2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
33 #include <asm/pgtable.h>
34 #include <asm/kdebug.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
86 unsigned long kprobe_inst,
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
92 /* Check for Break instruction
93 * Bits 37:40 Major opcode to be zero
94 * Bits 27:32 X6 to be zero
95 * Bits 32:35 X3 to be zero
97 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98 /* is a break instruction */
99 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 if (bundle_encoding[template][slot] == B) {
104 switch (major_opcode) {
105 case INDIRECT_CALL_OPCODE:
106 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 case IP_RELATIVE_PREDICT_OPCODE:
110 case IP_RELATIVE_BRANCH_OPCODE:
111 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 case IP_RELATIVE_CALL_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119 } else if (bundle_encoding[template][slot] == X) {
120 switch (major_opcode) {
121 case LONG_CALL_OPCODE:
122 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
131 * In this function we check to see if the instruction
132 * on which we are inserting kprobe is supported.
133 * Returns 0 if supported
134 * Returns -EINVAL if unsupported
136 static int __kprobes unsupported_inst(uint template, uint slot,
138 unsigned long kprobe_inst,
141 if (bundle_encoding[template][slot] == I) {
142 switch (major_opcode) {
143 case 0x0: //I_UNIT_MISC_OPCODE:
145 * Check for Integer speculation instruction
146 * - Bit 33-35 to be equal to 0x1
148 if (((kprobe_inst >> 33) & 0x7) == 1) {
150 "Kprobes on speculation inst at <0x%lx> not supported\n",
156 * IP relative mov instruction
157 * - Bit 27-35 to be equal to 0x30
159 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
161 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
173 * In this function we check to see if the instruction
174 * (qp) cmpx.crel.ctype p1,p2=r2,r3
175 * on which we are inserting kprobe is cmp instruction
178 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
180 unsigned long kprobe_inst)
185 if (!((bundle_encoding[template][slot] == I) ||
186 (bundle_encoding[template][slot] == M)))
189 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
190 (major_opcode == 0xE)))
193 cmp_inst.l = kprobe_inst;
194 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
195 /* Integere compare - Register Register (A6 type)*/
196 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
197 &&(cmp_inst.f.c == 1))
199 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
200 /* Integere compare - Immediate Register (A8 type)*/
201 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
209 * In this function we override the bundle with
210 * the break instruction at the given slot.
212 static void __kprobes prepare_break_inst(uint template, uint slot,
214 unsigned long kprobe_inst,
217 unsigned long break_inst = BREAK_INST;
218 bundle_t *bundle = &p->opcode.bundle;
221 * Copy the original kprobe_inst qualifying predicate(qp)
222 * to the break instruction iff !is_cmp_ctype_unc_inst
223 * because for cmp instruction with ctype equal to unc,
224 * which is a special instruction always needs to be
225 * executed regradless of qp
227 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
228 break_inst |= (0x3f & kprobe_inst);
232 bundle->quad0.slot0 = break_inst;
235 bundle->quad0.slot1_p0 = break_inst;
236 bundle->quad1.slot1_p1 = break_inst >> (64-46);
239 bundle->quad1.slot2 = break_inst;
244 * Update the instruction flag, so that we can
245 * emulate the instruction properly after we
246 * single step on original instruction
248 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
251 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
252 unsigned long *kprobe_inst, uint *major_opcode)
254 unsigned long kprobe_inst_p0, kprobe_inst_p1;
255 unsigned int template;
257 template = bundle->quad0.template;
261 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
262 *kprobe_inst = bundle->quad0.slot0;
265 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
266 kprobe_inst_p0 = bundle->quad0.slot1_p0;
267 kprobe_inst_p1 = bundle->quad1.slot1_p1;
268 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
272 *kprobe_inst = bundle->quad1.slot2;
277 /* Returns non-zero if the addr is in the Interrupt Vector Table */
278 static int __kprobes in_ivt_functions(unsigned long addr)
280 return (addr >= (unsigned long)__start_ivt_text
281 && addr < (unsigned long)__end_ivt_text);
284 static int __kprobes valid_kprobe_addr(int template, int slot,
287 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
288 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
293 if (in_ivt_functions(addr)) {
294 printk(KERN_WARNING "Kprobes can't be inserted inside "
295 "IVT functions at 0x%lx\n", addr);
299 if (slot == 1 && bundle_encoding[template][1] != L) {
300 printk(KERN_WARNING "Inserting kprobes on slot #1 "
301 "is not supported\n");
308 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
310 kcb->prev_kprobe.kp = kprobe_running();
311 kcb->prev_kprobe.status = kcb->kprobe_status;
314 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
316 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
317 kcb->kprobe_status = kcb->prev_kprobe.status;
320 static void __kprobes set_current_kprobe(struct kprobe *p,
321 struct kprobe_ctlblk *kcb)
323 __get_cpu_var(current_kprobe) = p;
326 static void kretprobe_trampoline(void)
331 * At this point the target function has been tricked into
332 * returning into our trampoline. Lookup the associated instance
334 * - call the handler function
335 * - cleanup by marking the instance as unused
336 * - long jump back to the original return address
338 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
340 struct kretprobe_instance *ri = NULL;
341 struct hlist_head *head;
342 struct hlist_node *node, *tmp;
343 unsigned long flags, orig_ret_address = 0;
344 unsigned long trampoline_address =
345 ((struct fnptr *)kretprobe_trampoline)->ip;
347 spin_lock_irqsave(&kretprobe_lock, flags);
348 head = kretprobe_inst_table_head(current);
351 * It is possible to have multiple instances associated with a given
352 * task either because an multiple functions in the call path
353 * have a return probe installed on them, and/or more then one return
354 * return probe was registered for a target function.
356 * We can handle this because:
357 * - instances are always inserted at the head of the list
358 * - when multiple return probes are registered for the same
359 * function, the first instance's ret_addr will point to the
360 * real return address, and all the rest will point to
361 * kretprobe_trampoline
363 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
364 if (ri->task != current)
365 /* another task is sharing our hash bucket */
368 if (ri->rp && ri->rp->handler)
369 ri->rp->handler(ri, regs);
371 orig_ret_address = (unsigned long)ri->ret_addr;
374 if (orig_ret_address != trampoline_address)
376 * This is the real return address. Any other
377 * instances associated with this task are for
378 * other calls deeper on the call stack
383 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
384 regs->cr_iip = orig_ret_address;
386 reset_current_kprobe();
387 spin_unlock_irqrestore(&kretprobe_lock, flags);
388 preempt_enable_no_resched();
391 * By returning a non-zero value, we are telling
392 * kprobe_handler() that we don't want the post_handler
393 * to run (and have re-enabled preemption)
398 /* Called with kretprobe_lock held */
399 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
400 struct pt_regs *regs)
402 struct kretprobe_instance *ri;
404 if ((ri = get_free_rp_inst(rp)) != NULL) {
407 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
409 /* Replace the return addr with trampoline addr */
410 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
418 int __kprobes arch_prepare_kprobe(struct kprobe *p)
420 unsigned long addr = (unsigned long) p->addr;
421 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
422 unsigned long kprobe_inst=0;
423 unsigned int slot = addr & 0xf, template, major_opcode = 0;
426 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
427 template = bundle->quad0.template;
429 if(valid_kprobe_addr(template, slot, addr))
432 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
433 if (slot == 1 && bundle_encoding[template][1] == L)
436 /* Get kprobe_inst and major_opcode from the bundle */
437 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
439 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, addr))
443 p->ainsn.insn = get_insn_slot();
446 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
447 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
449 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
454 void __kprobes arch_arm_kprobe(struct kprobe *p)
456 unsigned long addr = (unsigned long)p->addr;
457 unsigned long arm_addr = addr & ~0xFULL;
459 flush_icache_range((unsigned long)p->ainsn.insn,
460 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
461 memcpy((char *)arm_addr, &p->opcode, sizeof(kprobe_opcode_t));
462 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
465 void __kprobes arch_disarm_kprobe(struct kprobe *p)
467 unsigned long addr = (unsigned long)p->addr;
468 unsigned long arm_addr = addr & ~0xFULL;
470 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
471 memcpy((char *) arm_addr, (char *) p->ainsn.insn,
472 sizeof(kprobe_opcode_t));
473 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
476 void __kprobes arch_remove_kprobe(struct kprobe *p)
478 mutex_lock(&kprobe_mutex);
479 free_insn_slot(p->ainsn.insn);
480 mutex_unlock(&kprobe_mutex);
483 * We are resuming execution after a single step fault, so the pt_regs
484 * structure reflects the register state after we executed the instruction
485 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
486 * the ip to point back to the original stack address. To set the IP address
487 * to original stack address, handle the case where we need to fixup the
488 * relative IP address and/or fixup branch register.
490 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
492 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
493 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
494 unsigned long template;
495 int slot = ((unsigned long)p->addr & 0xf);
497 template = p->ainsn.insn->bundle.quad0.template;
499 if (slot == 1 && bundle_encoding[template][1] == L)
502 if (p->ainsn.inst_flag) {
504 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
505 /* Fix relative IP address */
506 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
509 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
511 * Fix target branch register, software convention is
512 * to use either b0 or b6 or b7, so just checking
513 * only those registers
515 switch (p->ainsn.target_br_reg) {
517 if ((regs->b0 == bundle_addr) ||
518 (regs->b0 == bundle_addr + 0x10)) {
519 regs->b0 = (regs->b0 - bundle_addr) +
524 if ((regs->b6 == bundle_addr) ||
525 (regs->b6 == bundle_addr + 0x10)) {
526 regs->b6 = (regs->b6 - bundle_addr) +
531 if ((regs->b7 == bundle_addr) ||
532 (regs->b7 == bundle_addr + 0x10)) {
533 regs->b7 = (regs->b7 - bundle_addr) +
543 if (regs->cr_iip == bundle_addr + 0x10) {
544 regs->cr_iip = resume_addr + 0x10;
547 if (regs->cr_iip == bundle_addr) {
548 regs->cr_iip = resume_addr;
553 /* Turn off Single Step bit */
554 ia64_psr(regs)->ss = 0;
557 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
559 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
560 unsigned long slot = (unsigned long)p->addr & 0xf;
562 /* single step inline if break instruction */
563 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
564 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
566 regs->cr_iip = bundle_addr & ~0xFULL;
571 ia64_psr(regs)->ri = slot;
573 /* turn on single stepping */
574 ia64_psr(regs)->ss = 1;
577 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
579 unsigned int slot = ia64_psr(regs)->ri;
580 unsigned int template, major_opcode;
581 unsigned long kprobe_inst;
582 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
585 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
586 template = bundle.quad0.template;
588 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
589 if (slot == 1 && bundle_encoding[template][1] == L)
592 /* Get Kprobe probe instruction at given slot*/
593 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
595 /* For break instruction,
596 * Bits 37:40 Major opcode to be zero
597 * Bits 27:32 X6 to be zero
598 * Bits 32:35 X3 to be zero
600 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
601 /* Not a break instruction */
605 /* Is a break instruction */
609 static int __kprobes pre_kprobes_handler(struct die_args *args)
613 struct pt_regs *regs = args->regs;
614 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
615 struct kprobe_ctlblk *kcb;
618 * We don't want to be preempted for the entire
619 * duration of kprobe processing
622 kcb = get_kprobe_ctlblk();
624 /* Handle recursion cases */
625 if (kprobe_running()) {
626 p = get_kprobe(addr);
628 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
629 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
630 ia64_psr(regs)->ss = 0;
633 /* We have reentered the pre_kprobe_handler(), since
634 * another probe was hit while within the handler.
635 * We here save the original kprobes variables and
636 * just single step on the instruction of the new probe
637 * without calling any user handlers.
639 save_previous_kprobe(kcb);
640 set_current_kprobe(p, kcb);
641 kprobes_inc_nmissed_count(p);
643 kcb->kprobe_status = KPROBE_REENTER;
645 } else if (args->err == __IA64_BREAK_JPROBE) {
647 * jprobe instrumented function just completed
649 p = __get_cpu_var(current_kprobe);
650 if (p->break_handler && p->break_handler(p, regs)) {
653 } else if (!is_ia64_break_inst(regs)) {
654 /* The breakpoint instruction was removed by
655 * another cpu right after we hit, no further
656 * handling of this interrupt is appropriate
666 p = get_kprobe(addr);
668 if (!is_ia64_break_inst(regs)) {
670 * The breakpoint instruction was removed right
671 * after we hit it. Another cpu has removed
672 * either a probepoint or a debugger breakpoint
673 * at this address. In either case, no further
674 * handling of this interrupt is appropriate.
680 /* Not one of our break, let kernel handle it */
684 set_current_kprobe(p, kcb);
685 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
687 if (p->pre_handler && p->pre_handler(p, regs))
689 * Our pre-handler is specifically requesting that we just
690 * do a return. This is used for both the jprobe pre-handler
691 * and the kretprobe trampoline
697 kcb->kprobe_status = KPROBE_HIT_SS;
701 preempt_enable_no_resched();
705 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
707 struct kprobe *cur = kprobe_running();
708 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
713 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
714 kcb->kprobe_status = KPROBE_HIT_SSDONE;
715 cur->post_handler(cur, regs, 0);
718 resume_execution(cur, regs);
720 /*Restore back the original saved kprobes variables and continue. */
721 if (kcb->kprobe_status == KPROBE_REENTER) {
722 restore_previous_kprobe(kcb);
725 reset_current_kprobe();
728 preempt_enable_no_resched();
732 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
734 struct kprobe *cur = kprobe_running();
735 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
738 switch(kcb->kprobe_status) {
742 * We are here because the instruction being single
743 * stepped caused a page fault. We reset the current
744 * kprobe and the instruction pointer points back to
745 * the probe address and allow the page fault handler
746 * to continue as a normal page fault.
748 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
749 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
750 if (kcb->kprobe_status == KPROBE_REENTER)
751 restore_previous_kprobe(kcb);
753 reset_current_kprobe();
754 preempt_enable_no_resched();
756 case KPROBE_HIT_ACTIVE:
757 case KPROBE_HIT_SSDONE:
759 * We increment the nmissed count for accounting,
760 * we can also use npre/npostfault count for accouting
761 * these specific fault cases.
763 kprobes_inc_nmissed_count(cur);
766 * We come here because instructions in the pre/post
767 * handler caused the page_fault, this could happen
768 * if handler tries to access user space by
769 * copy_from_user(), get_user() etc. Let the
770 * user-specified handler try to fix it first.
772 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
775 * In case the user-specified fault handler returned
776 * zero, try to fix up.
778 if (ia64_done_with_exception(regs))
782 * Let ia64_do_page_fault() fix it.
792 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
793 unsigned long val, void *data)
795 struct die_args *args = (struct die_args *)data;
796 int ret = NOTIFY_DONE;
798 if (args->regs && user_mode(args->regs))
803 /* err is break number from ia64_bad_break() */
804 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
805 if (pre_kprobes_handler(args))
809 /* err is vector number from ia64_fault() */
811 if (post_kprobes_handler(args->regs))
815 /* kprobe_running() needs smp_processor_id() */
817 if (kprobe_running() &&
818 kprobes_fault_handler(args->regs, args->trapnr))
827 struct param_bsp_cfm {
833 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
836 struct param_bsp_cfm *lp = arg;
839 unw_get_ip(info, &ip);
843 unw_get_bsp(info, (unsigned long*)&lp->bsp);
844 unw_get_cfm(info, (unsigned long*)&lp->cfm);
847 } while (unw_unwind(info) >= 0);
853 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
855 struct jprobe *jp = container_of(p, struct jprobe, kp);
856 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
857 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
858 struct param_bsp_cfm pa;
862 * Callee owns the argument space and could overwrite it, eg
863 * tail call optimization. So to be absolutely safe
864 * we save the argument space before transfering the control
865 * to instrumented jprobe function which runs in
866 * the process context
868 pa.ip = regs->cr_iip;
869 unw_init_running(ia64_get_bsp_cfm, &pa);
870 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
872 memcpy( kcb->jprobes_saved_stacked_regs,
878 /* save architectural state */
879 kcb->jprobe_saved_regs = *regs;
881 /* after rfi, execute the jprobe instrumented function */
882 regs->cr_iip = addr & ~0xFULL;
883 ia64_psr(regs)->ri = addr & 0xf;
884 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
887 * fix the return address to our jprobe_inst_return() function
888 * in the jprobes.S file
890 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
895 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
897 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
900 /* restoring architectural state */
901 *regs = kcb->jprobe_saved_regs;
903 /* restoring the original argument space */
904 flush_register_stack();
905 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
908 kcb->jprobes_saved_stacked_regs,
910 invalidate_stacked_regs();
912 preempt_enable_no_resched();
916 static struct kprobe trampoline_p = {
917 .pre_handler = trampoline_probe_handler
920 int __init arch_init_kprobes(void)
923 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
924 return register_kprobe(&trampoline_p);