
7457          * 6.  At this point ,the roaming process is complete and the ROAM
7458          *     status bit is cleared.
7459          */
7460
7461         /* If we are no longer associated, and the roaming bit is no longer
7462          * set, then we are not actively roaming, so just return */
7463         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7464                 return;
7465
7466         if (priv->status & STATUS_ASSOCIATED) {
7467                 /* First pass through ROAM process -- look for a better
7468                  * network */
7469                 unsigned long flags;
7470                 u8 rssi = priv->assoc_network->stats.rssi;
7471                 priv->assoc_network->stats.rssi = -128;
7472                 spin_lock_irqsave(&priv->ieee->lock, flags);
7473                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7474                         if (network != priv->assoc_network)
7475                                 ipw_best_network(priv, &match, network, 1);
7476                 }
7477                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7478                 priv->assoc_network->stats.rssi = rssi;
7479
7480                 if (match.network == priv->assoc_network) {
7481                         IPW_DEBUG_ASSOC("No better APs in this network to "
7482                                         "roam to.\n");
7483                         priv->status &= ~STATUS_ROAMING;
7484                         ipw_debug_config(priv);
7485                         return;
7486                 }
7487
7488                 ipw_send_disassociate(priv, 1);
7489                 priv->assoc_network = match.network;
7490
7491                 return;
7492         }
7493
7494         /* Second pass through ROAM process -- request association */
7495         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7496         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7497         priv->status &= ~STATUS_ROAMING;
7498 }
7499
7500 static void ipw_bg_roam(struct work_struct *work)
7501 {
7502         struct ipw_priv *priv =
7503                 container_of(work, struct ipw_priv, roam);
7504         mutex_lock(&priv->mutex);
7505         ipw_roam(priv);
7506         mutex_unlock(&priv->mutex);
7507 }
7508
7509 static int ipw_associate(void *data)
7510 {
7511         struct ipw_priv *priv = data;
7512
7513         struct ieee80211_network *network = NULL;
7514         struct ipw_network_match match = {
7515                 .network = NULL
7516         };
7517         struct ipw_supported_rates *rates;
7518         struct list_head *element;
7519         unsigned long flags;
7520
7521         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7522                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7523                 return 0;
7524         }
7525
7526         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7527                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7528                                 "progress)\n");
7529                 return 0;
7530         }
7531
7532         if (priv->status & STATUS_DISASSOCIATING) {
7533                 IPW_DEBUG_ASSOC("Not attempting association (in "
7534                                 "disassociating)\n ");
7535                 queue_work(priv->workqueue, &priv->associate);
7536                 return 0;
7537         }
7538
7539         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7540                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7541                                 "initialized)\n");
7542                 return 0;
7543         }
7544
7545         if (!(priv->config & CFG_ASSOCIATE) &&
7546             !(priv->config & (CFG_STATIC_ESSID |
7547                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7548                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7549                 return 0;
7550         }
7551
7552         /* Protect our use of the network_list */
7553         spin_lock_irqsave(&priv->ieee->lock, flags);
7554         list_for_each_entry(network, &priv->ieee->network_list, list)
7555             ipw_best_network(priv, &match, network, 0);
7556
7557         network = match.network;
7558         rates = &match.rates;
7559
7560         if (network == NULL &&
7561             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7562             priv->config & CFG_ADHOC_CREATE &&
7563             priv->config & CFG_STATIC_ESSID &&
7564             priv->config & CFG_STATIC_CHANNEL &&
7565             !list_empty(&priv->ieee->network_free_list)) {
7566                 element = priv->ieee->network_free_list.next;
7567                 network = list_entry(element, struct ieee80211_network, list);
7568                 ipw_adhoc_create(priv, network);
7569                 rates = &priv->rates;
7570                 list_del(element);
7571                 list_add_tail(&network->list, &priv->ieee->network_list);
7572         }
7573         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7574
7575         /* If we reached the end of the list, then we don't have any valid
7576          * matching APs */
7577         if (!network) {
7578                 ipw_debug_config(priv);
7579
7580                 if (!(priv->status & STATUS_SCANNING)) {
7581                         if (!(priv->config & CFG_SPEED_SCAN))
7582                                 queue_delayed_work(priv->workqueue,
7583                                                    &priv->request_scan,
7584                                                    SCAN_INTERVAL);
7585                         else
7586                                 queue_delayed_work(priv->workqueue,
7587                                                    &priv->request_scan, 0);
7588                 }
7589
7590                 return 0;
7591         }
7592
7593         ipw_associate_network(priv, network, rates, 0);
7594
7595         return 1;
7596 }
7597
7598 static void ipw_bg_associate(struct work_struct *work)
7599 {
7600         struct ipw_priv *priv =
7601                 container_of(work, struct ipw_priv, associate);
7602         mutex_lock(&priv->mutex);
7603         ipw_associate(priv);
7604         mutex_unlock(&priv->mutex);
7605 }
7606
7607 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7608                                       struct sk_buff *skb)
7609 {
7610         struct ieee80211_hdr *hdr;
7611         u16 fc;
7612
7613         hdr = (struct ieee80211_hdr *)skb->data;
7614         fc = le16_to_cpu(hdr->frame_ctl);
7615         if (!(fc & IEEE80211_FCTL_PROTECTED))
7616                 return;
7617
7618         fc &= ~IEEE80211_FCTL_PROTECTED;
7619         hdr->frame_ctl = cpu_to_le16(fc);
7620         switch (priv->ieee->sec.level) {
7621         case SEC_LEVEL_3:
7622                 /* Remove CCMP HDR */
7623                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7624                         skb->data + IEEE80211_3ADDR_LEN + 8,
7625                         skb->len - IEEE80211_3ADDR_LEN - 8);
7626                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7627                 break;
7628         case SEC_LEVEL_2:
7629                 break;
7630         case SEC_LEVEL_1:
7631                 /* Remove IV */
7632                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7633                         skb->data + IEEE80211_3ADDR_LEN + 4,
7634                         skb->len - IEEE80211_3ADDR_LEN - 4);
7635                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7636                 break;
7637         case SEC_LEVEL_0:
7638                 break;
7639         default:
7640                 printk(KERN_ERR "Unknow security level %d\n",
7641                        priv->ieee->sec.level);
7642                 break;
7643         }
7644 }
7645
7646 static void ipw_handle_data_packet(struct ipw_priv *priv,
7647                                    struct ipw_rx_mem_buffer *rxb,
7648                                    struct ieee80211_rx_stats *stats)
7649 {
7650         struct ieee80211_hdr_4addr *hdr;
7651         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7652
7653         /* We received data from the HW, so stop the watchdog */
7654         priv->net_dev->trans_start = jiffies;
7655
7656         /* We only process data packets if the
7657          * interface is open */
7658         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7659                      skb_tailroom(rxb->skb))) {
7660                 priv->ieee->stats.rx_errors++;
7661                 priv->wstats.discard.misc++;
7662                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7663                 return;
7664         } else if (unlikely(!netif_running(priv->net_dev))) {
7665                 priv->ieee->stats.rx_dropped++;
7666                 priv->wstats.discard.misc++;
7667                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7668                 return;
7669         }
7670
7671         /* Advance skb->data to the start of the actual payload */
7672         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7673
7674         /* Set the size of the skb to the size of the frame */
7675         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7676
7677         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7678
7679         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7680         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7681         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7682             (is_multicast_ether_addr(hdr->addr1) ?
7683              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7684                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7685
7686         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7687                 priv->ieee->stats.rx_errors++;
7688         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7689                 rxb->skb = NULL;
7690                 __ipw_led_activity_on(priv);
7691         }
7692 }
7693
7694 #ifdef CONFIG_IPW2200_RADIOTAP
7695 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7696                                            struct ipw_rx_mem_buffer *rxb,
7697                                            struct ieee80211_rx_stats *stats)
7698 {
7699         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7700         struct ipw_rx_frame *frame = &pkt->u.frame;
7701
7702         /* initial pull of some data */
7703         u16 received_channel = frame->received_channel;
7704         u8 antennaAndPhy = frame->antennaAndPhy;
7705         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7706         u16 pktrate = frame->rate;
7707
7708         /* Magic struct that slots into the radiotap header -- no reason
7709          * to build this manually element by element, we can write it much
7710          * more efficiently than we can parse it. ORDER MATTERS HERE */
7711         struct ipw_rt_hdr *ipw_rt;
7712
7713         short len = le16_to_cpu(pkt->u.frame.length);
7714
7715         /* We received data from the HW, so stop the watchdog */
7716         priv->net_dev->trans_start = jiffies;
7717
7718         /* We only process data packets if the
7719          * interface is open */
7720         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7721                      skb_tailroom(rxb->skb))) {
7722                 priv->ieee->stats.rx_errors++;
7723                 priv->wstats.discard.misc++;
7724                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7725                 return;
7726         } else if (unlikely(!netif_running(priv->net_dev))) {
7727                 priv->ieee->stats.rx_dropped++;
7728                 priv->wstats.discard.misc++;
7729                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7730                 return;
7731         }
7732
7733         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7734          * that now */
7735         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7736                 /* FIXME: Should alloc bigger skb instead */
7737                 priv->ieee->stats.rx_dropped++;
7738                 priv->wstats.discard.misc++;
7739                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7740                 return;
7741         }
7742
7743         /* copy the frame itself */
7744         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7745                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7746
7747         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7748          * part of our real header, saves a little time.
7749          *
7750          * No longer necessary since we fill in all our data.  Purge before merging
7751          * patch officially.
7752          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7753          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7754          */
7755
7756         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7757
7758         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7759         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7760         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7761
7762         /* Big bitfield of all the fields we provide in radiotap */
7763         ipw_rt->rt_hdr.it_present =
7764             ((1 << IEEE80211_RADIOTAP_TSFT) |
7765              (1 << IEEE80211_RADIOTAP_FLAGS) |
7766              (1 << IEEE80211_RADIOTAP_RATE) |
7767              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7768              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7769              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7770              (1 << IEEE80211_RADIOTAP_ANTENNA));
7771
7772         /* Zero the flags, we'll add to them as we go */
7773         ipw_rt->rt_flags = 0;
7774         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7775                                frame->parent_tsf[2] << 16 |
7776                                frame->parent_tsf[1] << 8  |
7777                                frame->parent_tsf[0]);
7778
7779         /* Convert signal to DBM */
7780         ipw_rt->rt_dbmsignal = antsignal;
7781         ipw_rt->rt_dbmnoise = frame->noise;
7782
7783         /* Convert the channel data and set the flags */
7784         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7785         if (received_channel > 14) {    /* 802.11a */
7786                 ipw_rt->rt_chbitmask =
7787                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7788         } else if (antennaAndPhy & 32) {        /* 802.11b */
7789                 ipw_rt->rt_chbitmask =
7790                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7791         } else {                /* 802.11g */
7792                 ipw_rt->rt_chbitmask =
7793                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7794         }
7795
7796         /* set the rate in multiples of 500k/s */
7797         switch (pktrate) {
7798         case IPW_TX_RATE_1MB:
7799                 ipw_rt->rt_rate = 2;
7800                 break;
7801         case IPW_TX_RATE_2MB:
7802                 ipw_rt->rt_rate = 4;
7803                 break;
7804         case IPW_TX_RATE_5MB:
7805                 ipw_rt->rt_rate = 10;
7806                 break;
7807         case IPW_TX_RATE_6MB:
7808                 ipw_rt->rt_rate = 12;
7809                 break;
7810         case IPW_TX_RATE_9MB:
7811                 ipw_rt->rt_rate = 18;
7812                 break;
7813         case IPW_TX_RATE_11MB:
7814                 ipw_rt->rt_rate = 22;
7815                 break;
7816         case IPW_TX_RATE_12MB:
7817                 ipw_rt->rt_rate = 24;
7818                 break;
7819         case IPW_TX_RATE_18MB:
7820                 ipw_rt->rt_rate = 36;
7821                 break;
7822         case IPW_TX_RATE_24MB:
7823                 ipw_rt->rt_rate = 48;
7824                 break;
7825         case IPW_TX_RATE_36MB:
7826                 ipw_rt->rt_rate = 72;
7827                 break;
7828         case IPW_TX_RATE_48MB:
7829                 ipw_rt->rt_rate = 96;
7830                 break;
7831         case IPW_TX_RATE_54MB:
7832                 ipw_rt->rt_rate = 108;
7833                 break;
7834         default:
7835                 ipw_rt->rt_rate = 0;
7836                 break;
7837         }
7838
7839         /* antenna number */
7840         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7841
7842         /* set the preamble flag if we have it */
7843         if ((antennaAndPhy & 64))
7844                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7845
7846         /* Set the size of the skb to the size of the frame */
7847         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7848
7849         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7850
7851         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7852                 priv->ieee->stats.rx_errors++;
7853         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7854                 rxb->skb = NULL;
7855                 /* no LED during capture */
7856         }
7857 }
7858 #endif
7859
7860 #ifdef CONFIG_IPW2200_PROMISCUOUS
7861 #define ieee80211_is_probe_response(fc) \
7862    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7863     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7864
7865 #define ieee80211_is_management(fc) \
7866    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7867
7868 #define ieee80211_is_control(fc) \
7869    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7870
7871 #define ieee80211_is_data(fc) \
7872    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7873
7874 #define ieee80211_is_assoc_request(fc) \
7875    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7876
7877 #define ieee80211_is_reassoc_request(fc) \
7878    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7879
7880 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7881                                       struct ipw_rx_mem_buffer *rxb,
7882                                       struct ieee80211_rx_stats *stats)
7883 {
7884         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7885         struct ipw_rx_frame *frame = &pkt->u.frame;
7886         struct ipw_rt_hdr *ipw_rt;
7887
7888         /* First cache any information we need before we overwrite
7889          * the information provided in the skb from the hardware */
7890         struct ieee80211_hdr *hdr;
7891         u16 channel = frame->received_channel;
7892         u8 phy_flags = frame->antennaAndPhy;
7893         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7894         s8 noise = frame->noise;
7895         u8 rate = frame->rate;
7896         short len = le16_to_cpu(pkt->u.frame.length);
7897         struct sk_buff *skb;
7898         int hdr_only = 0;
7899         u16 filter = priv->prom_priv->filter;
7900
7901         /* If the filter is set to not include Rx frames then return */
7902         if (filter & IPW_PROM_NO_RX)
7903                 return;
7904
7905         /* We received data from the HW, so stop the watchdog */
7906         priv->prom_net_dev->trans_start = jiffies;
7907
7908         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7909                 priv->prom_priv->ieee->stats.rx_errors++;
7910                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7911                 return;
7912         }
7913
7914         /* We only process data packets if the interface is open */
7915         if (unlikely(!netif_running(priv->prom_net_dev))) {
7916                 priv->prom_priv->ieee->stats.rx_dropped++;
7917                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7918                 return;
7919         }
7920
7921         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7922          * that now */
7923         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7924                 /* FIXME: Should alloc bigger skb instead */
7925                 priv->prom_priv->ieee->stats.rx_dropped++;
7926                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7927                 return;
7928         }
7929
7930         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7931         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7932                 if (filter & IPW_PROM_NO_MGMT)
7933                         return;
7934                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7935                         hdr_only = 1;
7936         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7937                 if (filter & IPW_PROM_NO_CTL)
7938                         return;
7939                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7940                         hdr_only = 1;
7941         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7942                 if (filter & IPW_PROM_NO_DATA)
7943                         return;
7944                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7945                         hdr_only = 1;
7946         }
7947
7948         /* Copy the SKB since this is for the promiscuous side */
7949         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7950         if (skb == NULL) {
7951                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7952                 return;
7953         }
7954
7955         /* copy the frame data to write after where the radiotap header goes */
7956         ipw_rt = (void *)skb->data;
7957
7958         if (hdr_only)
7959                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7960
7961         memcpy(ipw_rt->payload, hdr, len);
7962
7963         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7964          * NOT part of our real header, saves a little time.
7965          *
7966          * No longer necessary since we fill in all our data.  Purge before
7967          * merging patch officially.
7968          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7969          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7970          */
7971
7972         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7973         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7974         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7975
7976         /* Set the size of the skb to the size of the frame */
7977         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7978
7979         /* Big bitfield of all the fields we provide in radiotap */
7980         ipw_rt->rt_hdr.it_present =
7981             ((1 << IEEE80211_RADIOTAP_TSFT) |
7982              (1 << IEEE80211_RADIOTAP_FLAGS) |
7983              (1 << IEEE80211_RADIOTAP_RATE) |
7984              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7985              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7986              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7987              (1 << IEEE80211_RADIOTAP_ANTENNA));
7988
7989         /* Zero the flags, we'll add to them as we go */
7990         ipw_rt->rt_flags = 0;
7991         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7992                                frame->parent_tsf[2] << 16 |
7993                                frame->parent_tsf[1] << 8  |
7994                                frame->parent_tsf[0]);
7995
7996         /* Convert to DBM */
7997         ipw_rt->rt_dbmsignal = signal;
7998         ipw_rt->rt_dbmnoise = noise;
7999
8000         /* Convert the channel data and set the flags */
8001         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8002         if (channel > 14) {     /* 802.11a */
8003                 ipw_rt->rt_chbitmask =
8004                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8005         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8006                 ipw_rt->rt_chbitmask =
8007                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8008         } else {                /* 802.11g */
8009                 ipw_rt->rt_chbitmask =
8010                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8011         }
8012
8013         /* set the rate in multiples of 500k/s */
8014         switch (rate) {
8015         case IPW_TX_RATE_1MB:
8016                 ipw_rt->rt_rate = 2;
8017                 break;
8018         case IPW_TX_RATE_2MB:
8019                 ipw_rt->rt_rate = 4;
8020                 break;
8021         case IPW_TX_RATE_5MB:
8022                 ipw_rt->rt_rate = 10;
8023                 break;
8024         case IPW_TX_RATE_6MB:
8025                 ipw_rt->rt_rate = 12;
8026                 break;
8027         case IPW_TX_RATE_9MB:
8028                 ipw_rt->rt_rate = 18;
8029                 break;
8030         case IPW_TX_RATE_11MB:
8031                 ipw_rt->rt_rate = 22;
8032                 break;
8033         case IPW_TX_RATE_12MB:
8034                 ipw_rt->rt_rate = 24;
8035                 break;
8036         case IPW_TX_RATE_18MB:
8037                 ipw_rt->rt_rate = 36;
8038                 break;
8039         case IPW_TX_RATE_24MB:
8040                 ipw_rt->rt_rate = 48;
8041                 break;
8042         case IPW_TX_RATE_36MB:
8043                 ipw_rt->rt_rate = 72;
8044                 break;
8045         case IPW_TX_RATE_48MB:
8046                 ipw_rt->rt_rate = 96;
8047                 break;
8048         case IPW_TX_RATE_54MB:
8049                 ipw_rt->rt_rate = 108;
8050                 break;
8051         default:
8052                 ipw_rt->rt_rate = 0;
8053                 break;
8054         }
8055
8056         /* antenna number */
8057         ipw_rt->rt_antenna = (phy_flags & 3);
8058
8059         /* set the preamble flag if we have it */
8060         if (phy_flags & (1 << 6))
8061                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8062
8063         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8064
8065         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8066                 priv->prom_priv->ieee->stats.rx_errors++;
8067                 dev_kfree_skb_any(skb);
8068         }
8069 }
8070 #endif
8071
8072 static int is_network_packet(struct ipw_priv *priv,
8073                                     struct ieee80211_hdr_4addr *header)
8074 {
8075         /* Filter incoming packets to determine if they are targetted toward
8076          * this network, discarding packets coming from ourselves */
8077         switch (priv->ieee->iw_mode) {
8078         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8079                 /* packets from our adapter are dropped (echo) */
8080                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8081                         return 0;
8082
8083                 /* {broad,multi}cast packets to our BSSID go through */
8084                 if (is_multicast_ether_addr(header->addr1))
8085                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8086
8087                 /* packets to our adapter go through */
8088                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8089                                ETH_ALEN);
8090
8091         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8092                 /* packets from our adapter are dropped (echo) */
8093                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8094                         return 0;
8095
8096                 /* {broad,multi}cast packets to our BSS go through */
8097                 if (is_multicast_ether_addr(header->addr1))
8098                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8099
8100                 /* packets to our adapter go through */
8101                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8102                                ETH_ALEN);
8103         }
8104
8105         return 1;
8106 }
8107
8108 #define IPW_PACKET_RETRY_TIME HZ
8109
8110 static  int is_duplicate_packet(struct ipw_priv *priv,
8111                                       struct ieee80211_hdr_4addr *header)
8112 {
8113         u16 sc = le16_to_cpu(header->seq_ctl);
8114         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8115         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8116         u16 *last_seq, *last_frag;
8117         unsigned long *last_time;
8118
8119         switch (priv->ieee->iw_mode) {
8120         case IW_MODE_ADHOC:
8121                 {
8122                         struct list_head *p;
8123                         struct ipw_ibss_seq *entry = NULL;
8124                         u8 *mac = header->addr2;
8125                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8126
8127                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8128                                 entry =
8129                                     list_entry(p, struct ipw_ibss_seq, list);
8130                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8131                                         break;
8132                         }
8133                         if (p == &priv->ibss_mac_hash[index]) {
8134                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8135                                 if (!entry) {
8136                                         IPW_ERROR
8137                                             ("Cannot malloc new mac entry\n");
8138                                         return 0;
8139                                 }
8140                                 memcpy(entry->mac, mac, ETH_ALEN);
8141                                 entry->seq_num = seq;
8142                                 entry->frag_num = frag;
8143                                 entry->packet_time = jiffies;
8144                                 list_add(&entry->list,
8145                                          &priv->ibss_mac_hash[index]);
8146                                 return 0;
8147                         }
8148                         last_seq = &entry->seq_num;
8149                         last_frag = &entry->frag_num;
8150                         last_time = &entry->packet_time;
8151                         break;
8152                 }
8153         case IW_MODE_INFRA:
8154                 last_seq = &priv->last_seq_num;
8155                 last_frag = &priv->last_frag_num;
8156                 last_time = &priv->last_packet_time;
8157                 break;
8158         default:
8159                 return 0;
8160         }
8161         if ((*last_seq == seq) &&
8162             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8163                 if (*last_frag == frag)
8164                         goto drop;
8165                 if (*last_frag + 1 != frag)
8166                         /* out-of-order fragment */
8167                         goto drop;
8168         } else
8169                 *last_seq = seq;
8170
8171         *last_frag = frag;
8172         *last_time = jiffies;
8173         return 0;
8174
8175       drop:
8176         /* Comment this line now since we observed the card receives
8177          * duplicate packets but the FCTL_RETRY bit is not set in the
8178          * IBSS mode with fragmentation enabled.
8179          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8180         return 1;
8181 }
8182
8183 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8184                                    struct ipw_rx_mem_buffer *rxb,
8185                                    struct ieee80211_rx_stats *stats)
8186 {
8187         struct sk_buff *skb = rxb->skb;
8188         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8189         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8190             (skb->data + IPW_RX_FRAME_SIZE);
8191
8192         ieee80211_rx_mgt(priv->ieee, header, stats);
8193
8194         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8195             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8196               IEEE80211_STYPE_PROBE_RESP) ||
8197              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8198               IEEE80211_STYPE_BEACON))) {
8199                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8200                         ipw_add_station(priv, header->addr2);
8201         }
8202
8203         if (priv->config & CFG_NET_STATS) {
8204                 IPW_DEBUG_HC("sending stat packet\n");
8205
8206                 /* Set the size of the skb to the size of the full
8207                  * ipw header and 802.11 frame */
8208                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8209                         IPW_RX_FRAME_SIZE);
8210
8211                 /* Advance past the ipw packet header to the 802.11 frame */
8212                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8213
8214                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8215                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8216
8217                 skb->dev = priv->ieee->dev;
8218
8219                 /* Point raw at the ieee80211_stats */
8220                 skb_reset_mac_header(skb);
8221
8222                 skb->pkt_type = PACKET_OTHERHOST;
8223                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8224                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8225                 netif_rx(skb);
8226                 rxb->skb = NULL;
8227         }
8228 }
8229
8230 /*
8231  * Main entry function for recieving a packet with 80211 headers.  This
8232  * should be called when ever the FW has notified us that there is a new
8233  * skb in the recieve queue.
8234  */
8235 static void ipw_rx(struct ipw_priv *priv)
8236 {
8237         struct ipw_rx_mem_buffer *rxb;
8238         struct ipw_rx_packet *pkt;
8239         struct ieee80211_hdr_4addr *header;
8240         u32 r, w, i;
8241         u8 network_packet;
8242         DECLARE_MAC_BUF(mac);
8243         DECLARE_MAC_BUF(mac2);
8244         DECLARE_MAC_BUF(mac3);
8245
8246         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8247         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8248         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8249
8250         while (i != r) {
8251                 rxb = priv->rxq->queue[i];
8252                 if (unlikely(rxb == NULL)) {
8253                         printk(KERN_CRIT "Queue not allocated!\n");
8254                         break;
8255                 }
8256                 priv->rxq->queue[i] = NULL;
8257
8258                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8259                                             IPW_RX_BUF_SIZE,
8260                                             PCI_DMA_FROMDEVICE);
8261
8262                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8263                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8264                              pkt->header.message_type,
8265                              pkt->header.rx_seq_num, pkt->header.control_bits);
8266
8267                 switch (pkt->header.message_type) {
8268                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8269                                 struct ieee80211_rx_stats stats = {
8270                                         .rssi = pkt->u.frame.rssi_dbm -
8271                                             IPW_RSSI_TO_DBM,
8272                                         .signal =
8273                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8274                                             IPW_RSSI_TO_DBM + 0x100,
8275                                         .noise =
8276                                             le16_to_cpu(pkt->u.frame.noise),
8277                                         .rate = pkt->u.frame.rate,
8278                                         .mac_time = jiffies,
8279                                         .received_channel =
8280                                             pkt->u.frame.received_channel,
8281                                         .freq =
8282                                             (pkt->u.frame.
8283                                              control & (1 << 0)) ?
8284                                             IEEE80211_24GHZ_BAND :
8285                                             IEEE80211_52GHZ_BAND,
8286                                         .len = le16_to_cpu(pkt->u.frame.length),
8287                                 };
8288
8289                                 if (stats.rssi != 0)
8290                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8291                                 if (stats.signal != 0)
8292                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8293                                 if (stats.noise != 0)
8294                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8295                                 if (stats.rate != 0)
8296                                         stats.mask |= IEEE80211_STATMASK_RATE;
8297
8298                                 priv->rx_packets++;
8299
8300 #ifdef CONFIG_IPW2200_PROMISCUOUS
8301         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8302                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8303 #endif
8304
8305 #ifdef CONFIG_IPW2200_MONITOR
8306                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8307 #ifdef CONFIG_IPW2200_RADIOTAP
8308
8309                 ipw_handle_data_packet_monitor(priv,
8310                                                rxb,
8311                                                &stats);
8312 #else
8313                 ipw_handle_data_packet(priv, rxb,
8314                                        &stats);
8315 #endif
8316                                         break;
8317                                 }
8318 #endif
8319
8320                                 header =
8321                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8322                                                                    data +
8323                                                                    IPW_RX_FRAME_SIZE);
8324                                 /* TODO: Check Ad-Hoc dest/source and make sure
8325                                  * that we are actually parsing these packets
8326                                  * correctly -- we should probably use the
8327                                  * frame control of the packet and disregard
8328                                  * the current iw_mode */
8329
8330                                 network_packet =
8331                                     is_network_packet(priv, header);
8332                                 if (network_packet && priv->assoc_network) {
8333                                         priv->assoc_network->stats.rssi =
8334                                             stats.rssi;
8335                                         priv->exp_avg_rssi =
8336                                             exponential_average(priv->exp_avg_rssi,
8337                                             stats.rssi, DEPTH_RSSI);
8338                                 }
8339
8340                                 IPW_DEBUG_RX("Frame: len=%u\n",
8341                                              le16_to_cpu(pkt->u.frame.length));
8342
8343                                 if (le16_to_cpu(pkt->u.frame.length) <
8344                                     ieee80211_get_hdrlen(le16_to_cpu(
8345                                                     header->frame_ctl))) {
8346                                         IPW_DEBUG_DROP
8347                                             ("Received packet is too small. "
8348                                              "Dropping.\n");
8349                                         priv->ieee->stats.rx_errors++;
8350                                         priv->wstats.discard.misc++;
8351                                         break;
8352                                 }
8353
8354                                 switch (WLAN_FC_GET_TYPE
8355                                         (le16_to_cpu(header->frame_ctl))) {
8356
8357                                 case IEEE80211_FTYPE_MGMT:
8358                                         ipw_handle_mgmt_packet(priv, rxb,
8359                                                                &stats);
8360                                         break;
8361
8362                                 case IEEE80211_FTYPE_CTL:
8363                                         break;
8364
8365                                 case IEEE80211_FTYPE_DATA:
8366                                         if (unlikely(!network_packet ||
8367                                                      is_duplicate_packet(priv,
8368                                                                          header)))
8369                                         {
8370                                                 IPW_DEBUG_DROP("Dropping: "
8371                                                                "%s, "
8372                                                                "%s, "
8373                                                                "%s\n",
8374                                                                print_mac(mac,
8375                                                                          header->
8376                                                                        addr1),
8377                                                                print_mac(mac2,
8378                                                                          header->
8379                                                                        addr2),
8380                                                                print_mac(mac3,
8381                                                                          header->
8382                                                                        addr3));
8383                                                 break;
8384                                         }
8385
8386                                         ipw_handle_data_packet(priv, rxb,
8387                                                                &stats);
8388
8389                                         break;
8390                                 }
8391                                 break;
8392                         }
8393
8394                 case RX_HOST_NOTIFICATION_TYPE:{
8395                                 IPW_DEBUG_RX
8396                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8397                                      pkt->u.notification.subtype,
8398                                      pkt->u.notification.flags,
8399                                      le16_to_cpu(pkt->u.notification.size));
8400                                 ipw_rx_notification(priv, &pkt->u.notification);
8401                                 break;
8402                         }
8403
8404                 default:
8405                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8406                                      pkt->header.message_type);
8407                         break;
8408                 }
8409
8410                 /* For now we just don't re-use anything.  We can tweak this
8411                  * later to try and re-use notification packets and SKBs that
8412                  * fail to Rx correctly */
8413                 if (rxb->skb != NULL) {
8414                         dev_kfree_skb_any(rxb->skb);
8415                         rxb->skb = NULL;
8416                 }
8417
8418                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8419                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8420                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8421
8422                 i = (i + 1) % RX_QUEUE_SIZE;
8423         }
8424
8425         /* Backtrack one entry */
8426         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8427
8428         ipw_rx_queue_restock(priv);
8429 }
8430
8431 #define DEFAULT_RTS_THRESHOLD     2304U
8432 #define MIN_RTS_THRESHOLD         1U
8433 #define MAX_RTS_THRESHOLD         2304U
8434 #define DEFAULT_BEACON_INTERVAL   100U
8435 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8436 #define DEFAULT_LONG_RETRY_LIMIT  4U
8437
8438 /**
8439  * ipw_sw_reset
8440  * @option: options to control different reset behaviour
8441  *          0 = reset everything except the 'disable' module_param
8442  *          1 = reset everything and print out driver info (for probe only)
8443  *          2 = reset everything
8444  */
8445 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8446 {
8447         int band, modulation;
8448         int old_mode = priv->ieee->iw_mode;
8449
8450         /* Initialize module parameter values here */
8451         priv->config = 0;
8452
8453         /* We default to disabling the LED code as right now it causes
8454          * too many systems to lock up... */
8455         if (!led)
8456                 priv->config |= CFG_NO_LED;
8457
8458         if (associate)
8459                 priv->config |= CFG_ASSOCIATE;
8460         else
8461                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8462
8463         if (auto_create)
8464                 priv->config |= CFG_ADHOC_CREATE;
8465         else
8466                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8467
8468         priv->config &= ~CFG_STATIC_ESSID;
8469         priv->essid_len = 0;
8470         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8471
8472         if (disable && option) {
8473                 priv->status |= STATUS_RF_KILL_SW;
8474                 IPW_DEBUG_INFO("Radio disabled.\n");
8475         }
8476
8477         if (channel != 0) {
8478                 priv->config |= CFG_STATIC_CHANNEL;
8479                 priv->channel = channel;
8480                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8481                 /* TODO: Validate that provided channel is in range */
8482         }
8483 #ifdef CONFIG_IPW2200_QOS
8484         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8485                      burst_duration_CCK, burst_duration_OFDM);
8486 #endif                          /* CONFIG_IPW2200_QOS */
8487
8488         switch (mode) {
8489         case 1:
8490                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8491                 priv->net_dev->type = ARPHRD_ETHER;
8492
8493                 break;
8494 #ifdef CONFIG_IPW2200_MONITOR
8495         case 2:
8496                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8497 #ifdef CONFIG_IPW2200_RADIOTAP
8498                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8499 #else
8500                 priv->net_dev->type = ARPHRD_IEEE80211;
8501 #endif
8502                 break;
8503 #endif
8504         default:
8505         case 0:
8506                 priv->net_dev->type = ARPHRD_ETHER;
8507                 priv->ieee->iw_mode = IW_MODE_INFRA;
8508                 break;
8509         }
8510
8511         if (hwcrypto) {
8512                 priv->ieee->host_encrypt = 0;
8513                 priv->ieee->host_encrypt_msdu = 0;
8514                 priv->ieee->host_decrypt = 0;
8515                 priv->ieee->host_mc_decrypt = 0;
8516         }
8517         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8518
8519         /* IPW2200/2915 is abled to do hardware fragmentation. */
8520         priv->ieee->host_open_frag = 0;
8521
8522         if ((priv->pci_dev->device == 0x4223) ||
8523             (priv->pci_dev->device == 0x4224)) {
8524                 if (option == 1)
8525                         printk(KERN_INFO DRV_NAME
8526                                ": Detected Intel PRO/Wireless 2915ABG Network "
8527                                "Connection\n");
8528                 priv->ieee->abg_true = 1;
8529                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8530                 modulation = IEEE80211_OFDM_MODULATION |
8531                     IEEE80211_CCK_MODULATION;
8532                 priv->adapter = IPW_2915ABG;
8533                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8534         } else {
8535                 if (option == 1)
8536                         printk(KERN_INFO DRV_NAME
8537                                ": Detected Intel PRO/Wireless 2200BG Network "
8538                                "Connection\n");
8539
8540                 priv->ieee->abg_true = 0;
8541                 band = IEEE80211_24GHZ_BAND;
8542                 modulation = IEEE80211_OFDM_MODULATION |
8543                     IEEE80211_CCK_MODULATION;
8544                 priv->adapter = IPW_2200BG;
8545                 priv->ieee->mode = IEEE_G | IEEE_B;
8546         }
8547
8548         priv->ieee->freq_band = band;
8549         priv->ieee->modulation = modulation;
8550
8551         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8552
8553         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8554         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8555
8556         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8557         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8558         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8559
8560         /* If power management is turned on, default to AC mode */
8561         priv->power_mode = IPW_POWER_AC;
8562         priv->tx_power = IPW_TX_POWER_DEFAULT;
8563
8564         return old_mode == priv->ieee->iw_mode;
8565 }
8566
8567 /*
8568  * This file defines the Wireless Extension handlers.  It does not
8569  * define any methods of hardware manipulation and relies on the
8570  * functions defined in ipw_main to provide the HW interaction.
8571  *
8572  * The exception to this is the use of the ipw_get_ordinal()
8573  * function used to poll the hardware vs. making unecessary calls.
8574  *
8575  */
8576
8577 static int ipw_wx_get_name(struct net_device *dev,
8578                            struct iw_request_info *info,
8579                            union iwreq_data *wrqu, char *extra)
8580 {
8581         struct ipw_priv *priv = ieee80211_priv(dev);
8582         mutex_lock(&priv->mutex);
8583         if (priv->status & STATUS_RF_KILL_MASK)
8584                 strcpy(wrqu->name, "radio off");
8585         else if (!(priv->status & STATUS_ASSOCIATED))
8586                 strcpy(wrqu->name, "unassociated");
8587         else
8588                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8589                          ipw_modes[priv->assoc_request.ieee_mode]);
8590         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8591         mutex_unlock(&priv->mutex);
8592         return 0;
8593 }
8594
8595 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8596 {
8597         if (channel == 0) {
8598                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8599                 priv->config &= ~CFG_STATIC_CHANNEL;
8600                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8601                                 "parameters.\n");
8602                 ipw_associate(priv);
8603                 return 0;
8604         }
8605
8606         priv->config |= CFG_STATIC_CHANNEL;
8607
8608         if (priv->channel == channel) {
8609                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8610                                channel);
8611                 return 0;
8612         }
8613
8614         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8615         priv->channel = channel;
8616
8617 #ifdef CONFIG_IPW2200_MONITOR
8618         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8619                 int i;
8620                 if (priv->status & STATUS_SCANNING) {
8621                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8622                                        "channel change.\n");
8623                         ipw_abort_scan(priv);
8624                 }
8625
8626                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8627                         udelay(10);
8628
8629                 if (priv->status & STATUS_SCANNING)
8630                         IPW_DEBUG_SCAN("Still scanning...\n");
8631                 else
8632                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8633                                        1000 - i);
8634
8635                 return 0;
8636         }
8637 #endif                          /* CONFIG_IPW2200_MONITOR */
8638
8639         /* Network configuration changed -- force [re]association */
8640         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8641         if (!ipw_disassociate(priv))
8642                 ipw_associate(priv);
8643
8644         return 0;
8645 }
8646
8647 static int ipw_wx_set_freq(struct net_device *dev,
8648                            struct iw_request_info *info,
8649                            union iwreq_data *wrqu, char *extra)
8650 {
8651         struct ipw_priv *priv = ieee80211_priv(dev);
8652         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8653         struct iw_freq *fwrq = &wrqu->freq;
8654         int ret = 0, i;
8655         u8 channel, flags;
8656         int band;
8657
8658         if (fwrq->m == 0) {
8659                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8660                 mutex_lock(&priv->mutex);
8661                 ret = ipw_set_channel(priv, 0);
8662                 mutex_unlock(&priv->mutex);
8663                 return ret;
8664         }
8665         /* if setting by freq convert to channel */
8666         if (fwrq->e == 1) {
8667                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8668                 if (channel == 0)
8669                         return -EINVAL;
8670         } else
8671                 channel = fwrq->m;
8672
8673         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8674                 return -EINVAL;
8675
8676         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8677                 i = ieee80211_channel_to_index(priv->ieee, channel);
8678                 if (i == -1)
8679                         return -EINVAL;
8680
8681                 flags = (band == IEEE80211_24GHZ_BAND) ?
8682                     geo->bg[i].flags : geo->a[i].flags;
8683                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8684                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8685                         return -EINVAL;
8686                 }
8687         }
8688
8689         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8690         mutex_lock(&priv->mutex);
8691         ret = ipw_set_channel(priv, channel);
8692         mutex_unlock(&priv->mutex);
8693         return ret;
8694 }
8695
8696 static int ipw_wx_get_freq(struct net_device *dev,
8697                            struct iw_request_info *info,
8698                            union iwreq_data *wrqu, char *extra)
8699 {
8700         struct ipw_priv *priv = ieee80211_priv(dev);
8701
8702         wrqu->freq.e = 0;
8703
8704         /* If we are associated, trying to associate, or have a statically
8705          * configured CHANNEL then return that; otherwise return ANY */
8706         mutex_lock(&priv->mutex);
8707         if (priv->config & CFG_STATIC_CHANNEL ||
8708             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8709                 int i;
8710
8711                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8712                 BUG_ON(i == -1);
8713                 wrqu->freq.e = 1;
8714
8715                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8716                 case IEEE80211_52GHZ_BAND:
8717                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8718                         break;
8719
8720                 case IEEE80211_24GHZ_BAND:
8721                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8722                         break;
8723
8724                 default:
8725                         BUG();
8726                 }
8727         } else
8728                 wrqu->freq.m = 0;
8729
8730         mutex_unlock(&priv->mutex);
8731         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8732         return 0;
8733 }
8734
8735 static int ipw_wx_set_mode(struct net_device *dev,
8736                            struct iw_request_info *info,
8737                            union iwreq_data *wrqu, char *extra)
8738 {
8739         struct ipw_priv *priv = ieee80211_priv(dev);
8740         int err = 0;
8741
8742         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8743
8744         switch (wrqu->mode) {
8745 #ifdef CONFIG_IPW2200_MONITOR
8746         case IW_MODE_MONITOR:
8747 #endif
8748         case IW_MODE_ADHOC:
8749         case IW_MODE_INFRA:
8750                 break;
8751         case IW_MODE_AUTO:
8752                 wrqu->mode = IW_MODE_INFRA;
8753                 break;
8754         default:
8755                 return -EINVAL;
8756         }
8757         if (wrqu->mode == priv->ieee->iw_mode)
8758                 return 0;
8759
8760         mutex_lock(&priv->mutex);
8761
8762         ipw_sw_reset(priv, 0);
8763
8764 #ifdef CONFIG_IPW2200_MONITOR
8765         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8766                 priv->net_dev->type = ARPHRD_ETHER;
8767
8768         if (wrqu->mode == IW_MODE_MONITOR)
8769 #ifdef CONFIG_IPW2200_RADIOTAP
8770                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8771 #else
8772                 priv->net_dev->type = ARPHRD_IEEE80211;
8773 #endif
8774 #endif                          /* CONFIG_IPW2200_MONITOR */
8775
8776         /* Free the existing firmware and reset the fw_loaded
8777          * flag so ipw_load() will bring in the new firmawre */
8778         free_firmware();
8779
8780         priv->ieee->iw_mode = wrqu->mode;
8781
8782         queue_work(priv->workqueue, &priv->adapter_restart);
8783         mutex_unlock(&priv->mutex);
8784         return err;
8785 }
8786
8787 static int ipw_wx_get_mode(struct net_device *dev,
8788                            struct iw_request_info *info,
8789                            union iwreq_data *wrqu, char *extra)
8790 {
8791         struct ipw_priv *priv = ieee80211_priv(dev);
8792         mutex_lock(&priv->mutex);
8793         wrqu->mode = priv->ieee->iw_mode;
8794         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8795         mutex_unlock(&priv->mutex);
8796         return 0;
8797 }
8798
8799 /* Values are in microsecond */
8800 static const s32 timeout_duration[] = {
8801         350000,
8802         250000,
8803         75000,
8804         37000,
8805         25000,
8806 };
8807
8808 static const s32 period_duration[] = {
8809         400000,
8810         700000,
8811         1000000,
8812         1000000,
8813         1000000
8814 };
8815
8816 static int ipw_wx_get_range(struct net_device *dev,
8817                             struct iw_request_info *info,
8818                             union iwreq_data *wrqu, char *extra)
8819 {
8820         struct ipw_priv *priv = ieee80211_priv(dev);
8821         struct iw_range *range = (struct iw_range *)extra;
8822         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8823         int i = 0, j;
8824
8825         wrqu->data.length = sizeof(*range);
8826         memset(range, 0, sizeof(*range));
8827
8828         /* 54Mbs == ~27 Mb/s real (802.11g) */
8829         range->throughput = 27 * 1000 * 1000;
8830
8831         range->max_qual.qual = 100;
8832         /* TODO: Find real max RSSI and stick here */
8833         range->max_qual.level = 0;
8834         range->max_qual.noise = 0;
8835         range->max_qual.updated = 7;    /* Updated all three */
8836
8837         range->avg_qual.qual = 70;
8838         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8839         range->avg_qual.level = 0;      /* FIXME to real average level */
8840         range->avg_qual.noise = 0;
8841         range->avg_qual.updated = 7;    /* Updated all three */
8842         mutex_lock(&priv->mutex);
8843         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8844
8845         for (i = 0; i < range->num_bitrates; i++)
8846                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8847                     500000;
8848
8849         range->max_rts = DEFAULT_RTS_THRESHOLD;
8850         range->min_frag = MIN_FRAG_THRESHOLD;
8851         range->max_frag = MAX_FRAG_THRESHOLD;
8852
8853         range->encoding_size[0] = 5;
8854         range->encoding_size[1] = 13;
8855         range->num_encoding_sizes = 2;
8856         range->max_encoding_tokens = WEP_KEYS;
8857
8858         /* Set the Wireless Extension versions */
8859         range->we_version_compiled = WIRELESS_EXT;
8860         range->we_version_source = 18;
8861
8862         i = 0;
8863         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8864                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8865                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8866                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8867                                 continue;
8868
8869                         range->freq[i].i = geo->bg[j].channel;
8870                         range->freq[i].m = geo->bg[j].freq * 100000;
8871                         range->freq[i].e = 1;
8872                         i++;
8873                 }
8874         }
8875
8876         if (priv->ieee->mode & IEEE_A) {
8877                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8878                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8879                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8880                                 continue;
8881
8882                         range->freq[i].i = geo->a[j].channel;
8883                         range->freq[i].m = geo->a[j].freq * 100000;
8884                         range->freq[i].e = 1;
8885                         i++;
8886                 }
8887         }
8888
8889         range->num_channels = i;
8890         range->num_frequency = i;
8891
8892         mutex_unlock(&priv->mutex);
8893
8894         /* Event capability (kernel + driver) */
8895         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8896                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8897                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8898                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8899         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8900
8901         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8902                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8903
8904         IPW_DEBUG_WX("GET Range\n");
8905         return 0;
8906 }
8907
8908 static int ipw_wx_set_wap(struct net_device *dev,
8909                           struct iw_request_info *info,
8910                           union iwreq_data *wrqu, char *extra)
8911 {
8912         struct ipw_priv *priv = ieee80211_priv(dev);
8913         DECLARE_MAC_BUF(mac);
8914
8915         static const unsigned char any[] = {
8916                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8917         };
8918         static const unsigned char off[] = {
8919                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8920         };
8921
8922         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8923                 return -EINVAL;
8924         mutex_lock(&priv->mutex);
8925         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8926             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8927                 /* we disable mandatory BSSID association */
8928                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8929                 priv->config &= ~CFG_STATIC_BSSID;
8930                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8931                                 "parameters.\n");
8932                 ipw_associate(priv);
8933                 mutex_unlock(&priv->mutex);
8934                 return 0;
8935         }
8936
8937         priv->config |= CFG_STATIC_BSSID;
8938         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8939                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8940                 mutex_unlock(&priv->mutex);
8941                 return 0;
8942         }
8943
8944         IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8945                      print_mac(mac, wrqu->ap_addr.sa_data));
8946
8947         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8948
8949         /* Network configuration changed -- force [re]association */
8950         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8951         if (!ipw_disassociate(priv))
8952                 ipw_associate(priv);
8953
8954         mutex_unlock(&priv->mutex);
8955         return 0;
8956 }
8957
8958 static int ipw_wx_get_wap(struct net_device *dev,
8959                           struct iw_request_info *info,
8960                           union iwreq_data *wrqu, char *extra)
8961 {
8962         struct ipw_priv *priv = ieee80211_priv(dev);
8963         DECLARE_MAC_BUF(mac);
8964
8965         /* If we are associated, trying to associate, or have a statically
8966          * configured BSSID then return that; otherwise return ANY */
8967         mutex_lock(&priv->mutex);
8968         if (priv->config & CFG_STATIC_BSSID ||
8969             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8970                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8971                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8972         } else
8973                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8974
8975         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8976                      print_mac(mac, wrqu->ap_addr.sa_data));
8977         mutex_unlock(&priv->mutex);
8978         return 0;
8979 }
8980
8981 static int ipw_wx_set_essid(struct net_device *dev,
8982                             struct iw_request_info *info,
8983                             union iwreq_data *wrqu, char *extra)
8984 {
8985         struct ipw_priv *priv = ieee80211_priv(dev);
8986         int length;
8987
8988         mutex_lock(&priv->mutex);
8989
8990         if (!wrqu->essid.flags)
8991         {
8992                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8993                 ipw_disassociate(priv);
8994                 priv->config &= ~CFG_STATIC_ESSID;
8995                 ipw_associate(priv);
8996                 mutex_unlock(&priv->mutex);
8997                 return 0;
8998         }
8999
9000         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9001
9002         priv->config |= CFG_STATIC_ESSID;
9003
9004         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9005             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9006                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9007                 mutex_unlock(&priv->mutex);
9008                 return 0;
9009         }
9010
9011         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9012                      length);
9013
9014         priv->essid_len = length;
9015         memcpy(priv->essid, extra, priv->essid_len);
9016
9017         /* Network configuration changed -- force [re]association */
9018         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9019         if (!ipw_disassociate(priv))
9020                 ipw_associate(priv);
9021
9022         mutex_unlock(&priv->mutex);
9023         return 0;
9024 }
9025
9026 static int ipw_wx_get_essid(struct net_device *dev,
9027                             struct iw_request_info *info,
9028                             union iwreq_data *wrqu, char *extra)
9029 {
9030         struct ipw_priv *priv = ieee80211_priv(dev);
9031
9032         /* If we are associated, trying to associate, or have a statically
9033          * configured ESSID then return that; otherwise return ANY */
9034         mutex_lock(&priv->mutex);
9035         if (priv->config & CFG_STATIC_ESSID ||
9036             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9037                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9038                              escape_essid(priv->essid, priv->essid_len));
9039                 memcpy(extra, priv->essid, priv->essid_len);
9040                 wrqu->essid.length = priv->essid_len;
9041                 wrqu->essid.flags = 1;  /* active */
9042         } else {
9043                 IPW_DEBUG_WX("Getting essid: ANY\n");
9044                 wrqu->essid.length = 0;
9045                 wrqu->essid.flags = 0;  /* active */
9046         }
9047         mutex_unlock(&priv->mutex);
9048         return 0;
9049 }
9050
9051 static int ipw_wx_set_nick(struct net_device *dev,
9052                            struct iw_request_info *info,
9053                            union iwreq_data *wrqu, char *extra)
9054 {
9055         struct ipw_priv *priv = ieee80211_priv(dev);
9056
9057         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9058         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9059                 return -E2BIG;
9060         mutex_lock(&priv->mutex);
9061         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9062         memset(priv->nick, 0, sizeof(priv->nick));
9063         memcpy(priv->nick, extra, wrqu->data.length);
9064         IPW_DEBUG_TRACE("<<\n");
9065         mutex_unlock(&priv->mutex);
9066         return 0;
9067
9068 }
9069
9070 static int ipw_wx_get_nick(struct net_device *dev,
9071                            struct iw_request_info *info,
9072                            union iwreq_data *wrqu, char *extra)
9073 {
9074         struct ipw_priv *priv = ieee80211_priv(dev);
9075         IPW_DEBUG_WX("Getting nick\n");
9076         mutex_lock(&priv->mutex);
9077         wrqu->data.length = strlen(priv->nick);
9078         memcpy(extra, priv->nick, wrqu->data.length);
9079         wrqu->data.flags = 1;   /* active */
9080         mutex_unlock(&priv->mutex);
9081         return 0;
9082 }
9083
9084 static int ipw_wx_set_sens(struct net_device *dev,
9085                             struct iw_request_info *info,
9086                             union iwreq_data *wrqu, char *extra)
9087 {
9088         struct ipw_priv *priv = ieee80211_priv(dev);
9089         int err = 0;
9090
9091         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9092         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9093         mutex_lock(&priv->mutex);
9094
9095         if (wrqu->sens.fixed == 0)
9096         {
9097                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9098                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9099                 goto out;
9100         }
9101         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9102             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9103                 err = -EINVAL;
9104                 goto out;
9105         }
9106
9107         priv->roaming_threshold = wrqu->sens.value;
9108         priv->disassociate_threshold = 3*wrqu->sens.value;
9109       out:
9110         mutex_unlock(&priv->mutex);
9111         return err;
9112 }
9113
9114 static int ipw_wx_get_sens(struct net_device *dev,
9115                             struct iw_request_info *info,
9116                             union iwreq_data *wrqu, char *extra)
9117 {
9118         struct ipw_priv *priv = ieee80211_priv(dev);
9119         mutex_lock(&priv->mutex);
9120         wrqu->sens.fixed = 1;
9121         wrqu->sens.value = priv->roaming_threshold;
9122         mutex_unlock(&priv->mutex);
9123
9124         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9125                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9126
9127         return 0;
9128 }
9129
9130 static int ipw_wx_set_rate(struct net_device *dev,
9131                            struct iw_request_info *info,
9132                            union iwreq_data *wrqu, char *extra)
9133 {
9134         /* TODO: We should use semaphores or locks for access to priv */
9135         struct ipw_priv *priv = ieee80211_priv(dev);
9136         u32 target_rate = wrqu->bitrate.value;
9137         u32 fixed, mask;
9138
9139         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9140         /* value = X, fixed = 1 means only rate X */
9141         /* value = X, fixed = 0 means all rates lower equal X */
9142
9143         if (target_rate == -1) {
9144                 fixed = 0;
9145                 mask = IEEE80211_DEFAULT_RATES_MASK;
9146                 /* Now we should reassociate */
9147                 goto apply;
9148         }
9149
9150         mask = 0;
9151         fixed = wrqu->bitrate.fixed;
9152
9153         if (target_rate == 1000000 || !fixed)
9154                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9155         if (target_rate == 1000000)
9156                 goto apply;
9157
9158         if (target_rate == 2000000 || !fixed)
9159                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9160         if (target_rate == 2000000)
9161                 goto apply;
9162
9163         if (target_rate == 5500000 || !fixed)
9164                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9165         if (target_rate == 5500000)
9166                 goto apply;
9167
9168         if (target_rate == 6000000 || !fixed)
9169                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9170         if (target_rate == 6000000)
9171                 goto apply;
9172
9173         if (target_rate == 9000000 || !fixed)
9174                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9175         if (target_rate == 9000000)
9176                 goto apply;
9177
9178         if (target_rate == 11000000 || !fixed)
9179                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9180         if (target_rate == 11000000)
9181                 goto apply;
9182
9183         if (target_rate == 12000000 || !fixed)
9184                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9185         if (target_rate == 12000000)
9186                 goto apply;
9187
9188         if (target_rate == 18000000 || !fixed)
9189                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9190         if (target_rate == 18000000)
9191                 goto apply;
9192
9193         if (target_rate == 24000000 || !fixed)
9194                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9195         if (target_rate == 24000000)
9196                 goto apply;
9197
9198         if (target_rate == 36000000 || !fixed)
9199                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9200         if (target_rate == 36000000)
9201                 goto apply;
9202
9203         if (target_rate == 48000000 || !fixed)
9204                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9205         if (target_rate == 48000000)
9206                 goto apply;
9207
9208         if (target_rate == 54000000 || !fixed)
9209                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9210         if (target_rate == 54000000)
9211                 goto apply;
9212
9213         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9214         return -EINVAL;
9215
9216       apply:
9217         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9218                      mask, fixed ? "fixed" : "sub-rates");
9219         mutex_lock(&priv->mutex);
9220         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9221                 priv->config &= ~CFG_FIXED_RATE;
9222                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9223         } else
9224                 priv->config |= CFG_FIXED_RATE;
9225
9226         if (priv->rates_mask == mask) {
9227                 IPW_DEBUG_WX("Mask set to current mask.\n");
9228                 mutex_unlock(&priv->mutex);
9229                 return 0;
9230         }
9231
9232         priv->rates_mask = mask;
9233
9234         /* Network configuration changed -- force [re]association */
9235         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9236         if (!ipw_disassociate(priv))
9237                 ipw_associate(priv);
9238
9239         mutex_unlock(&priv->mutex);
9240         return 0;
9241 }
9242
9243 static int ipw_wx_get_rate(struct net_device *dev,
9244                            struct iw_request_info *info,
9245                            union iwreq_data *wrqu, char *extra)
9246 {
9247         struct ipw_priv *priv = ieee80211_priv(dev);
9248         mutex_lock(&priv->mutex);
9249         wrqu->bitrate.value = priv->last_rate;
9250         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9251         mutex_unlock(&priv->mutex);
9252         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9253         return 0;
9254 }
9255
9256 static int ipw_wx_set_rts(struct net_device *dev,
9257                           struct iw_request_info *info,
9258                           union iwreq_data *wrqu, char *extra)
9259 {
9260         struct ipw_priv *priv = ieee80211_priv(dev);
9261         mutex_lock(&priv->mutex);
9262         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9263                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9264         else {
9265                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9266                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9267                         mutex_unlock(&priv->mutex);
9268                         return -EINVAL;
9269                 }
9270                 priv->rts_threshold = wrqu->rts.value;
9271         }
9272
9273         ipw_send_rts_threshold(priv, priv->rts_threshold);
9274         mutex_unlock(&priv->mutex);
9275         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9276         return 0;
9277 }
9278
9279 static int ipw_wx_get_rts(struct net_device *dev,
9280                           struct iw_request_info *info,
9281                           union iwreq_data *wrqu, char *extra)
9282 {
9283         struct ipw_priv *priv = ieee80211_priv(dev);
9284         mutex_lock(&priv->mutex);
9285         wrqu->rts.value = priv->rts_threshold;
9286         wrqu->rts.fixed = 0;    /* no auto select */
9287         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9288         mutex_unlock(&priv->mutex);
9289         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9290         return 0;
9291 }
9292
9293 static int ipw_wx_set_txpow(struct net_device *dev,
9294                             struct iw_request_info *info,
9295                             union iwreq_data *wrqu, char *extra)
9296 {
9297         struct ipw_priv *priv = ieee80211_priv(dev);
9298         int err = 0;
9299
9300         mutex_lock(&priv->mutex);
9301         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9302                 err = -EINPROGRESS;
9303                 goto out;
9304         }
9305
9306         if (!wrqu->power.fixed)
9307                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9308
9309         if (wrqu->power.flags != IW_TXPOW_DBM) {
9310                 err = -EINVAL;
9311                 goto out;
9312         }
9313
9314         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9315             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9316                 err = -EINVAL;
9317                 goto out;
9318         }
9319
9320         priv->tx_power = wrqu->power.value;
9321         err = ipw_set_tx_power(priv);
9322       out:
9323         mutex_unlock(&priv->mutex);
9324         return err;
9325 }
9326
9327 static int ipw_wx_get_txpow(struct net_device *dev,
9328                             struct iw_request_info *info,
9329                             union iwreq_data *wrqu, char *extra)
9330 {
9331         struct ipw_priv *priv = ieee80211_priv(dev);
9332         mutex_lock(&priv->mutex);
9333         wrqu->power.value = priv->tx_power;
9334         wrqu->power.fixed = 1;
9335         wrqu->power.flags = IW_TXPOW_DBM;
9336         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9337         mutex_unlock(&priv->mutex);
9338
9339         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9340                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9341
9342         return 0;
9343 }
9344
9345 static int ipw_wx_set_frag(struct net_device *dev,
9346                            struct iw_request_info *info,
9347                            union iwreq_data *wrqu, char *extra)
9348 {
9349         struct ipw_priv *priv = ieee80211_priv(dev);
9350         mutex_lock(&priv->mutex);
9351         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9352                 priv->ieee->fts = DEFAULT_FTS;
9353         else {
9354                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9355                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9356                         mutex_unlock(&priv->mutex);
9357                         return -EINVAL;
9358                 }
9359
9360                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9361         }
9362
9363         ipw_send_frag_threshold(priv, wrqu->frag.value);
9364         mutex_unlock(&priv->mutex);
9365         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9366         return 0;
9367 }
9368
9369 static int ipw_wx_get_frag(struct net_device *dev,
9370                            struct iw_request_info *info,
9371                            union iwreq_data *wrqu, char *extra)
9372 {
9373         struct ipw_priv *priv = ieee80211_priv(dev);
9374         mutex_lock(&priv->mutex);
9375         wrqu->frag.value = priv->ieee->fts;
9376         wrqu->frag.fixed = 0;   /* no auto select */
9377         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9378         mutex_unlock(&priv->mutex);
9379         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9380
9381         return 0;
9382 }
9383
9384 static int ipw_wx_set_retry(struct net_device *dev,
9385                             struct iw_request_info *info,
9386                             union iwreq_data *wrqu, char *extra)
9387 {
9388         struct ipw_priv *priv = ieee80211_priv(dev);
9389
9390         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9391                 return -EINVAL;
9392
9393         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9394                 return 0;
9395
9396         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9397                 return -EINVAL;
9398
9399         mutex_lock(&priv->mutex);
9400         if (wrqu->retry.flags & IW_RETRY_SHORT)
9401                 priv->short_retry_limit = (u8) wrqu->retry.value;
9402         else if (wrqu->retry.flags & IW_RETRY_LONG)
9403                 priv->long_retry_limit = (u8) wrqu->retry.value;
9404         else {
9405                 priv->short_retry_limit = (u8) wrqu->retry.value;
9406                 priv->long_retry_limit = (u8) wrqu->retry.value;
9407         }
9408
9409         ipw_send_retry_limit(priv, priv->short_retry_limit,
9410                              priv->long_retry_limit);
9411         mutex_unlock(&priv->mutex);
9412         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9413                      priv->short_retry_limit, priv->long_retry_limit);
9414         return 0;
9415 }
9416
9417 static int ipw_wx_get_retry(struct net_device *dev,
9418                             struct iw_request_info *info,
9419                             union iwreq_data *wrqu, char *extra)
9420 {
9421         struct ipw_priv *priv = ieee80211_priv(dev);
9422
9423         mutex_lock(&priv->mutex);
9424         wrqu->retry.disabled = 0;
9425
9426         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9427                 mutex_unlock(&priv->mutex);
9428                 return -EINVAL;
9429         }
9430
9431         if (wrqu->retry.flags & IW_RETRY_LONG) {
9432                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9433                 wrqu->retry.value = priv->long_retry_limit;
9434         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9435                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9436                 wrqu->retry.value = priv->short_retry_limit;
9437         } else {
9438                 wrqu->retry.flags = IW_RETRY_LIMIT;
9439                 wrqu->retry.value = priv->short_retry_limit;
9440         }
9441         mutex_unlock(&priv->mutex);
9442
9443         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9444
9445         return 0;
9446 }
9447
9448 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9449                                    int essid_len)
9450 {
9451         struct ipw_scan_request_ext scan;
9452         int err = 0, scan_type;
9453
9454         if (!(priv->status & STATUS_INIT) ||
9455             (priv->status & STATUS_EXIT_PENDING))
9456                 return 0;
9457
9458         mutex_lock(&priv->mutex);
9459
9460         if (priv->status & STATUS_RF_KILL_MASK) {
9461                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9462                 priv->status |= STATUS_SCAN_PENDING;
9463                 goto done;
9464         }
9465
9466         IPW_DEBUG_HC("starting request direct scan!\n");
9467
9468         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9469                 /* We should not sleep here; otherwise we will block most
9470                  * of the system (for instance, we hold rtnl_lock when we
9471                  * get here).
9472                  */
9473                 err = -EAGAIN;
9474                 goto done;
9475         }
9476         memset(&scan, 0, sizeof(scan));
9477
9478         if (priv->config & CFG_SPEED_SCAN)
9479                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9480                     cpu_to_le16(30);
9481         else
9482                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9483                     cpu_to_le16(20);
9484
9485         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9486             cpu_to_le16(20);
9487         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9488         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9489
9490         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9491
9492         err = ipw_send_ssid(priv, essid, essid_len);
9493         if (err) {
9494                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9495                 goto done;
9496         }
9497         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9498
9499         ipw_add_scan_channels(priv, &scan, scan_type);
9500
9501         err = ipw_send_scan_request_ext(priv, &scan);
9502         if (err) {
9503                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9504                 goto done;
9505         }
9506
9507         priv->status |= STATUS_SCANNING;
9508
9509       done:
9510         mutex_unlock(&priv->mutex);
9511         return err;
9512 }
9513
9514 static int ipw_wx_set_scan(struct net_device *dev,
9515                            struct iw_request_info *info,
9516                            union iwreq_data *wrqu, char *extra)
9517 {
9518         struct ipw_priv *priv = ieee80211_priv(dev);
9519         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9520
9521         mutex_lock(&priv->mutex);
9522         priv->user_requested_scan = 1;
9523         mutex_unlock(&priv->mutex);
9524
9525         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9526                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9527                         ipw_request_direct_scan(priv, req->essid,
9528                                                 req->essid_len);
9529                         return 0;
9530                 }
9531                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9532                         queue_work(priv->workqueue,
9533                                    &priv->request_passive_scan);
9534                         return 0;
9535                 }
9536         }
9537
9538         IPW_DEBUG_WX("Start scan\n");
9539
9540         queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9541
9542         return 0;
9543 }
9544
9545 static int ipw_wx_get_scan(struct net_device *dev,
9546                            struct iw_request_info *info,
9547                            union iwreq_data *wrqu, char *extra)
9548 {
9549         struct ipw_priv *priv = ieee80211_priv(dev);
9550         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9551 }
9552
9553 static int ipw_wx_set_encode(struct net_device *dev,
9554                              struct iw_request_info *info,
9555                              union iwreq_data *wrqu, char *key)
9556 {
9557         struct ipw_priv *priv = ieee80211_priv(dev);
9558         int ret;
9559         u32 cap = priv->capability;
9560
9561         mutex_lock(&priv->mutex);
9562         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9563
9564         /* In IBSS mode, we need to notify the firmware to update
9565          * the beacon info after we changed the capability. */
9566         if (cap != priv->capability &&
9567             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9568             priv->status & STATUS_ASSOCIATED)
9569                 ipw_disassociate(priv);
9570
9571         mutex_unlock(&priv->mutex);
9572         return ret;
9573 }
9574
9575 static int ipw_wx_get_encode(struct net_device *dev,
9576                              struct iw_request_info *info,
9577                              union iwreq_data *wrqu, char *key)
9578 {
9579         struct ipw_priv *priv = ieee80211_priv(dev);
9580         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9581 }
9582
9583 static int ipw_wx_set_power(struct net_device *dev,
9584                             struct iw_request_info *info,
9585                             union iwreq_data *wrqu, char *extra)
9586 {
9587         struct ipw_priv *priv = ieee80211_priv(dev);
9588         int err;
9589         mutex_lock(&priv->mutex);
9590         if (wrqu->power.disabled) {
9591                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9592                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9593                 if (err) {
9594                         IPW_DEBUG_WX("failed setting power mode.\n");
9595                         mutex_unlock(&priv->mutex);
9596                         return err;
9597                 }
9598                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9599                 mutex_unlock(&priv->mutex);
9600                 return 0;
9601         }
9602
9603         switch (wrqu->power.flags & IW_POWER_MODE) {
9604         case IW_POWER_ON:       /* If not specified */
9605         case IW_POWER_MODE:     /* If set all mask */
9606         case IW_POWER_ALL_R:    /* If explicitly state all */
9607                 break;
9608         default:                /* Otherwise we don't support it */
9609                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9610                              wrqu->power.flags);
9611                 mutex_unlock(&priv->mutex);
9612                 return -EOPNOTSUPP;
9613         }
9614
9615         /* If the user hasn't specified a power management mode yet, default
9616          * to BATTERY */
9617         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9618                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9619         else
9620                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9621
9622         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9623         if (err) {
9624                 IPW_DEBUG_WX("failed setting power mode.\n");
9625                 mutex_unlock(&priv->mutex);
9626                 return err;
9627         }
9628
9629         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9630         mutex_unlock(&priv->mutex);
9631         return 0;
9632 }
9633
9634 static int ipw_wx_get_power(struct net_device *dev,
9635                             struct iw_request_info *info,
9636                             union iwreq_data *wrqu, char *extra)
9637 {
9638         struct ipw_priv *priv = ieee80211_priv(dev);
9639         mutex_lock(&priv->mutex);
9640         if (!(priv->power_mode & IPW_POWER_ENABLED))
9641                 wrqu->power.disabled = 1;
9642         else
9643                 wrqu->power.disabled = 0;
9644
9645         mutex_unlock(&priv->mutex);
9646         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9647
9648         return 0;
9649 }
9650
9651 static int ipw_wx_set_powermode(struct net_device *dev,
9652                                 struct iw_request_info *info,
9653                                 union iwreq_data *wrqu, char *extra)
9654 {
9655         struct ipw_priv *priv = ieee80211_priv(dev);
9656         int mode = *(int *)extra;
9657         int err;
9658
9659         mutex_lock(&priv->mutex);
9660         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9661                 mode = IPW_POWER_AC;
9662
9663         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9664                 err = ipw_send_power_mode(priv, mode);
9665                 if (err) {
9666                         IPW_DEBUG_WX("failed setting power mode.\n");
9667                         mutex_unlock(&priv->mutex);
9668                         return err;
9669                 }
9670                 priv->power_mode = IPW_POWER_ENABLED | mode;
9671         }
9672         mutex_unlock(&priv->mutex);
9673         return 0;
9674 }
9675
9676 #define MAX_WX_STRING 80
9677 static int ipw_wx_get_powermode(struct net_device *dev,
9678                                 struct iw_request_info *info,
9679                                 union iwreq_data *wrqu, char *extra)
9680 {
9681         struct ipw_priv *priv = ieee80211_priv(dev);
9682         int level = IPW_POWER_LEVEL(priv->power_mode);
9683         char *p = extra;
9684
9685         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9686
9687         switch (level) {
9688         case IPW_POWER_AC:
9689                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9690                 break;
9691         case IPW_POWER_BATTERY:
9692                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9693                 break;
9694         default:
9695                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9696                               "(Timeout %dms, Period %dms)",
9697                               timeout_duration[level - 1] / 1000,
9698                               period_duration[level - 1] / 1000);
9699         }
9700
9701         if (!(priv->power_mode & IPW_POWER_ENABLED))
9702                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9703
9704         wrqu->data.length = p - extra + 1;
9705
9706         return 0;
9707 }
9708
9709 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9710                                     struct iw_request_info *info,
9711                                     union iwreq_data *wrqu, char *extra)
9712 {
9713         struct ipw_priv *priv = ieee80211_priv(dev);
9714         int mode = *(int *)extra;
9715         u8 band = 0, modulation = 0;
9716
9717         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9718                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9719                 return -EINVAL;
9720         }
9721         mutex_lock(&priv->mutex);
9722         if (priv->adapter == IPW_2915ABG) {
9723                 priv->ieee->abg_true = 1;
9724                 if (mode & IEEE_A) {
9725                         band |= IEEE80211_52GHZ_BAND;
9726                         modulation |= IEEE80211_OFDM_MODULATION;
9727                 } else
9728                         priv->ieee->abg_true = 0;
9729         } else {
9730                 if (mode & IEEE_A) {
9731                         IPW_WARNING("Attempt to set 2200BG into "
9732                                     "802.11a mode\n");
9733                         mutex_unlock(&priv->mutex);
9734                         return -EINVAL;
9735                 }
9736
9737                 priv->ieee->abg_true = 0;
9738         }
9739
9740         if (mode & IEEE_B) {
9741                 band |= IEEE80211_24GHZ_BAND;
9742                 modulation |= IEEE80211_CCK_MODULATION;
9743         } else
9744                 priv->ieee->abg_true = 0;
9745
9746         if (mode & IEEE_G) {
9747                 band |= IEEE80211_24GHZ_BAND;
9748                 modulation |= IEEE80211_OFDM_MODULATION;
9749         } else
9750                 priv->ieee->abg_true = 0;
9751
9752         priv->ieee->mode = mode;
9753         priv->ieee->freq_band = band;
9754         priv->ieee->modulation = modulation;
9755         init_supported_rates(priv, &priv->rates);
9756
9757         /* Network configuration changed -- force [re]association */
9758         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9759         if (!ipw_disassociate(priv)) {
9760                 ipw_send_supported_rates(priv, &priv->rates);
9761                 ipw_associate(priv);
9762         }
9763
9764         /* Update the band LEDs */
9765         ipw_led_band_on(priv);
9766
9767         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9768                      mode & IEEE_A ? 'a' : '.',
9769                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9770         mutex_unlock(&priv->mutex);
9771         return 0;
9772 }
9773
9774 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9775                                     struct iw_request_info *info,
9776                                     union iwreq_data *wrqu, char *extra)
9777 {
9778         struct ipw_priv *priv = ieee80211_priv(dev);
9779         mutex_lock(&priv->mutex);
9780         switch (priv->ieee->mode) {
9781         case IEEE_A:
9782                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9783                 break;
9784         case IEEE_B:
9785                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9786                 break;
9787         case IEEE_A | IEEE_B:
9788                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9789                 break;
9790         case IEEE_G:
9791                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9792                 break;
9793         case IEEE_A | IEEE_G:
9794                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9795                 break;
9796         case IEEE_B | IEEE_G:
9797                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9798                 break;
9799         case IEEE_A | IEEE_B | IEEE_G:
9800                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9801                 break;
9802         default:
9803                 strncpy(extra, "unknown", MAX_WX_STRING);
9804                 break;
9805         }
9806
9807         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9808
9809         wrqu->data.length = strlen(extra) + 1;
9810         mutex_unlock(&priv->mutex);
9811
9812         return 0;
9813 }
9814
9815 static int ipw_wx_set_preamble(struct net_device *dev,
9816                                struct iw_request_info *info,
9817                                union iwreq_data *wrqu, char *extra)
9818 {
9819         struct ipw_priv *priv = ieee80211_priv(dev);
9820         int mode = *(int *)extra;
9821         mutex_lock(&priv->mutex);
9822         /* Switching from SHORT -> LONG requires a disassociation */
9823         if (mode == 1) {
9824                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9825                         priv->config |= CFG_PREAMBLE_LONG;
9826
9827                         /* Network configuration changed -- force [re]association */
9828                         IPW_DEBUG_ASSOC
9829                             ("[re]association triggered due to preamble change.\n");
9830                         if (!ipw_disassociate(priv))
9831                                 ipw_associate(priv);
9832                 }
9833                 goto done;
9834         }
9835
9836         if (mode == 0) {
9837                 priv->config &= ~CFG_PREAMBLE_LONG;
9838                 goto done;
9839         }
9840         mutex_unlock(&priv->mutex);
9841         return -EINVAL;
9842
9843       done:
9844         mutex_unlock(&priv->mutex);
9845         return 0;
9846 }
9847
9848 static int ipw_wx_get_preamble(struct net_device *dev,
9849                                struct iw_request_info *info,
9850                                union iwreq_data *wrqu, char *extra)
9851 {
9852         struct ipw_priv *priv = ieee80211_priv(dev);
9853         mutex_lock(&priv->mutex);
9854         if (priv->config & CFG_PREAMBLE_LONG)
9855                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9856         else
9857                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9858         mutex_unlock(&priv->mutex);
9859         return 0;
9860 }
9861
9862 #ifdef CONFIG_IPW2200_MONITOR
9863 static int ipw_wx_set_monitor(struct net_device *dev,
9864                               struct iw_request_info *info,
9865                               union iwreq_data *wrqu, char *extra)
9866 {
9867         struct ipw_priv *priv = ieee80211_priv(dev);
9868         int *parms = (int *)extra;
9869         int enable = (parms[0] > 0);
9870         mutex_lock(&priv->mutex);
9871         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9872         if (enable) {
9873                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9874 #ifdef CONFIG_IPW2200_RADIOTAP
9875                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9876 #else
9877                         priv->net_dev->type = ARPHRD_IEEE80211;
9878 #endif
9879                         queue_work(priv->workqueue, &priv->adapter_restart);
9880                 }
9881
9882                 ipw_set_channel(priv, parms[1]);
9883         } else {
9884                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885                         mutex_unlock(&priv->mutex);
9886                         return 0;
9887                 }
9888                 priv->net_dev->type = ARPHRD_ETHER;
9889                 queue_work(priv->workqueue, &priv->adapter_restart);
9890         }
9891         mutex_unlock(&priv->mutex);
9892         return 0;
9893 }
9894
9895 #endif                          /* CONFIG_IPW2200_MONITOR */
9896
9897 static int ipw_wx_reset(struct net_device *dev,
9898                         struct iw_request_info *info,
9899                         union iwreq_data *wrqu, char *extra)
9900 {
9901         struct ipw_priv *priv = ieee80211_priv(dev);
9902         IPW_DEBUG_WX("RESET\n");
9903         queue_work(priv->workqueue, &priv->adapter_restart);
9904         return 0;
9905 }
9906
9907 static int ipw_wx_sw_reset(struct net_device *dev,
9908                            struct iw_request_info *info,
9909                            union iwreq_data *wrqu, char *extra)
9910 {
9911         struct ipw_priv *priv = ieee80211_priv(dev);
9912         union iwreq_data wrqu_sec = {
9913                 .encoding = {
9914                              .flags = IW_ENCODE_DISABLED,
9915                              },
9916         };
9917         int ret;
9918
9919         IPW_DEBUG_WX("SW_RESET\n");
9920
9921         mutex_lock(&priv->mutex);
9922
9923         ret = ipw_sw_reset(priv, 2);
9924         if (!ret) {
9925                 free_firmware();
9926                 ipw_adapter_restart(priv);
9927         }
9928
9929         /* The SW reset bit might have been toggled on by the 'disable'
9930          * module parameter, so take appropriate action */
9931         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9932
9933         mutex_unlock(&priv->mutex);
9934         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9935         mutex_lock(&priv->mutex);
9936
9937         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9938                 /* Configuration likely changed -- force [re]association */
9939                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9940                                 "reset.\n");
9941                 if (!ipw_disassociate(priv))
9942                         ipw_associate(priv);
9943         }
9944
9945         mutex_unlock(&priv->mutex);
9946
9947         return 0;
9948 }
9949
9950 /* Rebase the WE IOCTLs to zero for the handler array */
9951 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9952 static iw_handler ipw_wx_handlers[] = {
9953         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9954         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9955         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9956         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9957         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9958         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9959         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9960         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9961         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9962         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9963         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9964         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9965         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9966         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9967         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9968         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9969         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9970         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9971         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9972         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9973         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9974         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9975         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9976         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9977         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9978         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9979         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9980         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9981         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9982         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9983         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9984         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9985         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9986         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9987         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9988         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9989         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9990         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9991         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9992         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9993         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9994 };
9995
9996 enum {
9997         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9998         IPW_PRIV_GET_POWER,
9999         IPW_PRIV_SET_MODE,
10000         IPW_PRIV_GET_MODE,
10001         IPW_PRIV_SET_PREAMBLE,
10002         IPW_PRIV_GET_PREAMBLE,
10003         IPW_PRIV_RESET,
10004         IPW_PRIV_SW_RESET,
10005 #ifdef CONFIG_IPW2200_MONITOR
10006         IPW_PRIV_SET_MONITOR,
10007 #endif
10008 };
10009
10010 static struct iw_priv_args ipw_priv_args[] = {
10011         {
10012          .cmd = IPW_PRIV_SET_POWER,
10013          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10014          .name = "set_power"},
10015         {
10016          .cmd = IPW_PRIV_GET_POWER,
10017          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10018          .name = "get_power"},
10019         {
10020          .cmd = IPW_PRIV_SET_MODE,
10021          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10022          .name = "set_mode"},
10023         {
10024          .cmd = IPW_PRIV_GET_MODE,
10025          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10026          .name = "get_mode"},
10027         {
10028          .cmd = IPW_PRIV_SET_PREAMBLE,
10029          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10030          .name = "set_preamble"},
10031         {
10032          .cmd = IPW_PRIV_GET_PREAMBLE,
10033          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10034          .name = "get_preamble"},
10035         {
10036          IPW_PRIV_RESET,
10037          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10038         {
10039          IPW_PRIV_SW_RESET,
10040          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10041 #ifdef CONFIG_IPW2200_MONITOR
10042         {
10043          IPW_PRIV_SET_MONITOR,
10044          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10045 #endif                          /* CONFIG_IPW2200_MONITOR */
10046 };
10047
10048 static iw_handler ipw_priv_handler[] = {
10049         ipw_wx_set_powermode,
10050         ipw_wx_get_powermode,
10051         ipw_wx_set_wireless_mode,
10052         ipw_wx_get_wireless_mode,
10053         ipw_wx_set_preamble,
10054         ipw_wx_get_preamble,
10055         ipw_wx_reset,
10056         ipw_wx_sw_reset,
10057 #ifdef CONFIG_IPW2200_MONITOR
10058         ipw_wx_set_monitor,
10059 #endif
10060 };
10061
10062 static struct iw_handler_def ipw_wx_handler_def = {
10063         .standard = ipw_wx_handlers,
10064         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10065         .num_private = ARRAY_SIZE(ipw_priv_handler),
10066         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10067         .private = ipw_priv_handler,
10068         .private_args = ipw_priv_args,
10069         .get_wireless_stats = ipw_get_wireless_stats,
10070 };
10071
10072 /*
10073  * Get wireless statistics.
10074  * Called by /proc/net/wireless
10075  * Also called by SIOCGIWSTATS
10076  */
10077 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10078 {
10079         struct ipw_priv *priv = ieee80211_priv(dev);
10080         struct iw_statistics *wstats;
10081
10082         wstats = &priv->wstats;
10083
10084         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10085          * netdev->get_wireless_stats seems to be called before fw is
10086          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10087          * and associated; if not associcated, the values are all meaningless
10088          * anyway, so set them all to NULL and INVALID */
10089         if (!(priv->status & STATUS_ASSOCIATED)) {
10090                 wstats->miss.beacon = 0;
10091                 wstats->discard.retries = 0;
10092                 wstats->qual.qual = 0;
10093                 wstats->qual.level = 0;
10094                 wstats->qual.noise = 0;
10095                 wstats->qual.updated = 7;
10096                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10097                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10098                 return wstats;
10099         }
10100
10101         wstats->qual.qual = priv->quality;
10102         wstats->qual.level = priv->exp_avg_rssi;
10103         wstats->qual.noise = priv->exp_avg_noise;
10104         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10105             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10106
10107         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10108         wstats->discard.retries = priv->last_tx_failures;
10109         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10110
10111 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10112         goto fail_get_ordinal;
10113         wstats->discard.retries += tx_retry; */
10114
10115         return wstats;
10116 }
10117
10118 /* net device stuff */
10119
10120 static  void init_sys_config(struct ipw_sys_config *sys_config)
10121 {
10122         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10123         sys_config->bt_coexistence = 0;
10124         sys_config->answer_broadcast_ssid_probe = 0;
10125         sys_config->accept_all_data_frames = 0;
10126         sys_config->accept_non_directed_frames = 1;
10127         sys_config->exclude_unicast_unencrypted = 0;
10128         sys_config->disable_unicast_decryption = 1;
10129         sys_config->exclude_multicast_unencrypted = 0;
10130         sys_config->disable_multicast_decryption = 1;
10131         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10132                 antenna = CFG_SYS_ANTENNA_BOTH;
10133         sys_config->antenna_diversity = antenna;
10134         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10135         sys_config->dot11g_auto_detection = 0;
10136         sys_config->enable_cts_to_self = 0;
10137         sys_config->bt_coexist_collision_thr = 0;
10138         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10139         sys_config->silence_threshold = 0x1e;
10140 }
10141
10142 static int ipw_net_open(struct net_device *dev)
10143 {
10144         struct ipw_priv *priv = ieee80211_priv(dev);
10145         IPW_DEBUG_INFO("dev->open\n");
10146         /* we should be verifying the device is ready to be opened */
10147         mutex_lock(&priv->mutex);
10148         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10149             (priv->status & STATUS_ASSOCIATED))
10150                 netif_start_queue(dev);
10151         mutex_unlock(&priv->mutex);
10152         return 0;
10153 }
10154
10155 static int ipw_net_stop(struct net_device *dev)
10156 {
10157         IPW_DEBUG_INFO("dev->close\n");
10158         netif_stop_queue(dev);
10159         return 0;
10160 }
10161
10162 /*
10163 todo:
10164
10165 modify to send one tfd per fragment instead of using chunking.  otherwise
10166 we need to heavily modify the ieee80211_skb_to_txb.
10167 */
10168
10169 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10170                              int pri)
10171 {
10172         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10173             txb->fragments[0]->data;
10174         int i = 0;
10175         struct tfd_frame *tfd;
10176 #ifdef CONFIG_IPW2200_QOS
10177         int tx_id = ipw_get_tx_queue_number(priv, pri);
10178         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10179 #else
10180         struct clx2_tx_queue *txq = &priv->txq[0];
10181 #endif
10182         struct clx2_queue *q = &txq->q;
10183         u8 id, hdr_len, unicast;
10184         u16 remaining_bytes;
10185         int fc;
10186         DECLARE_MAC_BUF(mac);
10187
10188         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10189         switch (priv->ieee->iw_mode) {
10190         case IW_MODE_ADHOC:
10191                 unicast = !is_multicast_ether_addr(hdr->addr1);
10192                 id = ipw_find_station(priv, hdr->addr1);
10193                 if (id == IPW_INVALID_STATION) {
10194                         id = ipw_add_station(priv, hdr->addr1);
10195                         if (id == IPW_INVALID_STATION) {
10196                                 IPW_WARNING("Attempt to send data to "
10197                                             "invalid cell: %s\n",
10198                                             print_mac(mac, hdr->addr1));
10199                                 goto drop;
10200                         }
10201                 }
10202                 break;
10203
10204         case IW_MODE_INFRA:
10205         default:
10206                 unicast = !is_multicast_ether_addr(hdr->addr3);
10207                 id = 0;
10208                 break;
10209         }
10210
10211         tfd = &txq->bd[q->first_empty];
10212         txq->txb[q->first_empty] = txb;
10213         memset(tfd, 0, sizeof(*tfd));
10214         tfd->u.data.station_number = id;
10215
10216         tfd->control_flags.message_type = TX_FRAME_TYPE;
10217         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10218
10219         tfd->u.data.cmd_id = DINO_CMD_TX;
10220         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10221         remaining_bytes = txb->payload_size;
10222
10223         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10224                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10225         else
10226                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10227
10228         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10229                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10230
10231         fc = le16_to_cpu(hdr->frame_ctl);
10232         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10233
10234         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10235
10236         if (likely(unicast))
10237                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10238
10239         if (txb->encrypted && !priv->ieee->host_encrypt) {
10240                 switch (priv->ieee->sec.level) {
10241                 case SEC_LEVEL_3:
10242                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10243                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10244                         /* XXX: ACK flag must be set for CCMP even if it
10245                          * is a multicast/broadcast packet, because CCMP
10246                          * group communication encrypted by GTK is
10247                          * actually done by the AP. */
10248                         if (!unicast)
10249                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10250
10251                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10252                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10253                         tfd->u.data.key_index = 0;
10254                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10255                         break;
10256                 case SEC_LEVEL_2:
10257                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10258                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10259                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10260                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10261                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10262                         break;
10263                 case SEC_LEVEL_1:
10264                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10267                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10268                             40)
10269                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10270                         else
10271                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10272                         break;
10273                 case SEC_LEVEL_0:
10274                         break;
10275                 default:
10276                         printk(KERN_ERR "Unknow security level %d\n",
10277                                priv->ieee->sec.level);
10278                         break;
10279                 }
10280         } else
10281                 /* No hardware encryption */
10282                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10283
10284 #ifdef CONFIG_IPW2200_QOS
10285         if (fc & IEEE80211_STYPE_QOS_DATA)
10286                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10287 #endif                          /* CONFIG_IPW2200_QOS */
10288
10289         /* payload */
10290         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10291                                                  txb->nr_frags));
10292         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10293                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10294         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10295                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10296                                i, le32_to_cpu(tfd->u.data.num_chunks),
10297                                txb->fragments[i]->len - hdr_len);
10298                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10299                              i, tfd->u.data.num_chunks,
10300                              txb->fragments[i]->len - hdr_len);
10301                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10302                            txb->fragments[i]->len - hdr_len);
10303
10304                 tfd->u.data.chunk_ptr[i] =
10305                     cpu_to_le32(pci_map_single
10306                                 (priv->pci_dev,
10307                                  txb->fragments[i]->data + hdr_len,
10308                                  txb->fragments[i]->len - hdr_len,
10309                                  PCI_DMA_TODEVICE));
10310                 tfd->u.data.chunk_len[i] =
10311                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10312         }
10313
10314         if (i != txb->nr_frags) {
10315                 struct sk_buff *skb;
10316                 u16 remaining_bytes = 0;
10317                 int j;
10318
10319                 for (j = i; j < txb->nr_frags; j++)
10320                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10321
10322                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10323                        remaining_bytes);
10324                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10325                 if (skb != NULL) {
10326                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10327                         for (j = i; j < txb->nr_frags; j++) {
10328                                 int size = txb->fragments[j]->len - hdr_len;
10329
10330                                 printk(KERN_INFO "Adding frag %d %d...\n",
10331                                        j, size);
10332                                 memcpy(skb_put(skb, size),
10333                                        txb->fragments[j]->data + hdr_len, size);
10334                         }
10335                         dev_kfree_skb_any(txb->fragments[i]);
10336                         txb->fragments[i] = skb;
10337                         tfd->u.data.chunk_ptr[i] =
10338                             cpu_to_le32(pci_map_single
10339                                         (priv->pci_dev, skb->data,
10340                                          tfd->u.data.chunk_len[i],
10341                                          PCI_DMA_TODEVICE));
10342
10343                         tfd->u.data.num_chunks =
10344                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10345                                         1);
10346                 }
10347         }
10348
10349         /* kick DMA */
10350         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10351         ipw_write32(priv, q->reg_w, q->first_empty);
10352
10353         if (ipw_queue_space(q) < q->high_mark)
10354                 netif_stop_queue(priv->net_dev);
10355
10356         return NETDEV_TX_OK;
10357
10358       drop:
10359         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10360         ieee80211_txb_free(txb);
10361         return NETDEV_TX_OK;
10362 }
10363
10364 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10365 {
10366         struct ipw_priv *priv = ieee80211_priv(dev);
10367 #ifdef CONFIG_IPW2200_QOS
10368         int tx_id = ipw_get_tx_queue_number(priv, pri);
10369         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10370 #else
10371         struct clx2_tx_queue *txq = &priv->txq[0];
10372 #endif                          /* CONFIG_IPW2200_QOS */
10373
10374         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10375                 return 1;
10376
10377         return 0;
10378 }
10379
10380 #ifdef CONFIG_IPW2200_PROMISCUOUS
10381 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10382                                       struct ieee80211_txb *txb)
10383 {
10384         struct ieee80211_rx_stats dummystats;
10385         struct ieee80211_hdr *hdr;
10386         u8 n;
10387         u16 filter = priv->prom_priv->filter;
10388         int hdr_only = 0;
10389
10390         if (filter & IPW_PROM_NO_TX)
10391                 return;
10392
10393         memset(&dummystats, 0, sizeof(dummystats));
10394
10395         /* Filtering of fragment chains is done agains the first fragment */
10396         hdr = (void *)txb->fragments[0]->data;
10397         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10398                 if (filter & IPW_PROM_NO_MGMT)
10399                         return;
10400                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10401                         hdr_only = 1;
10402         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10403                 if (filter & IPW_PROM_NO_CTL)
10404                         return;
10405                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10406                         hdr_only = 1;
10407         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10408                 if (filter & IPW_PROM_NO_DATA)
10409                         return;
10410                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10411                         hdr_only = 1;
10412         }
10413
10414         for(n=0; n<txb->nr_frags; ++n) {
10415                 struct sk_buff *src = txb->fragments[n];
10416                 struct sk_buff *dst;
10417                 struct ieee80211_radiotap_header *rt_hdr;
10418                 int len;
10419
10420                 if (hdr_only) {
10421                         hdr = (void *)src->data;
10422                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10423                 } else
10424                         len = src->len;
10425
10426                 dst = alloc_skb(
10427                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10428                 if (!dst) continue;
10429
10430                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10431
10432                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10433                 rt_hdr->it_pad = 0;
10434                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10435                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10436
10437                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10438                         ieee80211chan2mhz(priv->channel));
10439                 if (priv->channel > 14)         /* 802.11a */
10440                         *(u16*)skb_put(dst, sizeof(u16)) =
10441                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10442                                              IEEE80211_CHAN_5GHZ);
10443                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10444                         *(u16*)skb_put(dst, sizeof(u16)) =
10445                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10446                                              IEEE80211_CHAN_2GHZ);
10447                 else            /* 802.11g */
10448                         *(u16*)skb_put(dst, sizeof(u16)) =
10449                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10450                                  IEEE80211_CHAN_2GHZ);
10451
10452                 rt_hdr->it_len = dst->len;
10453
10454                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10455
10456                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10457                         dev_kfree_skb_any(dst);
10458         }
10459 }
10460 #endif
10461
10462 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10463                                    struct net_device *dev, int pri)
10464 {
10465         struct ipw_priv *priv = ieee80211_priv(dev);
10466         unsigned long flags;
10467         int ret;
10468
10469         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10470         spin_lock_irqsave(&priv->lock, flags);
10471
10472         if (!(priv->status & STATUS_ASSOCIATED)) {
10473                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10474                 priv->ieee->stats.tx_carrier_errors++;
10475                 netif_stop_queue(dev);
10476                 goto fail_unlock;
10477         }
10478
10479 #ifdef CONFIG_IPW2200_PROMISCUOUS
10480         if (rtap_iface && netif_running(priv->prom_net_dev))
10481                 ipw_handle_promiscuous_tx(priv, txb);
10482 #endif
10483
10484         ret = ipw_tx_skb(priv, txb, pri);
10485         if (ret == NETDEV_TX_OK)
10486                 __ipw_led_activity_on(priv);
10487         spin_unlock_irqrestore(&priv->lock, flags);
10488
10489         return ret;
10490
10491       fail_unlock:
10492         spin_unlock_irqrestore(&priv->lock, flags);
10493         return 1;
10494 }
10495
10496 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10497 {
10498         struct ipw_priv *priv = ieee80211_priv(dev);
10499
10500         priv->ieee->stats.tx_packets = priv->tx_packets;
10501         priv->ieee->stats.rx_packets = priv->rx_packets;
10502         return &priv->ieee->stats;
10503 }
10504
10505 static void ipw_net_set_multicast_list(struct net_device *dev)
10506 {
10507
10508 }
10509
10510 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10511 {
10512         struct ipw_priv *priv = ieee80211_priv(dev);
10513         struct sockaddr *addr = p;
10514         DECLARE_MAC_BUF(mac);
10515
10516         if (!is_valid_ether_addr(addr->sa_data))
10517                 return -EADDRNOTAVAIL;
10518         mutex_lock(&priv->mutex);
10519         priv->config |= CFG_CUSTOM_MAC;
10520         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10521         printk(KERN_INFO "%s: Setting MAC to %s\n",
10522                priv->net_dev->name, print_mac(mac, priv->mac_addr));
10523         queue_work(priv->workqueue, &priv->adapter_restart);
10524         mutex_unlock(&priv->mutex);
10525         return 0;
10526 }
10527
10528 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10529                                     struct ethtool_drvinfo *info)
10530 {
10531         struct ipw_priv *p = ieee80211_priv(dev);
10532         char vers[64];
10533         char date[32];
10534         u32 len;
10535
10536         strcpy(info->driver, DRV_NAME);
10537         strcpy(info->version, DRV_VERSION);
10538
10539         len = sizeof(vers);
10540         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10541         len = sizeof(date);
10542         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10543
10544         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10545                  vers, date);
10546         strcpy(info->bus_info, pci_name(p->pci_dev));
10547         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10548 }
10549
10550 static u32 ipw_ethtool_get_link(struct net_device *dev)
10551 {
10552         struct ipw_priv *priv = ieee80211_priv(dev);
10553         return (priv->status & STATUS_ASSOCIATED) != 0;
10554 }
10555
10556 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10557 {
10558         return IPW_EEPROM_IMAGE_SIZE;
10559 }
10560
10561 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10562                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10563 {
10564         struct ipw_priv *p = ieee80211_priv(dev);
10565
10566         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10567                 return -EINVAL;
10568         mutex_lock(&p->mutex);
10569         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10570         mutex_unlock(&p->mutex);
10571         return 0;
10572 }
10573
10574 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10575                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10576 {
10577         struct ipw_priv *p = ieee80211_priv(dev);
10578         int i;
10579
10580         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10581                 return -EINVAL;
10582         mutex_lock(&p->mutex);
10583         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10584         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10585                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10586         mutex_unlock(&p->mutex);
10587         return 0;
10588 }
10589
10590 static const struct ethtool_ops ipw_ethtool_ops = {
10591         .get_link = ipw_ethtool_get_link,
10592         .get_drvinfo = ipw_ethtool_get_drvinfo,
10593         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10594         .get_eeprom = ipw_ethtool_get_eeprom,
10595         .set_eeprom = ipw_ethtool_set_eeprom,
10596 };
10597
10598 static irqreturn_t ipw_isr(int irq, void *data)
10599 {
10600         struct ipw_priv *priv = data;
10601         u32 inta, inta_mask;
10602
10603         if (!priv)
10604                 return IRQ_NONE;
10605
10606         spin_lock(&priv->irq_lock);
10607
10608         if (!(priv->status & STATUS_INT_ENABLED)) {
10609                 /* IRQ is disabled */
10610                 goto none;
10611         }
10612
10613         inta = ipw_read32(priv, IPW_INTA_RW);
10614         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10615
10616         if (inta == 0xFFFFFFFF) {
10617                 /* Hardware disappeared */
10618                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10619                 goto none;
10620         }
10621
10622         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10623                 /* Shared interrupt */
10624                 goto none;
10625         }
10626
10627         /* tell the device to stop sending interrupts */
10628         __ipw_disable_interrupts(priv);
10629
10630         /* ack current interrupts */
10631         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10632         ipw_write32(priv, IPW_INTA_RW, inta);
10633
10634         /* Cache INTA value for our tasklet */
10635         priv->isr_inta = inta;
10636
10637         tasklet_schedule(&priv->irq_tasklet);
10638
10639         spin_unlock(&priv->irq_lock);
10640
10641         return IRQ_HANDLED;
10642       none:
10643         spin_unlock(&priv->irq_lock);
10644         return IRQ_NONE;
10645 }
10646
10647 static void ipw_rf_kill(void *adapter)
10648 {
10649         struct ipw_priv *priv = adapter;
10650         unsigned long flags;
10651
10652         spin_lock_irqsave(&priv->lock, flags);
10653
10654         if (rf_kill_active(priv)) {
10655                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10656                 if (priv->workqueue)
10657                         queue_delayed_work(priv->workqueue,
10658                                            &priv->rf_kill, 2 * HZ);
10659                 goto exit_unlock;
10660         }
10661
10662         /* RF Kill is now disabled, so bring the device back up */
10663
10664         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10665                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10666                                   "device\n");
10667
10668                 /* we can not do an adapter restart while inside an irq lock */
10669                 queue_work(priv->workqueue, &priv->adapter_restart);
10670         } else
10671                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10672                                   "enabled\n");
10673
10674       exit_unlock:
10675         spin_unlock_irqrestore(&priv->lock, flags);
10676 }
10677
10678 static void ipw_bg_rf_kill(struct work_struct *work)
10679 {
10680         struct ipw_priv *priv =
10681                 container_of(work, struct ipw_priv, rf_kill.work);
10682         mutex_lock(&priv->mutex);
10683         ipw_rf_kill(priv);
10684         mutex_unlock(&priv->mutex);
10685 }
10686
10687 static void ipw_link_up(struct ipw_priv *priv)
10688 {
10689         priv->last_seq_num = -1;
10690         priv->last_frag_num = -1;
10691         priv->last_packet_time = 0;
10692
10693         netif_carrier_on(priv->net_dev);
10694         if (netif_queue_stopped(priv->net_dev)) {
10695                 IPW_DEBUG_NOTIF("waking queue\n");
10696                 netif_wake_queue(priv->net_dev);
10697         } else {
10698                 IPW_DEBUG_NOTIF("starting queue\n");
10699                 netif_start_queue(priv->net_dev);
10700         }
10701
10702         cancel_delayed_work(&priv->request_scan);
10703         cancel_delayed_work(&priv->scan_event);
10704         ipw_reset_stats(priv);
10705         /* Ensure the rate is updated immediately */
10706         priv->last_rate = ipw_get_current_rate(priv);
10707         ipw_gather_stats(priv);
10708         ipw_led_link_up(priv);
10709         notify_wx_assoc_event(priv);
10710
10711         if (priv->config & CFG_BACKGROUND_SCAN)
10712                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10713 }
10714
10715 static void ipw_bg_link_up(struct work_struct *work)
10716 {
10717         struct ipw_priv *priv =
10718                 container_of(work, struct ipw_priv, link_up);
10719         mutex_lock(&priv->mutex);
10720         ipw_link_up(priv);
10721         mutex_unlock(&priv->mutex);
10722 }
10723
10724 static void ipw_link_down(struct ipw_priv *priv)
10725 {
10726         ipw_led_link_down(priv);
10727         netif_carrier_off(priv->net_dev);
10728         netif_stop_queue(priv->net_dev);
10729         notify_wx_assoc_event(priv);
10730
10731         /* Cancel any queued work ... */
10732         cancel_delayed_work(&priv->request_scan);
10733         cancel_delayed_work(&priv->adhoc_check);
10734         cancel_delayed_work(&priv->gather_stats);
10735
10736         ipw_reset_stats(priv);
10737
10738         if (!(priv->status & STATUS_EXIT_PENDING)) {
10739                 /* Queue up another scan... */
10740                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10741         } else
10742                 cancel_delayed_work(&priv->scan_event);
10743 }
10744
10745 static void ipw_bg_link_down(struct work_struct *work)
10746 {
10747         struct ipw_priv *priv =
10748                 container_of(work, struct ipw_priv, link_down);
10749         mutex_lock(&priv->mutex);
10750         ipw_link_down(priv);
10751         mutex_unlock(&priv->mutex);
10752 }
10753
10754 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10755 {
10756         int ret = 0;
10757
10758         priv->workqueue = create_workqueue(DRV_NAME);
10759         init_waitqueue_head(&priv->wait_command_queue);
10760         init_waitqueue_head(&priv->wait_state);
10761
10762         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10763         INIT_WORK(&priv->associate, ipw_bg_associate);
10764         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10765         INIT_WORK(&priv->system_config, ipw_system_config);
10766         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10767         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10768         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10769         INIT_WORK(&priv->up, ipw_bg_up);
10770         INIT_WORK(&priv->down, ipw_bg_down);
10771         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10772         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10773         INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10774         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10775         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10776         INIT_WORK(&priv->roam, ipw_bg_roam);
10777         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10778         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10779         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10780         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10781         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10782         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10783         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10784
10785 #ifdef CONFIG_IPW2200_QOS
10786         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10787 #endif                          /* CONFIG_IPW2200_QOS */
10788
10789         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10790                      ipw_irq_tasklet, (unsigned long)priv);
10791
10792         return ret;
10793 }
10794
10795 static void shim__set_security(struct net_device *dev,
10796                                struct ieee80211_security *sec)
10797 {
10798         struct ipw_priv *priv = ieee80211_priv(dev);
10799         int i;
10800         for (i = 0; i < 4; i++) {
10801                 if (sec->flags & (1 << i)) {
10802                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10803                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10804                         if (sec->key_sizes[i] == 0)
10805                                 priv->ieee->sec.flags &= ~(1 << i);
10806                         else {
10807                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10808                                        sec->key_sizes[i]);
10809                                 priv->ieee->sec.flags |= (1 << i);
10810                         }
10811                         priv->status |= STATUS_SECURITY_UPDATED;
10812                 } else if (sec->level != SEC_LEVEL_1)
10813                         priv->ieee->sec.flags &= ~(1 << i);
10814         }
10815
10816         if (sec->flags & SEC_ACTIVE_KEY) {
10817                 if (sec->active_key <= 3) {
10818                         priv->ieee->sec.active_key = sec->active_key;
10819                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10820                 } else
10821                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10822                 priv->status |= STATUS_SECURITY_UPDATED;
10823         } else
10824                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10825
10826         if ((sec->flags & SEC_AUTH_MODE) &&
10827             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10828                 priv->ieee->sec.auth_mode = sec->auth_mode;
10829                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10830                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10831                         priv->capability |= CAP_SHARED_KEY;
10832                 else
10833                         priv->capability &= ~CAP_SHARED_KEY;
10834                 priv->status |= STATUS_SECURITY_UPDATED;
10835         }
10836
10837         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10838                 priv->ieee->sec.flags |= SEC_ENABLED;
10839                 priv->ieee->sec.enabled = sec->enabled;
10840                 priv->status |= STATUS_SECURITY_UPDATED;
10841                 if (sec->enabled)
10842                         priv->capability |= CAP_PRIVACY_ON;
10843                 else
10844                         priv->capability &= ~CAP_PRIVACY_ON;
10845         }
10846
10847         if (sec->flags & SEC_ENCRYPT)
10848                 priv->ieee->sec.encrypt = sec->encrypt;
10849
10850         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10851                 priv->ieee->sec.level = sec->level;
10852                 priv->ieee->sec.flags |= SEC_LEVEL;
10853                 priv->status |= STATUS_SECURITY_UPDATED;
10854         }
10855
10856         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10857                 ipw_set_hwcrypto_keys(priv);
10858
10859         /* To match current functionality of ipw2100 (which works well w/
10860          * various supplicants, we don't force a disassociate if the
10861          * privacy capability changes ... */
10862 #if 0
10863         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10864             (((priv->assoc_request.capability &
10865                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10866              (!(priv->assoc_request.capability &
10867                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10868                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10869                                 "change.\n");
10870                 ipw_disassociate(priv);
10871         }
10872 #endif
10873 }
10874
10875 static int init_supported_rates(struct ipw_priv *priv,
10876                                 struct ipw_supported_rates *rates)
10877 {
10878         /* TODO: Mask out rates based on priv->rates_mask */
10879
10880         memset(rates, 0, sizeof(*rates));
10881         /* configure supported rates */
10882         switch (priv->ieee->freq_band) {
10883         case IEEE80211_52GHZ_BAND:
10884                 rates->ieee_mode = IPW_A_MODE;
10885                 rates->purpose = IPW_RATE_CAPABILITIES;
10886                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10887                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10888                 break;
10889
10890         default:                /* Mixed or 2.4Ghz */
10891                 rates->ieee_mode = IPW_G_MODE;
10892                 rates->purpose = IPW_RATE_CAPABILITIES;
10893                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10894                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10895                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10896                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10897                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10898                 }
10899                 break;
10900         }
10901
10902         return 0;
10903 }
10904
10905 static int ipw_config(struct ipw_priv *priv)
10906 {
10907         /* This is only called from ipw_up, which resets/reloads the firmware
10908            so, we don't need to first disable the card before we configure
10909            it */
10910         if (ipw_set_tx_power(priv))
10911                 goto error;
10912
10913         /* initialize adapter address */
10914         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10915                 goto error;
10916
10917         /* set basic system config settings */
10918         init_sys_config(&priv->sys_config);
10919
10920         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10921          * Does not support BT priority yet (don't abort or defer our Tx) */
10922         if (bt_coexist) {
10923                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10924
10925                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10926                         priv->sys_config.bt_coexistence
10927                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10928                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10929                         priv->sys_config.bt_coexistence
10930                             |= CFG_BT_COEXISTENCE_OOB;
10931         }
10932
10933 #ifdef CONFIG_IPW2200_PROMISCUOUS
10934         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10935                 priv->sys_config.accept_all_data_frames = 1;
10936                 priv->sys_config.accept_non_directed_frames = 1;
10937                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10938                 priv->sys_config.accept_all_mgmt_frames = 1;
10939         }
10940 #endif
10941
10942         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10943                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10944         else
10945                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10946
10947         if (ipw_send_system_config(priv))
10948                 goto error;
10949
10950         init_supported_rates(priv, &priv->rates);
10951         if (ipw_send_supported_rates(priv, &priv->rates))
10952                 goto error;
10953
10954         /* Set request-to-send threshold */
10955         if (priv->rts_threshold) {
10956                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10957                         goto error;
10958         }
10959 #ifdef CONFIG_IPW2200_QOS
10960         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10961         ipw_qos_activate(priv, NULL);
10962 #endif                          /* CONFIG_IPW2200_QOS */
10963
10964         if (ipw_set_random_seed(priv))
10965                 goto error;
10966
10967         /* final state transition to the RUN state */
10968         if (ipw_send_host_complete(priv))
10969                 goto error;
10970
10971         priv->status |= STATUS_INIT;
10972
10973         ipw_led_init(priv);
10974         ipw_led_radio_on(priv);
10975         priv->notif_missed_beacons = 0;
10976
10977         /* Set hardware WEP key if it is configured. */
10978         if ((priv->capability & CAP_PRIVACY_ON) &&
10979             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10980             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10981                 ipw_set_hwcrypto_keys(priv);
10982
10983         return 0;
10984
10985       error:
10986         return -EIO;
10987 }
10988
10989 /*
10990  * NOTE:
10991  *
10992  * These tables have been tested in conjunction with the
10993  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10994  *
10995  * Altering this values, using it on other hardware, or in geographies
10996  * not intended for resale of the above mentioned Intel adapters has
10997  * not been tested.
10998  *
10999  * Remember to update the table in README.ipw2200 when changing this
11000  * table.
11001  *
11002  */
11003 static const struct ieee80211_geo ipw_geos[] = {
11004         {                       /* Restricted */
11005          "---",
11006          .bg_channels = 11,
11007          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008                 {2427, 4}, {2432, 5}, {2437, 6},
11009                 {2442, 7}, {2447, 8}, {2452, 9},
11010                 {2457, 10}, {2462, 11}},
11011          },
11012
11013         {                       /* Custom US/Canada */
11014          "ZZF",
11015          .bg_channels = 11,
11016          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11017                 {2427, 4}, {2432, 5}, {2437, 6},
11018                 {2442, 7}, {2447, 8}, {2452, 9},
11019                 {2457, 10}, {2462, 11}},
11020          .a_channels = 8,
11021          .a = {{5180, 36},
11022                {5200, 40},
11023                {5220, 44},
11024                {5240, 48},
11025                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11026                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11027                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11028                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11029          },
11030
11031         {                       /* Rest of World */
11032          "ZZD",
11033          .bg_channels = 13,
11034          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035                 {2427, 4}, {2432, 5}, {2437, 6},
11036                 {2442, 7}, {2447, 8}, {2452, 9},
11037                 {2457, 10}, {2462, 11}, {2467, 12},
11038                 {2472, 13}},
11039          },
11040
11041         {                       /* Custom USA & Europe & High */
11042          "ZZA",
11043          .bg_channels = 11,
11044          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11045                 {2427, 4}, {2432, 5}, {2437, 6},
11046                 {2442, 7}, {2447, 8}, {2452, 9},
11047                 {2457, 10}, {2462, 11}},
11048          .a_channels = 13,
11049          .a = {{5180, 36},
11050                {5200, 40},
11051                {5220, 44},
11052                {5240, 48},
11053                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11054                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11055                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11056                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11057                {5745, 149},
11058                {5765, 153},
11059                {5785, 157},
11060                {5805, 161},
11061                {5825, 165}},
11062          },
11063
11064         {                       /* Custom NA & Europe */
11065          "ZZB",
11066          .bg_channels = 11,
11067          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11068                 {2427, 4}, {2432, 5}, {2437, 6},
11069                 {2442, 7}, {2447, 8}, {2452, 9},
11070                 {2457, 10}, {2462, 11}},
11071          .a_channels = 13,
11072          .a = {{5180, 36},
11073                {5200, 40},
11074                {5220, 44},
11075                {5240, 48},
11076                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11077                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11078                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11079                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11080                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11081                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11082                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11083                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11084                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11085          },
11086
11087         {                       /* Custom Japan */
11088          "ZZC",
11089          .bg_channels = 11,
11090          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11091                 {2427, 4}, {2432, 5}, {2437, 6},
11092                 {2442, 7}, {2447, 8}, {2452, 9},
11093                 {2457, 10}, {2462, 11}},
11094          .a_channels = 4,
11095          .a = {{5170, 34}, {5190, 38},
11096                {5210, 42}, {5230, 46}},
11097          },
11098
11099         {                       /* Custom */
11100          "ZZM",
11101          .bg_channels = 11,
11102          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11103                 {2427, 4}, {2432, 5}, {2437, 6},
11104                 {2442, 7}, {2447, 8}, {2452, 9},
11105                 {2457, 10}, {2462, 11}},
11106          },
11107
11108         {                       /* Europe */
11109          "ZZE",
11110          .bg_channels = 13,
11111          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112                 {2427, 4}, {2432, 5}, {2437, 6},
11113                 {2442, 7}, {2447, 8}, {2452, 9},
11114                 {2457, 10}, {2462, 11}, {2467, 12},
11115                 {2472, 13}},
11116          .a_channels = 19,
11117          .a = {{5180, 36},
11118                {5200, 40},
11119                {5220, 44},
11120                {5240, 48},
11121                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11122                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11123                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11124                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11125                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11126                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11127                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11128                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11129                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11130                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11131                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11132                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11133                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11134                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11135                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11136          },
11137
11138         {                       /* Custom Japan */
11139          "ZZJ",
11140          .bg_channels = 14,
11141          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11142                 {2427, 4}, {2432, 5}, {2437, 6},
11143                 {2442, 7}, {2447, 8}, {2452, 9},
11144                 {2457, 10}, {2462, 11}, {2467, 12},
11145                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11146          .a_channels = 4,
11147          .a = {{5170, 34}, {5190, 38},
11148                {5210, 42}, {5230, 46}},
11149          },
11150
11151         {                       /* Rest of World */
11152          "ZZR",
11153          .bg_channels = 14,
11154          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11155                 {2427, 4}, {2432, 5}, {2437, 6},
11156                 {2442, 7}, {2447, 8}, {2452, 9},
11157                 {2457, 10}, {2462, 11}, {2467, 12},
11158                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11159                              IEEE80211_CH_PASSIVE_ONLY}},
11160          },
11161
11162         {                       /* High Band */
11163          "ZZH",
11164          .bg_channels = 13,
11165          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11166                 {2427, 4}, {2432, 5}, {2437, 6},
11167                 {2442, 7}, {2447, 8}, {2452, 9},
11168                 {2457, 10}, {2462, 11},
11169                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11170                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11171          .a_channels = 4,
11172          .a = {{5745, 149}, {5765, 153},
11173                {5785, 157}, {5805, 161}},
11174          },
11175
11176         {                       /* Custom Europe */
11177          "ZZG",
11178          .bg_channels = 13,
11179          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11180                 {2427, 4}, {2432, 5}, {2437, 6},
11181                 {2442, 7}, {2447, 8}, {2452, 9},
11182                 {2457, 10}, {2462, 11},
11183                 {2467, 12}, {2472, 13}},
11184          .a_channels = 4,
11185          .a = {{5180, 36}, {5200, 40},
11186                {5220, 44}, {5240, 48}},
11187          },
11188
11189         {                       /* Europe */
11190          "ZZK",
11191          .bg_channels = 13,
11192          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11193                 {2427, 4}, {2432, 5}, {2437, 6},
11194                 {2442, 7}, {2447, 8}, {2452, 9},
11195                 {2457, 10}, {2462, 11},
11196                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11197                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11198          .a_channels = 24,
11199          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11200                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11201                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11202                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11203                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11204                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11205                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11206                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11207                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11208                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11209                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11210                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11211                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11212                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11213                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11214                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11215                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11216                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11217                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11218                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11219                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11220                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11221                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11222                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11223          },
11224
11225         {                       /* Europe */
11226          "ZZL",
11227          .bg_channels = 11,
11228          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11229                 {2427, 4}, {2432, 5}, {2437, 6},
11230                 {2442, 7}, {2447, 8}, {2452, 9},
11231                 {2457, 10}, {2462, 11}},
11232          .a_channels = 13,
11233          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11234                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11235                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11236                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11237                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11238                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11239                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11240                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11241                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11242                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11243                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11244                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11245                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11246          }
11247 };
11248
11249 #define MAX_HW_RESTARTS 5
11250 static int ipw_up(struct ipw_priv *priv)
11251 {
11252         int rc, i, j;
11253
11254         if (priv->status & STATUS_EXIT_PENDING)
11255                 return -EIO;
11256
11257         if (cmdlog && !priv->cmdlog) {
11258                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11259                                        GFP_KERNEL);
11260                 if (priv->cmdlog == NULL) {
11261                         IPW_ERROR("Error allocating %d command log entries.\n",
11262                                   cmdlog);
11263                         return -ENOMEM;
11264                 } else {
11265                         priv->cmdlog_len = cmdlog;
11266                 }
11267         }
11268
11269         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11270                 /* Load the microcode, firmware, and eeprom.
11271                  * Also start the clocks. */
11272                 rc = ipw_load(priv);
11273                 if (rc) {
11274                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11275                         return rc;
11276                 }
11277
11278                 ipw_init_ordinals(priv);
11279                 if (!(priv->config & CFG_CUSTOM_MAC))
11280                         eeprom_parse_mac(priv, priv->mac_addr);
11281                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11282
11283                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11284                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11285                                     ipw_geos[j].name, 3))
11286                                 break;
11287                 }
11288                 if (j == ARRAY_SIZE(ipw_geos)) {
11289                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11290                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11291                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11292                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11293                         j = 0;
11294                 }
11295                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11296                         IPW_WARNING("Could not set geography.");
11297                         return 0;
11298                 }
11299
11300                 if (priv->status & STATUS_RF_KILL_SW) {
11301                         IPW_WARNING("Radio disabled by module parameter.\n");
11302                         return 0;
11303                 } else if (rf_kill_active(priv)) {
11304                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11305                                     "Kill switch must be turned off for "
11306                                     "wireless networking to work.\n");
11307                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11308                                            2 * HZ);
11309                         return 0;
11310                 }
11311
11312                 rc = ipw_config(priv);
11313                 if (!rc) {
11314                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11315
11316                         /* If configure to try and auto-associate, kick
11317                          * off a scan. */
11318                         queue_delayed_work(priv->workqueue,
11319                                            &priv->request_scan, 0);
11320
11321                         return 0;
11322                 }
11323
11324                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11325                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11326                                i, MAX_HW_RESTARTS);
11327
11328                 /* We had an error bringing up the hardware, so take it
11329                  * all the way back down so we can try again */
11330                 ipw_down(priv);
11331         }
11332
11333         /* tried to restart and config the device for as long as our
11334          * patience could withstand */
11335         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11336
11337         return -EIO;
11338 }
11339
11340 static void ipw_bg_up(struct work_struct *work)
11341 {
11342         struct ipw_priv *priv =
11343                 container_of(work, struct ipw_priv, up);
11344         mutex_lock(&priv->mutex);
11345         ipw_up(priv);
11346         mutex_unlock(&priv->mutex);
11347 }
11348
11349 static void ipw_deinit(struct ipw_priv *priv)
11350 {
11351         int i;
11352
11353         if (priv->status & STATUS_SCANNING) {
11354                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11355                 ipw_abort_scan(priv);
11356         }
11357
11358         if (priv->status & STATUS_ASSOCIATED) {
11359                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11360                 ipw_disassociate(priv);
11361         }
11362
11363         ipw_led_shutdown(priv);
11364
11365         /* Wait up to 1s for status to change to not scanning and not
11366          * associated (disassociation can take a while for a ful 802.11
11367          * exchange */
11368         for (i = 1000; i && (priv->status &
11369                              (STATUS_DISASSOCIATING |
11370                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11371                 udelay(10);
11372
11373         if (priv->status & (STATUS_DISASSOCIATING |
11374                             STATUS_ASSOCIATED | STATUS_SCANNING))
11375                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11376         else
11377                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11378
11379         /* Attempt to disable the card */
11380         ipw_send_card_disable(priv, 0);
11381
11382         priv->status &= ~STATUS_INIT;
11383 }
11384
11385 static void ipw_down(struct ipw_priv *priv)
11386 {
11387         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11388
11389         priv->status |= STATUS_EXIT_PENDING;
11390
11391         if (ipw_is_init(priv))
11392                 ipw_deinit(priv);
11393
11394         /* Wipe out the EXIT_PENDING status bit if we are not actually
11395          * exiting the module */
11396         if (!exit_pending)
11397                 priv->status &= ~STATUS_EXIT_PENDING;
11398
11399         /* tell the device to stop sending interrupts */
11400         ipw_disable_interrupts(priv);
11401
11402         /* Clear all bits but the RF Kill */
11403         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11404         netif_carrier_off(priv->net_dev);
11405         netif_stop_queue(priv->net_dev);
11406
11407         ipw_stop_nic(priv);
11408
11409         ipw_led_radio_off(priv);
11410 }
11411
11412 static void ipw_bg_down(struct work_struct *work)
11413 {
11414         struct ipw_priv *priv =
11415                 container_of(work, struct ipw_priv, down);
11416         mutex_lock(&priv->mutex);
11417         ipw_down(priv);
11418         mutex_unlock(&priv->mutex);
11419 }
11420
11421 /* Called by register_netdev() */
11422 static int ipw_net_init(struct net_device *dev)
11423 {
11424         struct ipw_priv *priv = ieee80211_priv(dev);
11425         mutex_lock(&priv->mutex);
11426
11427         if (ipw_up(priv)) {
11428                 mutex_unlock(&priv->mutex);
11429                 return -EIO;
11430         }
11431
11432         mutex_unlock(&priv->mutex);
11433         return 0;
11434 }
11435
11436 /* PCI driver stuff */
11437 static struct pci_device_id card_ids[] = {
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11443         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11444         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11445         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11446         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11447         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11457         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11458         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11459         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11460
11461         /* required last entry */
11462         {0,}
11463 };
11464
11465 MODULE_DEVICE_TABLE(pci, card_ids);
11466
11467 static struct attribute *ipw_sysfs_entries[] = {
11468         &dev_attr_rf_kill.attr,
11469         &dev_attr_direct_dword.attr,
11470         &dev_attr_indirect_byte.attr,
11471         &dev_attr_indirect_dword.attr,
11472         &dev_attr_mem_gpio_reg.attr,
11473         &dev_attr_command_event_reg.attr,
11474         &dev_attr_nic_type.attr,
11475         &dev_attr_status.attr,
11476         &dev_attr_cfg.attr,
11477         &dev_attr_error.attr,
11478         &dev_attr_event_log.attr,
11479         &dev_attr_cmd_log.attr,
11480         &dev_attr_eeprom_delay.attr,
11481         &dev_attr_ucode_version.attr,
11482         &dev_attr_rtc.attr,
11483         &dev_attr_scan_age.attr,
11484         &dev_attr_led.attr,
11485         &dev_attr_speed_scan.attr,
11486         &dev_attr_net_stats.attr,
11487         &dev_attr_channels.attr,
11488 #ifdef CONFIG_IPW2200_PROMISCUOUS
11489         &dev_attr_rtap_iface.attr,
11490         &dev_attr_rtap_filter.attr,
11491 #endif
11492         NULL
11493 };
11494
11495 static struct attribute_group ipw_attribute_group = {
11496         .name = NULL,           /* put in device directory */
11497         .attrs = ipw_sysfs_entries,
11498 };
11499
11500 #ifdef CONFIG_IPW2200_PROMISCUOUS
11501 static int ipw_prom_open(struct net_device *dev)
11502 {
11503         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11504         struct ipw_priv *priv = prom_priv->priv;
11505
11506         IPW_DEBUG_INFO("prom dev->open\n");
11507         netif_carrier_off(dev);
11508         netif_stop_queue(dev);
11509
11510         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11511                 priv->sys_config.accept_all_data_frames = 1;
11512                 priv->sys_config.accept_non_directed_frames = 1;
11513                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11514                 priv->sys_config.accept_all_mgmt_frames = 1;
11515
11516                 ipw_send_system_config(priv);
11517         }
11518
11519         return 0;
11520 }
11521
11522 static int ipw_prom_stop(struct net_device *dev)
11523 {
11524         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11525         struct ipw_priv *priv = prom_priv->priv;
11526
11527         IPW_DEBUG_INFO("prom dev->stop\n");
11528
11529         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11530                 priv->sys_config.accept_all_data_frames = 0;
11531                 priv->sys_config.accept_non_directed_frames = 0;
11532                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11533                 priv->sys_config.accept_all_mgmt_frames = 0;
11534
11535                 ipw_send_system_config(priv);
11536         }
11537
11538         return 0;
11539 }
11540
11541 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11542 {
11543         IPW_DEBUG_INFO("prom dev->xmit\n");
11544         netif_stop_queue(dev);
11545         return -EOPNOTSUPP;
11546 }
11547
11548 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11549 {
11550         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11551         return &prom_priv->ieee->stats;
11552 }
11553
11554 static int ipw_prom_alloc(struct ipw_priv *priv)
11555 {
11556         int rc = 0;
11557
11558         if (priv->prom_net_dev)
11559                 return -EPERM;
11560
11561         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11562         if (priv->prom_net_dev == NULL)
11563                 return -ENOMEM;
11564
11565         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11566         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11567         priv->prom_priv->priv = priv;
11568
11569         strcpy(priv->prom_net_dev->name, "rtap%d");
11570
11571         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11572         priv->prom_net_dev->open = ipw_prom_open;
11573         priv->prom_net_dev->stop = ipw_prom_stop;
11574         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11575         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11576
11577         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11578
11579         rc = register_netdev(priv->prom_net_dev);
11580         if (rc) {
11581                 free_ieee80211(priv->prom_net_dev);
11582                 priv->prom_net_dev = NULL;
11583                 return rc;
11584         }
11585
11586         return 0;
11587 }
11588
11589 static void ipw_prom_free(struct ipw_priv *priv)
11590 {
11591         if (!priv->prom_net_dev)
11592                 return;
11593
11594         unregister_netdev(priv->prom_net_dev);
11595         free_ieee80211(priv->prom_net_dev);
11596
11597         priv->prom_net_dev = NULL;
11598 }
11599
11600 #endif
11601
11602
11603 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11604 {
11605         int err = 0;
11606         struct net_device *net_dev;
11607         void __iomem *base;
11608         u32 length, val;
11609         struct ipw_priv *priv;
11610         int i;
11611
11612         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11613         if (net_dev == NULL) {
11614                 err = -ENOMEM;
11615                 goto out;
11616         }
11617
11618         priv = ieee80211_priv(net_dev);
11619         priv->ieee = netdev_priv(net_dev);
11620
11621         priv->net_dev = net_dev;
11622         priv->pci_dev = pdev;
11623         ipw_debug_level = debug;
11624         spin_lock_init(&priv->irq_lock);
11625         spin_lock_init(&priv->lock);
11626         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11627                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11628
11629         mutex_init(&priv->mutex);
11630         if (pci_enable_device(pdev)) {
11631                 err = -ENODEV;
11632                 goto out_free_ieee80211;
11633         }
11634
11635         pci_set_master(pdev);
11636
11637         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11638         if (!err)
11639                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11640         if (err) {
11641                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11642                 goto out_pci_disable_device;
11643         }
11644
11645         pci_set_drvdata(pdev, priv);
11646
11647         err = pci_request_regions(pdev, DRV_NAME);
11648         if (err)
11649                 goto out_pci_disable_device;
11650
11651         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11652          * PCI Tx retries from interfering with C3 CPU state */
11653         pci_read_config_dword(pdev, 0x40, &val);
11654         if ((val & 0x0000ff00) != 0)
11655                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11656
11657         length = pci_resource_len(pdev, 0);
11658         priv->hw_len = length;
11659
11660         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11661         if (!base) {
11662                 err = -ENODEV;
11663                 goto out_pci_release_regions;
11664         }
11665
11666         priv->hw_base = base;
11667         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11668         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11669
11670         err = ipw_setup_deferred_work(priv);
11671         if (err) {
11672                 IPW_ERROR("Unable to setup deferred work\n");
11673                 goto out_iounmap;
11674         }
11675
11676         ipw_sw_reset(priv, 1);
11677
11678         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11679         if (err) {
11680                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11681                 goto out_destroy_workqueue;
11682         }
11683
11684         SET_NETDEV_DEV(net_dev, &pdev->dev);
11685
11686         mutex_lock(&priv->mutex);
11687
11688         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11689         priv->ieee->set_security = shim__set_security;
11690         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11691
11692 #ifdef CONFIG_IPW2200_QOS
11693         priv->ieee->is_qos_active = ipw_is_qos_active;
11694         priv->ieee->handle_probe_response = ipw_handle_beacon;
11695         priv->ieee->handle_beacon = ipw_handle_probe_response;
11696         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11697 #endif                          /* CONFIG_IPW2200_QOS */
11698
11699         priv->ieee->perfect_rssi = -20;
11700         priv->ieee->worst_rssi = -85;
11701
11702         net_dev->open = ipw_net_open;
11703         net_dev->stop = ipw_net_stop;
11704         net_dev->init = ipw_net_init;
11705         net_dev->get_stats = ipw_net_get_stats;
11706         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11707         net_dev->set_mac_address = ipw_net_set_mac_address;
11708         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11709         net_dev->wireless_data = &priv->wireless_data;
11710         net_dev->wireless_handlers = &ipw_wx_handler_def;
11711         net_dev->ethtool_ops = &ipw_ethtool_ops;
11712         net_dev->irq = pdev->irq;
11713         net_dev->base_addr = (unsigned long)priv->hw_base;
11714         net_dev->mem_start = pci_resource_start(pdev, 0);
11715         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11716
11717         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11718         if (err) {
11719                 IPW_ERROR("failed to create sysfs device attributes\n");
11720                 mutex_unlock(&priv->mutex);
11721                 goto out_release_irq;
11722         }
11723
11724         mutex_unlock(&priv->mutex);
11725         err = register_netdev(net_dev);
11726         if (err) {
11727                 IPW_ERROR("failed to register network device\n");
11728                 goto out_remove_sysfs;
11729         }
11730
11731 #ifdef CONFIG_IPW2200_PROMISCUOUS
11732         if (rtap_iface) {
11733                 err = ipw_prom_alloc(priv);
11734                 if (err) {
11735                         IPW_ERROR("Failed to register promiscuous network "
11736                                   "device (error %d).\n", err);
11737                         unregister_netdev(priv->net_dev);
11738                         goto out_remove_sysfs;
11739                 }
11740         }
11741 #endif
11742
11743         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11744                "channels, %d 802.11a channels)\n",
11745                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11746                priv->ieee->geo.a_channels);
11747
11748         return 0;
11749
11750       out_remove_sysfs:
11751         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11752       out_release_irq:
11753         free_irq(pdev->irq, priv);
11754       out_destroy_workqueue:
11755         destroy_workqueue(priv->workqueue);
11756         priv->workqueue = NULL;
11757       out_iounmap:
11758         iounmap(priv->hw_base);
11759       out_pci_release_regions:
11760         pci_release_regions(pdev);
11761       out_pci_disable_device:
11762         pci_disable_device(pdev);
11763         pci_set_drvdata(pdev, NULL);
11764       out_free_ieee80211:
11765         free_ieee80211(priv->net_dev);
11766       out:
11767         return err;
11768 }
11769
11770 static void ipw_pci_remove(struct pci_dev *pdev)
11771 {
11772         struct ipw_priv *priv = pci_get_drvdata(pdev);
11773         struct list_head *p, *q;
11774         int i;
11775
11776         if (!priv)
11777                 return;
11778
11779         mutex_lock(&priv->mutex);
11780
11781         priv->status |= STATUS_EXIT_PENDING;
11782         ipw_down(priv);
11783         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11784
11785         mutex_unlock(&priv->mutex);
11786
11787         unregister_netdev(priv->net_dev);
11788
11789         if (priv->rxq) {
11790                 ipw_rx_queue_free(priv, priv->rxq);
11791                 priv->rxq = NULL;
11792         }
11793         ipw_tx_queue_free(priv);
11794
11795         if (priv->cmdlog) {
11796                 kfree(priv->cmdlog);
11797                 priv->cmdlog = NULL;
11798         }
11799         /* ipw_down will ensure that there is no more pending work
11800          * in the workqueue's, so we can safely remove them now. */
11801         cancel_delayed_work(&priv->adhoc_check);
11802         cancel_delayed_work(&priv->gather_stats);
11803         cancel_delayed_work(&priv->request_scan);
11804         cancel_delayed_work(&priv->scan_event);
11805         cancel_delayed_work(&priv->rf_kill);
11806         cancel_delayed_work(&priv->scan_check);
11807         destroy_workqueue(priv->workqueue);
11808         priv->workqueue = NULL;
11809
11810         /* Free MAC hash list for ADHOC */
11811         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11812                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11813                         list_del(p);
11814                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11815                 }
11816         }
11817
11818         kfree(priv->error);
11819         priv->error = NULL;
11820
11821 #ifdef CONFIG_IPW2200_PROMISCUOUS
11822         ipw_prom_free(priv);
11823 #endif
11824
11825         free_irq(pdev->irq, priv);
11826         iounmap(priv->hw_base);
11827         pci_release_regions(pdev);
11828         pci_disable_device(pdev);
11829         pci_set_drvdata(pdev, NULL);
11830         free_ieee80211(priv->net_dev);
11831         free_firmware();
11832 }
11833
11834 #ifdef CONFIG_PM
11835 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11836 {
11837         struct ipw_priv *priv = pci_get_drvdata(pdev);
11838         struct net_device *dev = priv->net_dev;
11839
11840         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11841
11842         /* Take down the device; powers it off, etc. */
11843         ipw_down(priv);
11844
11845         /* Remove the PRESENT state of the device */
11846         netif_device_detach(dev);
11847
11848         pci_save_state(pdev);
11849         pci_disable_device(pdev);
11850         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11851
11852         return 0;
11853 }
11854
11855 static int ipw_pci_resume(struct pci_dev *pdev)
11856 {
11857         struct ipw_priv *priv = pci_get_drvdata(pdev);
11858         struct net_device *dev = priv->net_dev;
11859         int err;
11860         u32 val;
11861
11862         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11863
11864         pci_set_power_state(pdev, PCI_D0);
11865         err = pci_enable_device(pdev);
11866         if (err) {
11867                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11868                        dev->name);
11869                 return err;
11870         }
11871         pci_restore_state(pdev);
11872
11873         /*
11874          * Suspend/Resume resets the PCI configuration space, so we have to
11875          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11876          * from interfering with C3 CPU state. pci_restore_state won't help
11877          * here since it only restores the first 64 bytes pci config header.
11878          */
11879         pci_read_config_dword(pdev, 0x40, &val);
11880         if ((val & 0x0000ff00) != 0)
11881                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11882
11883         /* Set the device back into the PRESENT state; this will also wake
11884          * the queue of needed */
11885         netif_device_attach(dev);
11886
11887         /* Bring the device back up */
11888         queue_work(priv->workqueue, &priv->up);
11889
11890         return 0;
11891 }
11892 #endif
11893
11894 static void ipw_pci_shutdown(struct pci_dev *pdev)
11895 {
11896         struct ipw_priv *priv = pci_get_drvdata(pdev);
11897
11898         /* Take down the device; powers it off, etc. */
11899         ipw_down(priv);
11900
11901         pci_disable_device(pdev);
11902 }
11903
11904 /* driver initialization stuff */
11905 static struct pci_driver ipw_driver = {
11906         .name = DRV_NAME,
11907         .id_table = card_ids,
11908         .probe = ipw_pci_probe,
11909         .remove = __devexit_p(ipw_pci_remove),
11910 #ifdef CONFIG_PM
11911         .suspend = ipw_pci_suspend,
11912         .resume = ipw_pci_resume,
11913 #endif
11914         .shutdown = ipw_pci_shutdown,
11915 };
11916
11917 static int __init ipw_init(void)
11918 {
11919         int ret;
11920
11921         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11922         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11923
11924         ret = pci_register_driver(&ipw_driver);
11925         if (ret) {
11926                 IPW_ERROR("Unable to initialize PCI module\n");
11927                 return ret;
11928         }
11929
11930         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11931         if (ret) {
11932                 IPW_ERROR("Unable to create driver sysfs file\n");
11933                 pci_unregister_driver(&ipw_driver);
11934                 return ret;
11935         }
11936
11937         return ret;
11938 }
11939
11940 static void __exit ipw_exit(void)
11941 {
11942         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11943         pci_unregister_driver(&ipw_driver);
11944 }
11945
11946 module_param(disable, int, 0444);
11947 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11948
11949 module_param(associate, int, 0444);
11950 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11951
11952 module_param(auto_create, int, 0444);
11953 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11954
11955 module_param(led, int, 0444);
11956 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11957
11958 module_param(debug, int, 0444);
11959 MODULE_PARM_DESC(debug, "debug output mask");
11960
11961 module_param(channel, int, 0444);
11962 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11963
11964 #ifdef CONFIG_IPW2200_PROMISCUOUS
11965 module_param(rtap_iface, int, 0444);
11966 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11967 #endif
11968
11969 #ifdef CONFIG_IPW2200_QOS
11970 module_param(qos_enable, int, 0444);
11971 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11972
11973 module_param(qos_burst_enable, int, 0444);
11974 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11975
11976 module_param(qos_no_ack_mask, int, 0444);
11977 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11978
11979 module_param(burst_duration_CCK, int, 0444);
11980 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11981
11982 module_param(burst_duration_OFDM, int, 0444);
11983 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11984 #endif                          /* CONFIG_IPW2200_QOS */
11985
11986 #ifdef CONFIG_IPW2200_MONITOR
11987 module_param(mode, int, 0444);
11988 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11989 #else
11990 module_param(mode, int, 0444);
11991 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11992 #endif
11993
11994 module_param(bt_coexist, int, 0444);
11995 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11996
11997 module_param(hwcrypto, int, 0444);
11998 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11999
12000 module_param(cmdlog, int, 0444);
12001 MODULE_PARM_DESC(cmdlog,
12002                  "allocate a ring buffer for logging firmware commands");
12003
12004 module_param(roaming, int, 0444);
12005 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12006
12007 module_param(antenna, int, 0444);
12008 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12009
12010 module_exit(ipw_exit);
12011 module_init(ipw_init);