1 #include <linux/errno.h>
2 #include <linux/signal.h>
3 #include <linux/sched.h>
4 #include <linux/ioport.h>
5 #include <linux/interrupt.h>
6 #include <linux/slab.h>
7 #include <linux/random.h>
8 #include <linux/init.h>
9 #include <linux/kernel_stat.h>
10 #include <linux/sysdev.h>
11 #include <linux/bitops.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
16 #include <asm/timer.h>
17 #include <asm/pgtable.h>
18 #include <asm/delay.h>
21 #include <asm/arch_hooks.h>
22 #include <asm/i8259.h>
25 * This is the 'legacy' 8259A Programmable Interrupt Controller,
26 * present in the majority of PC/AT boxes.
27 * plus some generic x86 specific things if generic specifics makes
31 static int i8259A_auto_eoi;
32 DEFINE_SPINLOCK(i8259A_lock);
33 static void mask_and_ack_8259A(unsigned int);
35 static struct irq_chip i8259A_chip = {
37 .mask = disable_8259A_irq,
38 .disable = disable_8259A_irq,
39 .unmask = enable_8259A_irq,
40 .mask_ack = mask_and_ack_8259A,
44 * 8259A PIC functions to handle ISA devices:
48 * This contains the irq mask for both 8259A irq controllers,
50 unsigned int cached_irq_mask = 0xffff;
53 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
54 * boards the timer interrupt is not really connected to any IO-APIC pin,
55 * it's fed to the master 8259A's IR0 line only.
57 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
58 * this 'mixed mode' IRQ handling costs nothing because it's only used
61 unsigned long io_apic_irqs;
63 void disable_8259A_irq(unsigned int irq)
65 unsigned int mask = 1 << irq;
68 spin_lock_irqsave(&i8259A_lock, flags);
69 cached_irq_mask |= mask;
71 outb(cached_slave_mask, PIC_SLAVE_IMR);
73 outb(cached_master_mask, PIC_MASTER_IMR);
74 spin_unlock_irqrestore(&i8259A_lock, flags);
77 void enable_8259A_irq(unsigned int irq)
79 unsigned int mask = ~(1 << irq);
82 spin_lock_irqsave(&i8259A_lock, flags);
83 cached_irq_mask &= mask;
85 outb(cached_slave_mask, PIC_SLAVE_IMR);
87 outb(cached_master_mask, PIC_MASTER_IMR);
88 spin_unlock_irqrestore(&i8259A_lock, flags);
91 int i8259A_irq_pending(unsigned int irq)
93 unsigned int mask = 1<<irq;
97 spin_lock_irqsave(&i8259A_lock, flags);
99 ret = inb(PIC_MASTER_CMD) & mask;
101 ret = inb(PIC_SLAVE_CMD) & (mask >> 8);
102 spin_unlock_irqrestore(&i8259A_lock, flags);
107 void make_8259A_irq(unsigned int irq)
109 disable_irq_nosync(irq);
110 io_apic_irqs &= ~(1<<irq);
111 set_irq_chip_and_handler_name(irq, &i8259A_chip, handle_level_irq,
117 * This function assumes to be called rarely. Switching between
118 * 8259A registers is slow.
119 * This has to be protected by the irq controller spinlock
120 * before being called.
122 static inline int i8259A_irq_real(unsigned int irq)
125 int irqmask = 1<<irq;
128 outb(0x0B,PIC_MASTER_CMD); /* ISR register */
129 value = inb(PIC_MASTER_CMD) & irqmask;
130 outb(0x0A,PIC_MASTER_CMD); /* back to the IRR register */
133 outb(0x0B,PIC_SLAVE_CMD); /* ISR register */
134 value = inb(PIC_SLAVE_CMD) & (irqmask >> 8);
135 outb(0x0A,PIC_SLAVE_CMD); /* back to the IRR register */
140 * Careful! The 8259A is a fragile beast, it pretty
141 * much _has_ to be done exactly like this (mask it
142 * first, _then_ send the EOI, and the order of EOI
143 * to the two 8259s is important!
145 static void mask_and_ack_8259A(unsigned int irq)
147 unsigned int irqmask = 1 << irq;
150 spin_lock_irqsave(&i8259A_lock, flags);
152 * Lightweight spurious IRQ detection. We do not want
153 * to overdo spurious IRQ handling - it's usually a sign
154 * of hardware problems, so we only do the checks we can
155 * do without slowing down good hardware unnecessarily.
157 * Note that IRQ7 and IRQ15 (the two spurious IRQs
158 * usually resulting from the 8259A-1|2 PICs) occur
159 * even if the IRQ is masked in the 8259A. Thus we
160 * can check spurious 8259A IRQs without doing the
161 * quite slow i8259A_irq_real() call for every IRQ.
162 * This does not cover 100% of spurious interrupts,
163 * but should be enough to warn the user that there
164 * is something bad going on ...
166 if (cached_irq_mask & irqmask)
167 goto spurious_8259A_irq;
168 cached_irq_mask |= irqmask;
172 inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */
173 outb(cached_slave_mask, PIC_SLAVE_IMR);
174 outb(0x60+(irq&7),PIC_SLAVE_CMD);/* 'Specific EOI' to slave */
175 outb(0x60+PIC_CASCADE_IR,PIC_MASTER_CMD); /* 'Specific EOI' to master-IRQ2 */
177 inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */
178 outb(cached_master_mask, PIC_MASTER_IMR);
179 outb(0x60+irq,PIC_MASTER_CMD); /* 'Specific EOI to master */
181 spin_unlock_irqrestore(&i8259A_lock, flags);
186 * this is the slow path - should happen rarely.
188 if (i8259A_irq_real(irq))
190 * oops, the IRQ _is_ in service according to the
191 * 8259A - not spurious, go handle it.
193 goto handle_real_irq;
196 static int spurious_irq_mask;
198 * At this point we can be sure the IRQ is spurious,
199 * lets ACK and report it. [once per IRQ]
201 if (!(spurious_irq_mask & irqmask)) {
202 printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
203 spurious_irq_mask |= irqmask;
205 atomic_inc(&irq_err_count);
207 * Theoretically we do not have to handle this IRQ,
208 * but in Linux this does not cause problems and is
211 goto handle_real_irq;
215 static char irq_trigger[2];
217 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
219 static void restore_ELCR(char *trigger)
221 outb(trigger[0], 0x4d0);
222 outb(trigger[1], 0x4d1);
225 static void save_ELCR(char *trigger)
227 /* IRQ 0,1,2,8,13 are marked as reserved */
228 trigger[0] = inb(0x4d0) & 0xF8;
229 trigger[1] = inb(0x4d1) & 0xDE;
232 static int i8259A_resume(struct sys_device *dev)
234 init_8259A(i8259A_auto_eoi);
235 restore_ELCR(irq_trigger);
239 static int i8259A_suspend(struct sys_device *dev, pm_message_t state)
241 save_ELCR(irq_trigger);
245 static int i8259A_shutdown(struct sys_device *dev)
247 /* Put the i8259A into a quiescent state that
248 * the kernel initialization code can get it
251 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
252 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-1 */
256 static struct sysdev_class i8259_sysdev_class = {
258 .suspend = i8259A_suspend,
259 .resume = i8259A_resume,
260 .shutdown = i8259A_shutdown,
263 static struct sys_device device_i8259A = {
265 .cls = &i8259_sysdev_class,
268 static int __init i8259A_init_sysfs(void)
270 int error = sysdev_class_register(&i8259_sysdev_class);
272 error = sysdev_register(&device_i8259A);
276 device_initcall(i8259A_init_sysfs);
278 void init_8259A(int auto_eoi)
282 i8259A_auto_eoi = auto_eoi;
284 spin_lock_irqsave(&i8259A_lock, flags);
286 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
287 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
290 * outb_pic - this has to work on a wide range of PC hardware.
292 outb_pic(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */
293 outb_pic(0x20 + 0, PIC_MASTER_IMR); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
294 outb_pic(1U << PIC_CASCADE_IR, PIC_MASTER_IMR); /* 8259A-1 (the master) has a slave on IR2 */
295 if (auto_eoi) /* master does Auto EOI */
296 outb_pic(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR);
297 else /* master expects normal EOI */
298 outb_pic(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR);
300 outb_pic(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */
301 outb_pic(0x20 + 8, PIC_SLAVE_IMR); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
302 outb_pic(PIC_CASCADE_IR, PIC_SLAVE_IMR); /* 8259A-2 is a slave on master's IR2 */
303 outb_pic(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR); /* (slave's support for AEOI in flat mode is to be investigated) */
306 * In AEOI mode we just have to mask the interrupt
309 i8259A_chip.mask_ack = disable_8259A_irq;
311 i8259A_chip.mask_ack = mask_and_ack_8259A;
313 udelay(100); /* wait for 8259A to initialize */
315 outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
316 outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
318 spin_unlock_irqrestore(&i8259A_lock, flags);
322 * Note that on a 486, we don't want to do a SIGFPE on an irq13
323 * as the irq is unreliable, and exception 16 works correctly
324 * (ie as explained in the intel literature). On a 386, you
325 * can't use exception 16 due to bad IBM design, so we have to
326 * rely on the less exact irq13.
328 * Careful.. Not only is IRQ13 unreliable, but it is also
329 * leads to races. IBM designers who came up with it should
334 static irqreturn_t math_error_irq(int cpl, void *dev_id)
336 extern void math_error(void __user *);
338 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
340 math_error((void __user *)get_irq_regs()->ip);
345 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
346 * so allow interrupt sharing.
348 static struct irqaction fpu_irq = {
349 .handler = math_error_irq,
350 .mask = CPU_MASK_NONE,
354 void __init init_ISA_irqs (void)
358 #ifdef CONFIG_X86_LOCAL_APIC
364 * 16 old-style INTA-cycle interrupts:
366 for (i = 0; i < 16; i++) {
367 set_irq_chip_and_handler_name(i, &i8259A_chip,
368 handle_level_irq, "XT");
372 /* Overridden in paravirt.c */
373 void init_IRQ(void) __attribute__((weak, alias("native_init_IRQ")));
375 void __init native_init_IRQ(void)
379 /* all the set up before the call gates are initialised */
380 pre_intr_init_hook();
383 * Cover the whole vector space, no vector can escape
384 * us. (some of these will be overridden and become
385 * 'special' SMP interrupts)
387 for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
388 int vector = FIRST_EXTERNAL_VECTOR + i;
391 /* SYSCALL_VECTOR was reserved in trap_init. */
392 if (!test_bit(vector, used_vectors))
393 set_intr_gate(vector, interrupt[i]);
396 /* setup after call gates are initialised (usually add in
397 * the architecture specific gates)
402 * External FPU? Set up irq13 if so, for
403 * original braindamaged IBM FERR coupling.
405 if (boot_cpu_data.hard_math && !cpu_has_fpu)
406 setup_irq(FPU_IRQ, &fpu_irq);
408 irq_ctx_init(smp_processor_id());