2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
34 * The per-CPU workqueue (if single thread, we always use the first
37 * The sequence counters are for flush_scheduled_work(). It wants to wait
38 * until all currently-scheduled works are completed, but it doesn't
39 * want to be livelocked by new, incoming ones. So it waits until
40 * remove_sequence is >= the insert_sequence which pertained when
41 * flush_scheduled_work() was called.
43 struct cpu_workqueue_struct {
47 long remove_sequence; /* Least-recently added (next to run) */
48 long insert_sequence; /* Next to add */
50 struct list_head worklist;
51 wait_queue_head_t more_work;
52 wait_queue_head_t work_done;
54 struct workqueue_struct *wq;
55 struct task_struct *thread;
57 int run_depth; /* Detect run_workqueue() recursion depth */
58 } ____cacheline_aligned;
61 * The externally visible workqueue abstraction is an array of
64 struct workqueue_struct {
65 struct cpu_workqueue_struct *cpu_wq;
67 struct list_head list; /* Empty if single thread */
70 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
71 threads to each one as cpus come/go. */
72 static DEFINE_MUTEX(workqueue_mutex);
73 static LIST_HEAD(workqueues);
75 static int singlethread_cpu;
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
80 return list_empty(&wq->list);
83 /* Preempt must be disabled. */
84 static void __queue_work(struct cpu_workqueue_struct *cwq,
85 struct work_struct *work)
89 spin_lock_irqsave(&cwq->lock, flags);
91 list_add_tail(&work->entry, &cwq->worklist);
92 cwq->insert_sequence++;
93 wake_up(&cwq->more_work);
94 spin_unlock_irqrestore(&cwq->lock, flags);
98 * queue_work - queue work on a workqueue
99 * @wq: workqueue to use
100 * @work: work to queue
102 * Returns 0 if @work was already on a queue, non-zero otherwise.
104 * We queue the work to the CPU it was submitted, but there is no
105 * guarantee that it will be processed by that CPU.
107 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
109 int ret = 0, cpu = get_cpu();
111 if (!test_and_set_bit(0, &work->pending)) {
112 if (unlikely(is_single_threaded(wq)))
113 cpu = singlethread_cpu;
114 BUG_ON(!list_empty(&work->entry));
115 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
121 EXPORT_SYMBOL_GPL(queue_work);
123 static void delayed_work_timer_fn(unsigned long __data)
125 struct work_struct *work = (struct work_struct *)__data;
126 struct workqueue_struct *wq = work->wq_data;
127 int cpu = smp_processor_id();
129 if (unlikely(is_single_threaded(wq)))
130 cpu = singlethread_cpu;
132 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
136 * queue_delayed_work - queue work on a workqueue after delay
137 * @wq: workqueue to use
138 * @work: work to queue
139 * @delay: number of jiffies to wait before queueing
141 * Returns 0 if @work was already on a queue, non-zero otherwise.
143 int fastcall queue_delayed_work(struct workqueue_struct *wq,
144 struct work_struct *work, unsigned long delay)
147 struct timer_list *timer = &work->timer;
149 if (!test_and_set_bit(0, &work->pending)) {
150 BUG_ON(timer_pending(timer));
151 BUG_ON(!list_empty(&work->entry));
153 /* This stores wq for the moment, for the timer_fn */
155 timer->expires = jiffies + delay;
156 timer->data = (unsigned long)work;
157 timer->function = delayed_work_timer_fn;
163 EXPORT_SYMBOL_GPL(queue_delayed_work);
166 * queue_delayed_work_on - queue work on specific CPU after delay
167 * @cpu: CPU number to execute work on
168 * @wq: workqueue to use
169 * @work: work to queue
170 * @delay: number of jiffies to wait before queueing
172 * Returns 0 if @work was already on a queue, non-zero otherwise.
174 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
175 struct work_struct *work, unsigned long delay)
178 struct timer_list *timer = &work->timer;
180 if (!test_and_set_bit(0, &work->pending)) {
181 BUG_ON(timer_pending(timer));
182 BUG_ON(!list_empty(&work->entry));
184 /* This stores wq for the moment, for the timer_fn */
186 timer->expires = jiffies + delay;
187 timer->data = (unsigned long)work;
188 timer->function = delayed_work_timer_fn;
189 add_timer_on(timer, cpu);
194 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
196 static void run_workqueue(struct cpu_workqueue_struct *cwq)
201 * Keep taking off work from the queue until
204 spin_lock_irqsave(&cwq->lock, flags);
206 if (cwq->run_depth > 3) {
207 /* morton gets to eat his hat */
208 printk("%s: recursion depth exceeded: %d\n",
209 __FUNCTION__, cwq->run_depth);
212 while (!list_empty(&cwq->worklist)) {
213 struct work_struct *work = list_entry(cwq->worklist.next,
214 struct work_struct, entry);
215 void (*f) (void *) = work->func;
216 void *data = work->data;
218 list_del_init(cwq->worklist.next);
219 spin_unlock_irqrestore(&cwq->lock, flags);
221 BUG_ON(work->wq_data != cwq);
222 clear_bit(0, &work->pending);
225 spin_lock_irqsave(&cwq->lock, flags);
226 cwq->remove_sequence++;
227 wake_up(&cwq->work_done);
230 spin_unlock_irqrestore(&cwq->lock, flags);
233 static int worker_thread(void *__cwq)
235 struct cpu_workqueue_struct *cwq = __cwq;
236 DECLARE_WAITQUEUE(wait, current);
237 struct k_sigaction sa;
240 current->flags |= PF_NOFREEZE;
242 set_user_nice(current, -5);
244 /* Block and flush all signals */
245 sigfillset(&blocked);
246 sigprocmask(SIG_BLOCK, &blocked, NULL);
247 flush_signals(current);
250 * We inherited MPOL_INTERLEAVE from the booting kernel.
251 * Set MPOL_DEFAULT to insure node local allocations.
253 numa_default_policy();
255 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
256 sa.sa.sa_handler = SIG_IGN;
258 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
259 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
261 set_current_state(TASK_INTERRUPTIBLE);
262 while (!kthread_should_stop()) {
263 add_wait_queue(&cwq->more_work, &wait);
264 if (list_empty(&cwq->worklist))
267 __set_current_state(TASK_RUNNING);
268 remove_wait_queue(&cwq->more_work, &wait);
270 if (!list_empty(&cwq->worklist))
272 set_current_state(TASK_INTERRUPTIBLE);
274 __set_current_state(TASK_RUNNING);
278 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
280 if (cwq->thread == current) {
282 * Probably keventd trying to flush its own queue. So simply run
283 * it by hand rather than deadlocking.
288 long sequence_needed;
290 spin_lock_irq(&cwq->lock);
291 sequence_needed = cwq->insert_sequence;
293 while (sequence_needed - cwq->remove_sequence > 0) {
294 prepare_to_wait(&cwq->work_done, &wait,
295 TASK_UNINTERRUPTIBLE);
296 spin_unlock_irq(&cwq->lock);
298 spin_lock_irq(&cwq->lock);
300 finish_wait(&cwq->work_done, &wait);
301 spin_unlock_irq(&cwq->lock);
306 * flush_workqueue - ensure that any scheduled work has run to completion.
307 * @wq: workqueue to flush
309 * Forces execution of the workqueue and blocks until its completion.
310 * This is typically used in driver shutdown handlers.
312 * This function will sample each workqueue's current insert_sequence number and
313 * will sleep until the head sequence is greater than or equal to that. This
314 * means that we sleep until all works which were queued on entry have been
315 * handled, but we are not livelocked by new incoming ones.
317 * This function used to run the workqueues itself. Now we just wait for the
318 * helper threads to do it.
320 void fastcall flush_workqueue(struct workqueue_struct *wq)
324 if (is_single_threaded(wq)) {
325 /* Always use first cpu's area. */
326 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
330 mutex_lock(&workqueue_mutex);
331 for_each_online_cpu(cpu)
332 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
333 mutex_unlock(&workqueue_mutex);
336 EXPORT_SYMBOL_GPL(flush_workqueue);
338 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
341 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
342 struct task_struct *p;
344 spin_lock_init(&cwq->lock);
347 cwq->insert_sequence = 0;
348 cwq->remove_sequence = 0;
349 INIT_LIST_HEAD(&cwq->worklist);
350 init_waitqueue_head(&cwq->more_work);
351 init_waitqueue_head(&cwq->work_done);
353 if (is_single_threaded(wq))
354 p = kthread_create(worker_thread, cwq, "%s", wq->name);
356 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
363 struct workqueue_struct *__create_workqueue(const char *name,
366 int cpu, destroy = 0;
367 struct workqueue_struct *wq;
368 struct task_struct *p;
370 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
374 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
381 mutex_lock(&workqueue_mutex);
383 INIT_LIST_HEAD(&wq->list);
384 p = create_workqueue_thread(wq, singlethread_cpu);
390 list_add(&wq->list, &workqueues);
391 for_each_online_cpu(cpu) {
392 p = create_workqueue_thread(wq, cpu);
394 kthread_bind(p, cpu);
400 mutex_unlock(&workqueue_mutex);
403 * Was there any error during startup? If yes then clean up:
406 destroy_workqueue(wq);
411 EXPORT_SYMBOL_GPL(__create_workqueue);
413 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
415 struct cpu_workqueue_struct *cwq;
417 struct task_struct *p;
419 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
420 spin_lock_irqsave(&cwq->lock, flags);
423 spin_unlock_irqrestore(&cwq->lock, flags);
429 * destroy_workqueue - safely terminate a workqueue
430 * @wq: target workqueue
432 * Safely destroy a workqueue. All work currently pending will be done first.
434 void destroy_workqueue(struct workqueue_struct *wq)
440 /* We don't need the distraction of CPUs appearing and vanishing. */
441 mutex_lock(&workqueue_mutex);
442 if (is_single_threaded(wq))
443 cleanup_workqueue_thread(wq, singlethread_cpu);
445 for_each_online_cpu(cpu)
446 cleanup_workqueue_thread(wq, cpu);
449 mutex_unlock(&workqueue_mutex);
450 free_percpu(wq->cpu_wq);
453 EXPORT_SYMBOL_GPL(destroy_workqueue);
455 static struct workqueue_struct *keventd_wq;
458 * schedule_work - put work task in global workqueue
459 * @work: job to be done
461 * This puts a job in the kernel-global workqueue.
463 int fastcall schedule_work(struct work_struct *work)
465 return queue_work(keventd_wq, work);
467 EXPORT_SYMBOL(schedule_work);
470 * schedule_delayed_work - put work task in global workqueue after delay
471 * @work: job to be done
472 * @delay: number of jiffies to wait
474 * After waiting for a given time this puts a job in the kernel-global
477 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
479 return queue_delayed_work(keventd_wq, work, delay);
481 EXPORT_SYMBOL(schedule_delayed_work);
484 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
486 * @work: job to be done
487 * @delay: number of jiffies to wait
489 * After waiting for a given time this puts a job in the kernel-global
490 * workqueue on the specified CPU.
492 int schedule_delayed_work_on(int cpu,
493 struct work_struct *work, unsigned long delay)
495 return queue_delayed_work_on(cpu, keventd_wq, work, delay);
497 EXPORT_SYMBOL(schedule_delayed_work_on);
500 * schedule_on_each_cpu - call a function on each online CPU from keventd
501 * @func: the function to call
502 * @info: a pointer to pass to func()
504 * Returns zero on success.
505 * Returns -ve errno on failure.
507 * Appears to be racy against CPU hotplug.
509 * schedule_on_each_cpu() is very slow.
511 int schedule_on_each_cpu(void (*func)(void *info), void *info)
514 struct work_struct *works;
516 works = alloc_percpu(struct work_struct);
520 mutex_lock(&workqueue_mutex);
521 for_each_online_cpu(cpu) {
522 INIT_WORK(per_cpu_ptr(works, cpu), func, info);
523 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
524 per_cpu_ptr(works, cpu));
526 mutex_unlock(&workqueue_mutex);
527 flush_workqueue(keventd_wq);
532 void flush_scheduled_work(void)
534 flush_workqueue(keventd_wq);
536 EXPORT_SYMBOL(flush_scheduled_work);
539 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
540 * work whose handler rearms the delayed work.
541 * @wq: the controlling workqueue structure
542 * @work: the delayed work struct
544 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
545 struct work_struct *work)
547 while (!cancel_delayed_work(work))
550 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
553 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
554 * work whose handler rearms the delayed work.
555 * @work: the delayed work struct
557 void cancel_rearming_delayed_work(struct work_struct *work)
559 cancel_rearming_delayed_workqueue(keventd_wq, work);
561 EXPORT_SYMBOL(cancel_rearming_delayed_work);
564 * execute_in_process_context - reliably execute the routine with user context
565 * @fn: the function to execute
566 * @data: data to pass to the function
567 * @ew: guaranteed storage for the execute work structure (must
568 * be available when the work executes)
570 * Executes the function immediately if process context is available,
571 * otherwise schedules the function for delayed execution.
573 * Returns: 0 - function was executed
574 * 1 - function was scheduled for execution
576 int execute_in_process_context(void (*fn)(void *data), void *data,
577 struct execute_work *ew)
579 if (!in_interrupt()) {
584 INIT_WORK(&ew->work, fn, data);
585 schedule_work(&ew->work);
589 EXPORT_SYMBOL_GPL(execute_in_process_context);
593 return keventd_wq != NULL;
596 int current_is_keventd(void)
598 struct cpu_workqueue_struct *cwq;
599 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
604 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
605 if (current == cwq->thread)
612 #ifdef CONFIG_HOTPLUG_CPU
613 /* Take the work from this (downed) CPU. */
614 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
616 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
617 struct list_head list;
618 struct work_struct *work;
620 spin_lock_irq(&cwq->lock);
621 list_replace_init(&cwq->worklist, &list);
623 while (!list_empty(&list)) {
624 printk("Taking work for %s\n", wq->name);
625 work = list_entry(list.next,struct work_struct,entry);
626 list_del(&work->entry);
627 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
629 spin_unlock_irq(&cwq->lock);
632 /* We're holding the cpucontrol mutex here */
633 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
634 unsigned long action,
637 unsigned int hotcpu = (unsigned long)hcpu;
638 struct workqueue_struct *wq;
642 mutex_lock(&workqueue_mutex);
643 /* Create a new workqueue thread for it. */
644 list_for_each_entry(wq, &workqueues, list) {
645 if (!create_workqueue_thread(wq, hotcpu)) {
646 printk("workqueue for %i failed\n", hotcpu);
653 /* Kick off worker threads. */
654 list_for_each_entry(wq, &workqueues, list) {
655 struct cpu_workqueue_struct *cwq;
657 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
658 kthread_bind(cwq->thread, hotcpu);
659 wake_up_process(cwq->thread);
661 mutex_unlock(&workqueue_mutex);
664 case CPU_UP_CANCELED:
665 list_for_each_entry(wq, &workqueues, list) {
666 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
668 /* Unbind so it can run. */
669 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
670 any_online_cpu(cpu_online_map));
671 cleanup_workqueue_thread(wq, hotcpu);
673 mutex_unlock(&workqueue_mutex);
676 case CPU_DOWN_PREPARE:
677 mutex_lock(&workqueue_mutex);
680 case CPU_DOWN_FAILED:
681 mutex_unlock(&workqueue_mutex);
685 list_for_each_entry(wq, &workqueues, list)
686 cleanup_workqueue_thread(wq, hotcpu);
687 list_for_each_entry(wq, &workqueues, list)
688 take_over_work(wq, hotcpu);
689 mutex_unlock(&workqueue_mutex);
697 void init_workqueues(void)
699 singlethread_cpu = first_cpu(cpu_possible_map);
700 hotcpu_notifier(workqueue_cpu_callback, 0);
701 keventd_wq = create_workqueue("events");