kdump: sh: parse elfcorehdr command line argument
[linux-2.6] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/elf.h>
33 #include <asm/sections.h>
34 #include <asm/irq.h>
35 #include <asm/setup.h>
36 #include <asm/clock.h>
37 #include <asm/mmu_context.h>
38
39 /*
40  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
41  * This value will be used at the very early stage of serial setup.
42  * The bigger value means no problem.
43  */
44 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
45         [0] = {
46                 .type                   = CPU_SH_NONE,
47                 .loops_per_jiffy        = 10000000,
48         },
49 };
50 EXPORT_SYMBOL(cpu_data);
51
52 /*
53  * The machine vector. First entry in .machvec.init, or clobbered by
54  * sh_mv= on the command line, prior to .machvec.init teardown.
55  */
56 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
57 EXPORT_SYMBOL(sh_mv);
58
59 #ifdef CONFIG_VT
60 struct screen_info screen_info;
61 #endif
62
63 extern int root_mountflags;
64
65 #define RAMDISK_IMAGE_START_MASK        0x07FF
66 #define RAMDISK_PROMPT_FLAG             0x8000
67 #define RAMDISK_LOAD_FLAG               0x4000
68
69 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
70
71 static struct resource code_resource = {
72         .name = "Kernel code",
73         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
74 };
75
76 static struct resource data_resource = {
77         .name = "Kernel data",
78         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80
81 static struct resource bss_resource = {
82         .name   = "Kernel bss",
83         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85
86 unsigned long memory_start;
87 EXPORT_SYMBOL(memory_start);
88 unsigned long memory_end = 0;
89 EXPORT_SYMBOL(memory_end);
90
91 static struct resource mem_resources[MAX_NUMNODES];
92
93 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
94
95 static int __init early_parse_mem(char *p)
96 {
97         unsigned long size;
98
99         memory_start = (unsigned long)__va(__MEMORY_START);
100         size = memparse(p, &p);
101
102         if (size > __MEMORY_SIZE) {
103                 static char msg[] __initdata = KERN_ERR
104                         "Using mem= to increase the size of kernel memory "
105                         "is not allowed.\n"
106                         "  Recompile the kernel with the correct value for "
107                         "CONFIG_MEMORY_SIZE.\n";
108                 printk(msg);
109                 return 0;
110         }
111
112         memory_end = memory_start + size;
113
114         return 0;
115 }
116 early_param("mem", early_parse_mem);
117
118 /*
119  * Register fully available low RAM pages with the bootmem allocator.
120  */
121 static void __init register_bootmem_low_pages(void)
122 {
123         unsigned long curr_pfn, last_pfn, pages;
124
125         /*
126          * We are rounding up the start address of usable memory:
127          */
128         curr_pfn = PFN_UP(__MEMORY_START);
129
130         /*
131          * ... and at the end of the usable range downwards:
132          */
133         last_pfn = PFN_DOWN(__pa(memory_end));
134
135         if (last_pfn > max_low_pfn)
136                 last_pfn = max_low_pfn;
137
138         pages = last_pfn - curr_pfn;
139         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
140 }
141
142 #ifdef CONFIG_KEXEC
143 static void __init reserve_crashkernel(void)
144 {
145         unsigned long long free_mem;
146         unsigned long long crash_size, crash_base;
147         int ret;
148
149         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
150
151         ret = parse_crashkernel(boot_command_line, free_mem,
152                         &crash_size, &crash_base);
153         if (ret == 0 && crash_size) {
154                 if (crash_base <= 0) {
155                         printk(KERN_INFO "crashkernel reservation failed - "
156                                         "you have to specify a base address\n");
157                         return;
158                 }
159
160                 if (reserve_bootmem(crash_base, crash_size,
161                                         BOOTMEM_EXCLUSIVE) < 0) {
162                         printk(KERN_INFO "crashkernel reservation failed - "
163                                         "memory is in use\n");
164                         return;
165                 }
166
167                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
168                                 "for crashkernel (System RAM: %ldMB)\n",
169                                 (unsigned long)(crash_size >> 20),
170                                 (unsigned long)(crash_base >> 20),
171                                 (unsigned long)(free_mem >> 20));
172                 crashk_res.start = crash_base;
173                 crashk_res.end   = crash_base + crash_size - 1;
174         }
175 }
176 #else
177 static inline void __init reserve_crashkernel(void)
178 {}
179 #endif
180
181 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
182                                                 unsigned long end_pfn)
183 {
184         struct resource *res = &mem_resources[nid];
185
186         WARN_ON(res->name); /* max one active range per node for now */
187
188         res->name = "System RAM";
189         res->start = start_pfn << PAGE_SHIFT;
190         res->end = (end_pfn << PAGE_SHIFT) - 1;
191         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192         if (request_resource(&iomem_resource, res)) {
193                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
194                        start_pfn, end_pfn);
195                 return;
196         }
197
198         /*
199          *  We don't know which RAM region contains kernel data,
200          *  so we try it repeatedly and let the resource manager
201          *  test it.
202          */
203         request_resource(res, &code_resource);
204         request_resource(res, &data_resource);
205         request_resource(res, &bss_resource);
206
207 #ifdef CONFIG_KEXEC
208         if (crashk_res.start != crashk_res.end)
209                 request_resource(res, &crashk_res);
210 #endif
211
212         add_active_range(nid, start_pfn, end_pfn);
213 }
214
215 void __init setup_bootmem_allocator(unsigned long free_pfn)
216 {
217         unsigned long bootmap_size;
218
219         /*
220          * Find a proper area for the bootmem bitmap. After this
221          * bootstrap step all allocations (until the page allocator
222          * is intact) must be done via bootmem_alloc().
223          */
224         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
225                                          min_low_pfn, max_low_pfn);
226
227         __add_active_range(0, min_low_pfn, max_low_pfn);
228         register_bootmem_low_pages();
229
230         node_set_online(0);
231
232         /*
233          * Reserve the kernel text and
234          * Reserve the bootmem bitmap. We do this in two steps (first step
235          * was init_bootmem()), because this catches the (definitely buggy)
236          * case of us accidentally initializing the bootmem allocator with
237          * an invalid RAM area.
238          */
239         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
240                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
241                 BOOTMEM_DEFAULT);
242
243         /*
244          * reserve physical page 0 - it's a special BIOS page on many boxes,
245          * enabling clean reboots, SMP operation, laptop functions.
246          */
247         reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
248
249         sparse_memory_present_with_active_regions(0);
250
251 #ifdef CONFIG_BLK_DEV_INITRD
252         ROOT_DEV = Root_RAM0;
253
254         if (LOADER_TYPE && INITRD_START) {
255                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
256                         reserve_bootmem(INITRD_START + __MEMORY_START,
257                                         INITRD_SIZE, BOOTMEM_DEFAULT);
258                         initrd_start = INITRD_START + PAGE_OFFSET +
259                                         __MEMORY_START;
260                         initrd_end = initrd_start + INITRD_SIZE;
261                 } else {
262                         printk("initrd extends beyond end of memory "
263                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
264                                     INITRD_START + INITRD_SIZE,
265                                     max_low_pfn << PAGE_SHIFT);
266                         initrd_start = 0;
267                 }
268         }
269 #endif
270
271         reserve_crashkernel();
272 }
273
274 #ifndef CONFIG_NEED_MULTIPLE_NODES
275 static void __init setup_memory(void)
276 {
277         unsigned long start_pfn;
278
279         /*
280          * Partially used pages are not usable - thus
281          * we are rounding upwards:
282          */
283         start_pfn = PFN_UP(__pa(_end));
284         setup_bootmem_allocator(start_pfn);
285 }
286 #else
287 extern void __init setup_memory(void);
288 #endif
289
290 /*
291  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
292  * is_kdump_kernel() to determine if we are booting after a panic. Hence
293  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
294  */
295 #ifdef CONFIG_CRASH_DUMP
296 /* elfcorehdr= specifies the location of elf core header
297  * stored by the crashed kernel.
298  */
299 static int __init parse_elfcorehdr(char *arg)
300 {
301         if (!arg)
302                 return -EINVAL;
303         elfcorehdr_addr = memparse(arg, &arg);
304         return 0;
305 }
306 early_param("elfcorehdr", parse_elfcorehdr);
307 #endif
308
309 void __init setup_arch(char **cmdline_p)
310 {
311         enable_mmu();
312
313         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
314
315         printk(KERN_NOTICE "Boot params:\n"
316                            "... MOUNT_ROOT_RDONLY - %08lx\n"
317                            "... RAMDISK_FLAGS     - %08lx\n"
318                            "... ORIG_ROOT_DEV     - %08lx\n"
319                            "... LOADER_TYPE       - %08lx\n"
320                            "... INITRD_START      - %08lx\n"
321                            "... INITRD_SIZE       - %08lx\n",
322                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
323                            ORIG_ROOT_DEV, LOADER_TYPE,
324                            INITRD_START, INITRD_SIZE);
325
326 #ifdef CONFIG_BLK_DEV_RAM
327         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
328         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
329         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
330 #endif
331
332         if (!MOUNT_ROOT_RDONLY)
333                 root_mountflags &= ~MS_RDONLY;
334         init_mm.start_code = (unsigned long) _text;
335         init_mm.end_code = (unsigned long) _etext;
336         init_mm.end_data = (unsigned long) _edata;
337         init_mm.brk = (unsigned long) _end;
338
339         code_resource.start = virt_to_phys(_text);
340         code_resource.end = virt_to_phys(_etext)-1;
341         data_resource.start = virt_to_phys(_etext);
342         data_resource.end = virt_to_phys(_edata)-1;
343         bss_resource.start = virt_to_phys(__bss_start);
344         bss_resource.end = virt_to_phys(_ebss)-1;
345
346         memory_start = (unsigned long)__va(__MEMORY_START);
347         if (!memory_end)
348                 memory_end = memory_start + __MEMORY_SIZE;
349
350 #ifdef CONFIG_CMDLINE_BOOL
351         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
352 #else
353         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
354 #endif
355
356         /* Save unparsed command line copy for /proc/cmdline */
357         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
358         *cmdline_p = command_line;
359
360         parse_early_param();
361
362         sh_mv_setup();
363
364         /*
365          * Find the highest page frame number we have available
366          */
367         max_pfn = PFN_DOWN(__pa(memory_end));
368
369         /*
370          * Determine low and high memory ranges:
371          */
372         max_low_pfn = max_pfn;
373         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
374
375         nodes_clear(node_online_map);
376
377         /* Setup bootmem with available RAM */
378         setup_memory();
379         sparse_init();
380
381 #ifdef CONFIG_DUMMY_CONSOLE
382         conswitchp = &dummy_con;
383 #endif
384
385         /* Perform the machine specific initialisation */
386         if (likely(sh_mv.mv_setup))
387                 sh_mv.mv_setup(cmdline_p);
388
389         paging_init();
390
391 #ifdef CONFIG_SMP
392         plat_smp_setup();
393 #endif
394 }
395
396 static const char *cpu_name[] = {
397         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
398         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
399         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
400         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
401         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
402         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
403         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
404         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
405         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
406         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
407         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
408         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
409         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
410         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
411         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
412         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
413         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
414         [CPU_SH7366]    = "SH7366",     [CPU_SH_NONE]   = "Unknown"
415 };
416
417 const char *get_cpu_subtype(struct sh_cpuinfo *c)
418 {
419         return cpu_name[c->type];
420 }
421 EXPORT_SYMBOL(get_cpu_subtype);
422
423 #ifdef CONFIG_PROC_FS
424 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
425 static const char *cpu_flags[] = {
426         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
427         "ptea", "llsc", "l2", "op32", NULL
428 };
429
430 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
431 {
432         unsigned long i;
433
434         seq_printf(m, "cpu flags\t:");
435
436         if (!c->flags) {
437                 seq_printf(m, " %s\n", cpu_flags[0]);
438                 return;
439         }
440
441         for (i = 0; cpu_flags[i]; i++)
442                 if ((c->flags & (1 << i)))
443                         seq_printf(m, " %s", cpu_flags[i+1]);
444
445         seq_printf(m, "\n");
446 }
447
448 static void show_cacheinfo(struct seq_file *m, const char *type,
449                            struct cache_info info)
450 {
451         unsigned int cache_size;
452
453         cache_size = info.ways * info.sets * info.linesz;
454
455         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
456                    type, cache_size >> 10, info.ways);
457 }
458
459 /*
460  *      Get CPU information for use by the procfs.
461  */
462 static int show_cpuinfo(struct seq_file *m, void *v)
463 {
464         struct sh_cpuinfo *c = v;
465         unsigned int cpu = c - cpu_data;
466
467         if (!cpu_online(cpu))
468                 return 0;
469
470         if (cpu == 0)
471                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
472
473         seq_printf(m, "processor\t: %d\n", cpu);
474         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
475         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
476         if (c->cut_major == -1)
477                 seq_printf(m, "cut\t\t: unknown\n");
478         else if (c->cut_minor == -1)
479                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
480         else
481                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
482
483         show_cpuflags(m, c);
484
485         seq_printf(m, "cache type\t: ");
486
487         /*
488          * Check for what type of cache we have, we support both the
489          * unified cache on the SH-2 and SH-3, as well as the harvard
490          * style cache on the SH-4.
491          */
492         if (c->icache.flags & SH_CACHE_COMBINED) {
493                 seq_printf(m, "unified\n");
494                 show_cacheinfo(m, "cache", c->icache);
495         } else {
496                 seq_printf(m, "split (harvard)\n");
497                 show_cacheinfo(m, "icache", c->icache);
498                 show_cacheinfo(m, "dcache", c->dcache);
499         }
500
501         /* Optional secondary cache */
502         if (c->flags & CPU_HAS_L2_CACHE)
503                 show_cacheinfo(m, "scache", c->scache);
504
505         seq_printf(m, "bogomips\t: %lu.%02lu\n",
506                      c->loops_per_jiffy/(500000/HZ),
507                      (c->loops_per_jiffy/(5000/HZ)) % 100);
508
509         return 0;
510 }
511
512 static void *c_start(struct seq_file *m, loff_t *pos)
513 {
514         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
515 }
516 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
517 {
518         ++*pos;
519         return c_start(m, pos);
520 }
521 static void c_stop(struct seq_file *m, void *v)
522 {
523 }
524 const struct seq_operations cpuinfo_op = {
525         .start  = c_start,
526         .next   = c_next,
527         .stop   = c_stop,
528         .show   = show_cpuinfo,
529 };
530 #endif /* CONFIG_PROC_FS */
531
532 struct dentry *sh_debugfs_root;
533
534 static int __init sh_debugfs_init(void)
535 {
536         sh_debugfs_root = debugfs_create_dir("sh", NULL);
537         if (IS_ERR(sh_debugfs_root))
538                 return PTR_ERR(sh_debugfs_root);
539
540         return 0;
541 }
542 arch_initcall(sh_debugfs_init);