Merge branch 'irq-fixes-for-linus-4' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / drivers / net / e1000 / e1000_hw.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* e1000_hw.c
30  * Shared functions for accessing and configuring the MAC
31  */
32
33
34 #include "e1000_hw.h"
35
36 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
37 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
38 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
39 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
40 static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
41 static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
43 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
44 static s32 e1000_check_downshift(struct e1000_hw *hw);
45 static s32 e1000_check_polarity(struct e1000_hw *hw,
46                                 e1000_rev_polarity *polarity);
47 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
48 static void e1000_clear_vfta(struct e1000_hw *hw);
49 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
50 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
51                                               bool link_up);
52 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
53 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
54 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
55 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
56 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
57                                   u16 *max_length);
58 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
59 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
60 static s32 e1000_get_software_flag(struct e1000_hw *hw);
61 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
62 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
63 static s32 e1000_id_led_init(struct e1000_hw *hw);
64 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
65                                                  u32 cnf_base_addr,
66                                                  u32 cnf_size);
67 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
68 static void e1000_init_rx_addrs(struct e1000_hw *hw);
69 static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
70 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
71 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
72 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
73 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
74                                    u16 offset, u8 *sum);
75 static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw,
76                                       struct e1000_host_mng_command_header
77                                       *hdr);
78 static s32 e1000_mng_write_commit(struct e1000_hw *hw);
79 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
80                                   struct e1000_phy_info *phy_info);
81 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
82                                   struct e1000_phy_info *phy_info);
83 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
84                                   u16 *data);
85 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
86                                    u16 *data);
87 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
88 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
89                                   struct e1000_phy_info *phy_info);
90 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
91 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
92 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index,
93                                         u8 byte);
94 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
95 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
96 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
97                                 u16 *data);
98 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
99                                  u16 data);
100 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
101                                   u16 *data);
102 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
103                                    u16 *data);
104 static void e1000_release_software_flag(struct e1000_hw *hw);
105 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
106 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
107 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
108 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
109 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
110 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
111 static s32 e1000_set_phy_type(struct e1000_hw *hw);
112 static void e1000_phy_init_script(struct e1000_hw *hw);
113 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
114 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
115 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
116 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
117 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
118 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
119 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
120 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
121                                      u16 count);
122 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
123 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
124 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
125                                       u16 words, u16 *data);
126 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
127                                         u16 words, u16 *data);
128 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
129 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
130 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
131 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
132 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
133                                   u16 phy_data);
134 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
135                                  u16 *phy_data);
136 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
137 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
138 static void e1000_release_eeprom(struct e1000_hw *hw);
139 static void e1000_standby_eeprom(struct e1000_hw *hw);
140 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
141 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
142 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
143 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
144 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
145 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex);
146 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
147 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
148 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
149
150 /* IGP cable length table */
151 static const
152 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
153     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
154       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
155       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
156       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
157       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
158       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
159       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
160       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
161
162 static const
163 u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
164     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
165       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
166       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
167       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
168       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
169       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
170       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
171       104, 109, 114, 118, 121, 124};
172
173 static DEFINE_SPINLOCK(e1000_eeprom_lock);
174
175 /******************************************************************************
176  * Set the phy type member in the hw struct.
177  *
178  * hw - Struct containing variables accessed by shared code
179  *****************************************************************************/
180 static s32 e1000_set_phy_type(struct e1000_hw *hw)
181 {
182     DEBUGFUNC("e1000_set_phy_type");
183
184     if (hw->mac_type == e1000_undefined)
185         return -E1000_ERR_PHY_TYPE;
186
187     switch (hw->phy_id) {
188     case M88E1000_E_PHY_ID:
189     case M88E1000_I_PHY_ID:
190     case M88E1011_I_PHY_ID:
191     case M88E1111_I_PHY_ID:
192         hw->phy_type = e1000_phy_m88;
193         break;
194     case IGP01E1000_I_PHY_ID:
195         if (hw->mac_type == e1000_82541 ||
196             hw->mac_type == e1000_82541_rev_2 ||
197             hw->mac_type == e1000_82547 ||
198             hw->mac_type == e1000_82547_rev_2) {
199             hw->phy_type = e1000_phy_igp;
200             break;
201         }
202     case IGP03E1000_E_PHY_ID:
203         hw->phy_type = e1000_phy_igp_3;
204         break;
205     case IFE_E_PHY_ID:
206     case IFE_PLUS_E_PHY_ID:
207     case IFE_C_E_PHY_ID:
208         hw->phy_type = e1000_phy_ife;
209         break;
210     case GG82563_E_PHY_ID:
211         if (hw->mac_type == e1000_80003es2lan) {
212             hw->phy_type = e1000_phy_gg82563;
213             break;
214         }
215         /* Fall Through */
216     default:
217         /* Should never have loaded on this device */
218         hw->phy_type = e1000_phy_undefined;
219         return -E1000_ERR_PHY_TYPE;
220     }
221
222     return E1000_SUCCESS;
223 }
224
225 /******************************************************************************
226  * IGP phy init script - initializes the GbE PHY
227  *
228  * hw - Struct containing variables accessed by shared code
229  *****************************************************************************/
230 static void e1000_phy_init_script(struct e1000_hw *hw)
231 {
232     u32 ret_val;
233     u16 phy_saved_data;
234
235     DEBUGFUNC("e1000_phy_init_script");
236
237     if (hw->phy_init_script) {
238         msleep(20);
239
240         /* Save off the current value of register 0x2F5B to be restored at
241          * the end of this routine. */
242         ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
243
244         /* Disabled the PHY transmitter */
245         e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
246
247         msleep(20);
248
249         e1000_write_phy_reg(hw,0x0000,0x0140);
250
251         msleep(5);
252
253         switch (hw->mac_type) {
254         case e1000_82541:
255         case e1000_82547:
256             e1000_write_phy_reg(hw, 0x1F95, 0x0001);
257
258             e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
259
260             e1000_write_phy_reg(hw, 0x1F79, 0x0018);
261
262             e1000_write_phy_reg(hw, 0x1F30, 0x1600);
263
264             e1000_write_phy_reg(hw, 0x1F31, 0x0014);
265
266             e1000_write_phy_reg(hw, 0x1F32, 0x161C);
267
268             e1000_write_phy_reg(hw, 0x1F94, 0x0003);
269
270             e1000_write_phy_reg(hw, 0x1F96, 0x003F);
271
272             e1000_write_phy_reg(hw, 0x2010, 0x0008);
273             break;
274
275         case e1000_82541_rev_2:
276         case e1000_82547_rev_2:
277             e1000_write_phy_reg(hw, 0x1F73, 0x0099);
278             break;
279         default:
280             break;
281         }
282
283         e1000_write_phy_reg(hw, 0x0000, 0x3300);
284
285         msleep(20);
286
287         /* Now enable the transmitter */
288         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
289
290         if (hw->mac_type == e1000_82547) {
291             u16 fused, fine, coarse;
292
293             /* Move to analog registers page */
294             e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
295
296             if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
297                 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
298
299                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
300                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
301
302                 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
303                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
304                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
305                 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
306                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
307
308                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
309                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
310                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
311
312                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
313                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
314                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
315             }
316         }
317     }
318 }
319
320 /******************************************************************************
321  * Set the mac type member in the hw struct.
322  *
323  * hw - Struct containing variables accessed by shared code
324  *****************************************************************************/
325 s32 e1000_set_mac_type(struct e1000_hw *hw)
326 {
327         DEBUGFUNC("e1000_set_mac_type");
328
329         switch (hw->device_id) {
330         case E1000_DEV_ID_82542:
331                 switch (hw->revision_id) {
332                 case E1000_82542_2_0_REV_ID:
333                         hw->mac_type = e1000_82542_rev2_0;
334                         break;
335                 case E1000_82542_2_1_REV_ID:
336                         hw->mac_type = e1000_82542_rev2_1;
337                         break;
338                 default:
339                         /* Invalid 82542 revision ID */
340                         return -E1000_ERR_MAC_TYPE;
341                 }
342                 break;
343         case E1000_DEV_ID_82543GC_FIBER:
344         case E1000_DEV_ID_82543GC_COPPER:
345                 hw->mac_type = e1000_82543;
346                 break;
347         case E1000_DEV_ID_82544EI_COPPER:
348         case E1000_DEV_ID_82544EI_FIBER:
349         case E1000_DEV_ID_82544GC_COPPER:
350         case E1000_DEV_ID_82544GC_LOM:
351                 hw->mac_type = e1000_82544;
352                 break;
353         case E1000_DEV_ID_82540EM:
354         case E1000_DEV_ID_82540EM_LOM:
355         case E1000_DEV_ID_82540EP:
356         case E1000_DEV_ID_82540EP_LOM:
357         case E1000_DEV_ID_82540EP_LP:
358                 hw->mac_type = e1000_82540;
359                 break;
360         case E1000_DEV_ID_82545EM_COPPER:
361         case E1000_DEV_ID_82545EM_FIBER:
362                 hw->mac_type = e1000_82545;
363                 break;
364         case E1000_DEV_ID_82545GM_COPPER:
365         case E1000_DEV_ID_82545GM_FIBER:
366         case E1000_DEV_ID_82545GM_SERDES:
367                 hw->mac_type = e1000_82545_rev_3;
368                 break;
369         case E1000_DEV_ID_82546EB_COPPER:
370         case E1000_DEV_ID_82546EB_FIBER:
371         case E1000_DEV_ID_82546EB_QUAD_COPPER:
372                 hw->mac_type = e1000_82546;
373                 break;
374         case E1000_DEV_ID_82546GB_COPPER:
375         case E1000_DEV_ID_82546GB_FIBER:
376         case E1000_DEV_ID_82546GB_SERDES:
377         case E1000_DEV_ID_82546GB_PCIE:
378         case E1000_DEV_ID_82546GB_QUAD_COPPER:
379         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
380                 hw->mac_type = e1000_82546_rev_3;
381                 break;
382         case E1000_DEV_ID_82541EI:
383         case E1000_DEV_ID_82541EI_MOBILE:
384         case E1000_DEV_ID_82541ER_LOM:
385                 hw->mac_type = e1000_82541;
386                 break;
387         case E1000_DEV_ID_82541ER:
388         case E1000_DEV_ID_82541GI:
389         case E1000_DEV_ID_82541GI_LF:
390         case E1000_DEV_ID_82541GI_MOBILE:
391                 hw->mac_type = e1000_82541_rev_2;
392                 break;
393         case E1000_DEV_ID_82547EI:
394         case E1000_DEV_ID_82547EI_MOBILE:
395                 hw->mac_type = e1000_82547;
396                 break;
397         case E1000_DEV_ID_82547GI:
398                 hw->mac_type = e1000_82547_rev_2;
399                 break;
400         case E1000_DEV_ID_82571EB_COPPER:
401         case E1000_DEV_ID_82571EB_FIBER:
402         case E1000_DEV_ID_82571EB_SERDES:
403         case E1000_DEV_ID_82571EB_SERDES_DUAL:
404         case E1000_DEV_ID_82571EB_SERDES_QUAD:
405         case E1000_DEV_ID_82571EB_QUAD_COPPER:
406         case E1000_DEV_ID_82571PT_QUAD_COPPER:
407         case E1000_DEV_ID_82571EB_QUAD_FIBER:
408         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
409                 hw->mac_type = e1000_82571;
410                 break;
411         case E1000_DEV_ID_82572EI_COPPER:
412         case E1000_DEV_ID_82572EI_FIBER:
413         case E1000_DEV_ID_82572EI_SERDES:
414         case E1000_DEV_ID_82572EI:
415                 hw->mac_type = e1000_82572;
416                 break;
417         case E1000_DEV_ID_82573E:
418         case E1000_DEV_ID_82573E_IAMT:
419         case E1000_DEV_ID_82573L:
420                 hw->mac_type = e1000_82573;
421                 break;
422         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
423         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
424         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
425         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
426                 hw->mac_type = e1000_80003es2lan;
427                 break;
428         case E1000_DEV_ID_ICH8_IGP_M_AMT:
429         case E1000_DEV_ID_ICH8_IGP_AMT:
430         case E1000_DEV_ID_ICH8_IGP_C:
431         case E1000_DEV_ID_ICH8_IFE:
432         case E1000_DEV_ID_ICH8_IFE_GT:
433         case E1000_DEV_ID_ICH8_IFE_G:
434         case E1000_DEV_ID_ICH8_IGP_M:
435                 hw->mac_type = e1000_ich8lan;
436                 break;
437         default:
438                 /* Should never have loaded on this device */
439                 return -E1000_ERR_MAC_TYPE;
440         }
441
442         switch (hw->mac_type) {
443         case e1000_ich8lan:
444                 hw->swfwhw_semaphore_present = true;
445                 hw->asf_firmware_present = true;
446                 break;
447         case e1000_80003es2lan:
448                 hw->swfw_sync_present = true;
449                 /* fall through */
450         case e1000_82571:
451         case e1000_82572:
452         case e1000_82573:
453                 hw->eeprom_semaphore_present = true;
454                 /* fall through */
455         case e1000_82541:
456         case e1000_82547:
457         case e1000_82541_rev_2:
458         case e1000_82547_rev_2:
459                 hw->asf_firmware_present = true;
460                 break;
461         default:
462                 break;
463         }
464
465         /* The 82543 chip does not count tx_carrier_errors properly in
466          * FD mode
467          */
468         if (hw->mac_type == e1000_82543)
469                 hw->bad_tx_carr_stats_fd = true;
470
471         /* capable of receiving management packets to the host */
472         if (hw->mac_type >= e1000_82571)
473                 hw->has_manc2h = true;
474
475         /* In rare occasions, ESB2 systems would end up started without
476          * the RX unit being turned on.
477          */
478         if (hw->mac_type == e1000_80003es2lan)
479                 hw->rx_needs_kicking = true;
480
481         if (hw->mac_type > e1000_82544)
482                 hw->has_smbus = true;
483
484         return E1000_SUCCESS;
485 }
486
487 /*****************************************************************************
488  * Set media type and TBI compatibility.
489  *
490  * hw - Struct containing variables accessed by shared code
491  * **************************************************************************/
492 void e1000_set_media_type(struct e1000_hw *hw)
493 {
494     u32 status;
495
496     DEBUGFUNC("e1000_set_media_type");
497
498     if (hw->mac_type != e1000_82543) {
499         /* tbi_compatibility is only valid on 82543 */
500         hw->tbi_compatibility_en = false;
501     }
502
503     switch (hw->device_id) {
504     case E1000_DEV_ID_82545GM_SERDES:
505     case E1000_DEV_ID_82546GB_SERDES:
506     case E1000_DEV_ID_82571EB_SERDES:
507     case E1000_DEV_ID_82571EB_SERDES_DUAL:
508     case E1000_DEV_ID_82571EB_SERDES_QUAD:
509     case E1000_DEV_ID_82572EI_SERDES:
510     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
511         hw->media_type = e1000_media_type_internal_serdes;
512         break;
513     default:
514         switch (hw->mac_type) {
515         case e1000_82542_rev2_0:
516         case e1000_82542_rev2_1:
517             hw->media_type = e1000_media_type_fiber;
518             break;
519         case e1000_ich8lan:
520         case e1000_82573:
521             /* The STATUS_TBIMODE bit is reserved or reused for the this
522              * device.
523              */
524             hw->media_type = e1000_media_type_copper;
525             break;
526         default:
527             status = er32(STATUS);
528             if (status & E1000_STATUS_TBIMODE) {
529                 hw->media_type = e1000_media_type_fiber;
530                 /* tbi_compatibility not valid on fiber */
531                 hw->tbi_compatibility_en = false;
532             } else {
533                 hw->media_type = e1000_media_type_copper;
534             }
535             break;
536         }
537     }
538 }
539
540 /******************************************************************************
541  * Reset the transmit and receive units; mask and clear all interrupts.
542  *
543  * hw - Struct containing variables accessed by shared code
544  *****************************************************************************/
545 s32 e1000_reset_hw(struct e1000_hw *hw)
546 {
547     u32 ctrl;
548     u32 ctrl_ext;
549     u32 icr;
550     u32 manc;
551     u32 led_ctrl;
552     u32 timeout;
553     u32 extcnf_ctrl;
554     s32 ret_val;
555
556     DEBUGFUNC("e1000_reset_hw");
557
558     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
559     if (hw->mac_type == e1000_82542_rev2_0) {
560         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
561         e1000_pci_clear_mwi(hw);
562     }
563
564     if (hw->bus_type == e1000_bus_type_pci_express) {
565         /* Prevent the PCI-E bus from sticking if there is no TLP connection
566          * on the last TLP read/write transaction when MAC is reset.
567          */
568         if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
569             DEBUGOUT("PCI-E Master disable polling has failed.\n");
570         }
571     }
572
573     /* Clear interrupt mask to stop board from generating interrupts */
574     DEBUGOUT("Masking off all interrupts\n");
575     ew32(IMC, 0xffffffff);
576
577     /* Disable the Transmit and Receive units.  Then delay to allow
578      * any pending transactions to complete before we hit the MAC with
579      * the global reset.
580      */
581     ew32(RCTL, 0);
582     ew32(TCTL, E1000_TCTL_PSP);
583     E1000_WRITE_FLUSH();
584
585     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
586     hw->tbi_compatibility_on = false;
587
588     /* Delay to allow any outstanding PCI transactions to complete before
589      * resetting the device
590      */
591     msleep(10);
592
593     ctrl = er32(CTRL);
594
595     /* Must reset the PHY before resetting the MAC */
596     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
597         ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
598         msleep(5);
599     }
600
601     /* Must acquire the MDIO ownership before MAC reset.
602      * Ownership defaults to firmware after a reset. */
603     if (hw->mac_type == e1000_82573) {
604         timeout = 10;
605
606         extcnf_ctrl = er32(EXTCNF_CTRL);
607         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
608
609         do {
610             ew32(EXTCNF_CTRL, extcnf_ctrl);
611             extcnf_ctrl = er32(EXTCNF_CTRL);
612
613             if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
614                 break;
615             else
616                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
617
618             msleep(2);
619             timeout--;
620         } while (timeout);
621     }
622
623     /* Workaround for ICH8 bit corruption issue in FIFO memory */
624     if (hw->mac_type == e1000_ich8lan) {
625         /* Set Tx and Rx buffer allocation to 8k apiece. */
626         ew32(PBA, E1000_PBA_8K);
627         /* Set Packet Buffer Size to 16k. */
628         ew32(PBS, E1000_PBS_16K);
629     }
630
631     /* Issue a global reset to the MAC.  This will reset the chip's
632      * transmit, receive, DMA, and link units.  It will not effect
633      * the current PCI configuration.  The global reset bit is self-
634      * clearing, and should clear within a microsecond.
635      */
636     DEBUGOUT("Issuing a global reset to MAC\n");
637
638     switch (hw->mac_type) {
639         case e1000_82544:
640         case e1000_82540:
641         case e1000_82545:
642         case e1000_82546:
643         case e1000_82541:
644         case e1000_82541_rev_2:
645             /* These controllers can't ack the 64-bit write when issuing the
646              * reset, so use IO-mapping as a workaround to issue the reset */
647             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
648             break;
649         case e1000_82545_rev_3:
650         case e1000_82546_rev_3:
651             /* Reset is performed on a shadow of the control register */
652             ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
653             break;
654         case e1000_ich8lan:
655             if (!hw->phy_reset_disable &&
656                 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
657                 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
658                  * at the same time to make sure the interface between
659                  * MAC and the external PHY is reset.
660                  */
661                 ctrl |= E1000_CTRL_PHY_RST;
662             }
663
664             e1000_get_software_flag(hw);
665             ew32(CTRL, (ctrl | E1000_CTRL_RST));
666             msleep(5);
667             break;
668         default:
669             ew32(CTRL, (ctrl | E1000_CTRL_RST));
670             break;
671     }
672
673     /* After MAC reset, force reload of EEPROM to restore power-on settings to
674      * device.  Later controllers reload the EEPROM automatically, so just wait
675      * for reload to complete.
676      */
677     switch (hw->mac_type) {
678         case e1000_82542_rev2_0:
679         case e1000_82542_rev2_1:
680         case e1000_82543:
681         case e1000_82544:
682             /* Wait for reset to complete */
683             udelay(10);
684             ctrl_ext = er32(CTRL_EXT);
685             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
686             ew32(CTRL_EXT, ctrl_ext);
687             E1000_WRITE_FLUSH();
688             /* Wait for EEPROM reload */
689             msleep(2);
690             break;
691         case e1000_82541:
692         case e1000_82541_rev_2:
693         case e1000_82547:
694         case e1000_82547_rev_2:
695             /* Wait for EEPROM reload */
696             msleep(20);
697             break;
698         case e1000_82573:
699             if (!e1000_is_onboard_nvm_eeprom(hw)) {
700                 udelay(10);
701                 ctrl_ext = er32(CTRL_EXT);
702                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
703                 ew32(CTRL_EXT, ctrl_ext);
704                 E1000_WRITE_FLUSH();
705             }
706             /* fall through */
707         default:
708             /* Auto read done will delay 5ms or poll based on mac type */
709             ret_val = e1000_get_auto_rd_done(hw);
710             if (ret_val)
711                 return ret_val;
712             break;
713     }
714
715     /* Disable HW ARPs on ASF enabled adapters */
716     if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
717         manc = er32(MANC);
718         manc &= ~(E1000_MANC_ARP_EN);
719         ew32(MANC, manc);
720     }
721
722     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
723         e1000_phy_init_script(hw);
724
725         /* Configure activity LED after PHY reset */
726         led_ctrl = er32(LEDCTL);
727         led_ctrl &= IGP_ACTIVITY_LED_MASK;
728         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
729         ew32(LEDCTL, led_ctrl);
730     }
731
732     /* Clear interrupt mask to stop board from generating interrupts */
733     DEBUGOUT("Masking off all interrupts\n");
734     ew32(IMC, 0xffffffff);
735
736     /* Clear any pending interrupt events. */
737     icr = er32(ICR);
738
739     /* If MWI was previously enabled, reenable it. */
740     if (hw->mac_type == e1000_82542_rev2_0) {
741         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
742             e1000_pci_set_mwi(hw);
743     }
744
745     if (hw->mac_type == e1000_ich8lan) {
746         u32 kab = er32(KABGTXD);
747         kab |= E1000_KABGTXD_BGSQLBIAS;
748         ew32(KABGTXD, kab);
749     }
750
751     return E1000_SUCCESS;
752 }
753
754 /******************************************************************************
755  *
756  * Initialize a number of hardware-dependent bits
757  *
758  * hw: Struct containing variables accessed by shared code
759  *
760  * This function contains hardware limitation workarounds for PCI-E adapters
761  *
762  *****************************************************************************/
763 static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
764 {
765     if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
766         /* Settings common to all PCI-express silicon */
767         u32 reg_ctrl, reg_ctrl_ext;
768         u32 reg_tarc0, reg_tarc1;
769         u32 reg_tctl;
770         u32 reg_txdctl, reg_txdctl1;
771
772         /* link autonegotiation/sync workarounds */
773         reg_tarc0 = er32(TARC0);
774         reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
775
776         /* Enable not-done TX descriptor counting */
777         reg_txdctl = er32(TXDCTL);
778         reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
779         ew32(TXDCTL, reg_txdctl);
780         reg_txdctl1 = er32(TXDCTL1);
781         reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
782         ew32(TXDCTL1, reg_txdctl1);
783
784         switch (hw->mac_type) {
785             case e1000_82571:
786             case e1000_82572:
787                 /* Clear PHY TX compatible mode bits */
788                 reg_tarc1 = er32(TARC1);
789                 reg_tarc1 &= ~((1 << 30)|(1 << 29));
790
791                 /* link autonegotiation/sync workarounds */
792                 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
793
794                 /* TX ring control fixes */
795                 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
796
797                 /* Multiple read bit is reversed polarity */
798                 reg_tctl = er32(TCTL);
799                 if (reg_tctl & E1000_TCTL_MULR)
800                     reg_tarc1 &= ~(1 << 28);
801                 else
802                     reg_tarc1 |= (1 << 28);
803
804                 ew32(TARC1, reg_tarc1);
805                 break;
806             case e1000_82573:
807                 reg_ctrl_ext = er32(CTRL_EXT);
808                 reg_ctrl_ext &= ~(1 << 23);
809                 reg_ctrl_ext |= (1 << 22);
810
811                 /* TX byte count fix */
812                 reg_ctrl = er32(CTRL);
813                 reg_ctrl &= ~(1 << 29);
814
815                 ew32(CTRL_EXT, reg_ctrl_ext);
816                 ew32(CTRL, reg_ctrl);
817                 break;
818             case e1000_80003es2lan:
819                 /* improve small packet performace for fiber/serdes */
820                 if ((hw->media_type == e1000_media_type_fiber) ||
821                     (hw->media_type == e1000_media_type_internal_serdes)) {
822                     reg_tarc0 &= ~(1 << 20);
823                 }
824
825                 /* Multiple read bit is reversed polarity */
826                 reg_tctl = er32(TCTL);
827                 reg_tarc1 = er32(TARC1);
828                 if (reg_tctl & E1000_TCTL_MULR)
829                     reg_tarc1 &= ~(1 << 28);
830                 else
831                     reg_tarc1 |= (1 << 28);
832
833                 ew32(TARC1, reg_tarc1);
834                 break;
835             case e1000_ich8lan:
836                 /* Reduce concurrent DMA requests to 3 from 4 */
837                 if ((hw->revision_id < 3) ||
838                     ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
839                      (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
840                     reg_tarc0 |= ((1 << 29)|(1 << 28));
841
842                 reg_ctrl_ext = er32(CTRL_EXT);
843                 reg_ctrl_ext |= (1 << 22);
844                 ew32(CTRL_EXT, reg_ctrl_ext);
845
846                 /* workaround TX hang with TSO=on */
847                 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
848
849                 /* Multiple read bit is reversed polarity */
850                 reg_tctl = er32(TCTL);
851                 reg_tarc1 = er32(TARC1);
852                 if (reg_tctl & E1000_TCTL_MULR)
853                     reg_tarc1 &= ~(1 << 28);
854                 else
855                     reg_tarc1 |= (1 << 28);
856
857                 /* workaround TX hang with TSO=on */
858                 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
859
860                 ew32(TARC1, reg_tarc1);
861                 break;
862             default:
863                 break;
864         }
865
866         ew32(TARC0, reg_tarc0);
867     }
868 }
869
870 /******************************************************************************
871  * Performs basic configuration of the adapter.
872  *
873  * hw - Struct containing variables accessed by shared code
874  *
875  * Assumes that the controller has previously been reset and is in a
876  * post-reset uninitialized state. Initializes the receive address registers,
877  * multicast table, and VLAN filter table. Calls routines to setup link
878  * configuration and flow control settings. Clears all on-chip counters. Leaves
879  * the transmit and receive units disabled and uninitialized.
880  *****************************************************************************/
881 s32 e1000_init_hw(struct e1000_hw *hw)
882 {
883     u32 ctrl;
884     u32 i;
885     s32 ret_val;
886     u32 mta_size;
887     u32 reg_data;
888     u32 ctrl_ext;
889
890     DEBUGFUNC("e1000_init_hw");
891
892     /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
893     if ((hw->mac_type == e1000_ich8lan) &&
894         ((hw->revision_id < 3) ||
895          ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
896           (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
897             reg_data = er32(STATUS);
898             reg_data &= ~0x80000000;
899             ew32(STATUS, reg_data);
900     }
901
902     /* Initialize Identification LED */
903     ret_val = e1000_id_led_init(hw);
904     if (ret_val) {
905         DEBUGOUT("Error Initializing Identification LED\n");
906         return ret_val;
907     }
908
909     /* Set the media type and TBI compatibility */
910     e1000_set_media_type(hw);
911
912     /* Must be called after e1000_set_media_type because media_type is used */
913     e1000_initialize_hardware_bits(hw);
914
915     /* Disabling VLAN filtering. */
916     DEBUGOUT("Initializing the IEEE VLAN\n");
917     /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
918     if (hw->mac_type != e1000_ich8lan) {
919         if (hw->mac_type < e1000_82545_rev_3)
920             ew32(VET, 0);
921         e1000_clear_vfta(hw);
922     }
923
924     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
925     if (hw->mac_type == e1000_82542_rev2_0) {
926         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
927         e1000_pci_clear_mwi(hw);
928         ew32(RCTL, E1000_RCTL_RST);
929         E1000_WRITE_FLUSH();
930         msleep(5);
931     }
932
933     /* Setup the receive address. This involves initializing all of the Receive
934      * Address Registers (RARs 0 - 15).
935      */
936     e1000_init_rx_addrs(hw);
937
938     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
939     if (hw->mac_type == e1000_82542_rev2_0) {
940         ew32(RCTL, 0);
941         E1000_WRITE_FLUSH();
942         msleep(1);
943         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
944             e1000_pci_set_mwi(hw);
945     }
946
947     /* Zero out the Multicast HASH table */
948     DEBUGOUT("Zeroing the MTA\n");
949     mta_size = E1000_MC_TBL_SIZE;
950     if (hw->mac_type == e1000_ich8lan)
951         mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
952     for (i = 0; i < mta_size; i++) {
953         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
954         /* use write flush to prevent Memory Write Block (MWB) from
955          * occuring when accessing our register space */
956         E1000_WRITE_FLUSH();
957     }
958
959     /* Set the PCI priority bit correctly in the CTRL register.  This
960      * determines if the adapter gives priority to receives, or if it
961      * gives equal priority to transmits and receives.  Valid only on
962      * 82542 and 82543 silicon.
963      */
964     if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
965         ctrl = er32(CTRL);
966         ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
967     }
968
969     switch (hw->mac_type) {
970     case e1000_82545_rev_3:
971     case e1000_82546_rev_3:
972         break;
973     default:
974         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
975         if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
976                 e1000_pcix_set_mmrbc(hw, 2048);
977         break;
978     }
979
980     /* More time needed for PHY to initialize */
981     if (hw->mac_type == e1000_ich8lan)
982         msleep(15);
983
984     /* Call a subroutine to configure the link and setup flow control. */
985     ret_val = e1000_setup_link(hw);
986
987     /* Set the transmit descriptor write-back policy */
988     if (hw->mac_type > e1000_82544) {
989         ctrl = er32(TXDCTL);
990         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
991         ew32(TXDCTL, ctrl);
992     }
993
994     if (hw->mac_type == e1000_82573) {
995         e1000_enable_tx_pkt_filtering(hw);
996     }
997
998     switch (hw->mac_type) {
999     default:
1000         break;
1001     case e1000_80003es2lan:
1002         /* Enable retransmit on late collisions */
1003         reg_data = er32(TCTL);
1004         reg_data |= E1000_TCTL_RTLC;
1005         ew32(TCTL, reg_data);
1006
1007         /* Configure Gigabit Carry Extend Padding */
1008         reg_data = er32(TCTL_EXT);
1009         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1010         reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1011         ew32(TCTL_EXT, reg_data);
1012
1013         /* Configure Transmit Inter-Packet Gap */
1014         reg_data = er32(TIPG);
1015         reg_data &= ~E1000_TIPG_IPGT_MASK;
1016         reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1017         ew32(TIPG, reg_data);
1018
1019         reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1020         reg_data &= ~0x00100000;
1021         E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1022         /* Fall through */
1023     case e1000_82571:
1024     case e1000_82572:
1025     case e1000_ich8lan:
1026         ctrl = er32(TXDCTL1);
1027         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1028         ew32(TXDCTL1, ctrl);
1029         break;
1030     }
1031
1032
1033     if (hw->mac_type == e1000_82573) {
1034         u32 gcr = er32(GCR);
1035         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1036         ew32(GCR, gcr);
1037     }
1038
1039     /* Clear all of the statistics registers (clear on read).  It is
1040      * important that we do this after we have tried to establish link
1041      * because the symbol error count will increment wildly if there
1042      * is no link.
1043      */
1044     e1000_clear_hw_cntrs(hw);
1045
1046     /* ICH8 No-snoop bits are opposite polarity.
1047      * Set to snoop by default after reset. */
1048     if (hw->mac_type == e1000_ich8lan)
1049         e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1050
1051     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1052         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1053         ctrl_ext = er32(CTRL_EXT);
1054         /* Relaxed ordering must be disabled to avoid a parity
1055          * error crash in a PCI slot. */
1056         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1057         ew32(CTRL_EXT, ctrl_ext);
1058     }
1059
1060     return ret_val;
1061 }
1062
1063 /******************************************************************************
1064  * Adjust SERDES output amplitude based on EEPROM setting.
1065  *
1066  * hw - Struct containing variables accessed by shared code.
1067  *****************************************************************************/
1068 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1069 {
1070     u16 eeprom_data;
1071     s32  ret_val;
1072
1073     DEBUGFUNC("e1000_adjust_serdes_amplitude");
1074
1075     if (hw->media_type != e1000_media_type_internal_serdes)
1076         return E1000_SUCCESS;
1077
1078     switch (hw->mac_type) {
1079     case e1000_82545_rev_3:
1080     case e1000_82546_rev_3:
1081         break;
1082     default:
1083         return E1000_SUCCESS;
1084     }
1085
1086     ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1087     if (ret_val) {
1088         return ret_val;
1089     }
1090
1091     if (eeprom_data != EEPROM_RESERVED_WORD) {
1092         /* Adjust SERDES output amplitude only. */
1093         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1094         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
1095         if (ret_val)
1096             return ret_val;
1097     }
1098
1099     return E1000_SUCCESS;
1100 }
1101
1102 /******************************************************************************
1103  * Configures flow control and link settings.
1104  *
1105  * hw - Struct containing variables accessed by shared code
1106  *
1107  * Determines which flow control settings to use. Calls the apropriate media-
1108  * specific link configuration function. Configures the flow control settings.
1109  * Assuming the adapter has a valid link partner, a valid link should be
1110  * established. Assumes the hardware has previously been reset and the
1111  * transmitter and receiver are not enabled.
1112  *****************************************************************************/
1113 s32 e1000_setup_link(struct e1000_hw *hw)
1114 {
1115     u32 ctrl_ext;
1116     s32 ret_val;
1117     u16 eeprom_data;
1118
1119     DEBUGFUNC("e1000_setup_link");
1120
1121     /* In the case of the phy reset being blocked, we already have a link.
1122      * We do not have to set it up again. */
1123     if (e1000_check_phy_reset_block(hw))
1124         return E1000_SUCCESS;
1125
1126     /* Read and store word 0x0F of the EEPROM. This word contains bits
1127      * that determine the hardware's default PAUSE (flow control) mode,
1128      * a bit that determines whether the HW defaults to enabling or
1129      * disabling auto-negotiation, and the direction of the
1130      * SW defined pins. If there is no SW over-ride of the flow
1131      * control setting, then the variable hw->fc will
1132      * be initialized based on a value in the EEPROM.
1133      */
1134     if (hw->fc == E1000_FC_DEFAULT) {
1135         switch (hw->mac_type) {
1136         case e1000_ich8lan:
1137         case e1000_82573:
1138             hw->fc = E1000_FC_FULL;
1139             break;
1140         default:
1141             ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1142                                         1, &eeprom_data);
1143             if (ret_val) {
1144                 DEBUGOUT("EEPROM Read Error\n");
1145                 return -E1000_ERR_EEPROM;
1146             }
1147             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1148                 hw->fc = E1000_FC_NONE;
1149             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1150                     EEPROM_WORD0F_ASM_DIR)
1151                 hw->fc = E1000_FC_TX_PAUSE;
1152             else
1153                 hw->fc = E1000_FC_FULL;
1154             break;
1155         }
1156     }
1157
1158     /* We want to save off the original Flow Control configuration just
1159      * in case we get disconnected and then reconnected into a different
1160      * hub or switch with different Flow Control capabilities.
1161      */
1162     if (hw->mac_type == e1000_82542_rev2_0)
1163         hw->fc &= (~E1000_FC_TX_PAUSE);
1164
1165     if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1166         hw->fc &= (~E1000_FC_RX_PAUSE);
1167
1168     hw->original_fc = hw->fc;
1169
1170     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1171
1172     /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1173      * polarity value for the SW controlled pins, and setup the
1174      * Extended Device Control reg with that info.
1175      * This is needed because one of the SW controlled pins is used for
1176      * signal detection.  So this should be done before e1000_setup_pcs_link()
1177      * or e1000_phy_setup() is called.
1178      */
1179     if (hw->mac_type == e1000_82543) {
1180         ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1181                                     1, &eeprom_data);
1182         if (ret_val) {
1183             DEBUGOUT("EEPROM Read Error\n");
1184             return -E1000_ERR_EEPROM;
1185         }
1186         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1187                     SWDPIO__EXT_SHIFT);
1188         ew32(CTRL_EXT, ctrl_ext);
1189     }
1190
1191     /* Call the necessary subroutine to configure the link. */
1192     ret_val = (hw->media_type == e1000_media_type_copper) ?
1193               e1000_setup_copper_link(hw) :
1194               e1000_setup_fiber_serdes_link(hw);
1195
1196     /* Initialize the flow control address, type, and PAUSE timer
1197      * registers to their default values.  This is done even if flow
1198      * control is disabled, because it does not hurt anything to
1199      * initialize these registers.
1200      */
1201     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1202
1203     /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1204     if (hw->mac_type != e1000_ich8lan) {
1205         ew32(FCT, FLOW_CONTROL_TYPE);
1206         ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1207         ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
1208     }
1209
1210     ew32(FCTTV, hw->fc_pause_time);
1211
1212     /* Set the flow control receive threshold registers.  Normally,
1213      * these registers will be set to a default threshold that may be
1214      * adjusted later by the driver's runtime code.  However, if the
1215      * ability to transmit pause frames in not enabled, then these
1216      * registers will be set to 0.
1217      */
1218     if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1219         ew32(FCRTL, 0);
1220         ew32(FCRTH, 0);
1221     } else {
1222         /* We need to set up the Receive Threshold high and low water marks
1223          * as well as (optionally) enabling the transmission of XON frames.
1224          */
1225         if (hw->fc_send_xon) {
1226             ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1227             ew32(FCRTH, hw->fc_high_water);
1228         } else {
1229             ew32(FCRTL, hw->fc_low_water);
1230             ew32(FCRTH, hw->fc_high_water);
1231         }
1232     }
1233     return ret_val;
1234 }
1235
1236 /******************************************************************************
1237  * Sets up link for a fiber based or serdes based adapter
1238  *
1239  * hw - Struct containing variables accessed by shared code
1240  *
1241  * Manipulates Physical Coding Sublayer functions in order to configure
1242  * link. Assumes the hardware has been previously reset and the transmitter
1243  * and receiver are not enabled.
1244  *****************************************************************************/
1245 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1246 {
1247     u32 ctrl;
1248     u32 status;
1249     u32 txcw = 0;
1250     u32 i;
1251     u32 signal = 0;
1252     s32 ret_val;
1253
1254     DEBUGFUNC("e1000_setup_fiber_serdes_link");
1255
1256     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1257      * until explicitly turned off or a power cycle is performed.  A read to
1258      * the register does not indicate its status.  Therefore, we ensure
1259      * loopback mode is disabled during initialization.
1260      */
1261     if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1262         ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1263
1264     /* On adapters with a MAC newer than 82544, SWDP 1 will be
1265      * set when the optics detect a signal. On older adapters, it will be
1266      * cleared when there is a signal.  This applies to fiber media only.
1267      * If we're on serdes media, adjust the output amplitude to value
1268      * set in the EEPROM.
1269      */
1270     ctrl = er32(CTRL);
1271     if (hw->media_type == e1000_media_type_fiber)
1272         signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1273
1274     ret_val = e1000_adjust_serdes_amplitude(hw);
1275     if (ret_val)
1276         return ret_val;
1277
1278     /* Take the link out of reset */
1279     ctrl &= ~(E1000_CTRL_LRST);
1280
1281     /* Adjust VCO speed to improve BER performance */
1282     ret_val = e1000_set_vco_speed(hw);
1283     if (ret_val)
1284         return ret_val;
1285
1286     e1000_config_collision_dist(hw);
1287
1288     /* Check for a software override of the flow control settings, and setup
1289      * the device accordingly.  If auto-negotiation is enabled, then software
1290      * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1291      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1292      * auto-negotiation is disabled, then software will have to manually
1293      * configure the two flow control enable bits in the CTRL register.
1294      *
1295      * The possible values of the "fc" parameter are:
1296      *      0:  Flow control is completely disabled
1297      *      1:  Rx flow control is enabled (we can receive pause frames, but
1298      *          not send pause frames).
1299      *      2:  Tx flow control is enabled (we can send pause frames but we do
1300      *          not support receiving pause frames).
1301      *      3:  Both Rx and TX flow control (symmetric) are enabled.
1302      */
1303     switch (hw->fc) {
1304     case E1000_FC_NONE:
1305         /* Flow control is completely disabled by a software over-ride. */
1306         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1307         break;
1308     case E1000_FC_RX_PAUSE:
1309         /* RX Flow control is enabled and TX Flow control is disabled by a
1310          * software over-ride. Since there really isn't a way to advertise
1311          * that we are capable of RX Pause ONLY, we will advertise that we
1312          * support both symmetric and asymmetric RX PAUSE. Later, we will
1313          *  disable the adapter's ability to send PAUSE frames.
1314          */
1315         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1316         break;
1317     case E1000_FC_TX_PAUSE:
1318         /* TX Flow control is enabled, and RX Flow control is disabled, by a
1319          * software over-ride.
1320          */
1321         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1322         break;
1323     case E1000_FC_FULL:
1324         /* Flow control (both RX and TX) is enabled by a software over-ride. */
1325         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1326         break;
1327     default:
1328         DEBUGOUT("Flow control param set incorrectly\n");
1329         return -E1000_ERR_CONFIG;
1330         break;
1331     }
1332
1333     /* Since auto-negotiation is enabled, take the link out of reset (the link
1334      * will be in reset, because we previously reset the chip). This will
1335      * restart auto-negotiation.  If auto-neogtiation is successful then the
1336      * link-up status bit will be set and the flow control enable bits (RFCE
1337      * and TFCE) will be set according to their negotiated value.
1338      */
1339     DEBUGOUT("Auto-negotiation enabled\n");
1340
1341     ew32(TXCW, txcw);
1342     ew32(CTRL, ctrl);
1343     E1000_WRITE_FLUSH();
1344
1345     hw->txcw = txcw;
1346     msleep(1);
1347
1348     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1349      * indication in the Device Status Register.  Time-out if a link isn't
1350      * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1351      * less than 500 milliseconds even if the other end is doing it in SW).
1352      * For internal serdes, we just assume a signal is present, then poll.
1353      */
1354     if (hw->media_type == e1000_media_type_internal_serdes ||
1355        (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1356         DEBUGOUT("Looking for Link\n");
1357         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1358             msleep(10);
1359             status = er32(STATUS);
1360             if (status & E1000_STATUS_LU) break;
1361         }
1362         if (i == (LINK_UP_TIMEOUT / 10)) {
1363             DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1364             hw->autoneg_failed = 1;
1365             /* AutoNeg failed to achieve a link, so we'll call
1366              * e1000_check_for_link. This routine will force the link up if
1367              * we detect a signal. This will allow us to communicate with
1368              * non-autonegotiating link partners.
1369              */
1370             ret_val = e1000_check_for_link(hw);
1371             if (ret_val) {
1372                 DEBUGOUT("Error while checking for link\n");
1373                 return ret_val;
1374             }
1375             hw->autoneg_failed = 0;
1376         } else {
1377             hw->autoneg_failed = 0;
1378             DEBUGOUT("Valid Link Found\n");
1379         }
1380     } else {
1381         DEBUGOUT("No Signal Detected\n");
1382     }
1383     return E1000_SUCCESS;
1384 }
1385
1386 /******************************************************************************
1387 * Make sure we have a valid PHY and change PHY mode before link setup.
1388 *
1389 * hw - Struct containing variables accessed by shared code
1390 ******************************************************************************/
1391 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1392 {
1393     u32 ctrl;
1394     s32 ret_val;
1395     u16 phy_data;
1396
1397     DEBUGFUNC("e1000_copper_link_preconfig");
1398
1399     ctrl = er32(CTRL);
1400     /* With 82543, we need to force speed and duplex on the MAC equal to what
1401      * the PHY speed and duplex configuration is. In addition, we need to
1402      * perform a hardware reset on the PHY to take it out of reset.
1403      */
1404     if (hw->mac_type > e1000_82543) {
1405         ctrl |= E1000_CTRL_SLU;
1406         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1407         ew32(CTRL, ctrl);
1408     } else {
1409         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1410         ew32(CTRL, ctrl);
1411         ret_val = e1000_phy_hw_reset(hw);
1412         if (ret_val)
1413             return ret_val;
1414     }
1415
1416     /* Make sure we have a valid PHY */
1417     ret_val = e1000_detect_gig_phy(hw);
1418     if (ret_val) {
1419         DEBUGOUT("Error, did not detect valid phy.\n");
1420         return ret_val;
1421     }
1422     DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1423
1424     /* Set PHY to class A mode (if necessary) */
1425     ret_val = e1000_set_phy_mode(hw);
1426     if (ret_val)
1427         return ret_val;
1428
1429     if ((hw->mac_type == e1000_82545_rev_3) ||
1430        (hw->mac_type == e1000_82546_rev_3)) {
1431         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1432         phy_data |= 0x00000008;
1433         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1434     }
1435
1436     if (hw->mac_type <= e1000_82543 ||
1437         hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1438         hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1439         hw->phy_reset_disable = false;
1440
1441    return E1000_SUCCESS;
1442 }
1443
1444
1445 /********************************************************************
1446 * Copper link setup for e1000_phy_igp series.
1447 *
1448 * hw - Struct containing variables accessed by shared code
1449 *********************************************************************/
1450 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1451 {
1452     u32 led_ctrl;
1453     s32 ret_val;
1454     u16 phy_data;
1455
1456     DEBUGFUNC("e1000_copper_link_igp_setup");
1457
1458     if (hw->phy_reset_disable)
1459         return E1000_SUCCESS;
1460
1461     ret_val = e1000_phy_reset(hw);
1462     if (ret_val) {
1463         DEBUGOUT("Error Resetting the PHY\n");
1464         return ret_val;
1465     }
1466
1467     /* Wait 15ms for MAC to configure PHY from eeprom settings */
1468     msleep(15);
1469     if (hw->mac_type != e1000_ich8lan) {
1470     /* Configure activity LED after PHY reset */
1471     led_ctrl = er32(LEDCTL);
1472     led_ctrl &= IGP_ACTIVITY_LED_MASK;
1473     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1474     ew32(LEDCTL, led_ctrl);
1475     }
1476
1477     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1478     if (hw->phy_type == e1000_phy_igp) {
1479         /* disable lplu d3 during driver init */
1480         ret_val = e1000_set_d3_lplu_state(hw, false);
1481         if (ret_val) {
1482             DEBUGOUT("Error Disabling LPLU D3\n");
1483             return ret_val;
1484         }
1485     }
1486
1487     /* disable lplu d0 during driver init */
1488     ret_val = e1000_set_d0_lplu_state(hw, false);
1489     if (ret_val) {
1490         DEBUGOUT("Error Disabling LPLU D0\n");
1491         return ret_val;
1492     }
1493     /* Configure mdi-mdix settings */
1494     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1495     if (ret_val)
1496         return ret_val;
1497
1498     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1499         hw->dsp_config_state = e1000_dsp_config_disabled;
1500         /* Force MDI for earlier revs of the IGP PHY */
1501         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1502         hw->mdix = 1;
1503
1504     } else {
1505         hw->dsp_config_state = e1000_dsp_config_enabled;
1506         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1507
1508         switch (hw->mdix) {
1509         case 1:
1510             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1511             break;
1512         case 2:
1513             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1514             break;
1515         case 0:
1516         default:
1517             phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1518             break;
1519         }
1520     }
1521     ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1522     if (ret_val)
1523         return ret_val;
1524
1525     /* set auto-master slave resolution settings */
1526     if (hw->autoneg) {
1527         e1000_ms_type phy_ms_setting = hw->master_slave;
1528
1529         if (hw->ffe_config_state == e1000_ffe_config_active)
1530             hw->ffe_config_state = e1000_ffe_config_enabled;
1531
1532         if (hw->dsp_config_state == e1000_dsp_config_activated)
1533             hw->dsp_config_state = e1000_dsp_config_enabled;
1534
1535         /* when autonegotiation advertisment is only 1000Mbps then we
1536           * should disable SmartSpeed and enable Auto MasterSlave
1537           * resolution as hardware default. */
1538         if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1539             /* Disable SmartSpeed */
1540             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1541                                          &phy_data);
1542             if (ret_val)
1543                 return ret_val;
1544             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1545             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1546                                           phy_data);
1547             if (ret_val)
1548                 return ret_val;
1549             /* Set auto Master/Slave resolution process */
1550             ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1551             if (ret_val)
1552                 return ret_val;
1553             phy_data &= ~CR_1000T_MS_ENABLE;
1554             ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1555             if (ret_val)
1556                 return ret_val;
1557         }
1558
1559         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1560         if (ret_val)
1561             return ret_val;
1562
1563         /* load defaults for future use */
1564         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1565                                         ((phy_data & CR_1000T_MS_VALUE) ?
1566                                          e1000_ms_force_master :
1567                                          e1000_ms_force_slave) :
1568                                          e1000_ms_auto;
1569
1570         switch (phy_ms_setting) {
1571         case e1000_ms_force_master:
1572             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1573             break;
1574         case e1000_ms_force_slave:
1575             phy_data |= CR_1000T_MS_ENABLE;
1576             phy_data &= ~(CR_1000T_MS_VALUE);
1577             break;
1578         case e1000_ms_auto:
1579             phy_data &= ~CR_1000T_MS_ENABLE;
1580             default:
1581             break;
1582         }
1583         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1584         if (ret_val)
1585             return ret_val;
1586     }
1587
1588     return E1000_SUCCESS;
1589 }
1590
1591 /********************************************************************
1592 * Copper link setup for e1000_phy_gg82563 series.
1593 *
1594 * hw - Struct containing variables accessed by shared code
1595 *********************************************************************/
1596 static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1597 {
1598     s32 ret_val;
1599     u16 phy_data;
1600     u32 reg_data;
1601
1602     DEBUGFUNC("e1000_copper_link_ggp_setup");
1603
1604     if (!hw->phy_reset_disable) {
1605
1606         /* Enable CRS on TX for half-duplex operation. */
1607         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1608                                      &phy_data);
1609         if (ret_val)
1610             return ret_val;
1611
1612         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1613         /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1614         phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1615
1616         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1617                                       phy_data);
1618         if (ret_val)
1619             return ret_val;
1620
1621         /* Options:
1622          *   MDI/MDI-X = 0 (default)
1623          *   0 - Auto for all speeds
1624          *   1 - MDI mode
1625          *   2 - MDI-X mode
1626          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1627          */
1628         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1629         if (ret_val)
1630             return ret_val;
1631
1632         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1633
1634         switch (hw->mdix) {
1635         case 1:
1636             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1637             break;
1638         case 2:
1639             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1640             break;
1641         case 0:
1642         default:
1643             phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1644             break;
1645         }
1646
1647         /* Options:
1648          *   disable_polarity_correction = 0 (default)
1649          *       Automatic Correction for Reversed Cable Polarity
1650          *   0 - Disabled
1651          *   1 - Enabled
1652          */
1653         phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1654         if (hw->disable_polarity_correction == 1)
1655             phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1656         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1657
1658         if (ret_val)
1659             return ret_val;
1660
1661         /* SW Reset the PHY so all changes take effect */
1662         ret_val = e1000_phy_reset(hw);
1663         if (ret_val) {
1664             DEBUGOUT("Error Resetting the PHY\n");
1665             return ret_val;
1666         }
1667     } /* phy_reset_disable */
1668
1669     if (hw->mac_type == e1000_80003es2lan) {
1670         /* Bypass RX and TX FIFO's */
1671         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1672                                        E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1673                                        E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1674         if (ret_val)
1675             return ret_val;
1676
1677         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1678         if (ret_val)
1679             return ret_val;
1680
1681         phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1682         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1683
1684         if (ret_val)
1685             return ret_val;
1686
1687         reg_data = er32(CTRL_EXT);
1688         reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1689         ew32(CTRL_EXT, reg_data);
1690
1691         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1692                                           &phy_data);
1693         if (ret_val)
1694             return ret_val;
1695
1696         /* Do not init these registers when the HW is in IAMT mode, since the
1697          * firmware will have already initialized them.  We only initialize
1698          * them if the HW is not in IAMT mode.
1699          */
1700         if (!e1000_check_mng_mode(hw)) {
1701             /* Enable Electrical Idle on the PHY */
1702             phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1703             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1704                                           phy_data);
1705             if (ret_val)
1706                 return ret_val;
1707
1708             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1709                                          &phy_data);
1710             if (ret_val)
1711                 return ret_val;
1712
1713             phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1714             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1715                                           phy_data);
1716
1717             if (ret_val)
1718                 return ret_val;
1719         }
1720
1721         /* Workaround: Disable padding in Kumeran interface in the MAC
1722          * and in the PHY to avoid CRC errors.
1723          */
1724         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1725                                      &phy_data);
1726         if (ret_val)
1727             return ret_val;
1728         phy_data |= GG82563_ICR_DIS_PADDING;
1729         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1730                                       phy_data);
1731         if (ret_val)
1732             return ret_val;
1733     }
1734
1735     return E1000_SUCCESS;
1736 }
1737
1738 /********************************************************************
1739 * Copper link setup for e1000_phy_m88 series.
1740 *
1741 * hw - Struct containing variables accessed by shared code
1742 *********************************************************************/
1743 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1744 {
1745     s32 ret_val;
1746     u16 phy_data;
1747
1748     DEBUGFUNC("e1000_copper_link_mgp_setup");
1749
1750     if (hw->phy_reset_disable)
1751         return E1000_SUCCESS;
1752
1753     /* Enable CRS on TX. This must be set for half-duplex operation. */
1754     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1755     if (ret_val)
1756         return ret_val;
1757
1758     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1759
1760     /* Options:
1761      *   MDI/MDI-X = 0 (default)
1762      *   0 - Auto for all speeds
1763      *   1 - MDI mode
1764      *   2 - MDI-X mode
1765      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1766      */
1767     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1768
1769     switch (hw->mdix) {
1770     case 1:
1771         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1772         break;
1773     case 2:
1774         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1775         break;
1776     case 3:
1777         phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1778         break;
1779     case 0:
1780     default:
1781         phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1782         break;
1783     }
1784
1785     /* Options:
1786      *   disable_polarity_correction = 0 (default)
1787      *       Automatic Correction for Reversed Cable Polarity
1788      *   0 - Disabled
1789      *   1 - Enabled
1790      */
1791     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1792     if (hw->disable_polarity_correction == 1)
1793         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1794     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1795     if (ret_val)
1796         return ret_val;
1797
1798     if (hw->phy_revision < M88E1011_I_REV_4) {
1799         /* Force TX_CLK in the Extended PHY Specific Control Register
1800          * to 25MHz clock.
1801          */
1802         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1803         if (ret_val)
1804             return ret_val;
1805
1806         phy_data |= M88E1000_EPSCR_TX_CLK_25;
1807
1808         if ((hw->phy_revision == E1000_REVISION_2) &&
1809             (hw->phy_id == M88E1111_I_PHY_ID)) {
1810             /* Vidalia Phy, set the downshift counter to 5x */
1811             phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1812             phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1813             ret_val = e1000_write_phy_reg(hw,
1814                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1815             if (ret_val)
1816                 return ret_val;
1817         } else {
1818             /* Configure Master and Slave downshift values */
1819             phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1820                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1821             phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1822                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1823             ret_val = e1000_write_phy_reg(hw,
1824                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1825             if (ret_val)
1826                return ret_val;
1827         }
1828     }
1829
1830     /* SW Reset the PHY so all changes take effect */
1831     ret_val = e1000_phy_reset(hw);
1832     if (ret_val) {
1833         DEBUGOUT("Error Resetting the PHY\n");
1834         return ret_val;
1835     }
1836
1837    return E1000_SUCCESS;
1838 }
1839
1840 /********************************************************************
1841 * Setup auto-negotiation and flow control advertisements,
1842 * and then perform auto-negotiation.
1843 *
1844 * hw - Struct containing variables accessed by shared code
1845 *********************************************************************/
1846 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1847 {
1848     s32 ret_val;
1849     u16 phy_data;
1850
1851     DEBUGFUNC("e1000_copper_link_autoneg");
1852
1853     /* Perform some bounds checking on the hw->autoneg_advertised
1854      * parameter.  If this variable is zero, then set it to the default.
1855      */
1856     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1857
1858     /* If autoneg_advertised is zero, we assume it was not defaulted
1859      * by the calling code so we set to advertise full capability.
1860      */
1861     if (hw->autoneg_advertised == 0)
1862         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1863
1864     /* IFE phy only supports 10/100 */
1865     if (hw->phy_type == e1000_phy_ife)
1866         hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1867
1868     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1869     ret_val = e1000_phy_setup_autoneg(hw);
1870     if (ret_val) {
1871         DEBUGOUT("Error Setting up Auto-Negotiation\n");
1872         return ret_val;
1873     }
1874     DEBUGOUT("Restarting Auto-Neg\n");
1875
1876     /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1877      * the Auto Neg Restart bit in the PHY control register.
1878      */
1879     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1880     if (ret_val)
1881         return ret_val;
1882
1883     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1884     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1885     if (ret_val)
1886         return ret_val;
1887
1888     /* Does the user want to wait for Auto-Neg to complete here, or
1889      * check at a later time (for example, callback routine).
1890      */
1891     if (hw->wait_autoneg_complete) {
1892         ret_val = e1000_wait_autoneg(hw);
1893         if (ret_val) {
1894             DEBUGOUT("Error while waiting for autoneg to complete\n");
1895             return ret_val;
1896         }
1897     }
1898
1899     hw->get_link_status = true;
1900
1901     return E1000_SUCCESS;
1902 }
1903
1904 /******************************************************************************
1905 * Config the MAC and the PHY after link is up.
1906 *   1) Set up the MAC to the current PHY speed/duplex
1907 *      if we are on 82543.  If we
1908 *      are on newer silicon, we only need to configure
1909 *      collision distance in the Transmit Control Register.
1910 *   2) Set up flow control on the MAC to that established with
1911 *      the link partner.
1912 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1913 *
1914 * hw - Struct containing variables accessed by shared code
1915 ******************************************************************************/
1916 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1917 {
1918     s32 ret_val;
1919     DEBUGFUNC("e1000_copper_link_postconfig");
1920
1921     if (hw->mac_type >= e1000_82544) {
1922         e1000_config_collision_dist(hw);
1923     } else {
1924         ret_val = e1000_config_mac_to_phy(hw);
1925         if (ret_val) {
1926             DEBUGOUT("Error configuring MAC to PHY settings\n");
1927             return ret_val;
1928         }
1929     }
1930     ret_val = e1000_config_fc_after_link_up(hw);
1931     if (ret_val) {
1932         DEBUGOUT("Error Configuring Flow Control\n");
1933         return ret_val;
1934     }
1935
1936     /* Config DSP to improve Giga link quality */
1937     if (hw->phy_type == e1000_phy_igp) {
1938         ret_val = e1000_config_dsp_after_link_change(hw, true);
1939         if (ret_val) {
1940             DEBUGOUT("Error Configuring DSP after link up\n");
1941             return ret_val;
1942         }
1943     }
1944
1945     return E1000_SUCCESS;
1946 }
1947
1948 /******************************************************************************
1949 * Detects which PHY is present and setup the speed and duplex
1950 *
1951 * hw - Struct containing variables accessed by shared code
1952 ******************************************************************************/
1953 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1954 {
1955     s32 ret_val;
1956     u16 i;
1957     u16 phy_data;
1958     u16 reg_data;
1959
1960     DEBUGFUNC("e1000_setup_copper_link");
1961
1962     switch (hw->mac_type) {
1963     case e1000_80003es2lan:
1964     case e1000_ich8lan:
1965         /* Set the mac to wait the maximum time between each
1966          * iteration and increase the max iterations when
1967          * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1968         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1969         if (ret_val)
1970             return ret_val;
1971         ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1972         if (ret_val)
1973             return ret_val;
1974         reg_data |= 0x3F;
1975         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1976         if (ret_val)
1977             return ret_val;
1978     default:
1979         break;
1980     }
1981
1982     /* Check if it is a valid PHY and set PHY mode if necessary. */
1983     ret_val = e1000_copper_link_preconfig(hw);
1984     if (ret_val)
1985         return ret_val;
1986
1987     switch (hw->mac_type) {
1988     case e1000_80003es2lan:
1989         /* Kumeran registers are written-only */
1990         reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1991         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1992         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1993                                        reg_data);
1994         if (ret_val)
1995             return ret_val;
1996         break;
1997     default:
1998         break;
1999     }
2000
2001     if (hw->phy_type == e1000_phy_igp ||
2002         hw->phy_type == e1000_phy_igp_3 ||
2003         hw->phy_type == e1000_phy_igp_2) {
2004         ret_val = e1000_copper_link_igp_setup(hw);
2005         if (ret_val)
2006             return ret_val;
2007     } else if (hw->phy_type == e1000_phy_m88) {
2008         ret_val = e1000_copper_link_mgp_setup(hw);
2009         if (ret_val)
2010             return ret_val;
2011     } else if (hw->phy_type == e1000_phy_gg82563) {
2012         ret_val = e1000_copper_link_ggp_setup(hw);
2013         if (ret_val)
2014             return ret_val;
2015     }
2016
2017     if (hw->autoneg) {
2018         /* Setup autoneg and flow control advertisement
2019           * and perform autonegotiation */
2020         ret_val = e1000_copper_link_autoneg(hw);
2021         if (ret_val)
2022             return ret_val;
2023     } else {
2024         /* PHY will be set to 10H, 10F, 100H,or 100F
2025           * depending on value from forced_speed_duplex. */
2026         DEBUGOUT("Forcing speed and duplex\n");
2027         ret_val = e1000_phy_force_speed_duplex(hw);
2028         if (ret_val) {
2029             DEBUGOUT("Error Forcing Speed and Duplex\n");
2030             return ret_val;
2031         }
2032     }
2033
2034     /* Check link status. Wait up to 100 microseconds for link to become
2035      * valid.
2036      */
2037     for (i = 0; i < 10; i++) {
2038         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2039         if (ret_val)
2040             return ret_val;
2041         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2042         if (ret_val)
2043             return ret_val;
2044
2045         if (phy_data & MII_SR_LINK_STATUS) {
2046             /* Config the MAC and PHY after link is up */
2047             ret_val = e1000_copper_link_postconfig(hw);
2048             if (ret_val)
2049                 return ret_val;
2050
2051             DEBUGOUT("Valid link established!!!\n");
2052             return E1000_SUCCESS;
2053         }
2054         udelay(10);
2055     }
2056
2057     DEBUGOUT("Unable to establish link!!!\n");
2058     return E1000_SUCCESS;
2059 }
2060
2061 /******************************************************************************
2062 * Configure the MAC-to-PHY interface for 10/100Mbps
2063 *
2064 * hw - Struct containing variables accessed by shared code
2065 ******************************************************************************/
2066 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
2067 {
2068     s32 ret_val = E1000_SUCCESS;
2069     u32 tipg;
2070     u16 reg_data;
2071
2072     DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2073
2074     reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2075     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2076                                    reg_data);
2077     if (ret_val)
2078         return ret_val;
2079
2080     /* Configure Transmit Inter-Packet Gap */
2081     tipg = er32(TIPG);
2082     tipg &= ~E1000_TIPG_IPGT_MASK;
2083     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2084     ew32(TIPG, tipg);
2085
2086     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2087
2088     if (ret_val)
2089         return ret_val;
2090
2091     if (duplex == HALF_DUPLEX)
2092         reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2093     else
2094         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2095
2096     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2097
2098     return ret_val;
2099 }
2100
2101 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2102 {
2103     s32 ret_val = E1000_SUCCESS;
2104     u16 reg_data;
2105     u32 tipg;
2106
2107     DEBUGFUNC("e1000_configure_kmrn_for_1000");
2108
2109     reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2110     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2111                                    reg_data);
2112     if (ret_val)
2113         return ret_val;
2114
2115     /* Configure Transmit Inter-Packet Gap */
2116     tipg = er32(TIPG);
2117     tipg &= ~E1000_TIPG_IPGT_MASK;
2118     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2119     ew32(TIPG, tipg);
2120
2121     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2122
2123     if (ret_val)
2124         return ret_val;
2125
2126     reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2127     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2128
2129     return ret_val;
2130 }
2131
2132 /******************************************************************************
2133 * Configures PHY autoneg and flow control advertisement settings
2134 *
2135 * hw - Struct containing variables accessed by shared code
2136 ******************************************************************************/
2137 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2138 {
2139     s32 ret_val;
2140     u16 mii_autoneg_adv_reg;
2141     u16 mii_1000t_ctrl_reg;
2142
2143     DEBUGFUNC("e1000_phy_setup_autoneg");
2144
2145     /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2146     ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2147     if (ret_val)
2148         return ret_val;
2149
2150     if (hw->phy_type != e1000_phy_ife) {
2151         /* Read the MII 1000Base-T Control Register (Address 9). */
2152         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2153         if (ret_val)
2154             return ret_val;
2155     } else
2156         mii_1000t_ctrl_reg=0;
2157
2158     /* Need to parse both autoneg_advertised and fc and set up
2159      * the appropriate PHY registers.  First we will parse for
2160      * autoneg_advertised software override.  Since we can advertise
2161      * a plethora of combinations, we need to check each bit
2162      * individually.
2163      */
2164
2165     /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2166      * Advertisement Register (Address 4) and the 1000 mb speed bits in
2167      * the  1000Base-T Control Register (Address 9).
2168      */
2169     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2170     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2171
2172     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2173
2174     /* Do we want to advertise 10 Mb Half Duplex? */
2175     if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2176         DEBUGOUT("Advertise 10mb Half duplex\n");
2177         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2178     }
2179
2180     /* Do we want to advertise 10 Mb Full Duplex? */
2181     if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2182         DEBUGOUT("Advertise 10mb Full duplex\n");
2183         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2184     }
2185
2186     /* Do we want to advertise 100 Mb Half Duplex? */
2187     if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2188         DEBUGOUT("Advertise 100mb Half duplex\n");
2189         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2190     }
2191
2192     /* Do we want to advertise 100 Mb Full Duplex? */
2193     if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2194         DEBUGOUT("Advertise 100mb Full duplex\n");
2195         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2196     }
2197
2198     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2199     if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2200         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2201     }
2202
2203     /* Do we want to advertise 1000 Mb Full Duplex? */
2204     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2205         DEBUGOUT("Advertise 1000mb Full duplex\n");
2206         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2207         if (hw->phy_type == e1000_phy_ife) {
2208             DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2209         }
2210     }
2211
2212     /* Check for a software override of the flow control settings, and
2213      * setup the PHY advertisement registers accordingly.  If
2214      * auto-negotiation is enabled, then software will have to set the
2215      * "PAUSE" bits to the correct value in the Auto-Negotiation
2216      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2217      *
2218      * The possible values of the "fc" parameter are:
2219      *      0:  Flow control is completely disabled
2220      *      1:  Rx flow control is enabled (we can receive pause frames
2221      *          but not send pause frames).
2222      *      2:  Tx flow control is enabled (we can send pause frames
2223      *          but we do not support receiving pause frames).
2224      *      3:  Both Rx and TX flow control (symmetric) are enabled.
2225      *  other:  No software override.  The flow control configuration
2226      *          in the EEPROM is used.
2227      */
2228     switch (hw->fc) {
2229     case E1000_FC_NONE: /* 0 */
2230         /* Flow control (RX & TX) is completely disabled by a
2231          * software over-ride.
2232          */
2233         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2234         break;
2235     case E1000_FC_RX_PAUSE: /* 1 */
2236         /* RX Flow control is enabled, and TX Flow control is
2237          * disabled, by a software over-ride.
2238          */
2239         /* Since there really isn't a way to advertise that we are
2240          * capable of RX Pause ONLY, we will advertise that we
2241          * support both symmetric and asymmetric RX PAUSE.  Later
2242          * (in e1000_config_fc_after_link_up) we will disable the
2243          *hw's ability to send PAUSE frames.
2244          */
2245         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2246         break;
2247     case E1000_FC_TX_PAUSE: /* 2 */
2248         /* TX Flow control is enabled, and RX Flow control is
2249          * disabled, by a software over-ride.
2250          */
2251         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2252         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2253         break;
2254     case E1000_FC_FULL: /* 3 */
2255         /* Flow control (both RX and TX) is enabled by a software
2256          * over-ride.
2257          */
2258         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2259         break;
2260     default:
2261         DEBUGOUT("Flow control param set incorrectly\n");
2262         return -E1000_ERR_CONFIG;
2263     }
2264
2265     ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2266     if (ret_val)
2267         return ret_val;
2268
2269     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2270
2271     if (hw->phy_type != e1000_phy_ife) {
2272         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2273         if (ret_val)
2274             return ret_val;
2275     }
2276
2277     return E1000_SUCCESS;
2278 }
2279
2280 /******************************************************************************
2281 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2282 *
2283 * hw - Struct containing variables accessed by shared code
2284 ******************************************************************************/
2285 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2286 {
2287     u32 ctrl;
2288     s32 ret_val;
2289     u16 mii_ctrl_reg;
2290     u16 mii_status_reg;
2291     u16 phy_data;
2292     u16 i;
2293
2294     DEBUGFUNC("e1000_phy_force_speed_duplex");
2295
2296     /* Turn off Flow control if we are forcing speed and duplex. */
2297     hw->fc = E1000_FC_NONE;
2298
2299     DEBUGOUT1("hw->fc = %d\n", hw->fc);
2300
2301     /* Read the Device Control Register. */
2302     ctrl = er32(CTRL);
2303
2304     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2305     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2306     ctrl &= ~(DEVICE_SPEED_MASK);
2307
2308     /* Clear the Auto Speed Detect Enable bit. */
2309     ctrl &= ~E1000_CTRL_ASDE;
2310
2311     /* Read the MII Control Register. */
2312     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2313     if (ret_val)
2314         return ret_val;
2315
2316     /* We need to disable autoneg in order to force link and duplex. */
2317
2318     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2319
2320     /* Are we forcing Full or Half Duplex? */
2321     if (hw->forced_speed_duplex == e1000_100_full ||
2322         hw->forced_speed_duplex == e1000_10_full) {
2323         /* We want to force full duplex so we SET the full duplex bits in the
2324          * Device and MII Control Registers.
2325          */
2326         ctrl |= E1000_CTRL_FD;
2327         mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2328         DEBUGOUT("Full Duplex\n");
2329     } else {
2330         /* We want to force half duplex so we CLEAR the full duplex bits in
2331          * the Device and MII Control Registers.
2332          */
2333         ctrl &= ~E1000_CTRL_FD;
2334         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2335         DEBUGOUT("Half Duplex\n");
2336     }
2337
2338     /* Are we forcing 100Mbps??? */
2339     if (hw->forced_speed_duplex == e1000_100_full ||
2340        hw->forced_speed_duplex == e1000_100_half) {
2341         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2342         ctrl |= E1000_CTRL_SPD_100;
2343         mii_ctrl_reg |= MII_CR_SPEED_100;
2344         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2345         DEBUGOUT("Forcing 100mb ");
2346     } else {
2347         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2348         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349         mii_ctrl_reg |= MII_CR_SPEED_10;
2350         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2351         DEBUGOUT("Forcing 10mb ");
2352     }
2353
2354     e1000_config_collision_dist(hw);
2355
2356     /* Write the configured values back to the Device Control Reg. */
2357     ew32(CTRL, ctrl);
2358
2359     if ((hw->phy_type == e1000_phy_m88) ||
2360         (hw->phy_type == e1000_phy_gg82563)) {
2361         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2362         if (ret_val)
2363             return ret_val;
2364
2365         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2366          * forced whenever speed are duplex are forced.
2367          */
2368         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2369         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2370         if (ret_val)
2371             return ret_val;
2372
2373         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2374
2375         /* Need to reset the PHY or these changes will be ignored */
2376         mii_ctrl_reg |= MII_CR_RESET;
2377
2378     /* Disable MDI-X support for 10/100 */
2379     } else if (hw->phy_type == e1000_phy_ife) {
2380         ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2381         if (ret_val)
2382             return ret_val;
2383
2384         phy_data &= ~IFE_PMC_AUTO_MDIX;
2385         phy_data &= ~IFE_PMC_FORCE_MDIX;
2386
2387         ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2388         if (ret_val)
2389             return ret_val;
2390
2391     } else {
2392         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
2393          * forced whenever speed or duplex are forced.
2394          */
2395         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2396         if (ret_val)
2397             return ret_val;
2398
2399         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2400         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2401
2402         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2403         if (ret_val)
2404             return ret_val;
2405     }
2406
2407     /* Write back the modified PHY MII control register. */
2408     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2409     if (ret_val)
2410         return ret_val;
2411
2412     udelay(1);
2413
2414     /* The wait_autoneg_complete flag may be a little misleading here.
2415      * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2416      * But we do want to delay for a period while forcing only so we
2417      * don't generate false No Link messages.  So we will wait here
2418      * only if the user has set wait_autoneg_complete to 1, which is
2419      * the default.
2420      */
2421     if (hw->wait_autoneg_complete) {
2422         /* We will wait for autoneg to complete. */
2423         DEBUGOUT("Waiting for forced speed/duplex link.\n");
2424         mii_status_reg = 0;
2425
2426         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2427         for (i = PHY_FORCE_TIME; i > 0; i--) {
2428             /* Read the MII Status Register and wait for Auto-Neg Complete bit
2429              * to be set.
2430              */
2431             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2432             if (ret_val)
2433                 return ret_val;
2434
2435             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2436             if (ret_val)
2437                 return ret_val;
2438
2439             if (mii_status_reg & MII_SR_LINK_STATUS) break;
2440             msleep(100);
2441         }
2442         if ((i == 0) &&
2443            ((hw->phy_type == e1000_phy_m88) ||
2444             (hw->phy_type == e1000_phy_gg82563))) {
2445             /* We didn't get link.  Reset the DSP and wait again for link. */
2446             ret_val = e1000_phy_reset_dsp(hw);
2447             if (ret_val) {
2448                 DEBUGOUT("Error Resetting PHY DSP\n");
2449                 return ret_val;
2450             }
2451         }
2452         /* This loop will early-out if the link condition has been met.  */
2453         for (i = PHY_FORCE_TIME; i > 0; i--) {
2454             if (mii_status_reg & MII_SR_LINK_STATUS) break;
2455             msleep(100);
2456             /* Read the MII Status Register and wait for Auto-Neg Complete bit
2457              * to be set.
2458              */
2459             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2460             if (ret_val)
2461                 return ret_val;
2462
2463             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2464             if (ret_val)
2465                 return ret_val;
2466         }
2467     }
2468
2469     if (hw->phy_type == e1000_phy_m88) {
2470         /* Because we reset the PHY above, we need to re-force TX_CLK in the
2471          * Extended PHY Specific Control Register to 25MHz clock.  This value
2472          * defaults back to a 2.5MHz clock when the PHY is reset.
2473          */
2474         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2475         if (ret_val)
2476             return ret_val;
2477
2478         phy_data |= M88E1000_EPSCR_TX_CLK_25;
2479         ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2480         if (ret_val)
2481             return ret_val;
2482
2483         /* In addition, because of the s/w reset above, we need to enable CRS on
2484          * TX.  This must be set for both full and half duplex operation.
2485          */
2486         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2487         if (ret_val)
2488             return ret_val;
2489
2490         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2491         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2492         if (ret_val)
2493             return ret_val;
2494
2495         if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2496             (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2497              hw->forced_speed_duplex == e1000_10_half)) {
2498             ret_val = e1000_polarity_reversal_workaround(hw);
2499             if (ret_val)
2500                 return ret_val;
2501         }
2502     } else if (hw->phy_type == e1000_phy_gg82563) {
2503         /* The TX_CLK of the Extended PHY Specific Control Register defaults
2504          * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
2505          * we're not in a forced 10/duplex configuration. */
2506         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2507         if (ret_val)
2508             return ret_val;
2509
2510         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2511         if ((hw->forced_speed_duplex == e1000_10_full) ||
2512             (hw->forced_speed_duplex == e1000_10_half))
2513             phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2514         else
2515             phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2516
2517         /* Also due to the reset, we need to enable CRS on Tx. */
2518         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2519
2520         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2521         if (ret_val)
2522             return ret_val;
2523     }
2524     return E1000_SUCCESS;
2525 }
2526
2527 /******************************************************************************
2528 * Sets the collision distance in the Transmit Control register
2529 *
2530 * hw - Struct containing variables accessed by shared code
2531 *
2532 * Link should have been established previously. Reads the speed and duplex
2533 * information from the Device Status register.
2534 ******************************************************************************/
2535 void e1000_config_collision_dist(struct e1000_hw *hw)
2536 {
2537     u32 tctl, coll_dist;
2538
2539     DEBUGFUNC("e1000_config_collision_dist");
2540
2541     if (hw->mac_type < e1000_82543)
2542         coll_dist = E1000_COLLISION_DISTANCE_82542;
2543     else
2544         coll_dist = E1000_COLLISION_DISTANCE;
2545
2546     tctl = er32(TCTL);
2547
2548     tctl &= ~E1000_TCTL_COLD;
2549     tctl |= coll_dist << E1000_COLD_SHIFT;
2550
2551     ew32(TCTL, tctl);
2552     E1000_WRITE_FLUSH();
2553 }
2554
2555 /******************************************************************************
2556 * Sets MAC speed and duplex settings to reflect the those in the PHY
2557 *
2558 * hw - Struct containing variables accessed by shared code
2559 * mii_reg - data to write to the MII control register
2560 *
2561 * The contents of the PHY register containing the needed information need to
2562 * be passed in.
2563 ******************************************************************************/
2564 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
2565 {
2566     u32 ctrl;
2567     s32 ret_val;
2568     u16 phy_data;
2569
2570     DEBUGFUNC("e1000_config_mac_to_phy");
2571
2572     /* 82544 or newer MAC, Auto Speed Detection takes care of
2573     * MAC speed/duplex configuration.*/
2574     if (hw->mac_type >= e1000_82544)
2575         return E1000_SUCCESS;
2576
2577     /* Read the Device Control Register and set the bits to Force Speed
2578      * and Duplex.
2579      */
2580     ctrl = er32(CTRL);
2581     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2582     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2583
2584     /* Set up duplex in the Device Control and Transmit Control
2585      * registers depending on negotiated values.
2586      */
2587     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2588     if (ret_val)
2589         return ret_val;
2590
2591     if (phy_data & M88E1000_PSSR_DPLX)
2592         ctrl |= E1000_CTRL_FD;
2593     else
2594         ctrl &= ~E1000_CTRL_FD;
2595
2596     e1000_config_collision_dist(hw);
2597
2598     /* Set up speed in the Device Control register depending on
2599      * negotiated values.
2600      */
2601     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2602         ctrl |= E1000_CTRL_SPD_1000;
2603     else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2604         ctrl |= E1000_CTRL_SPD_100;
2605
2606     /* Write the configured values back to the Device Control Reg. */
2607     ew32(CTRL, ctrl);
2608     return E1000_SUCCESS;
2609 }
2610
2611 /******************************************************************************
2612  * Forces the MAC's flow control settings.
2613  *
2614  * hw - Struct containing variables accessed by shared code
2615  *
2616  * Sets the TFCE and RFCE bits in the device control register to reflect
2617  * the adapter settings. TFCE and RFCE need to be explicitly set by
2618  * software when a Copper PHY is used because autonegotiation is managed
2619  * by the PHY rather than the MAC. Software must also configure these
2620  * bits when link is forced on a fiber connection.
2621  *****************************************************************************/
2622 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2623 {
2624     u32 ctrl;
2625
2626     DEBUGFUNC("e1000_force_mac_fc");
2627
2628     /* Get the current configuration of the Device Control Register */
2629     ctrl = er32(CTRL);
2630
2631     /* Because we didn't get link via the internal auto-negotiation
2632      * mechanism (we either forced link or we got link via PHY
2633      * auto-neg), we have to manually enable/disable transmit an
2634      * receive flow control.
2635      *
2636      * The "Case" statement below enables/disable flow control
2637      * according to the "hw->fc" parameter.
2638      *
2639      * The possible values of the "fc" parameter are:
2640      *      0:  Flow control is completely disabled
2641      *      1:  Rx flow control is enabled (we can receive pause
2642      *          frames but not send pause frames).
2643      *      2:  Tx flow control is enabled (we can send pause frames
2644      *          frames but we do not receive pause frames).
2645      *      3:  Both Rx and TX flow control (symmetric) is enabled.
2646      *  other:  No other values should be possible at this point.
2647      */
2648
2649     switch (hw->fc) {
2650     case E1000_FC_NONE:
2651         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2652         break;
2653     case E1000_FC_RX_PAUSE:
2654         ctrl &= (~E1000_CTRL_TFCE);
2655         ctrl |= E1000_CTRL_RFCE;
2656         break;
2657     case E1000_FC_TX_PAUSE:
2658         ctrl &= (~E1000_CTRL_RFCE);
2659         ctrl |= E1000_CTRL_TFCE;
2660         break;
2661     case E1000_FC_FULL:
2662         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2663         break;
2664     default:
2665         DEBUGOUT("Flow control param set incorrectly\n");
2666         return -E1000_ERR_CONFIG;
2667     }
2668
2669     /* Disable TX Flow Control for 82542 (rev 2.0) */
2670     if (hw->mac_type == e1000_82542_rev2_0)
2671         ctrl &= (~E1000_CTRL_TFCE);
2672
2673     ew32(CTRL, ctrl);
2674     return E1000_SUCCESS;
2675 }
2676
2677 /******************************************************************************
2678  * Configures flow control settings after link is established
2679  *
2680  * hw - Struct containing variables accessed by shared code
2681  *
2682  * Should be called immediately after a valid link has been established.
2683  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2684  * and autonegotiation is enabled, the MAC flow control settings will be set
2685  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2686  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2687  *****************************************************************************/
2688 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2689 {
2690     s32 ret_val;
2691     u16 mii_status_reg;
2692     u16 mii_nway_adv_reg;
2693     u16 mii_nway_lp_ability_reg;
2694     u16 speed;
2695     u16 duplex;
2696
2697     DEBUGFUNC("e1000_config_fc_after_link_up");
2698
2699     /* Check for the case where we have fiber media and auto-neg failed
2700      * so we had to force link.  In this case, we need to force the
2701      * configuration of the MAC to match the "fc" parameter.
2702      */
2703     if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2704         ((hw->media_type == e1000_media_type_internal_serdes) &&
2705          (hw->autoneg_failed)) ||
2706         ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2707         ret_val = e1000_force_mac_fc(hw);
2708         if (ret_val) {
2709             DEBUGOUT("Error forcing flow control settings\n");
2710             return ret_val;
2711         }
2712     }
2713
2714     /* Check for the case where we have copper media and auto-neg is
2715      * enabled.  In this case, we need to check and see if Auto-Neg
2716      * has completed, and if so, how the PHY and link partner has
2717      * flow control configured.
2718      */
2719     if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2720         /* Read the MII Status Register and check to see if AutoNeg
2721          * has completed.  We read this twice because this reg has
2722          * some "sticky" (latched) bits.
2723          */
2724         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2725         if (ret_val)
2726             return ret_val;
2727         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2728         if (ret_val)
2729             return ret_val;
2730
2731         if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2732             /* The AutoNeg process has completed, so we now need to
2733              * read both the Auto Negotiation Advertisement Register
2734              * (Address 4) and the Auto_Negotiation Base Page Ability
2735              * Register (Address 5) to determine how flow control was
2736              * negotiated.
2737              */
2738             ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2739                                          &mii_nway_adv_reg);
2740             if (ret_val)
2741                 return ret_val;
2742             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2743                                          &mii_nway_lp_ability_reg);
2744             if (ret_val)
2745                 return ret_val;
2746
2747             /* Two bits in the Auto Negotiation Advertisement Register
2748              * (Address 4) and two bits in the Auto Negotiation Base
2749              * Page Ability Register (Address 5) determine flow control
2750              * for both the PHY and the link partner.  The following
2751              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2752              * 1999, describes these PAUSE resolution bits and how flow
2753              * control is determined based upon these settings.
2754              * NOTE:  DC = Don't Care
2755              *
2756              *   LOCAL DEVICE  |   LINK PARTNER
2757              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2758              *-------|---------|-------|---------|--------------------
2759              *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2760              *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2761              *   0   |    1    |   1   |    0    | E1000_FC_NONE
2762              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2763              *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2764              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2765              *   1   |    1    |   0   |    0    | E1000_FC_NONE
2766              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2767              *
2768              */
2769             /* Are both PAUSE bits set to 1?  If so, this implies
2770              * Symmetric Flow Control is enabled at both ends.  The
2771              * ASM_DIR bits are irrelevant per the spec.
2772              *
2773              * For Symmetric Flow Control:
2774              *
2775              *   LOCAL DEVICE  |   LINK PARTNER
2776              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2777              *-------|---------|-------|---------|--------------------
2778              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2779              *
2780              */
2781             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2782                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2783                 /* Now we need to check if the user selected RX ONLY
2784                  * of pause frames.  In this case, we had to advertise
2785                  * FULL flow control because we could not advertise RX
2786                  * ONLY. Hence, we must now check to see if we need to
2787                  * turn OFF  the TRANSMISSION of PAUSE frames.
2788                  */
2789                 if (hw->original_fc == E1000_FC_FULL) {
2790                     hw->fc = E1000_FC_FULL;
2791                     DEBUGOUT("Flow Control = FULL.\n");
2792                 } else {
2793                     hw->fc = E1000_FC_RX_PAUSE;
2794                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2795                 }
2796             }
2797             /* For receiving PAUSE frames ONLY.
2798              *
2799              *   LOCAL DEVICE  |   LINK PARTNER
2800              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2801              *-------|---------|-------|---------|--------------------
2802              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2803              *
2804              */
2805             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2806                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2807                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2808                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2809                 hw->fc = E1000_FC_TX_PAUSE;
2810                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2811             }
2812             /* For transmitting PAUSE frames ONLY.
2813              *
2814              *   LOCAL DEVICE  |   LINK PARTNER
2815              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2816              *-------|---------|-------|---------|--------------------
2817              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2818              *
2819              */
2820             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2821                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2822                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2823                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2824                 hw->fc = E1000_FC_RX_PAUSE;
2825                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2826             }
2827             /* Per the IEEE spec, at this point flow control should be
2828              * disabled.  However, we want to consider that we could
2829              * be connected to a legacy switch that doesn't advertise
2830              * desired flow control, but can be forced on the link
2831              * partner.  So if we advertised no flow control, that is
2832              * what we will resolve to.  If we advertised some kind of
2833              * receive capability (Rx Pause Only or Full Flow Control)
2834              * and the link partner advertised none, we will configure
2835              * ourselves to enable Rx Flow Control only.  We can do
2836              * this safely for two reasons:  If the link partner really
2837              * didn't want flow control enabled, and we enable Rx, no
2838              * harm done since we won't be receiving any PAUSE frames
2839              * anyway.  If the intent on the link partner was to have
2840              * flow control enabled, then by us enabling RX only, we
2841              * can at least receive pause frames and process them.
2842              * This is a good idea because in most cases, since we are
2843              * predominantly a server NIC, more times than not we will
2844              * be asked to delay transmission of packets than asking
2845              * our link partner to pause transmission of frames.
2846              */
2847             else if ((hw->original_fc == E1000_FC_NONE ||
2848                       hw->original_fc == E1000_FC_TX_PAUSE) ||
2849                       hw->fc_strict_ieee) {
2850                 hw->fc = E1000_FC_NONE;
2851                 DEBUGOUT("Flow Control = NONE.\n");
2852             } else {
2853                 hw->fc = E1000_FC_RX_PAUSE;
2854                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2855             }
2856
2857             /* Now we need to do one last check...  If we auto-
2858              * negotiated to HALF DUPLEX, flow control should not be
2859              * enabled per IEEE 802.3 spec.
2860              */
2861             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2862             if (ret_val) {
2863                 DEBUGOUT("Error getting link speed and duplex\n");
2864                 return ret_val;
2865             }
2866
2867             if (duplex == HALF_DUPLEX)
2868                 hw->fc = E1000_FC_NONE;
2869
2870             /* Now we call a subroutine to actually force the MAC
2871              * controller to use the correct flow control settings.
2872              */
2873             ret_val = e1000_force_mac_fc(hw);
2874             if (ret_val) {
2875                 DEBUGOUT("Error forcing flow control settings\n");
2876                 return ret_val;
2877             }
2878         } else {
2879             DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2880         }
2881     }
2882     return E1000_SUCCESS;
2883 }
2884
2885 /******************************************************************************
2886  * Checks to see if the link status of the hardware has changed.
2887  *
2888  * hw - Struct containing variables accessed by shared code
2889  *
2890  * Called by any function that needs to check the link status of the adapter.
2891  *****************************************************************************/
2892 s32 e1000_check_for_link(struct e1000_hw *hw)
2893 {
2894     u32 rxcw = 0;
2895     u32 ctrl;
2896     u32 status;
2897     u32 rctl;
2898     u32 icr;
2899     u32 signal = 0;
2900     s32 ret_val;
2901     u16 phy_data;
2902
2903     DEBUGFUNC("e1000_check_for_link");
2904
2905     ctrl = er32(CTRL);
2906     status = er32(STATUS);
2907
2908     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2909      * set when the optics detect a signal. On older adapters, it will be
2910      * cleared when there is a signal.  This applies to fiber media only.
2911      */
2912     if ((hw->media_type == e1000_media_type_fiber) ||
2913         (hw->media_type == e1000_media_type_internal_serdes)) {
2914         rxcw = er32(RXCW);
2915
2916         if (hw->media_type == e1000_media_type_fiber) {
2917             signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2918             if (status & E1000_STATUS_LU)
2919                 hw->get_link_status = false;
2920         }
2921     }
2922
2923     /* If we have a copper PHY then we only want to go out to the PHY
2924      * registers to see if Auto-Neg has completed and/or if our link
2925      * status has changed.  The get_link_status flag will be set if we
2926      * receive a Link Status Change interrupt or we have Rx Sequence
2927      * Errors.
2928      */
2929     if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2930         /* First we want to see if the MII Status Register reports
2931          * link.  If so, then we want to get the current speed/duplex
2932          * of the PHY.
2933          * Read the register twice since the link bit is sticky.
2934          */
2935         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2936         if (ret_val)
2937             return ret_val;
2938         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2939         if (ret_val)
2940             return ret_val;
2941
2942         if (phy_data & MII_SR_LINK_STATUS) {
2943             hw->get_link_status = false;
2944             /* Check if there was DownShift, must be checked immediately after
2945              * link-up */
2946             e1000_check_downshift(hw);
2947
2948             /* If we are on 82544 or 82543 silicon and speed/duplex
2949              * are forced to 10H or 10F, then we will implement the polarity
2950              * reversal workaround.  We disable interrupts first, and upon
2951              * returning, place the devices interrupt state to its previous
2952              * value except for the link status change interrupt which will
2953              * happen due to the execution of this workaround.
2954              */
2955
2956             if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2957                 (!hw->autoneg) &&
2958                 (hw->forced_speed_duplex == e1000_10_full ||
2959                  hw->forced_speed_duplex == e1000_10_half)) {
2960                 ew32(IMC, 0xffffffff);
2961                 ret_val = e1000_polarity_reversal_workaround(hw);
2962                 icr = er32(ICR);
2963                 ew32(ICS, (icr & ~E1000_ICS_LSC));
2964                 ew32(IMS, IMS_ENABLE_MASK);
2965             }
2966
2967         } else {
2968             /* No link detected */
2969             e1000_config_dsp_after_link_change(hw, false);
2970             return 0;
2971         }
2972
2973         /* If we are forcing speed/duplex, then we simply return since
2974          * we have already determined whether we have link or not.
2975          */
2976         if (!hw->autoneg) return -E1000_ERR_CONFIG;
2977
2978         /* optimize the dsp settings for the igp phy */
2979         e1000_config_dsp_after_link_change(hw, true);
2980
2981         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2982          * have Si on board that is 82544 or newer, Auto
2983          * Speed Detection takes care of MAC speed/duplex
2984          * configuration.  So we only need to configure Collision
2985          * Distance in the MAC.  Otherwise, we need to force
2986          * speed/duplex on the MAC to the current PHY speed/duplex
2987          * settings.
2988          */
2989         if (hw->mac_type >= e1000_82544)
2990             e1000_config_collision_dist(hw);
2991         else {
2992             ret_val = e1000_config_mac_to_phy(hw);
2993             if (ret_val) {
2994                 DEBUGOUT("Error configuring MAC to PHY settings\n");
2995                 return ret_val;
2996             }
2997         }
2998
2999         /* Configure Flow Control now that Auto-Neg has completed. First, we
3000          * need to restore the desired flow control settings because we may
3001          * have had to re-autoneg with a different link partner.
3002          */
3003         ret_val = e1000_config_fc_after_link_up(hw);
3004         if (ret_val) {
3005             DEBUGOUT("Error configuring flow control\n");
3006             return ret_val;
3007         }
3008
3009         /* At this point we know that we are on copper and we have
3010          * auto-negotiated link.  These are conditions for checking the link
3011          * partner capability register.  We use the link speed to determine if
3012          * TBI compatibility needs to be turned on or off.  If the link is not
3013          * at gigabit speed, then TBI compatibility is not needed.  If we are
3014          * at gigabit speed, we turn on TBI compatibility.
3015          */
3016         if (hw->tbi_compatibility_en) {
3017             u16 speed, duplex;
3018             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3019             if (ret_val) {
3020                 DEBUGOUT("Error getting link speed and duplex\n");
3021                 return ret_val;
3022             }
3023             if (speed != SPEED_1000) {
3024                 /* If link speed is not set to gigabit speed, we do not need
3025                  * to enable TBI compatibility.
3026                  */
3027                 if (hw->tbi_compatibility_on) {
3028                     /* If we previously were in the mode, turn it off. */
3029                     rctl = er32(RCTL);
3030                     rctl &= ~E1000_RCTL_SBP;
3031                     ew32(RCTL, rctl);
3032                     hw->tbi_compatibility_on = false;
3033                 }
3034             } else {
3035                 /* If TBI compatibility is was previously off, turn it on. For
3036                  * compatibility with a TBI link partner, we will store bad
3037                  * packets. Some frames have an additional byte on the end and
3038                  * will look like CRC errors to to the hardware.
3039                  */
3040                 if (!hw->tbi_compatibility_on) {
3041                     hw->tbi_compatibility_on = true;
3042                     rctl = er32(RCTL);
3043                     rctl |= E1000_RCTL_SBP;
3044                     ew32(RCTL, rctl);
3045                 }
3046             }
3047         }
3048     }
3049     /* If we don't have link (auto-negotiation failed or link partner cannot
3050      * auto-negotiate), the cable is plugged in (we have signal), and our
3051      * link partner is not trying to auto-negotiate with us (we are receiving
3052      * idles or data), we need to force link up. We also need to give
3053      * auto-negotiation time to complete, in case the cable was just plugged
3054      * in. The autoneg_failed flag does this.
3055      */
3056     else if ((((hw->media_type == e1000_media_type_fiber) &&
3057               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
3058               (hw->media_type == e1000_media_type_internal_serdes)) &&
3059               (!(status & E1000_STATUS_LU)) &&
3060               (!(rxcw & E1000_RXCW_C))) {
3061         if (hw->autoneg_failed == 0) {
3062             hw->autoneg_failed = 1;
3063             return 0;
3064         }
3065         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3066
3067         /* Disable auto-negotiation in the TXCW register */
3068         ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3069
3070         /* Force link-up and also force full-duplex. */
3071         ctrl = er32(CTRL);
3072         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3073         ew32(CTRL, ctrl);
3074
3075         /* Configure Flow Control after forcing link up. */
3076         ret_val = e1000_config_fc_after_link_up(hw);
3077         if (ret_val) {
3078             DEBUGOUT("Error configuring flow control\n");
3079             return ret_val;
3080         }
3081     }
3082     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3083      * auto-negotiation in the TXCW register and disable forced link in the
3084      * Device Control register in an attempt to auto-negotiate with our link
3085      * partner.
3086      */
3087     else if (((hw->media_type == e1000_media_type_fiber) ||
3088               (hw->media_type == e1000_media_type_internal_serdes)) &&
3089               (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3090         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3091         ew32(TXCW, hw->txcw);
3092         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
3093
3094         hw->serdes_link_down = false;
3095     }
3096     /* If we force link for non-auto-negotiation switch, check link status
3097      * based on MAC synchronization for internal serdes media type.
3098      */
3099     else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3100              !(E1000_TXCW_ANE & er32(TXCW))) {
3101         /* SYNCH bit and IV bit are sticky. */
3102         udelay(10);
3103         if (E1000_RXCW_SYNCH & er32(RXCW)) {
3104             if (!(rxcw & E1000_RXCW_IV)) {
3105                 hw->serdes_link_down = false;
3106                 DEBUGOUT("SERDES: Link is up.\n");
3107             }
3108         } else {
3109             hw->serdes_link_down = true;
3110             DEBUGOUT("SERDES: Link is down.\n");
3111         }
3112     }
3113     if ((hw->media_type == e1000_media_type_internal_serdes) &&
3114         (E1000_TXCW_ANE & er32(TXCW))) {
3115         hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
3116     }
3117     return E1000_SUCCESS;
3118 }
3119
3120 /******************************************************************************
3121  * Detects the current speed and duplex settings of the hardware.
3122  *
3123  * hw - Struct containing variables accessed by shared code
3124  * speed - Speed of the connection
3125  * duplex - Duplex setting of the connection
3126  *****************************************************************************/
3127 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
3128 {
3129     u32 status;
3130     s32 ret_val;
3131     u16 phy_data;
3132
3133     DEBUGFUNC("e1000_get_speed_and_duplex");
3134
3135     if (hw->mac_type >= e1000_82543) {
3136         status = er32(STATUS);
3137         if (status & E1000_STATUS_SPEED_1000) {
3138             *speed = SPEED_1000;
3139             DEBUGOUT("1000 Mbs, ");
3140         } else if (status & E1000_STATUS_SPEED_100) {
3141             *speed = SPEED_100;
3142             DEBUGOUT("100 Mbs, ");
3143         } else {
3144             *speed = SPEED_10;
3145             DEBUGOUT("10 Mbs, ");
3146         }
3147
3148         if (status & E1000_STATUS_FD) {
3149             *duplex = FULL_DUPLEX;
3150             DEBUGOUT("Full Duplex\n");
3151         } else {
3152             *duplex = HALF_DUPLEX;
3153             DEBUGOUT(" Half Duplex\n");
3154         }
3155     } else {
3156         DEBUGOUT("1000 Mbs, Full Duplex\n");
3157         *speed = SPEED_1000;
3158         *duplex = FULL_DUPLEX;
3159     }
3160
3161     /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3162      * if it is operating at half duplex.  Here we set the duplex settings to
3163      * match the duplex in the link partner's capabilities.
3164      */
3165     if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3166         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3167         if (ret_val)
3168             return ret_val;
3169
3170         if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3171             *duplex = HALF_DUPLEX;
3172         else {
3173             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3174             if (ret_val)
3175                 return ret_val;
3176             if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3177                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3178                 *duplex = HALF_DUPLEX;
3179         }
3180     }
3181
3182     if ((hw->mac_type == e1000_80003es2lan) &&
3183         (hw->media_type == e1000_media_type_copper)) {
3184         if (*speed == SPEED_1000)
3185             ret_val = e1000_configure_kmrn_for_1000(hw);
3186         else
3187             ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3188         if (ret_val)
3189             return ret_val;
3190     }
3191
3192     if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3193         ret_val = e1000_kumeran_lock_loss_workaround(hw);
3194         if (ret_val)
3195             return ret_val;
3196     }
3197
3198     return E1000_SUCCESS;
3199 }
3200
3201 /******************************************************************************
3202 * Blocks until autoneg completes or times out (~4.5 seconds)
3203 *
3204 * hw - Struct containing variables accessed by shared code
3205 ******************************************************************************/
3206 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
3207 {
3208     s32 ret_val;
3209     u16 i;
3210     u16 phy_data;
3211
3212     DEBUGFUNC("e1000_wait_autoneg");
3213     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3214
3215     /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3216     for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3217         /* Read the MII Status Register and wait for Auto-Neg
3218          * Complete bit to be set.
3219          */
3220         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3221         if (ret_val)
3222             return ret_val;
3223         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3224         if (ret_val)
3225             return ret_val;
3226         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3227             return E1000_SUCCESS;
3228         }
3229         msleep(100);
3230     }
3231     return E1000_SUCCESS;
3232 }
3233
3234 /******************************************************************************
3235 * Raises the Management Data Clock
3236 *
3237 * hw - Struct containing variables accessed by shared code
3238 * ctrl - Device control register's current value
3239 ******************************************************************************/
3240 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
3241 {
3242     /* Raise the clock input to the Management Data Clock (by setting the MDC
3243      * bit), and then delay 10 microseconds.
3244      */
3245     ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
3246     E1000_WRITE_FLUSH();
3247     udelay(10);
3248 }
3249
3250 /******************************************************************************
3251 * Lowers the Management Data Clock
3252 *
3253 * hw - Struct containing variables accessed by shared code
3254 * ctrl - Device control register's current value
3255 ******************************************************************************/
3256 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
3257 {
3258     /* Lower the clock input to the Management Data Clock (by clearing the MDC
3259      * bit), and then delay 10 microseconds.
3260      */
3261     ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
3262     E1000_WRITE_FLUSH();
3263     udelay(10);
3264 }
3265
3266 /******************************************************************************
3267 * Shifts data bits out to the PHY
3268 *
3269 * hw - Struct containing variables accessed by shared code
3270 * data - Data to send out to the PHY
3271 * count - Number of bits to shift out
3272 *
3273 * Bits are shifted out in MSB to LSB order.
3274 ******************************************************************************/
3275 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
3276 {
3277     u32 ctrl;
3278     u32 mask;
3279
3280     /* We need to shift "count" number of bits out to the PHY. So, the value
3281      * in the "data" parameter will be shifted out to the PHY one bit at a
3282      * time. In order to do this, "data" must be broken down into bits.
3283      */
3284     mask = 0x01;
3285     mask <<= (count - 1);
3286
3287     ctrl = er32(CTRL);
3288
3289     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3290     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3291
3292     while (mask) {
3293         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3294          * then raising and lowering the Management Data Clock. A "0" is
3295          * shifted out to the PHY by setting the MDIO bit to "0" and then
3296          * raising and lowering the clock.
3297          */
3298         if (data & mask)
3299             ctrl |= E1000_CTRL_MDIO;
3300         else
3301             ctrl &= ~E1000_CTRL_MDIO;
3302
3303         ew32(CTRL, ctrl);
3304         E1000_WRITE_FLUSH();
3305
3306         udelay(10);
3307
3308         e1000_raise_mdi_clk(hw, &ctrl);
3309         e1000_lower_mdi_clk(hw, &ctrl);
3310
3311         mask = mask >> 1;
3312     }
3313 }
3314
3315 /******************************************************************************
3316 * Shifts data bits in from the PHY
3317 *
3318 * hw - Struct containing variables accessed by shared code
3319 *
3320 * Bits are shifted in in MSB to LSB order.
3321 ******************************************************************************/
3322 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3323 {
3324     u32 ctrl;
3325     u16 data = 0;
3326     u8 i;
3327
3328     /* In order to read a register from the PHY, we need to shift in a total
3329      * of 18 bits from the PHY. The first two bit (turnaround) times are used
3330      * to avoid contention on the MDIO pin when a read operation is performed.
3331      * These two bits are ignored by us and thrown away. Bits are "shifted in"
3332      * by raising the input to the Management Data Clock (setting the MDC bit),
3333      * and then reading the value of the MDIO bit.
3334      */
3335     ctrl = er32(CTRL);
3336
3337     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3338     ctrl &= ~E1000_CTRL_MDIO_DIR;
3339     ctrl &= ~E1000_CTRL_MDIO;
3340
3341     ew32(CTRL, ctrl);
3342     E1000_WRITE_FLUSH();
3343
3344     /* Raise and Lower the clock before reading in the data. This accounts for
3345      * the turnaround bits. The first clock occurred when we clocked out the
3346      * last bit of the Register Address.
3347      */
3348     e1000_raise_mdi_clk(hw, &ctrl);
3349     e1000_lower_mdi_clk(hw, &ctrl);
3350
3351     for (data = 0, i = 0; i < 16; i++) {
3352         data = data << 1;
3353         e1000_raise_mdi_clk(hw, &ctrl);
3354         ctrl = er32(CTRL);
3355         /* Check to see if we shifted in a "1". */
3356         if (ctrl & E1000_CTRL_MDIO)
3357             data |= 1;
3358         e1000_lower_mdi_clk(hw, &ctrl);
3359     }
3360
3361     e1000_raise_mdi_clk(hw, &ctrl);
3362     e1000_lower_mdi_clk(hw, &ctrl);
3363
3364     return data;
3365 }
3366
3367 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
3368 {
3369     u32 swfw_sync = 0;
3370     u32 swmask = mask;
3371     u32 fwmask = mask << 16;
3372     s32 timeout = 200;
3373
3374     DEBUGFUNC("e1000_swfw_sync_acquire");
3375
3376     if (hw->swfwhw_semaphore_present)
3377         return e1000_get_software_flag(hw);
3378
3379     if (!hw->swfw_sync_present)
3380         return e1000_get_hw_eeprom_semaphore(hw);
3381
3382     while (timeout) {
3383             if (e1000_get_hw_eeprom_semaphore(hw))
3384                 return -E1000_ERR_SWFW_SYNC;
3385
3386             swfw_sync = er32(SW_FW_SYNC);
3387             if (!(swfw_sync & (fwmask | swmask))) {
3388                 break;
3389             }
3390
3391             /* firmware currently using resource (fwmask) */
3392             /* or other software thread currently using resource (swmask) */
3393             e1000_put_hw_eeprom_semaphore(hw);
3394             mdelay(5);
3395             timeout--;
3396     }
3397
3398     if (!timeout) {
3399         DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3400         return -E1000_ERR_SWFW_SYNC;
3401     }
3402
3403     swfw_sync |= swmask;
3404     ew32(SW_FW_SYNC, swfw_sync);
3405
3406     e1000_put_hw_eeprom_semaphore(hw);
3407     return E1000_SUCCESS;
3408 }
3409
3410 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
3411 {
3412     u32 swfw_sync;
3413     u32 swmask = mask;
3414
3415     DEBUGFUNC("e1000_swfw_sync_release");
3416
3417     if (hw->swfwhw_semaphore_present) {
3418         e1000_release_software_flag(hw);
3419         return;
3420     }
3421
3422     if (!hw->swfw_sync_present) {
3423         e1000_put_hw_eeprom_semaphore(hw);
3424         return;
3425     }
3426
3427     /* if (e1000_get_hw_eeprom_semaphore(hw))
3428      *    return -E1000_ERR_SWFW_SYNC; */
3429     while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3430         /* empty */
3431
3432     swfw_sync = er32(SW_FW_SYNC);
3433     swfw_sync &= ~swmask;
3434     ew32(SW_FW_SYNC, swfw_sync);
3435
3436     e1000_put_hw_eeprom_semaphore(hw);
3437 }
3438
3439 /*****************************************************************************
3440 * Reads the value from a PHY register, if the value is on a specific non zero
3441 * page, sets the page first.
3442 * hw - Struct containing variables accessed by shared code
3443 * reg_addr - address of the PHY register to read
3444 ******************************************************************************/
3445 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
3446 {
3447     u32 ret_val;
3448     u16 swfw;
3449
3450     DEBUGFUNC("e1000_read_phy_reg");
3451
3452     if ((hw->mac_type == e1000_80003es2lan) &&
3453         (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3454         swfw = E1000_SWFW_PHY1_SM;
3455     } else {
3456         swfw = E1000_SWFW_PHY0_SM;
3457     }
3458     if (e1000_swfw_sync_acquire(hw, swfw))
3459         return -E1000_ERR_SWFW_SYNC;
3460
3461     if ((hw->phy_type == e1000_phy_igp ||
3462         hw->phy_type == e1000_phy_igp_3 ||
3463         hw->phy_type == e1000_phy_igp_2) &&
3464        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3465         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3466                                          (u16)reg_addr);
3467         if (ret_val) {
3468             e1000_swfw_sync_release(hw, swfw);
3469             return ret_val;
3470         }
3471     } else if (hw->phy_type == e1000_phy_gg82563) {
3472         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3473             (hw->mac_type == e1000_80003es2lan)) {
3474             /* Select Configuration Page */
3475             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3476                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3477                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3478             } else {
3479                 /* Use Alternative Page Select register to access
3480                  * registers 30 and 31
3481                  */
3482                 ret_val = e1000_write_phy_reg_ex(hw,
3483                                                  GG82563_PHY_PAGE_SELECT_ALT,
3484                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3485             }
3486
3487             if (ret_val) {
3488                 e1000_swfw_sync_release(hw, swfw);
3489                 return ret_val;
3490             }
3491         }
3492     }
3493
3494     ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3495                                     phy_data);
3496
3497     e1000_swfw_sync_release(hw, swfw);
3498     return ret_val;
3499 }
3500
3501 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3502                                  u16 *phy_data)
3503 {
3504     u32 i;
3505     u32 mdic = 0;
3506     const u32 phy_addr = 1;
3507
3508     DEBUGFUNC("e1000_read_phy_reg_ex");
3509
3510     if (reg_addr > MAX_PHY_REG_ADDRESS) {
3511         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3512         return -E1000_ERR_PARAM;
3513     }
3514
3515     if (hw->mac_type > e1000_82543) {
3516         /* Set up Op-code, Phy Address, and register address in the MDI
3517          * Control register.  The MAC will take care of interfacing with the
3518          * PHY to retrieve the desired data.
3519          */
3520         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3521                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3522                 (E1000_MDIC_OP_READ));
3523
3524         ew32(MDIC, mdic);
3525
3526         /* Poll the ready bit to see if the MDI read completed */
3527         for (i = 0; i < 64; i++) {
3528             udelay(50);
3529             mdic = er32(MDIC);
3530             if (mdic & E1000_MDIC_READY) break;
3531         }
3532         if (!(mdic & E1000_MDIC_READY)) {
3533             DEBUGOUT("MDI Read did not complete\n");
3534             return -E1000_ERR_PHY;
3535         }
3536         if (mdic & E1000_MDIC_ERROR) {
3537             DEBUGOUT("MDI Error\n");
3538             return -E1000_ERR_PHY;
3539         }
3540         *phy_data = (u16)mdic;
3541     } else {
3542         /* We must first send a preamble through the MDIO pin to signal the
3543          * beginning of an MII instruction.  This is done by sending 32
3544          * consecutive "1" bits.
3545          */
3546         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3547
3548         /* Now combine the next few fields that are required for a read
3549          * operation.  We use this method instead of calling the
3550          * e1000_shift_out_mdi_bits routine five different times. The format of
3551          * a MII read instruction consists of a shift out of 14 bits and is
3552          * defined as follows:
3553          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3554          * followed by a shift in of 18 bits.  This first two bits shifted in
3555          * are TurnAround bits used to avoid contention on the MDIO pin when a
3556          * READ operation is performed.  These two bits are thrown away
3557          * followed by a shift in of 16 bits which contains the desired data.
3558          */
3559         mdic = ((reg_addr) | (phy_addr << 5) |
3560                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3561
3562         e1000_shift_out_mdi_bits(hw, mdic, 14);
3563
3564         /* Now that we've shifted out the read command to the MII, we need to
3565          * "shift in" the 16-bit value (18 total bits) of the requested PHY
3566          * register address.
3567          */
3568         *phy_data = e1000_shift_in_mdi_bits(hw);
3569     }
3570     return E1000_SUCCESS;
3571 }
3572
3573 /******************************************************************************
3574 * Writes a value to a PHY register
3575 *
3576 * hw - Struct containing variables accessed by shared code
3577 * reg_addr - address of the PHY register to write
3578 * data - data to write to the PHY
3579 ******************************************************************************/
3580 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
3581 {
3582     u32 ret_val;
3583     u16 swfw;
3584
3585     DEBUGFUNC("e1000_write_phy_reg");
3586
3587     if ((hw->mac_type == e1000_80003es2lan) &&
3588         (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3589         swfw = E1000_SWFW_PHY1_SM;
3590     } else {
3591         swfw = E1000_SWFW_PHY0_SM;
3592     }
3593     if (e1000_swfw_sync_acquire(hw, swfw))
3594         return -E1000_ERR_SWFW_SYNC;
3595
3596     if ((hw->phy_type == e1000_phy_igp ||
3597         hw->phy_type == e1000_phy_igp_3 ||
3598         hw->phy_type == e1000_phy_igp_2) &&
3599        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3600         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3601                                          (u16)reg_addr);
3602         if (ret_val) {
3603             e1000_swfw_sync_release(hw, swfw);
3604             return ret_val;
3605         }
3606     } else if (hw->phy_type == e1000_phy_gg82563) {
3607         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3608             (hw->mac_type == e1000_80003es2lan)) {
3609             /* Select Configuration Page */
3610             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3611                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3612                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3613             } else {
3614                 /* Use Alternative Page Select register to access
3615                  * registers 30 and 31
3616                  */
3617                 ret_val = e1000_write_phy_reg_ex(hw,
3618                                                  GG82563_PHY_PAGE_SELECT_ALT,
3619                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3620             }
3621
3622             if (ret_val) {
3623                 e1000_swfw_sync_release(hw, swfw);
3624                 return ret_val;
3625             }
3626         }
3627     }
3628
3629     ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3630                                      phy_data);
3631
3632     e1000_swfw_sync_release(hw, swfw);
3633     return ret_val;
3634 }
3635
3636 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3637                                   u16 phy_data)
3638 {
3639     u32 i;
3640     u32 mdic = 0;
3641     const u32 phy_addr = 1;
3642
3643     DEBUGFUNC("e1000_write_phy_reg_ex");
3644
3645     if (reg_addr > MAX_PHY_REG_ADDRESS) {
3646         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3647         return -E1000_ERR_PARAM;
3648     }
3649
3650     if (hw->mac_type > e1000_82543) {
3651         /* Set up Op-code, Phy Address, register address, and data intended
3652          * for the PHY register in the MDI Control register.  The MAC will take
3653          * care of interfacing with the PHY to send the desired data.
3654          */
3655         mdic = (((u32)phy_data) |
3656                 (reg_addr << E1000_MDIC_REG_SHIFT) |
3657                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3658                 (E1000_MDIC_OP_WRITE));
3659
3660         ew32(MDIC, mdic);
3661
3662         /* Poll the ready bit to see if the MDI read completed */
3663         for (i = 0; i < 641; i++) {
3664             udelay(5);
3665             mdic = er32(MDIC);
3666             if (mdic & E1000_MDIC_READY) break;
3667         }
3668         if (!(mdic & E1000_MDIC_READY)) {
3669             DEBUGOUT("MDI Write did not complete\n");
3670             return -E1000_ERR_PHY;
3671         }
3672     } else {
3673         /* We'll need to use the SW defined pins to shift the write command
3674          * out to the PHY. We first send a preamble to the PHY to signal the
3675          * beginning of the MII instruction.  This is done by sending 32
3676          * consecutive "1" bits.
3677          */
3678         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3679
3680         /* Now combine the remaining required fields that will indicate a
3681          * write operation. We use this method instead of calling the
3682          * e1000_shift_out_mdi_bits routine for each field in the command. The
3683          * format of a MII write instruction is as follows:
3684          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3685          */
3686         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3687                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3688         mdic <<= 16;
3689         mdic |= (u32)phy_data;
3690
3691         e1000_shift_out_mdi_bits(hw, mdic, 32);
3692     }
3693
3694     return E1000_SUCCESS;
3695 }
3696
3697 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
3698 {
3699     u32 reg_val;
3700     u16 swfw;
3701     DEBUGFUNC("e1000_read_kmrn_reg");
3702
3703     if ((hw->mac_type == e1000_80003es2lan) &&
3704         (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3705         swfw = E1000_SWFW_PHY1_SM;
3706     } else {
3707         swfw = E1000_SWFW_PHY0_SM;
3708     }
3709     if (e1000_swfw_sync_acquire(hw, swfw))
3710         return -E1000_ERR_SWFW_SYNC;
3711
3712     /* Write register address */
3713     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3714               E1000_KUMCTRLSTA_OFFSET) |
3715               E1000_KUMCTRLSTA_REN;
3716     ew32(KUMCTRLSTA, reg_val);
3717     udelay(2);
3718
3719     /* Read the data returned */
3720     reg_val = er32(KUMCTRLSTA);
3721     *data = (u16)reg_val;
3722
3723     e1000_swfw_sync_release(hw, swfw);
3724     return E1000_SUCCESS;
3725 }
3726
3727 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
3728 {
3729     u32 reg_val;
3730     u16 swfw;
3731     DEBUGFUNC("e1000_write_kmrn_reg");
3732
3733     if ((hw->mac_type == e1000_80003es2lan) &&
3734         (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3735         swfw = E1000_SWFW_PHY1_SM;
3736     } else {
3737         swfw = E1000_SWFW_PHY0_SM;
3738     }
3739     if (e1000_swfw_sync_acquire(hw, swfw))
3740         return -E1000_ERR_SWFW_SYNC;
3741
3742     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3743               E1000_KUMCTRLSTA_OFFSET) | data;
3744     ew32(KUMCTRLSTA, reg_val);
3745     udelay(2);
3746
3747     e1000_swfw_sync_release(hw, swfw);
3748     return E1000_SUCCESS;
3749 }
3750
3751 /******************************************************************************
3752 * Returns the PHY to the power-on reset state
3753 *
3754 * hw - Struct containing variables accessed by shared code
3755 ******************************************************************************/
3756 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3757 {
3758     u32 ctrl, ctrl_ext;
3759     u32 led_ctrl;
3760     s32 ret_val;
3761     u16 swfw;
3762
3763     DEBUGFUNC("e1000_phy_hw_reset");
3764
3765     /* In the case of the phy reset being blocked, it's not an error, we
3766      * simply return success without performing the reset. */
3767     ret_val = e1000_check_phy_reset_block(hw);
3768     if (ret_val)
3769         return E1000_SUCCESS;
3770
3771     DEBUGOUT("Resetting Phy...\n");
3772
3773     if (hw->mac_type > e1000_82543) {
3774         if ((hw->mac_type == e1000_80003es2lan) &&
3775             (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3776             swfw = E1000_SWFW_PHY1_SM;
3777         } else {
3778             swfw = E1000_SWFW_PHY0_SM;
3779         }
3780         if (e1000_swfw_sync_acquire(hw, swfw)) {
3781             DEBUGOUT("Unable to acquire swfw sync\n");
3782             return -E1000_ERR_SWFW_SYNC;
3783         }
3784         /* Read the device control register and assert the E1000_CTRL_PHY_RST
3785          * bit. Then, take it out of reset.
3786          * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3787          * and deassert.  For e1000_82571 hardware and later, we instead delay
3788          * for 50us between and 10ms after the deassertion.
3789          */
3790         ctrl = er32(CTRL);
3791         ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3792         E1000_WRITE_FLUSH();
3793
3794         if (hw->mac_type < e1000_82571)
3795             msleep(10);
3796         else
3797             udelay(100);
3798
3799         ew32(CTRL, ctrl);
3800         E1000_WRITE_FLUSH();
3801
3802         if (hw->mac_type >= e1000_82571)
3803             mdelay(10);
3804
3805         e1000_swfw_sync_release(hw, swfw);
3806     } else {
3807         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3808          * bit to put the PHY into reset. Then, take it out of reset.
3809          */
3810         ctrl_ext = er32(CTRL_EXT);
3811         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3812         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3813         ew32(CTRL_EXT, ctrl_ext);
3814         E1000_WRITE_FLUSH();
3815         msleep(10);
3816         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3817         ew32(CTRL_EXT, ctrl_ext);
3818         E1000_WRITE_FLUSH();
3819     }
3820     udelay(150);
3821
3822     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3823         /* Configure activity LED after PHY reset */
3824         led_ctrl = er32(LEDCTL);
3825         led_ctrl &= IGP_ACTIVITY_LED_MASK;
3826         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3827         ew32(LEDCTL, led_ctrl);
3828     }
3829
3830     /* Wait for FW to finish PHY configuration. */
3831     ret_val = e1000_get_phy_cfg_done(hw);
3832     if (ret_val != E1000_SUCCESS)
3833         return ret_val;
3834     e1000_release_software_semaphore(hw);
3835
3836     if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3837         ret_val = e1000_init_lcd_from_nvm(hw);
3838
3839     return ret_val;
3840 }
3841
3842 /******************************************************************************
3843 * Resets the PHY
3844 *
3845 * hw - Struct containing variables accessed by shared code
3846 *
3847 * Sets bit 15 of the MII Control register
3848 ******************************************************************************/
3849 s32 e1000_phy_reset(struct e1000_hw *hw)
3850 {
3851     s32 ret_val;
3852     u16 phy_data;
3853
3854     DEBUGFUNC("e1000_phy_reset");
3855
3856     /* In the case of the phy reset being blocked, it's not an error, we
3857      * simply return success without performing the reset. */
3858     ret_val = e1000_check_phy_reset_block(hw);
3859     if (ret_val)
3860         return E1000_SUCCESS;
3861
3862     switch (hw->phy_type) {
3863     case e1000_phy_igp:
3864     case e1000_phy_igp_2:
3865     case e1000_phy_igp_3:
3866     case e1000_phy_ife:
3867         ret_val = e1000_phy_hw_reset(hw);
3868         if (ret_val)
3869             return ret_val;
3870         break;
3871     default:
3872         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3873         if (ret_val)
3874             return ret_val;
3875
3876         phy_data |= MII_CR_RESET;
3877         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3878         if (ret_val)
3879             return ret_val;
3880
3881         udelay(1);
3882         break;
3883     }
3884
3885     if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3886         e1000_phy_init_script(hw);
3887
3888     return E1000_SUCCESS;
3889 }
3890
3891 /******************************************************************************
3892 * Work-around for 82566 power-down: on D3 entry-
3893 * 1) disable gigabit link
3894 * 2) write VR power-down enable
3895 * 3) read it back
3896 * if successful continue, else issue LCD reset and repeat
3897 *
3898 * hw - struct containing variables accessed by shared code
3899 ******************************************************************************/
3900 void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3901 {
3902     s32 reg;
3903     u16 phy_data;
3904     s32 retry = 0;
3905
3906     DEBUGFUNC("e1000_phy_powerdown_workaround");
3907
3908     if (hw->phy_type != e1000_phy_igp_3)
3909         return;
3910
3911     do {
3912         /* Disable link */
3913         reg = er32(PHY_CTRL);
3914         ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3915                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3916
3917         /* Write VR power-down enable - bits 9:8 should be 10b */
3918         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3919         phy_data |= (1 << 9);
3920         phy_data &= ~(1 << 8);
3921         e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
3922
3923         /* Read it back and test */
3924         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3925         if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
3926             break;
3927
3928         /* Issue PHY reset and repeat at most one more time */
3929         reg = er32(CTRL);
3930         ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3931         retry++;
3932     } while (retry);
3933
3934     return;
3935
3936 }
3937
3938 /******************************************************************************
3939 * Work-around for 82566 Kumeran PCS lock loss:
3940 * On link status change (i.e. PCI reset, speed change) and link is up and
3941 * speed is gigabit-
3942 * 0) if workaround is optionally disabled do nothing
3943 * 1) wait 1ms for Kumeran link to come up
3944 * 2) check Kumeran Diagnostic register PCS lock loss bit
3945 * 3) if not set the link is locked (all is good), otherwise...
3946 * 4) reset the PHY
3947 * 5) repeat up to 10 times
3948 * Note: this is only called for IGP3 copper when speed is 1gb.
3949 *
3950 * hw - struct containing variables accessed by shared code
3951 ******************************************************************************/
3952 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3953 {
3954     s32 ret_val;
3955     s32 reg;
3956     s32 cnt;
3957     u16 phy_data;
3958
3959     if (hw->kmrn_lock_loss_workaround_disabled)
3960         return E1000_SUCCESS;
3961
3962     /* Make sure link is up before proceeding.  If not just return.
3963      * Attempting this while link is negotiating fouled up link
3964      * stability */
3965     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3966     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3967
3968     if (phy_data & MII_SR_LINK_STATUS) {
3969         for (cnt = 0; cnt < 10; cnt++) {
3970             /* read once to clear */
3971             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3972             if (ret_val)
3973                 return ret_val;
3974             /* and again to get new status */
3975             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3976             if (ret_val)
3977                 return ret_val;
3978
3979             /* check for PCS lock */
3980             if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3981                 return E1000_SUCCESS;
3982
3983             /* Issue PHY reset */
3984             e1000_phy_hw_reset(hw);
3985             mdelay(5);
3986         }
3987         /* Disable GigE link negotiation */
3988         reg = er32(PHY_CTRL);
3989         ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3990                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3991
3992         /* unable to acquire PCS lock */
3993         return E1000_ERR_PHY;
3994     }
3995
3996     return E1000_SUCCESS;
3997 }
3998
3999 /******************************************************************************
4000 * Probes the expected PHY address for known PHY IDs
4001 *
4002 * hw - Struct containing variables accessed by shared code
4003 ******************************************************************************/
4004 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
4005 {
4006     s32 phy_init_status, ret_val;
4007     u16 phy_id_high, phy_id_low;
4008     bool match = false;
4009
4010     DEBUGFUNC("e1000_detect_gig_phy");
4011
4012     if (hw->phy_id != 0)
4013         return E1000_SUCCESS;
4014
4015     /* The 82571 firmware may still be configuring the PHY.  In this
4016      * case, we cannot access the PHY until the configuration is done.  So
4017      * we explicitly set the PHY values. */
4018     if (hw->mac_type == e1000_82571 ||
4019         hw->mac_type == e1000_82572) {
4020         hw->phy_id = IGP01E1000_I_PHY_ID;
4021         hw->phy_type = e1000_phy_igp_2;
4022         return E1000_SUCCESS;
4023     }
4024
4025     /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4026      * around that forces PHY page 0 to be set or the reads fail.  The rest of
4027      * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4028      * So for ESB-2 we need to have this set so our reads won't fail.  If the
4029      * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4030      * this out as well. */
4031     if (hw->mac_type == e1000_80003es2lan)
4032         hw->phy_type = e1000_phy_gg82563;
4033
4034     /* Read the PHY ID Registers to identify which PHY is onboard. */
4035     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4036     if (ret_val)
4037         return ret_val;
4038
4039     hw->phy_id = (u32)(phy_id_high << 16);
4040     udelay(20);
4041     ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4042     if (ret_val)
4043         return ret_val;
4044
4045     hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
4046     hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
4047
4048     switch (hw->mac_type) {
4049     case e1000_82543:
4050         if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
4051         break;
4052     case e1000_82544:
4053         if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
4054         break;
4055     case e1000_82540:
4056     case e1000_82545:
4057     case e1000_82545_rev_3:
4058     case e1000_82546:
4059     case e1000_82546_rev_3:
4060         if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
4061         break;
4062     case e1000_82541:
4063     case e1000_82541_rev_2:
4064     case e1000_82547:
4065     case e1000_82547_rev_2:
4066         if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
4067         break;
4068     case e1000_82573:
4069         if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
4070         break;
4071     case e1000_80003es2lan:
4072         if (hw->phy_id == GG82563_E_PHY_ID) match = true;
4073         break;
4074     case e1000_ich8lan:
4075         if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
4076         if (hw->phy_id == IFE_E_PHY_ID) match = true;
4077         if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
4078         if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
4079         break;
4080     default:
4081         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4082         return -E1000_ERR_CONFIG;
4083     }
4084     phy_init_status = e1000_set_phy_type(hw);
4085
4086     if ((match) && (phy_init_status == E1000_SUCCESS)) {
4087         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4088         return E1000_SUCCESS;
4089     }
4090     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4091     return -E1000_ERR_PHY;
4092 }
4093
4094 /******************************************************************************
4095 * Resets the PHY's DSP
4096 *
4097 * hw - Struct containing variables accessed by shared code
4098 ******************************************************************************/
4099 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
4100 {
4101     s32 ret_val;
4102     DEBUGFUNC("e1000_phy_reset_dsp");
4103
4104     do {
4105         if (hw->phy_type != e1000_phy_gg82563) {
4106             ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4107             if (ret_val) break;
4108         }
4109         ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4110         if (ret_val) break;
4111         ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4112         if (ret_val) break;
4113         ret_val = E1000_SUCCESS;
4114     } while (0);
4115
4116     return ret_val;
4117 }
4118
4119 /******************************************************************************
4120 * Get PHY information from various PHY registers for igp PHY only.
4121 *
4122 * hw - Struct containing variables accessed by shared code
4123 * phy_info - PHY information structure
4124 ******************************************************************************/
4125 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
4126                                   struct e1000_phy_info *phy_info)
4127 {
4128     s32 ret_val;
4129     u16 phy_data, min_length, max_length, average;
4130     e1000_rev_polarity polarity;
4131
4132     DEBUGFUNC("e1000_phy_igp_get_info");
4133
4134     /* The downshift status is checked only once, after link is established,
4135      * and it stored in the hw->speed_downgraded parameter. */
4136     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4137
4138     /* IGP01E1000 does not need to support it. */
4139     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4140
4141     /* IGP01E1000 always correct polarity reversal */
4142     phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4143
4144     /* Check polarity status */
4145     ret_val = e1000_check_polarity(hw, &polarity);
4146     if (ret_val)
4147         return ret_val;
4148
4149     phy_info->cable_polarity = polarity;
4150
4151     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4152     if (ret_val)
4153         return ret_val;
4154
4155     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4156                           IGP01E1000_PSSR_MDIX_SHIFT);
4157
4158     if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4159        IGP01E1000_PSSR_SPEED_1000MBPS) {
4160         /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4161         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4162         if (ret_val)
4163             return ret_val;
4164
4165         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4166                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4167                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4168         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4169                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4170                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4171
4172         /* Get cable length */
4173         ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4174         if (ret_val)
4175             return ret_val;
4176
4177         /* Translate to old method */
4178         average = (max_length + min_length) / 2;
4179
4180         if (average <= e1000_igp_cable_length_50)
4181             phy_info->cable_length = e1000_cable_length_50;
4182         else if (average <= e1000_igp_cable_length_80)
4183             phy_info->cable_length = e1000_cable_length_50_80;
4184         else if (average <= e1000_igp_cable_length_110)
4185             phy_info->cable_length = e1000_cable_length_80_110;
4186         else if (average <= e1000_igp_cable_length_140)
4187             phy_info->cable_length = e1000_cable_length_110_140;
4188         else
4189             phy_info->cable_length = e1000_cable_length_140;
4190     }
4191
4192     return E1000_SUCCESS;
4193 }
4194
4195 /******************************************************************************
4196 * Get PHY information from various PHY registers for ife PHY only.
4197 *
4198 * hw - Struct containing variables accessed by shared code
4199 * phy_info - PHY information structure
4200 ******************************************************************************/
4201 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
4202                                   struct e1000_phy_info *phy_info)
4203 {
4204     s32 ret_val;
4205     u16 phy_data;
4206     e1000_rev_polarity polarity;
4207
4208     DEBUGFUNC("e1000_phy_ife_get_info");
4209
4210     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4211     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4212
4213     ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4214     if (ret_val)
4215         return ret_val;
4216     phy_info->polarity_correction =
4217                         ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4218                         IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4219                         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4220
4221     if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4222         ret_val = e1000_check_polarity(hw, &polarity);
4223         if (ret_val)
4224             return ret_val;
4225     } else {
4226         /* Polarity is forced. */
4227         polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4228                      IFE_PSC_FORCE_POLARITY_SHIFT) ?
4229                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
4230     }
4231     phy_info->cable_polarity = polarity;
4232
4233     ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4234     if (ret_val)
4235         return ret_val;
4236
4237     phy_info->mdix_mode = (e1000_auto_x_mode)
4238                      ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4239                      IFE_PMC_MDIX_MODE_SHIFT);
4240
4241     return E1000_SUCCESS;
4242 }
4243
4244 /******************************************************************************
4245 * Get PHY information from various PHY registers fot m88 PHY only.
4246 *
4247 * hw - Struct containing variables accessed by shared code
4248 * phy_info - PHY information structure
4249 ******************************************************************************/
4250 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
4251                                   struct e1000_phy_info *phy_info)
4252 {
4253     s32 ret_val;
4254     u16 phy_data;
4255     e1000_rev_polarity polarity;
4256
4257     DEBUGFUNC("e1000_phy_m88_get_info");
4258
4259     /* The downshift status is checked only once, after link is established,
4260      * and it stored in the hw->speed_downgraded parameter. */
4261     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4262
4263     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4264     if (ret_val)
4265         return ret_val;
4266
4267     phy_info->extended_10bt_distance =
4268         ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4269         M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4270         e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4271
4272     phy_info->polarity_correction =
4273         ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4274         M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4275         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4276
4277     /* Check polarity status */
4278     ret_val = e1000_check_polarity(hw, &polarity);
4279     if (ret_val)
4280         return ret_val;
4281     phy_info->cable_polarity = polarity;
4282
4283     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4284     if (ret_val)
4285         return ret_val;
4286
4287     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4288                           M88E1000_PSSR_MDIX_SHIFT);
4289
4290     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4291         /* Cable Length Estimation and Local/Remote Receiver Information
4292          * are only valid at 1000 Mbps.
4293          */
4294         if (hw->phy_type != e1000_phy_gg82563) {
4295             phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4296                                       M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4297         } else {
4298             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4299                                          &phy_data);
4300             if (ret_val)
4301                 return ret_val;
4302
4303             phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4304         }
4305
4306         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4307         if (ret_val)
4308             return ret_val;
4309
4310         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4311                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4312                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4313         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4314                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4315                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4316
4317     }
4318
4319     return E1000_SUCCESS;
4320 }
4321
4322 /******************************************************************************
4323 * Get PHY information from various PHY registers
4324 *
4325 * hw - Struct containing variables accessed by shared code
4326 * phy_info - PHY information structure
4327 ******************************************************************************/
4328 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
4329 {
4330     s32 ret_val;
4331     u16 phy_data;
4332
4333     DEBUGFUNC("e1000_phy_get_info");
4334
4335     phy_info->cable_length = e1000_cable_length_undefined;
4336     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4337     phy_info->cable_polarity = e1000_rev_polarity_undefined;
4338     phy_info->downshift = e1000_downshift_undefined;
4339     phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4340     phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4341     phy_info->local_rx = e1000_1000t_rx_status_undefined;
4342     phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4343
4344     if (hw->media_type != e1000_media_type_copper) {
4345         DEBUGOUT("PHY info is only valid for copper media\n");
4346         return -E1000_ERR_CONFIG;
4347     }
4348
4349     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4350     if (ret_val)
4351         return ret_val;
4352
4353     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4354     if (ret_val)
4355         return ret_val;
4356
4357     if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4358         DEBUGOUT("PHY info is only valid if link is up\n");
4359         return -E1000_ERR_CONFIG;
4360     }
4361
4362     if (hw->phy_type == e1000_phy_igp ||
4363         hw->phy_type == e1000_phy_igp_3 ||
4364         hw->phy_type == e1000_phy_igp_2)
4365         return e1000_phy_igp_get_info(hw, phy_info);
4366     else if (hw->phy_type == e1000_phy_ife)
4367         return e1000_phy_ife_get_info(hw, phy_info);
4368     else
4369         return e1000_phy_m88_get_info(hw, phy_info);
4370 }
4371
4372 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
4373 {
4374     DEBUGFUNC("e1000_validate_mdi_settings");
4375
4376     if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4377         DEBUGOUT("Invalid MDI setting detected\n");
4378         hw->mdix = 1;
4379         return -E1000_ERR_CONFIG;
4380     }
4381     return E1000_SUCCESS;
4382 }
4383
4384
4385 /******************************************************************************
4386  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
4387  * is configured.  Additionally, if this is ICH8, the flash controller GbE
4388  * registers must be mapped, or this will crash.
4389  *
4390  * hw - Struct containing variables accessed by shared code
4391  *****************************************************************************/
4392 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
4393 {
4394     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4395     u32 eecd = er32(EECD);
4396     s32 ret_val = E1000_SUCCESS;
4397     u16 eeprom_size;
4398
4399     DEBUGFUNC("e1000_init_eeprom_params");
4400
4401     switch (hw->mac_type) {
4402     case e1000_82542_rev2_0:
4403     case e1000_82542_rev2_1:
4404     case e1000_82543:
4405     case e1000_82544:
4406         eeprom->type = e1000_eeprom_microwire;
4407         eeprom->word_size = 64;
4408         eeprom->opcode_bits = 3;
4409         eeprom->address_bits = 6;
4410         eeprom->delay_usec = 50;
4411         eeprom->use_eerd = false;
4412         eeprom->use_eewr = false;
4413         break;
4414     case e1000_82540:
4415     case e1000_82545:
4416     case e1000_82545_rev_3:
4417     case e1000_82546:
4418     case e1000_82546_rev_3:
4419         eeprom->type = e1000_eeprom_microwire;
4420         eeprom->opcode_bits = 3;
4421         eeprom->delay_usec = 50;
4422         if (eecd & E1000_EECD_SIZE) {
4423             eeprom->word_size = 256;
4424             eeprom->address_bits = 8;
4425         } else {
4426             eeprom->word_size = 64;
4427             eeprom->address_bits = 6;
4428         }
4429         eeprom->use_eerd = false;
4430         eeprom->use_eewr = false;
4431         break;
4432     case e1000_82541:
4433     case e1000_82541_rev_2:
4434     case e1000_82547:
4435     case e1000_82547_rev_2:
4436         if (eecd & E1000_EECD_TYPE) {
4437             eeprom->type = e1000_eeprom_spi;
4438             eeprom->opcode_bits = 8;
4439             eeprom->delay_usec = 1;
4440             if (eecd & E1000_EECD_ADDR_BITS) {
4441                 eeprom->page_size = 32;
4442                 eeprom->address_bits = 16;
4443             } else {
4444                 eeprom->page_size = 8;
4445                 eeprom->address_bits = 8;
4446             }
4447         } else {
4448             eeprom->type = e1000_eeprom_microwire;
4449             eeprom->opcode_bits = 3;
4450             eeprom->delay_usec = 50;
4451             if (eecd & E1000_EECD_ADDR_BITS) {
4452                 eeprom->word_size = 256;
4453                 eeprom->address_bits = 8;
4454             } else {
4455                 eeprom->word_size = 64;
4456                 eeprom->address_bits = 6;
4457             }
4458         }
4459         eeprom->use_eerd = false;
4460         eeprom->use_eewr = false;
4461         break;
4462     case e1000_82571:
4463     case e1000_82572:
4464         eeprom->type = e1000_eeprom_spi;
4465         eeprom->opcode_bits = 8;
4466         eeprom->delay_usec = 1;
4467         if (eecd & E1000_EECD_ADDR_BITS) {
4468             eeprom->page_size = 32;
4469             eeprom->address_bits = 16;
4470         } else {
4471             eeprom->page_size = 8;
4472             eeprom->address_bits = 8;
4473         }
4474         eeprom->use_eerd = false;
4475         eeprom->use_eewr = false;
4476         break;
4477     case e1000_82573:
4478         eeprom->type = e1000_eeprom_spi;
4479         eeprom->opcode_bits = 8;
4480         eeprom->delay_usec = 1;
4481         if (eecd & E1000_EECD_ADDR_BITS) {
4482             eeprom->page_size = 32;
4483             eeprom->address_bits = 16;
4484         } else {
4485             eeprom->page_size = 8;
4486             eeprom->address_bits = 8;
4487         }
4488         eeprom->use_eerd = true;
4489         eeprom->use_eewr = true;
4490         if (!e1000_is_onboard_nvm_eeprom(hw)) {
4491             eeprom->type = e1000_eeprom_flash;
4492             eeprom->word_size = 2048;
4493
4494             /* Ensure that the Autonomous FLASH update bit is cleared due to
4495              * Flash update issue on parts which use a FLASH for NVM. */
4496             eecd &= ~E1000_EECD_AUPDEN;
4497             ew32(EECD, eecd);
4498         }
4499         break;
4500     case e1000_80003es2lan:
4501         eeprom->type = e1000_eeprom_spi;
4502         eeprom->opcode_bits = 8;
4503         eeprom->delay_usec = 1;
4504         if (eecd & E1000_EECD_ADDR_BITS) {
4505             eeprom->page_size = 32;
4506             eeprom->address_bits = 16;
4507         } else {
4508             eeprom->page_size = 8;
4509             eeprom->address_bits = 8;
4510         }
4511         eeprom->use_eerd = true;
4512         eeprom->use_eewr = false;
4513         break;
4514     case e1000_ich8lan:
4515         {
4516         s32  i = 0;
4517         u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
4518
4519         eeprom->type = e1000_eeprom_ich8;
4520         eeprom->use_eerd = false;
4521         eeprom->use_eewr = false;
4522         eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4523
4524         /* Zero the shadow RAM structure. But don't load it from NVM
4525          * so as to save time for driver init */
4526         if (hw->eeprom_shadow_ram != NULL) {
4527             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4528                 hw->eeprom_shadow_ram[i].modified = false;
4529                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4530             }
4531         }
4532
4533         hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
4534                               ICH_FLASH_SECTOR_SIZE;
4535
4536         hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
4537         hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
4538
4539         hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
4540
4541         hw->flash_bank_size /= 2 * sizeof(u16);
4542
4543         break;
4544         }
4545     default:
4546         break;
4547     }
4548
4549     if (eeprom->type == e1000_eeprom_spi) {
4550         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4551          * 32KB (incremented by powers of 2).
4552          */
4553         if (hw->mac_type <= e1000_82547_rev_2) {
4554             /* Set to default value for initial eeprom read. */
4555             eeprom->word_size = 64;
4556             ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4557             if (ret_val)
4558                 return ret_val;
4559             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4560             /* 256B eeprom size was not supported in earlier hardware, so we
4561              * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4562              * is never the result used in the shifting logic below. */
4563             if (eeprom_size)
4564                 eeprom_size++;
4565         } else {
4566             eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4567                           E1000_EECD_SIZE_EX_SHIFT);
4568         }
4569
4570         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4571     }
4572     return ret_val;
4573 }
4574
4575 /******************************************************************************
4576  * Raises the EEPROM's clock input.
4577  *
4578  * hw - Struct containing variables accessed by shared code
4579  * eecd - EECD's current value
4580  *****************************************************************************/
4581 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
4582 {
4583     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4584      * wait <delay> microseconds.
4585      */
4586     *eecd = *eecd | E1000_EECD_SK;
4587     ew32(EECD, *eecd);
4588     E1000_WRITE_FLUSH();
4589     udelay(hw->eeprom.delay_usec);
4590 }
4591
4592 /******************************************************************************
4593  * Lowers the EEPROM's clock input.
4594  *
4595  * hw - Struct containing variables accessed by shared code
4596  * eecd - EECD's current value
4597  *****************************************************************************/
4598 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
4599 {
4600     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4601      * wait 50 microseconds.
4602      */
4603     *eecd = *eecd & ~E1000_EECD_SK;
4604     ew32(EECD, *eecd);
4605     E1000_WRITE_FLUSH();
4606     udelay(hw->eeprom.delay_usec);
4607 }
4608
4609 /******************************************************************************
4610  * Shift data bits out to the EEPROM.
4611  *
4612  * hw - Struct containing variables accessed by shared code
4613  * data - data to send to the EEPROM
4614  * count - number of bits to shift out
4615  *****************************************************************************/
4616 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
4617 {
4618     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4619     u32 eecd;
4620     u32 mask;
4621
4622     /* We need to shift "count" bits out to the EEPROM. So, value in the
4623      * "data" parameter will be shifted out to the EEPROM one bit at a time.
4624      * In order to do this, "data" must be broken down into bits.
4625      */
4626     mask = 0x01 << (count - 1);
4627     eecd = er32(EECD);
4628     if (eeprom->type == e1000_eeprom_microwire) {
4629         eecd &= ~E1000_EECD_DO;
4630     } else if (eeprom->type == e1000_eeprom_spi) {
4631         eecd |= E1000_EECD_DO;
4632     }
4633     do {
4634         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4635          * and then raising and then lowering the clock (the SK bit controls
4636          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
4637          * by setting "DI" to "0" and then raising and then lowering the clock.
4638          */
4639         eecd &= ~E1000_EECD_DI;
4640
4641         if (data & mask)
4642             eecd |= E1000_EECD_DI;
4643
4644         ew32(EECD, eecd);
4645         E1000_WRITE_FLUSH();
4646
4647         udelay(eeprom->delay_usec);
4648
4649         e1000_raise_ee_clk(hw, &eecd);
4650         e1000_lower_ee_clk(hw, &eecd);
4651
4652         mask = mask >> 1;
4653
4654     } while (mask);
4655
4656     /* We leave the "DI" bit set to "0" when we leave this routine. */
4657     eecd &= ~E1000_EECD_DI;
4658     ew32(EECD, eecd);
4659 }
4660
4661 /******************************************************************************
4662  * Shift data bits in from the EEPROM
4663  *
4664  * hw - Struct containing variables accessed by shared code
4665  *****************************************************************************/
4666 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
4667 {
4668     u32 eecd;
4669     u32 i;
4670     u16 data;
4671
4672     /* In order to read a register from the EEPROM, we need to shift 'count'
4673      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4674      * input to the EEPROM (setting the SK bit), and then reading the value of
4675      * the "DO" bit.  During this "shifting in" process the "DI" bit should
4676      * always be clear.
4677      */
4678
4679     eecd = er32(EECD);
4680
4681     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4682     data = 0;
4683
4684     for (i = 0; i < count; i++) {
4685         data = data << 1;
4686         e1000_raise_ee_clk(hw, &eecd);
4687
4688         eecd = er32(EECD);
4689
4690         eecd &= ~(E1000_EECD_DI);
4691         if (eecd & E1000_EECD_DO)
4692             data |= 1;
4693
4694         e1000_lower_ee_clk(hw, &eecd);
4695     }
4696
4697     return data;
4698 }
4699
4700 /******************************************************************************
4701  * Prepares EEPROM for access
4702  *
4703  * hw - Struct containing variables accessed by shared code
4704  *
4705  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4706  * function should be called before issuing a command to the EEPROM.
4707  *****************************************************************************/
4708 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
4709 {
4710     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4711     u32 eecd, i=0;
4712
4713     DEBUGFUNC("e1000_acquire_eeprom");
4714
4715     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4716         return -E1000_ERR_SWFW_SYNC;
4717     eecd = er32(EECD);
4718
4719     if (hw->mac_type != e1000_82573) {
4720         /* Request EEPROM Access */
4721         if (hw->mac_type > e1000_82544) {
4722             eecd |= E1000_EECD_REQ;
4723             ew32(EECD, eecd);
4724             eecd = er32(EECD);
4725             while ((!(eecd & E1000_EECD_GNT)) &&
4726                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4727                 i++;
4728                 udelay(5);
4729                 eecd = er32(EECD);
4730             }
4731             if (!(eecd & E1000_EECD_GNT)) {
4732                 eecd &= ~E1000_EECD_REQ;
4733                 ew32(EECD, eecd);
4734                 DEBUGOUT("Could not acquire EEPROM grant\n");
4735                 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4736                 return -E1000_ERR_EEPROM;
4737             }
4738         }
4739     }
4740
4741     /* Setup EEPROM for Read/Write */
4742
4743     if (eeprom->type == e1000_eeprom_microwire) {
4744         /* Clear SK and DI */
4745         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4746         ew32(EECD, eecd);
4747
4748         /* Set CS */
4749         eecd |= E1000_EECD_CS;
4750         ew32(EECD, eecd);
4751     } else if (eeprom->type == e1000_eeprom_spi) {
4752         /* Clear SK and CS */
4753         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4754         ew32(EECD, eecd);
4755         udelay(1);
4756     }
4757
4758     return E1000_SUCCESS;
4759 }
4760
4761 /******************************************************************************
4762  * Returns EEPROM to a "standby" state
4763  *
4764  * hw - Struct containing variables accessed by shared code
4765  *****************************************************************************/
4766 static void e1000_standby_eeprom(struct e1000_hw *hw)
4767 {
4768     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4769     u32 eecd;
4770
4771     eecd = er32(EECD);
4772
4773     if (eeprom->type == e1000_eeprom_microwire) {
4774         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4775         ew32(EECD, eecd);
4776         E1000_WRITE_FLUSH();
4777         udelay(eeprom->delay_usec);
4778
4779         /* Clock high */
4780         eecd |= E1000_EECD_SK;
4781         ew32(EECD, eecd);
4782         E1000_WRITE_FLUSH();
4783         udelay(eeprom->delay_usec);
4784
4785         /* Select EEPROM */
4786         eecd |= E1000_EECD_CS;
4787         ew32(EECD, eecd);
4788         E1000_WRITE_FLUSH();
4789         udelay(eeprom->delay_usec);
4790
4791         /* Clock low */
4792         eecd &= ~E1000_EECD_SK;
4793         ew32(EECD, eecd);
4794         E1000_WRITE_FLUSH();
4795         udelay(eeprom->delay_usec);
4796     } else if (eeprom->type == e1000_eeprom_spi) {
4797         /* Toggle CS to flush commands */
4798         eecd |= E1000_EECD_CS;
4799         ew32(EECD, eecd);
4800         E1000_WRITE_FLUSH();
4801         udelay(eeprom->delay_usec);
4802         eecd &= ~E1000_EECD_CS;
4803         ew32(EECD, eecd);
4804         E1000_WRITE_FLUSH();
4805         udelay(eeprom->delay_usec);
4806     }
4807 }
4808
4809 /******************************************************************************
4810  * Terminates a command by inverting the EEPROM's chip select pin
4811  *
4812  * hw - Struct containing variables accessed by shared code
4813  *****************************************************************************/
4814 static void e1000_release_eeprom(struct e1000_hw *hw)
4815 {
4816     u32 eecd;
4817
4818     DEBUGFUNC("e1000_release_eeprom");
4819
4820     eecd = er32(EECD);
4821
4822     if (hw->eeprom.type == e1000_eeprom_spi) {
4823         eecd |= E1000_EECD_CS;  /* Pull CS high */
4824         eecd &= ~E1000_EECD_SK; /* Lower SCK */
4825
4826         ew32(EECD, eecd);
4827
4828         udelay(hw->eeprom.delay_usec);
4829     } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4830         /* cleanup eeprom */
4831
4832         /* CS on Microwire is active-high */
4833         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4834
4835         ew32(EECD, eecd);
4836
4837         /* Rising edge of clock */
4838         eecd |= E1000_EECD_SK;
4839         ew32(EECD, eecd);
4840         E1000_WRITE_FLUSH();
4841         udelay(hw->eeprom.delay_usec);
4842
4843         /* Falling edge of clock */
4844         eecd &= ~E1000_EECD_SK;
4845         ew32(EECD, eecd);
4846         E1000_WRITE_FLUSH();
4847         udelay(hw->eeprom.delay_usec);
4848     }
4849
4850     /* Stop requesting EEPROM access */
4851     if (hw->mac_type > e1000_82544) {
4852         eecd &= ~E1000_EECD_REQ;
4853         ew32(EECD, eecd);
4854     }
4855
4856     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4857 }
4858
4859 /******************************************************************************
4860  * Reads a 16 bit word from the EEPROM.
4861  *
4862  * hw - Struct containing variables accessed by shared code
4863  *****************************************************************************/
4864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
4865 {
4866     u16 retry_count = 0;
4867     u8 spi_stat_reg;
4868
4869     DEBUGFUNC("e1000_spi_eeprom_ready");
4870
4871     /* Read "Status Register" repeatedly until the LSB is cleared.  The
4872      * EEPROM will signal that the command has been completed by clearing
4873      * bit 0 of the internal status register.  If it's not cleared within
4874      * 5 milliseconds, then error out.
4875      */
4876     retry_count = 0;
4877     do {
4878         e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4879                                 hw->eeprom.opcode_bits);
4880         spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
4881         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4882             break;
4883
4884         udelay(5);
4885         retry_count += 5;
4886
4887         e1000_standby_eeprom(hw);
4888     } while (retry_count < EEPROM_MAX_RETRY_SPI);
4889
4890     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4891      * only 0-5mSec on 5V devices)
4892      */
4893     if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4894         DEBUGOUT("SPI EEPROM Status error\n");
4895         return -E1000_ERR_EEPROM;
4896     }
4897
4898     return E1000_SUCCESS;
4899 }
4900
4901 /******************************************************************************
4902  * Reads a 16 bit word from the EEPROM.
4903  *
4904  * hw - Struct containing variables accessed by shared code
4905  * offset - offset of  word in the EEPROM to read
4906  * data - word read from the EEPROM
4907  * words - number of words to read
4908  *****************************************************************************/
4909 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4910 {
4911     s32 ret;
4912     spin_lock(&e1000_eeprom_lock);
4913     ret = e1000_do_read_eeprom(hw, offset, words, data);
4914     spin_unlock(&e1000_eeprom_lock);
4915     return ret;
4916 }
4917
4918 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4919 {
4920     struct e1000_eeprom_info *eeprom = &hw->eeprom;
4921     u32 i = 0;
4922
4923     DEBUGFUNC("e1000_read_eeprom");
4924
4925     /* If eeprom is not yet detected, do so now */
4926     if (eeprom->word_size == 0)
4927         e1000_init_eeprom_params(hw);
4928
4929     /* A check for invalid values:  offset too large, too many words, and not
4930      * enough words.
4931      */
4932     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4933        (words == 0)) {
4934         DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
4935         return -E1000_ERR_EEPROM;
4936     }
4937
4938     /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4939      * directly. In this case, we need to acquire the EEPROM so that
4940      * FW or other port software does not interrupt.
4941      */
4942     if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
4943         /* Prepare the EEPROM for bit-bang reading */
4944         if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4945             return -E1000_ERR_EEPROM;
4946     }
4947
4948     /* Eerd register EEPROM access requires no eeprom aquire/release */
4949     if (eeprom->use_eerd)
4950         return e1000_read_eeprom_eerd(hw, offset, words, data);
4951
4952     /* ICH EEPROM access is done via the ICH flash controller */
4953     if (eeprom->type == e1000_eeprom_ich8)
4954         return e1000_read_eeprom_ich8(hw, offset, words, data);
4955
4956     /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
4957      * acquired the EEPROM at this point, so any returns should relase it */
4958     if (eeprom->type == e1000_eeprom_spi) {
4959         u16 word_in;
4960         u8 read_opcode = EEPROM_READ_OPCODE_SPI;
4961
4962         if (e1000_spi_eeprom_ready(hw)) {
4963             e1000_release_eeprom(hw);
4964             return -E1000_ERR_EEPROM;
4965         }
4966
4967         e1000_standby_eeprom(hw);
4968
4969         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4970         if ((eeprom->address_bits == 8) && (offset >= 128))
4971             read_opcode |= EEPROM_A8_OPCODE_SPI;
4972
4973         /* Send the READ command (opcode + addr)  */
4974         e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4975         e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
4976
4977         /* Read the data.  The address of the eeprom internally increments with
4978          * each byte (spi) being read, saving on the overhead of eeprom setup
4979          * and tear-down.  The address counter will roll over if reading beyond
4980          * the size of the eeprom, thus allowing the entire memory to be read
4981          * starting from any offset. */
4982         for (i = 0; i < words; i++) {
4983             word_in = e1000_shift_in_ee_bits(hw, 16);
4984             data[i] = (word_in >> 8) | (word_in << 8);
4985         }
4986     } else if (eeprom->type == e1000_eeprom_microwire) {
4987         for (i = 0; i < words; i++) {
4988             /* Send the READ command (opcode + addr)  */
4989             e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4990                                     eeprom->opcode_bits);
4991             e1000_shift_out_ee_bits(hw, (u16)(offset + i),
4992                                     eeprom->address_bits);
4993
4994             /* Read the data.  For microwire, each word requires the overhead
4995              * of eeprom setup and tear-down. */
4996             data[i] = e1000_shift_in_ee_bits(hw, 16);
4997             e1000_standby_eeprom(hw);
4998         }
4999     }
5000
5001     /* End this read operation */
5002     e1000_release_eeprom(hw);
5003
5004     return E1000_SUCCESS;
5005 }
5006
5007 /******************************************************************************
5008  * Reads a 16 bit word from the EEPROM using the EERD register.
5009  *
5010  * hw - Struct containing variables accessed by shared code
5011  * offset - offset of  word in the EEPROM to read
5012  * data - word read from the EEPROM
5013  * words - number of words to read
5014  *****************************************************************************/
5015 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
5016                                   u16 *data)
5017 {
5018     u32 i, eerd = 0;
5019     s32 error = 0;
5020
5021     for (i = 0; i < words; i++) {
5022         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5023                          E1000_EEPROM_RW_REG_START;
5024
5025         ew32(EERD, eerd);
5026         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
5027
5028         if (error) {
5029             break;
5030         }
5031         data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
5032
5033     }
5034
5035     return error;
5036 }
5037
5038 /******************************************************************************
5039  * Writes a 16 bit word from the EEPROM using the EEWR register.
5040  *
5041  * hw - Struct containing variables accessed by shared code
5042  * offset - offset of  word in the EEPROM to read
5043  * data - word read from the EEPROM
5044  * words - number of words to read
5045  *****************************************************************************/
5046 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
5047                                    u16 *data)
5048 {
5049     u32    register_value = 0;
5050     u32    i              = 0;
5051     s32     error          = 0;
5052
5053     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5054         return -E1000_ERR_SWFW_SYNC;
5055
5056     for (i = 0; i < words; i++) {
5057         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5058                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5059                          E1000_EEPROM_RW_REG_START;
5060
5061         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5062         if (error) {
5063             break;
5064         }
5065
5066         ew32(EEWR, register_value);
5067
5068         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5069
5070         if (error) {
5071             break;
5072         }
5073     }
5074
5075     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5076     return error;
5077 }
5078
5079 /******************************************************************************
5080  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5081  *
5082  * hw - Struct containing variables accessed by shared code
5083  *****************************************************************************/
5084 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5085 {
5086     u32 attempts = 100000;
5087     u32 i, reg = 0;
5088     s32 done = E1000_ERR_EEPROM;
5089
5090     for (i = 0; i < attempts; i++) {
5091         if (eerd == E1000_EEPROM_POLL_READ)
5092             reg = er32(EERD);
5093         else
5094             reg = er32(EEWR);
5095
5096         if (reg & E1000_EEPROM_RW_REG_DONE) {
5097             done = E1000_SUCCESS;
5098             break;
5099         }
5100         udelay(5);
5101     }
5102
5103     return done;
5104 }
5105
5106 /***************************************************************************
5107 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
5108 *
5109 * hw - Struct containing variables accessed by shared code
5110 ****************************************************************************/
5111 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5112 {
5113     u32 eecd = 0;
5114
5115     DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5116
5117     if (hw->mac_type == e1000_ich8lan)
5118         return false;
5119
5120     if (hw->mac_type == e1000_82573) {
5121         eecd = er32(EECD);
5122
5123         /* Isolate bits 15 & 16 */
5124         eecd = ((eecd >> 15) & 0x03);
5125
5126         /* If both bits are set, device is Flash type */
5127         if (eecd == 0x03) {
5128             return false;
5129         }
5130     }
5131     return true;
5132 }
5133
5134 /******************************************************************************
5135  * Verifies that the EEPROM has a valid checksum
5136  *
5137  * hw - Struct containing variables accessed by shared code
5138  *
5139  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5140  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5141  * valid.
5142  *****************************************************************************/
5143 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5144 {
5145     u16 checksum = 0;
5146     u16 i, eeprom_data;
5147
5148     DEBUGFUNC("e1000_validate_eeprom_checksum");
5149
5150     if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
5151         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
5152          * 10h-12h.  Checksum may need to be fixed. */
5153         e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5154         if ((eeprom_data & 0x10) == 0) {
5155             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
5156              * has already been fixed.  If the checksum is still wrong and this
5157              * bit is a 1, we need to return bad checksum.  Otherwise, we need
5158              * to set this bit to a 1 and update the checksum. */
5159             e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5160             if ((eeprom_data & 0x8000) == 0) {
5161                 eeprom_data |= 0x8000;
5162                 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5163                 e1000_update_eeprom_checksum(hw);
5164             }
5165         }
5166     }
5167
5168     if (hw->mac_type == e1000_ich8lan) {
5169         /* Drivers must allocate the shadow ram structure for the
5170          * EEPROM checksum to be updated.  Otherwise, this bit as well
5171          * as the checksum must both be set correctly for this
5172          * validation to pass.
5173          */
5174         e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5175         if ((eeprom_data & 0x40) == 0) {
5176             eeprom_data |= 0x40;
5177             e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5178             e1000_update_eeprom_checksum(hw);
5179         }
5180     }
5181
5182     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5183         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5184             DEBUGOUT("EEPROM Read Error\n");
5185             return -E1000_ERR_EEPROM;
5186         }
5187         checksum += eeprom_data;
5188     }
5189
5190     if (checksum == (u16)EEPROM_SUM)
5191         return E1000_SUCCESS;
5192     else {
5193         DEBUGOUT("EEPROM Checksum Invalid\n");
5194         return -E1000_ERR_EEPROM;
5195     }
5196 }
5197
5198 /******************************************************************************
5199  * Calculates the EEPROM checksum and writes it to the EEPROM
5200  *
5201  * hw - Struct containing variables accessed by shared code
5202  *
5203  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5204  * Writes the difference to word offset 63 of the EEPROM.
5205  *****************************************************************************/
5206 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
5207 {
5208     u32 ctrl_ext;
5209     u16 checksum = 0;
5210     u16 i, eeprom_data;
5211
5212     DEBUGFUNC("e1000_update_eeprom_checksum");
5213
5214     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5215         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5216             DEBUGOUT("EEPROM Read Error\n");
5217             return -E1000_ERR_EEPROM;
5218         }
5219         checksum += eeprom_data;
5220     }
5221     checksum = (u16)EEPROM_SUM - checksum;
5222     if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5223         DEBUGOUT("EEPROM Write Error\n");
5224         return -E1000_ERR_EEPROM;
5225     } else if (hw->eeprom.type == e1000_eeprom_flash) {
5226         e1000_commit_shadow_ram(hw);
5227     } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5228         e1000_commit_shadow_ram(hw);
5229         /* Reload the EEPROM, or else modifications will not appear
5230          * until after next adapter reset. */
5231         ctrl_ext = er32(CTRL_EXT);
5232         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5233         ew32(CTRL_EXT, ctrl_ext);
5234         msleep(10);
5235     }
5236     return E1000_SUCCESS;
5237 }
5238
5239 /******************************************************************************
5240  * Parent function for writing words to the different EEPROM types.
5241  *
5242  * hw - Struct containing variables accessed by shared code
5243  * offset - offset within the EEPROM to be written to
5244  * words - number of words to write
5245  * data - 16 bit word to be written to the EEPROM
5246  *
5247  * If e1000_update_eeprom_checksum is not called after this function, the
5248  * EEPROM will most likely contain an invalid checksum.
5249  *****************************************************************************/
5250 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
5251 {
5252     s32 ret;
5253     spin_lock(&e1000_eeprom_lock);
5254     ret = e1000_do_write_eeprom(hw, offset, words, data);
5255     spin_unlock(&e1000_eeprom_lock);
5256     return ret;
5257 }
5258
5259
5260 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
5261 {
5262     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5263     s32 status = 0;
5264
5265     DEBUGFUNC("e1000_write_eeprom");
5266
5267     /* If eeprom is not yet detected, do so now */
5268     if (eeprom->word_size == 0)
5269         e1000_init_eeprom_params(hw);
5270
5271     /* A check for invalid values:  offset too large, too many words, and not
5272      * enough words.
5273      */
5274     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5275        (words == 0)) {
5276         DEBUGOUT("\"words\" parameter out of bounds\n");
5277         return -E1000_ERR_EEPROM;
5278     }
5279
5280     /* 82573 writes only through eewr */
5281     if (eeprom->use_eewr)
5282         return e1000_write_eeprom_eewr(hw, offset, words, data);
5283
5284     if (eeprom->type == e1000_eeprom_ich8)
5285         return e1000_write_eeprom_ich8(hw, offset, words, data);
5286
5287     /* Prepare the EEPROM for writing  */
5288     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5289         return -E1000_ERR_EEPROM;
5290
5291     if (eeprom->type == e1000_eeprom_microwire) {
5292         status = e1000_write_eeprom_microwire(hw, offset, words, data);
5293     } else {
5294         status = e1000_write_eeprom_spi(hw, offset, words, data);
5295         msleep(10);
5296     }
5297
5298     /* Done with writing */
5299     e1000_release_eeprom(hw);
5300
5301     return status;
5302 }
5303
5304 /******************************************************************************
5305  * Writes a 16 bit word to a given offset in an SPI EEPROM.
5306  *
5307  * hw - Struct containing variables accessed by shared code
5308  * offset - offset within the EEPROM to be written to
5309  * words - number of words to write
5310  * data - pointer to array of 8 bit words to be written to the EEPROM
5311  *
5312  *****************************************************************************/
5313 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
5314                                   u16 *data)
5315 {
5316     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5317     u16 widx = 0;
5318
5319     DEBUGFUNC("e1000_write_eeprom_spi");
5320
5321     while (widx < words) {
5322         u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
5323
5324         if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5325
5326         e1000_standby_eeprom(hw);
5327
5328         /*  Send the WRITE ENABLE command (8 bit opcode )  */
5329         e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5330                                     eeprom->opcode_bits);
5331
5332         e1000_standby_eeprom(hw);
5333
5334         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5335         if ((eeprom->address_bits == 8) && (offset >= 128))
5336             write_opcode |= EEPROM_A8_OPCODE_SPI;
5337
5338         /* Send the Write command (8-bit opcode + addr) */
5339         e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5340
5341         e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
5342                                 eeprom->address_bits);
5343
5344         /* Send the data */
5345
5346         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5347         while (widx < words) {
5348             u16 word_out = data[widx];
5349             word_out = (word_out >> 8) | (word_out << 8);
5350             e1000_shift_out_ee_bits(hw, word_out, 16);
5351             widx++;
5352
5353             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5354              * operation, while the smaller eeproms are capable of an 8-byte
5355              * PAGE WRITE operation.  Break the inner loop to pass new address
5356              */
5357             if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5358                 e1000_standby_eeprom(hw);
5359                 break;
5360             }
5361         }
5362     }
5363
5364     return E1000_SUCCESS;
5365 }
5366
5367 /******************************************************************************
5368  * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5369  *
5370  * hw - Struct containing variables accessed by shared code
5371  * offset - offset within the EEPROM to be written to
5372  * words - number of words to write
5373  * data - pointer to array of 16 bit words to be written to the EEPROM
5374  *
5375  *****************************************************************************/
5376 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
5377                                         u16 words, u16 *data)
5378 {
5379     struct e1000_eeprom_info *eeprom = &hw->eeprom;
5380     u32 eecd;
5381     u16 words_written = 0;
5382     u16 i = 0;
5383
5384     DEBUGFUNC("e1000_write_eeprom_microwire");
5385
5386     /* Send the write enable command to the EEPROM (3-bit opcode plus
5387      * 6/8-bit dummy address beginning with 11).  It's less work to include
5388      * the 11 of the dummy address as part of the opcode than it is to shift
5389      * it over the correct number of bits for the address.  This puts the
5390      * EEPROM into write/erase mode.
5391      */
5392     e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5393                             (u16)(eeprom->opcode_bits + 2));
5394
5395     e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
5396
5397     /* Prepare the EEPROM */
5398     e1000_standby_eeprom(hw);
5399
5400     while (words_written < words) {
5401         /* Send the Write command (3-bit opcode + addr) */
5402         e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5403                                 eeprom->opcode_bits);
5404
5405         e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
5406                                 eeprom->address_bits);
5407
5408         /* Send the data */
5409         e1000_shift_out_ee_bits(hw, data[words_written], 16);
5410
5411         /* Toggle the CS line.  This in effect tells the EEPROM to execute
5412          * the previous command.
5413          */
5414         e1000_standby_eeprom(hw);
5415
5416         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
5417          * signal that the command has been completed by raising the DO signal.
5418          * If DO does not go high in 10 milliseconds, then error out.
5419          */
5420         for (i = 0; i < 200; i++) {
5421             eecd = er32(EECD);
5422             if (eecd & E1000_EECD_DO) break;
5423             udelay(50);
5424         }
5425         if (i == 200) {
5426             DEBUGOUT("EEPROM Write did not complete\n");
5427             return -E1000_ERR_EEPROM;
5428         }
5429
5430         /* Recover from write */
5431         e1000_standby_eeprom(hw);
5432
5433         words_written++;
5434     }
5435
5436     /* Send the write disable command to the EEPROM (3-bit opcode plus
5437      * 6/8-bit dummy address beginning with 10).  It's less work to include
5438      * the 10 of the dummy address as part of the opcode than it is to shift
5439      * it over the correct number of bits for the address.  This takes the
5440      * EEPROM out of write/erase mode.
5441      */
5442     e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5443                             (u16)(eeprom->opcode_bits + 2));
5444
5445     e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
5446
5447     return E1000_SUCCESS;
5448 }
5449
5450 /******************************************************************************
5451  * Flushes the cached eeprom to NVM. This is done by saving the modified values
5452  * in the eeprom cache and the non modified values in the currently active bank
5453  * to the new bank.
5454  *
5455  * hw - Struct containing variables accessed by shared code
5456  * offset - offset of  word in the EEPROM to read
5457  * data - word read from the EEPROM
5458  * words - number of words to read
5459  *****************************************************************************/
5460 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
5461 {
5462     u32 attempts = 100000;
5463     u32 eecd = 0;
5464     u32 flop = 0;
5465     u32 i = 0;
5466     s32 error = E1000_SUCCESS;
5467     u32 old_bank_offset = 0;
5468     u32 new_bank_offset = 0;
5469     u8 low_byte = 0;
5470     u8 high_byte = 0;
5471     bool sector_write_failed = false;
5472
5473     if (hw->mac_type == e1000_82573) {
5474         /* The flop register will be used to determine if flash type is STM */
5475         flop = er32(FLOP);
5476         for (i=0; i < attempts; i++) {
5477             eecd = er32(EECD);
5478             if ((eecd & E1000_EECD_FLUPD) == 0) {
5479                 break;
5480             }
5481             udelay(5);
5482         }
5483
5484         if (i == attempts) {
5485             return -E1000_ERR_EEPROM;
5486         }
5487
5488         /* If STM opcode located in bits 15:8 of flop, reset firmware */
5489         if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5490             ew32(HICR, E1000_HICR_FW_RESET);
5491         }
5492
5493         /* Perform the flash update */
5494         ew32(EECD, eecd | E1000_EECD_FLUPD);
5495
5496         for (i=0; i < attempts; i++) {
5497             eecd = er32(EECD);
5498             if ((eecd & E1000_EECD_FLUPD) == 0) {
5499                 break;
5500             }
5501             udelay(5);
5502         }
5503
5504         if (i == attempts) {
5505             return -E1000_ERR_EEPROM;
5506         }
5507     }
5508
5509     if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5510         /* We're writing to the opposite bank so if we're on bank 1,
5511          * write to bank 0 etc.  We also need to erase the segment that
5512          * is going to be written */
5513         if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
5514             new_bank_offset = hw->flash_bank_size * 2;
5515             old_bank_offset = 0;
5516             e1000_erase_ich8_4k_segment(hw, 1);
5517         } else {
5518             old_bank_offset = hw->flash_bank_size * 2;
5519             new_bank_offset = 0;
5520             e1000_erase_ich8_4k_segment(hw, 0);
5521         }
5522
5523         sector_write_failed = false;
5524         /* Loop for every byte in the shadow RAM,
5525          * which is in units of words. */
5526         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5527             /* Determine whether to write the value stored
5528              * in the other NVM bank or a modified value stored
5529              * in the shadow RAM */
5530             if (hw->eeprom_shadow_ram[i].modified) {
5531                 low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
5532                 udelay(100);
5533                 error = e1000_verify_write_ich8_byte(hw,
5534                             (i << 1) + new_bank_offset, low_byte);
5535
5536                 if (error != E1000_SUCCESS)
5537                     sector_write_failed = true;
5538                 else {
5539                     high_byte =
5540                         (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5541                     udelay(100);
5542                 }
5543             } else {
5544                 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5545                                      &low_byte);
5546                 udelay(100);
5547                 error = e1000_verify_write_ich8_byte(hw,
5548                             (i << 1) + new_bank_offset, low_byte);
5549
5550                 if (error != E1000_SUCCESS)
5551                     sector_write_failed = true;
5552                 else {
5553                     e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5554                                          &high_byte);
5555                     udelay(100);
5556                 }
5557             }
5558
5559             /* If the write of the low byte was successful, go ahead and
5560              * write the high byte while checking to make sure that if it
5561              * is the signature byte, then it is handled properly */
5562             if (!sector_write_failed) {
5563                 /* If the word is 0x13, then make sure the signature bits
5564                  * (15:14) are 11b until the commit has completed.
5565                  * This will allow us to write 10b which indicates the
5566                  * signature is valid.  We want to do this after the write
5567                  * has completed so that we don't mark the segment valid
5568                  * while the write is still in progress */
5569                 if (i == E1000_ICH_NVM_SIG_WORD)
5570                     high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
5571
5572                 error = e1000_verify_write_ich8_byte(hw,
5573                             (i << 1) + new_bank_offset + 1, high_byte);
5574                 if (error != E1000_SUCCESS)
5575                     sector_write_failed = true;
5576
5577             } else {
5578                 /* If the write failed then break from the loop and
5579                  * return an error */
5580                 break;
5581             }
5582         }
5583
5584         /* Don't bother writing the segment valid bits if sector
5585          * programming failed. */
5586         if (!sector_write_failed) {
5587             /* Finally validate the new segment by setting bit 15:14
5588              * to 10b in word 0x13 , this can be done without an
5589              * erase as well since these bits are 11 to start with
5590              * and we need to change bit 14 to 0b */
5591             e1000_read_ich8_byte(hw,
5592                                  E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5593                                  &high_byte);
5594             high_byte &= 0xBF;
5595             error = e1000_verify_write_ich8_byte(hw,
5596                         E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5597             /* And invalidate the previously valid segment by setting
5598              * its signature word (0x13) high_byte to 0b. This can be
5599              * done without an erase because flash erase sets all bits
5600              * to 1's. We can write 1's to 0's without an erase */
5601             if (error == E1000_SUCCESS) {
5602                 error = e1000_verify_write_ich8_byte(hw,
5603                             E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
5604             }
5605
5606             /* Clear the now not used entry in the cache */
5607             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5608                 hw->eeprom_shadow_ram[i].modified = false;
5609                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5610             }
5611         }
5612     }
5613
5614     return error;
5615 }
5616
5617 /******************************************************************************
5618  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5619  * second function of dual function devices
5620  *
5621  * hw - Struct containing variables accessed by shared code
5622  *****************************************************************************/
5623 s32 e1000_read_mac_addr(struct e1000_hw *hw)
5624 {
5625     u16 offset;
5626     u16 eeprom_data, i;
5627
5628     DEBUGFUNC("e1000_read_mac_addr");
5629
5630     for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5631         offset = i >> 1;
5632         if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5633             DEBUGOUT("EEPROM Read Error\n");
5634             return -E1000_ERR_EEPROM;
5635         }
5636         hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
5637         hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
5638     }
5639
5640     switch (hw->mac_type) {
5641     default:
5642         break;
5643     case e1000_82546:
5644     case e1000_82546_rev_3:
5645     case e1000_82571:
5646     case e1000_80003es2lan:
5647         if (er32(STATUS) & E1000_STATUS_FUNC_1)
5648             hw->perm_mac_addr[5] ^= 0x01;
5649         break;
5650     }
5651
5652     for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5653         hw->mac_addr[i] = hw->perm_mac_addr[i];
5654     return E1000_SUCCESS;
5655 }
5656
5657 /******************************************************************************
5658  * Initializes receive address filters.
5659  *
5660  * hw - Struct containing variables accessed by shared code
5661  *
5662  * Places the MAC address in receive address register 0 and clears the rest
5663  * of the receive addresss registers. Clears the multicast table. Assumes
5664  * the receiver is in reset when the routine is called.
5665  *****************************************************************************/
5666 static void e1000_init_rx_addrs(struct e1000_hw *hw)
5667 {
5668     u32 i;
5669     u32 rar_num;
5670
5671     DEBUGFUNC("e1000_init_rx_addrs");
5672
5673     /* Setup the receive address. */
5674     DEBUGOUT("Programming MAC Address into RAR[0]\n");
5675
5676     e1000_rar_set(hw, hw->mac_addr, 0);
5677
5678     rar_num = E1000_RAR_ENTRIES;
5679
5680     /* Reserve a spot for the Locally Administered Address to work around
5681      * an 82571 issue in which a reset on one port will reload the MAC on
5682      * the other port. */
5683     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
5684         rar_num -= 1;
5685     if (hw->mac_type == e1000_ich8lan)
5686         rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5687
5688     /* Zero out the other 15 receive addresses. */
5689     DEBUGOUT("Clearing RAR[1-15]\n");
5690     for (i = 1; i < rar_num; i++) {
5691         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5692         E1000_WRITE_FLUSH();
5693         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5694         E1000_WRITE_FLUSH();
5695     }
5696 }
5697
5698 /******************************************************************************
5699  * Hashes an address to determine its location in the multicast table
5700  *
5701  * hw - Struct containing variables accessed by shared code
5702  * mc_addr - the multicast address to hash
5703  *****************************************************************************/
5704 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
5705 {
5706     u32 hash_value = 0;
5707
5708     /* The portion of the address that is used for the hash table is
5709      * determined by the mc_filter_type setting.
5710      */
5711     switch (hw->mc_filter_type) {
5712     /* [0] [1] [2] [3] [4] [5]
5713      * 01  AA  00  12  34  56
5714      * LSB                 MSB
5715      */
5716     case 0:
5717         if (hw->mac_type == e1000_ich8lan) {
5718             /* [47:38] i.e. 0x158 for above example address */
5719             hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2));
5720         } else {
5721             /* [47:36] i.e. 0x563 for above example address */
5722             hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
5723         }
5724         break;
5725     case 1:
5726         if (hw->mac_type == e1000_ich8lan) {
5727             /* [46:37] i.e. 0x2B1 for above example address */
5728             hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3));
5729         } else {
5730             /* [46:35] i.e. 0xAC6 for above example address */
5731             hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
5732         }
5733         break;
5734     case 2:
5735         if (hw->mac_type == e1000_ich8lan) {
5736             /*[45:36] i.e. 0x163 for above example address */
5737             hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
5738         } else {
5739             /* [45:34] i.e. 0x5D8 for above example address */
5740             hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
5741         }
5742         break;
5743     case 3:
5744         if (hw->mac_type == e1000_ich8lan) {
5745             /* [43:34] i.e. 0x18D for above example address */
5746             hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
5747         } else {
5748             /* [43:32] i.e. 0x634 for above example address */
5749             hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
5750         }
5751         break;
5752     }
5753
5754     hash_value &= 0xFFF;
5755     if (hw->mac_type == e1000_ich8lan)
5756         hash_value &= 0x3FF;
5757
5758     return hash_value;
5759 }
5760
5761 /******************************************************************************
5762  * Sets the bit in the multicast table corresponding to the hash value.
5763  *
5764  * hw - Struct containing variables accessed by shared code
5765  * hash_value - Multicast address hash value
5766  *****************************************************************************/
5767 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
5768 {
5769     u32 hash_bit, hash_reg;
5770     u32 mta;
5771     u32 temp;
5772
5773     /* The MTA is a register array of 128 32-bit registers.
5774      * It is treated like an array of 4096 bits.  We want to set
5775      * bit BitArray[hash_value]. So we figure out what register
5776      * the bit is in, read it, OR in the new bit, then write
5777      * back the new value.  The register is determined by the
5778      * upper 7 bits of the hash value and the bit within that
5779      * register are determined by the lower 5 bits of the value.
5780      */
5781     hash_reg = (hash_value >> 5) & 0x7F;
5782     if (hw->mac_type == e1000_ich8lan)
5783         hash_reg &= 0x1F;
5784
5785     hash_bit = hash_value & 0x1F;
5786
5787     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5788
5789     mta |= (1 << hash_bit);
5790
5791     /* If we are on an 82544 and we are trying to write an odd offset
5792      * in the MTA, save off the previous entry before writing and
5793      * restore the old value after writing.
5794      */
5795     if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5796         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5797         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5798         E1000_WRITE_FLUSH();
5799         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5800         E1000_WRITE_FLUSH();
5801     } else {
5802         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5803         E1000_WRITE_FLUSH();
5804     }
5805 }
5806
5807 /******************************************************************************
5808  * Puts an ethernet address into a receive address register.
5809  *
5810  * hw - Struct containing variables accessed by shared code
5811  * addr - Address to put into receive address register
5812  * index - Receive address register to write
5813  *****************************************************************************/
5814 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
5815 {
5816     u32 rar_low, rar_high;
5817
5818     /* HW expects these in little endian so we reverse the byte order
5819      * from network order (big endian) to little endian
5820      */
5821     rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
5822                ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
5823     rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
5824
5825     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5826      * unit hang.
5827      *
5828      * Description:
5829      * If there are any Rx frames queued up or otherwise present in the HW
5830      * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5831      * hang.  To work around this issue, we have to disable receives and
5832      * flush out all Rx frames before we enable RSS. To do so, we modify we
5833      * redirect all Rx traffic to manageability and then reset the HW.
5834      * This flushes away Rx frames, and (since the redirections to
5835      * manageability persists across resets) keeps new ones from coming in
5836      * while we work.  Then, we clear the Address Valid AV bit for all MAC
5837      * addresses and undo the re-direction to manageability.
5838      * Now, frames are coming in again, but the MAC won't accept them, so
5839      * far so good.  We now proceed to initialize RSS (if necessary) and
5840      * configure the Rx unit.  Last, we re-enable the AV bits and continue
5841      * on our merry way.
5842      */
5843     switch (hw->mac_type) {
5844     case e1000_82571:
5845     case e1000_82572:
5846     case e1000_80003es2lan:
5847         if (hw->leave_av_bit_off)
5848             break;
5849     default:
5850         /* Indicate to hardware the Address is Valid. */
5851         rar_high |= E1000_RAH_AV;
5852         break;
5853     }
5854
5855     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5856     E1000_WRITE_FLUSH();
5857     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5858     E1000_WRITE_FLUSH();
5859 }
5860
5861 /******************************************************************************
5862  * Writes a value to the specified offset in the VLAN filter table.
5863  *
5864  * hw - Struct containing variables accessed by shared code
5865  * offset - Offset in VLAN filer table to write
5866  * value - Value to write into VLAN filter table
5867  *****************************************************************************/
5868 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
5869 {
5870     u32 temp;
5871
5872     if (hw->mac_type == e1000_ich8lan)
5873         return;
5874
5875     if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5876         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5877         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5878         E1000_WRITE_FLUSH();
5879         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5880         E1000_WRITE_FLUSH();
5881     } else {
5882         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5883         E1000_WRITE_FLUSH();
5884     }
5885 }
5886
5887 /******************************************************************************
5888  * Clears the VLAN filer table
5889  *
5890  * hw - Struct containing variables accessed by shared code
5891  *****************************************************************************/
5892 static void e1000_clear_vfta(struct e1000_hw *hw)
5893 {
5894     u32 offset;
5895     u32 vfta_value = 0;
5896     u32 vfta_offset = 0;
5897     u32 vfta_bit_in_reg = 0;
5898
5899     if (hw->mac_type == e1000_ich8lan)
5900         return;
5901
5902     if (hw->mac_type == e1000_82573) {
5903         if (hw->mng_cookie.vlan_id != 0) {
5904             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5905              * ID.  The following operations determine which 32b entry
5906              * (i.e. offset) into the array we want to set the VLAN ID
5907              * (i.e. bit) of the manageability unit. */
5908             vfta_offset = (hw->mng_cookie.vlan_id >>
5909                            E1000_VFTA_ENTRY_SHIFT) &
5910                           E1000_VFTA_ENTRY_MASK;
5911             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5912                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5913         }
5914     }
5915     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5916         /* If the offset we want to clear is the same offset of the
5917          * manageability VLAN ID, then clear all bits except that of the
5918          * manageability unit */
5919         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5920         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5921         E1000_WRITE_FLUSH();
5922     }
5923 }
5924
5925 static s32 e1000_id_led_init(struct e1000_hw *hw)
5926 {
5927     u32 ledctl;
5928     const u32 ledctl_mask = 0x000000FF;
5929     const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5930     const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5931     u16 eeprom_data, i, temp;
5932     const u16 led_mask = 0x0F;
5933
5934     DEBUGFUNC("e1000_id_led_init");
5935
5936     if (hw->mac_type < e1000_82540) {
5937         /* Nothing to do */
5938         return E1000_SUCCESS;
5939     }
5940
5941     ledctl = er32(LEDCTL);
5942     hw->ledctl_default = ledctl;
5943     hw->ledctl_mode1 = hw->ledctl_default;
5944     hw->ledctl_mode2 = hw->ledctl_default;
5945
5946     if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
5947         DEBUGOUT("EEPROM Read Error\n");
5948         return -E1000_ERR_EEPROM;
5949     }
5950
5951     if ((hw->mac_type == e1000_82573) &&
5952         (eeprom_data == ID_LED_RESERVED_82573))
5953         eeprom_data = ID_LED_DEFAULT_82573;
5954     else if ((eeprom_data == ID_LED_RESERVED_0000) ||
5955             (eeprom_data == ID_LED_RESERVED_FFFF)) {
5956         if (hw->mac_type == e1000_ich8lan)
5957             eeprom_data = ID_LED_DEFAULT_ICH8LAN;
5958         else
5959             eeprom_data = ID_LED_DEFAULT;
5960     }
5961
5962     for (i = 0; i < 4; i++) {
5963         temp = (eeprom_data >> (i << 2)) & led_mask;
5964         switch (temp) {
5965         case ID_LED_ON1_DEF2:
5966         case ID_LED_ON1_ON2:
5967         case ID_LED_ON1_OFF2:
5968             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5969             hw->ledctl_mode1 |= ledctl_on << (i << 3);
5970             break;
5971         case ID_LED_OFF1_DEF2:
5972         case ID_LED_OFF1_ON2:
5973         case ID_LED_OFF1_OFF2:
5974             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5975             hw->ledctl_mode1 |= ledctl_off << (i << 3);
5976             break;
5977         default:
5978             /* Do nothing */
5979             break;
5980         }
5981         switch (temp) {
5982         case ID_LED_DEF1_ON2:
5983         case ID_LED_ON1_ON2:
5984         case ID_LED_OFF1_ON2:
5985             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5986             hw->ledctl_mode2 |= ledctl_on << (i << 3);
5987             break;
5988         case ID_LED_DEF1_OFF2:
5989         case ID_LED_ON1_OFF2:
5990         case ID_LED_OFF1_OFF2:
5991             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5992             hw->ledctl_mode2 |= ledctl_off << (i << 3);
5993             break;
5994         default:
5995             /* Do nothing */
5996             break;
5997         }
5998     }
5999     return E1000_SUCCESS;
6000 }
6001
6002 /******************************************************************************
6003  * Prepares SW controlable LED for use and saves the current state of the LED.
6004  *
6005  * hw - Struct containing variables accessed by shared code
6006  *****************************************************************************/
6007 s32 e1000_setup_led(struct e1000_hw *hw)
6008 {
6009     u32 ledctl;
6010     s32 ret_val = E1000_SUCCESS;
6011
6012     DEBUGFUNC("e1000_setup_led");
6013
6014     switch (hw->mac_type) {
6015     case e1000_82542_rev2_0:
6016     case e1000_82542_rev2_1:
6017     case e1000_82543:
6018     case e1000_82544:
6019         /* No setup necessary */
6020         break;
6021     case e1000_82541:
6022     case e1000_82547:
6023     case e1000_82541_rev_2:
6024     case e1000_82547_rev_2:
6025         /* Turn off PHY Smart Power Down (if enabled) */
6026         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6027                                      &hw->phy_spd_default);
6028         if (ret_val)
6029             return ret_val;
6030         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6031                                       (u16)(hw->phy_spd_default &
6032                                       ~IGP01E1000_GMII_SPD));
6033         if (ret_val)
6034             return ret_val;
6035         /* Fall Through */
6036     default:
6037         if (hw->media_type == e1000_media_type_fiber) {
6038             ledctl = er32(LEDCTL);
6039             /* Save current LEDCTL settings */
6040             hw->ledctl_default = ledctl;
6041             /* Turn off LED0 */
6042             ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6043                         E1000_LEDCTL_LED0_BLINK |
6044                         E1000_LEDCTL_LED0_MODE_MASK);
6045             ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6046                        E1000_LEDCTL_LED0_MODE_SHIFT);
6047             ew32(LEDCTL, ledctl);
6048         } else if (hw->media_type == e1000_media_type_copper)
6049             ew32(LEDCTL, hw->ledctl_mode1);
6050         break;
6051     }
6052
6053     return E1000_SUCCESS;
6054 }
6055
6056
6057 /******************************************************************************
6058  * Used on 82571 and later Si that has LED blink bits.
6059  * Callers must use their own timer and should have already called
6060  * e1000_id_led_init()
6061  * Call e1000_cleanup led() to stop blinking
6062  *
6063  * hw - Struct containing variables accessed by shared code
6064  *****************************************************************************/
6065 s32 e1000_blink_led_start(struct e1000_hw *hw)
6066 {
6067     s16  i;
6068     u32 ledctl_blink = 0;
6069
6070     DEBUGFUNC("e1000_id_led_blink_on");
6071
6072     if (hw->mac_type < e1000_82571) {
6073         /* Nothing to do */
6074         return E1000_SUCCESS;
6075     }
6076     if (hw->media_type == e1000_media_type_fiber) {
6077         /* always blink LED0 for PCI-E fiber */
6078         ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6079                      (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6080     } else {
6081         /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6082         ledctl_blink = hw->ledctl_mode2;
6083         for (i=0; i < 4; i++)
6084             if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6085                 E1000_LEDCTL_MODE_LED_ON)
6086                 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6087     }
6088
6089     ew32(LEDCTL, ledctl_blink);
6090
6091     return E1000_SUCCESS;
6092 }
6093
6094 /******************************************************************************
6095  * Restores the saved state of the SW controlable LED.
6096  *
6097  * hw - Struct containing variables accessed by shared code
6098  *****************************************************************************/
6099 s32 e1000_cleanup_led(struct e1000_hw *hw)
6100 {
6101     s32 ret_val = E1000_SUCCESS;
6102
6103     DEBUGFUNC("e1000_cleanup_led");
6104
6105     switch (hw->mac_type) {
6106     case e1000_82542_rev2_0:
6107     case e1000_82542_rev2_1:
6108     case e1000_82543:
6109     case e1000_82544:
6110         /* No cleanup necessary */
6111         break;
6112     case e1000_82541:
6113     case e1000_82547:
6114     case e1000_82541_rev_2:
6115     case e1000_82547_rev_2:
6116         /* Turn on PHY Smart Power Down (if previously enabled) */
6117         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6118                                       hw->phy_spd_default);
6119         if (ret_val)
6120             return ret_val;
6121         /* Fall Through */
6122     default:
6123         if (hw->phy_type == e1000_phy_ife) {
6124             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6125             break;
6126         }
6127         /* Restore LEDCTL settings */
6128         ew32(LEDCTL, hw->ledctl_default);
6129         break;
6130     }
6131
6132     return E1000_SUCCESS;
6133 }
6134
6135 /******************************************************************************
6136  * Turns on the software controllable LED
6137  *
6138  * hw - Struct containing variables accessed by shared code
6139  *****************************************************************************/
6140 s32 e1000_led_on(struct e1000_hw *hw)
6141 {
6142     u32 ctrl = er32(CTRL);
6143
6144     DEBUGFUNC("e1000_led_on");
6145
6146     switch (hw->mac_type) {
6147     case e1000_82542_rev2_0:
6148     case e1000_82542_rev2_1:
6149     case e1000_82543:
6150         /* Set SW Defineable Pin 0 to turn on the LED */
6151         ctrl |= E1000_CTRL_SWDPIN0;
6152         ctrl |= E1000_CTRL_SWDPIO0;
6153         break;
6154     case e1000_82544:
6155         if (hw->media_type == e1000_media_type_fiber) {
6156             /* Set SW Defineable Pin 0 to turn on the LED */
6157             ctrl |= E1000_CTRL_SWDPIN0;
6158             ctrl |= E1000_CTRL_SWDPIO0;
6159         } else {
6160             /* Clear SW Defineable Pin 0 to turn on the LED */
6161             ctrl &= ~E1000_CTRL_SWDPIN0;
6162             ctrl |= E1000_CTRL_SWDPIO0;
6163         }
6164         break;
6165     default:
6166         if (hw->media_type == e1000_media_type_fiber) {
6167             /* Clear SW Defineable Pin 0 to turn on the LED */
6168             ctrl &= ~E1000_CTRL_SWDPIN0;
6169             ctrl |= E1000_CTRL_SWDPIO0;
6170         } else if (hw->phy_type == e1000_phy_ife) {
6171             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6172                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6173         } else if (hw->media_type == e1000_media_type_copper) {
6174             ew32(LEDCTL, hw->ledctl_mode2);
6175             return E1000_SUCCESS;
6176         }
6177         break;
6178     }
6179
6180     ew32(CTRL, ctrl);
6181
6182     return E1000_SUCCESS;
6183 }
6184
6185 /******************************************************************************
6186  * Turns off the software controllable LED
6187  *
6188  * hw - Struct containing variables accessed by shared code
6189  *****************************************************************************/
6190 s32 e1000_led_off(struct e1000_hw *hw)
6191 {
6192     u32 ctrl = er32(CTRL);
6193
6194     DEBUGFUNC("e1000_led_off");
6195
6196     switch (hw->mac_type) {
6197     case e1000_82542_rev2_0:
6198     case e1000_82542_rev2_1:
6199     case e1000_82543:
6200         /* Clear SW Defineable Pin 0 to turn off the LED */
6201         ctrl &= ~E1000_CTRL_SWDPIN0;
6202         ctrl |= E1000_CTRL_SWDPIO0;
6203         break;
6204     case e1000_82544:
6205         if (hw->media_type == e1000_media_type_fiber) {
6206             /* Clear SW Defineable Pin 0 to turn off the LED */
6207             ctrl &= ~E1000_CTRL_SWDPIN0;
6208             ctrl |= E1000_CTRL_SWDPIO0;
6209         } else {
6210             /* Set SW Defineable Pin 0 to turn off the LED */
6211             ctrl |= E1000_CTRL_SWDPIN0;
6212             ctrl |= E1000_CTRL_SWDPIO0;
6213         }
6214         break;
6215     default:
6216         if (hw->media_type == e1000_media_type_fiber) {
6217             /* Set SW Defineable Pin 0 to turn off the LED */
6218             ctrl |= E1000_CTRL_SWDPIN0;
6219             ctrl |= E1000_CTRL_SWDPIO0;
6220         } else if (hw->phy_type == e1000_phy_ife) {
6221             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6222                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6223         } else if (hw->media_type == e1000_media_type_copper) {
6224             ew32(LEDCTL, hw->ledctl_mode1);
6225             return E1000_SUCCESS;
6226         }
6227         break;
6228     }
6229
6230     ew32(CTRL, ctrl);
6231
6232     return E1000_SUCCESS;
6233 }
6234
6235 /******************************************************************************
6236  * Clears all hardware statistics counters.
6237  *
6238  * hw - Struct containing variables accessed by shared code
6239  *****************************************************************************/
6240 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
6241 {
6242     volatile u32 temp;
6243
6244     temp = er32(CRCERRS);
6245     temp = er32(SYMERRS);
6246     temp = er32(MPC);
6247     temp = er32(SCC);
6248     temp = er32(ECOL);
6249     temp = er32(MCC);
6250     temp = er32(LATECOL);
6251     temp = er32(COLC);
6252     temp = er32(DC);
6253     temp = er32(SEC);
6254     temp = er32(RLEC);
6255     temp = er32(XONRXC);
6256     temp = er32(XONTXC);
6257     temp = er32(XOFFRXC);
6258     temp = er32(XOFFTXC);
6259     temp = er32(FCRUC);
6260
6261     if (hw->mac_type != e1000_ich8lan) {
6262     temp = er32(PRC64);
6263     temp = er32(PRC127);
6264     temp = er32(PRC255);
6265     temp = er32(PRC511);
6266     temp = er32(PRC1023);
6267     temp = er32(PRC1522);
6268     }
6269
6270     temp = er32(GPRC);
6271     temp = er32(BPRC);
6272     temp = er32(MPRC);
6273     temp = er32(GPTC);
6274     temp = er32(GORCL);
6275     temp = er32(GORCH);
6276     temp = er32(GOTCL);
6277     temp = er32(GOTCH);
6278     temp = er32(RNBC);
6279     temp = er32(RUC);
6280     temp = er32(RFC);
6281     temp = er32(ROC);
6282     temp = er32(RJC);
6283     temp = er32(TORL);
6284     temp = er32(TORH);
6285     temp = er32(TOTL);
6286     temp = er32(TOTH);
6287     temp = er32(TPR);
6288     temp = er32(TPT);
6289
6290     if (hw->mac_type != e1000_ich8lan) {
6291     temp = er32(PTC64);
6292     temp = er32(PTC127);
6293     temp = er32(PTC255);
6294     temp = er32(PTC511);
6295     temp = er32(PTC1023);
6296     temp = er32(PTC1522);
6297     }
6298
6299     temp = er32(MPTC);
6300     temp = er32(BPTC);
6301
6302     if (hw->mac_type < e1000_82543) return;
6303
6304     temp = er32(ALGNERRC);
6305     temp = er32(RXERRC);
6306     temp = er32(TNCRS);
6307     temp = er32(CEXTERR);
6308     temp = er32(TSCTC);
6309     temp = er32(TSCTFC);
6310
6311     if (hw->mac_type <= e1000_82544) return;
6312
6313     temp = er32(MGTPRC);
6314     temp = er32(MGTPDC);
6315     temp = er32(MGTPTC);
6316
6317     if (hw->mac_type <= e1000_82547_rev_2) return;
6318
6319     temp = er32(IAC);
6320     temp = er32(ICRXOC);
6321
6322     if (hw->mac_type == e1000_ich8lan) return;
6323
6324     temp = er32(ICRXPTC);
6325     temp = er32(ICRXATC);
6326     temp = er32(ICTXPTC);
6327     temp = er32(ICTXATC);
6328     temp = er32(ICTXQEC);
6329     temp = er32(ICTXQMTC);
6330     temp = er32(ICRXDMTC);
6331 }
6332
6333 /******************************************************************************
6334  * Resets Adaptive IFS to its default state.
6335  *
6336  * hw - Struct containing variables accessed by shared code
6337  *
6338  * Call this after e1000_init_hw. You may override the IFS defaults by setting
6339  * hw->ifs_params_forced to true. However, you must initialize hw->
6340  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6341  * before calling this function.
6342  *****************************************************************************/
6343 void e1000_reset_adaptive(struct e1000_hw *hw)
6344 {
6345     DEBUGFUNC("e1000_reset_adaptive");
6346
6347     if (hw->adaptive_ifs) {
6348         if (!hw->ifs_params_forced) {
6349             hw->current_ifs_val = 0;
6350             hw->ifs_min_val = IFS_MIN;
6351             hw->ifs_max_val = IFS_MAX;
6352             hw->ifs_step_size = IFS_STEP;
6353             hw->ifs_ratio = IFS_RATIO;
6354         }
6355         hw->in_ifs_mode = false;
6356         ew32(AIT, 0);
6357     } else {
6358         DEBUGOUT("Not in Adaptive IFS mode!\n");
6359     }
6360 }
6361
6362 /******************************************************************************
6363  * Called during the callback/watchdog routine to update IFS value based on
6364  * the ratio of transmits to collisions.
6365  *
6366  * hw - Struct containing variables accessed by shared code
6367  * tx_packets - Number of transmits since last callback
6368  * total_collisions - Number of collisions since last callback
6369  *****************************************************************************/
6370 void e1000_update_adaptive(struct e1000_hw *hw)
6371 {
6372     DEBUGFUNC("e1000_update_adaptive");
6373
6374     if (hw->adaptive_ifs) {
6375         if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6376             if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6377                 hw->in_ifs_mode = true;
6378                 if (hw->current_ifs_val < hw->ifs_max_val) {
6379                     if (hw->current_ifs_val == 0)
6380                         hw->current_ifs_val = hw->ifs_min_val;
6381                     else
6382                         hw->current_ifs_val += hw->ifs_step_size;
6383                     ew32(AIT, hw->current_ifs_val);
6384                 }
6385             }
6386         } else {
6387             if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6388                 hw->current_ifs_val = 0;
6389                 hw->in_ifs_mode = false;
6390                 ew32(AIT, 0);
6391             }
6392         }
6393     } else {
6394         DEBUGOUT("Not in Adaptive IFS mode!\n");
6395     }
6396 }
6397
6398 /******************************************************************************
6399  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6400  *
6401  * hw - Struct containing variables accessed by shared code
6402  * frame_len - The length of the frame in question
6403  * mac_addr - The Ethernet destination address of the frame in question
6404  *****************************************************************************/
6405 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
6406                             u32 frame_len, u8 *mac_addr)
6407 {
6408     u64 carry_bit;
6409
6410     /* First adjust the frame length. */
6411     frame_len--;
6412     /* We need to adjust the statistics counters, since the hardware
6413      * counters overcount this packet as a CRC error and undercount
6414      * the packet as a good packet
6415      */
6416     /* This packet should not be counted as a CRC error.    */
6417     stats->crcerrs--;
6418     /* This packet does count as a Good Packet Received.    */
6419     stats->gprc++;
6420
6421     /* Adjust the Good Octets received counters             */
6422     carry_bit = 0x80000000 & stats->gorcl;
6423     stats->gorcl += frame_len;
6424     /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6425      * Received Count) was one before the addition,
6426      * AND it is zero after, then we lost the carry out,
6427      * need to add one to Gorch (Good Octets Received Count High).
6428      * This could be simplified if all environments supported
6429      * 64-bit integers.
6430      */
6431     if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6432         stats->gorch++;
6433     /* Is this a broadcast or multicast?  Check broadcast first,
6434      * since the test for a multicast frame will test positive on
6435      * a broadcast frame.
6436      */
6437     if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
6438         /* Broadcast packet */
6439         stats->bprc++;
6440     else if (*mac_addr & 0x01)
6441         /* Multicast packet */
6442         stats->mprc++;
6443
6444     if (frame_len == hw->max_frame_size) {
6445         /* In this case, the hardware has overcounted the number of
6446          * oversize frames.
6447          */
6448         if (stats->roc > 0)
6449             stats->roc--;
6450     }
6451
6452     /* Adjust the bin counters when the extra byte put the frame in the
6453      * wrong bin. Remember that the frame_len was adjusted above.
6454      */
6455     if (frame_len == 64) {
6456         stats->prc64++;
6457         stats->prc127--;
6458     } else if (frame_len == 127) {
6459         stats->prc127++;
6460         stats->prc255--;
6461     } else if (frame_len == 255) {
6462         stats->prc255++;
6463         stats->prc511--;
6464     } else if (frame_len == 511) {
6465         stats->prc511++;
6466         stats->prc1023--;
6467     } else if (frame_len == 1023) {
6468         stats->prc1023++;
6469         stats->prc1522--;
6470     } else if (frame_len == 1522) {
6471         stats->prc1522++;
6472     }
6473 }
6474
6475 /******************************************************************************
6476  * Gets the current PCI bus type, speed, and width of the hardware
6477  *
6478  * hw - Struct containing variables accessed by shared code
6479  *****************************************************************************/
6480 void e1000_get_bus_info(struct e1000_hw *hw)
6481 {
6482     s32 ret_val;
6483     u16 pci_ex_link_status;
6484     u32 status;
6485
6486     switch (hw->mac_type) {
6487     case e1000_82542_rev2_0:
6488     case e1000_82542_rev2_1:
6489         hw->bus_type = e1000_bus_type_pci;
6490         hw->bus_speed = e1000_bus_speed_unknown;
6491         hw->bus_width = e1000_bus_width_unknown;
6492         break;
6493     case e1000_82571:
6494     case e1000_82572:
6495     case e1000_82573:
6496     case e1000_80003es2lan:
6497         hw->bus_type = e1000_bus_type_pci_express;
6498         hw->bus_speed = e1000_bus_speed_2500;
6499         ret_val = e1000_read_pcie_cap_reg(hw,
6500                                       PCI_EX_LINK_STATUS,
6501                                       &pci_ex_link_status);
6502         if (ret_val)
6503             hw->bus_width = e1000_bus_width_unknown;
6504         else
6505             hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6506                           PCI_EX_LINK_WIDTH_SHIFT;
6507         break;
6508     case e1000_ich8lan:
6509         hw->bus_type = e1000_bus_type_pci_express;
6510         hw->bus_speed = e1000_bus_speed_2500;
6511         hw->bus_width = e1000_bus_width_pciex_1;
6512         break;
6513     default:
6514         status = er32(STATUS);
6515         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6516                        e1000_bus_type_pcix : e1000_bus_type_pci;
6517
6518         if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6519             hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6520                             e1000_bus_speed_66 : e1000_bus_speed_120;
6521         } else if (hw->bus_type == e1000_bus_type_pci) {
6522             hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6523                             e1000_bus_speed_66 : e1000_bus_speed_33;
6524         } else {
6525             switch (status & E1000_STATUS_PCIX_SPEED) {
6526             case E1000_STATUS_PCIX_SPEED_66:
6527                 hw->bus_speed = e1000_bus_speed_66;
6528                 break;
6529             case E1000_STATUS_PCIX_SPEED_100:
6530                 hw->bus_speed = e1000_bus_speed_100;
6531                 break;
6532             case E1000_STATUS_PCIX_SPEED_133:
6533                 hw->bus_speed = e1000_bus_speed_133;
6534                 break;
6535             default:
6536                 hw->bus_speed = e1000_bus_speed_reserved;
6537                 break;
6538             }
6539         }
6540         hw->bus_width = (status & E1000_STATUS_BUS64) ?
6541                         e1000_bus_width_64 : e1000_bus_width_32;
6542         break;
6543     }
6544 }
6545
6546 /******************************************************************************
6547  * Writes a value to one of the devices registers using port I/O (as opposed to
6548  * memory mapped I/O). Only 82544 and newer devices support port I/O.
6549  *
6550  * hw - Struct containing variables accessed by shared code
6551  * offset - offset to write to
6552  * value - value to write
6553  *****************************************************************************/
6554 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
6555 {
6556     unsigned long io_addr = hw->io_base;
6557     unsigned long io_data = hw->io_base + 4;
6558
6559     e1000_io_write(hw, io_addr, offset);
6560     e1000_io_write(hw, io_data, value);
6561 }
6562
6563 /******************************************************************************
6564  * Estimates the cable length.
6565  *
6566  * hw - Struct containing variables accessed by shared code
6567  * min_length - The estimated minimum length
6568  * max_length - The estimated maximum length
6569  *
6570  * returns: - E1000_ERR_XXX
6571  *            E1000_SUCCESS
6572  *
6573  * This function always returns a ranged length (minimum & maximum).
6574  * So for M88 phy's, this function interprets the one value returned from the
6575  * register to the minimum and maximum range.
6576  * For IGP phy's, the function calculates the range by the AGC registers.
6577  *****************************************************************************/
6578 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
6579                                   u16 *max_length)
6580 {
6581     s32 ret_val;
6582     u16 agc_value = 0;
6583     u16 i, phy_data;
6584     u16 cable_length;
6585
6586     DEBUGFUNC("e1000_get_cable_length");
6587
6588     *min_length = *max_length = 0;
6589
6590     /* Use old method for Phy older than IGP */
6591     if (hw->phy_type == e1000_phy_m88) {
6592
6593         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6594                                      &phy_data);
6595         if (ret_val)
6596             return ret_val;
6597         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6598                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6599
6600         /* Convert the enum value to ranged values */
6601         switch (cable_length) {
6602         case e1000_cable_length_50:
6603             *min_length = 0;
6604             *max_length = e1000_igp_cable_length_50;
6605             break;
6606         case e1000_cable_length_50_80:
6607             *min_length = e1000_igp_cable_length_50;
6608             *max_length = e1000_igp_cable_length_80;
6609             break;
6610         case e1000_cable_length_80_110:
6611             *min_length = e1000_igp_cable_length_80;
6612             *max_length = e1000_igp_cable_length_110;
6613             break;
6614         case e1000_cable_length_110_140:
6615             *min_length = e1000_igp_cable_length_110;
6616             *max_length = e1000_igp_cable_length_140;
6617             break;
6618         case e1000_cable_length_140:
6619             *min_length = e1000_igp_cable_length_140;
6620             *max_length = e1000_igp_cable_length_170;
6621             break;
6622         default:
6623             return -E1000_ERR_PHY;
6624             break;
6625         }
6626     } else if (hw->phy_type == e1000_phy_gg82563) {
6627         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6628                                      &phy_data);
6629         if (ret_val)
6630             return ret_val;
6631         cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6632
6633         switch (cable_length) {
6634         case e1000_gg_cable_length_60:
6635             *min_length = 0;
6636             *max_length = e1000_igp_cable_length_60;
6637             break;
6638         case e1000_gg_cable_length_60_115:
6639             *min_length = e1000_igp_cable_length_60;
6640             *max_length = e1000_igp_cable_length_115;
6641             break;
6642         case e1000_gg_cable_length_115_150:
6643             *min_length = e1000_igp_cable_length_115;
6644             *max_length = e1000_igp_cable_length_150;
6645             break;
6646         case e1000_gg_cable_length_150:
6647             *min_length = e1000_igp_cable_length_150;
6648             *max_length = e1000_igp_cable_length_180;
6649             break;
6650         default:
6651             return -E1000_ERR_PHY;
6652             break;
6653         }
6654     } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6655         u16 cur_agc_value;
6656         u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6657         u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6658                                                          {IGP01E1000_PHY_AGC_A,
6659                                                           IGP01E1000_PHY_AGC_B,
6660                                                           IGP01E1000_PHY_AGC_C,
6661                                                           IGP01E1000_PHY_AGC_D};
6662         /* Read the AGC registers for all channels */
6663         for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6664
6665             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6666             if (ret_val)
6667                 return ret_val;
6668
6669             cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6670
6671             /* Value bound check. */
6672             if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6673                 (cur_agc_value == 0))
6674                 return -E1000_ERR_PHY;
6675
6676             agc_value += cur_agc_value;
6677
6678             /* Update minimal AGC value. */
6679             if (min_agc_value > cur_agc_value)
6680                 min_agc_value = cur_agc_value;
6681         }
6682
6683         /* Remove the minimal AGC result for length < 50m */
6684         if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6685             agc_value -= min_agc_value;
6686
6687             /* Get the average length of the remaining 3 channels */
6688             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6689         } else {
6690             /* Get the average length of all the 4 channels. */
6691             agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6692         }
6693
6694         /* Set the range of the calculated length. */
6695         *min_length = ((e1000_igp_cable_length_table[agc_value] -
6696                        IGP01E1000_AGC_RANGE) > 0) ?
6697                        (e1000_igp_cable_length_table[agc_value] -
6698                        IGP01E1000_AGC_RANGE) : 0;
6699         *max_length = e1000_igp_cable_length_table[agc_value] +
6700                       IGP01E1000_AGC_RANGE;
6701     } else if (hw->phy_type == e1000_phy_igp_2 ||
6702                hw->phy_type == e1000_phy_igp_3) {
6703         u16 cur_agc_index, max_agc_index = 0;
6704         u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6705         u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6706                                                          {IGP02E1000_PHY_AGC_A,
6707                                                           IGP02E1000_PHY_AGC_B,
6708                                                           IGP02E1000_PHY_AGC_C,
6709                                                           IGP02E1000_PHY_AGC_D};
6710         /* Read the AGC registers for all channels */
6711         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6712             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6713             if (ret_val)
6714                 return ret_val;
6715
6716             /* Getting bits 15:9, which represent the combination of course and
6717              * fine gain values.  The result is a number that can be put into
6718              * the lookup table to obtain the approximate cable length. */
6719             cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6720                             IGP02E1000_AGC_LENGTH_MASK;
6721
6722             /* Array index bound check. */
6723             if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6724                 (cur_agc_index == 0))
6725                 return -E1000_ERR_PHY;
6726
6727             /* Remove min & max AGC values from calculation. */
6728             if (e1000_igp_2_cable_length_table[min_agc_index] >
6729                 e1000_igp_2_cable_length_table[cur_agc_index])
6730                 min_agc_index = cur_agc_index;
6731             if (e1000_igp_2_cable_length_table[max_agc_index] <
6732                 e1000_igp_2_cable_length_table[cur_agc_index])
6733                 max_agc_index = cur_agc_index;
6734
6735             agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6736         }
6737
6738         agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6739                       e1000_igp_2_cable_length_table[max_agc_index]);
6740         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6741
6742         /* Calculate cable length with the error range of +/- 10 meters. */
6743         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6744                        (agc_value - IGP02E1000_AGC_RANGE) : 0;
6745         *max_length = agc_value + IGP02E1000_AGC_RANGE;
6746     }
6747
6748     return E1000_SUCCESS;
6749 }
6750
6751 /******************************************************************************
6752  * Check the cable polarity
6753  *
6754  * hw - Struct containing variables accessed by shared code
6755  * polarity - output parameter : 0 - Polarity is not reversed
6756  *                               1 - Polarity is reversed.
6757  *
6758  * returns: - E1000_ERR_XXX
6759  *            E1000_SUCCESS
6760  *
6761  * For phy's older then IGP, this function simply reads the polarity bit in the
6762  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
6763  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
6764  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
6765  * IGP01E1000_PHY_PCS_INIT_REG.
6766  *****************************************************************************/
6767 static s32 e1000_check_polarity(struct e1000_hw *hw,
6768                                 e1000_rev_polarity *polarity)
6769 {
6770     s32 ret_val;
6771     u16 phy_data;
6772
6773     DEBUGFUNC("e1000_check_polarity");
6774
6775     if ((hw->phy_type == e1000_phy_m88) ||
6776         (hw->phy_type == e1000_phy_gg82563)) {
6777         /* return the Polarity bit in the Status register. */
6778         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6779                                      &phy_data);
6780         if (ret_val)
6781             return ret_val;
6782         *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6783                      M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6784                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6785
6786     } else if (hw->phy_type == e1000_phy_igp ||
6787               hw->phy_type == e1000_phy_igp_3 ||
6788               hw->phy_type == e1000_phy_igp_2) {
6789         /* Read the Status register to check the speed */
6790         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6791                                      &phy_data);
6792         if (ret_val)
6793             return ret_val;
6794
6795         /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6796          * find the polarity status */
6797         if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6798            IGP01E1000_PSSR_SPEED_1000MBPS) {
6799
6800             /* Read the GIG initialization PCS register (0x00B4) */
6801             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6802                                          &phy_data);
6803             if (ret_val)
6804                 return ret_val;
6805
6806             /* Check the polarity bits */
6807             *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6808                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6809         } else {
6810             /* For 10 Mbps, read the polarity bit in the status register. (for
6811              * 100 Mbps this bit is always 0) */
6812             *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6813                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6814         }
6815     } else if (hw->phy_type == e1000_phy_ife) {
6816         ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6817                                      &phy_data);
6818         if (ret_val)
6819             return ret_val;
6820         *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6821                      IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6822                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6823     }
6824     return E1000_SUCCESS;
6825 }
6826
6827 /******************************************************************************
6828  * Check if Downshift occured
6829  *
6830  * hw - Struct containing variables accessed by shared code
6831  * downshift - output parameter : 0 - No Downshift ocured.
6832  *                                1 - Downshift ocured.
6833  *
6834  * returns: - E1000_ERR_XXX
6835  *            E1000_SUCCESS
6836  *
6837  * For phy's older then IGP, this function reads the Downshift bit in the Phy
6838  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
6839  * Link Health register.  In IGP this bit is latched high, so the driver must
6840  * read it immediately after link is established.
6841  *****************************************************************************/
6842 static s32 e1000_check_downshift(struct e1000_hw *hw)
6843 {
6844     s32 ret_val;
6845     u16 phy_data;
6846
6847     DEBUGFUNC("e1000_check_downshift");
6848
6849     if (hw->phy_type == e1000_phy_igp ||
6850         hw->phy_type == e1000_phy_igp_3 ||
6851         hw->phy_type == e1000_phy_igp_2) {
6852         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6853                                      &phy_data);
6854         if (ret_val)
6855             return ret_val;
6856
6857         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6858     } else if ((hw->phy_type == e1000_phy_m88) ||
6859                (hw->phy_type == e1000_phy_gg82563)) {
6860         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6861                                      &phy_data);
6862         if (ret_val)
6863             return ret_val;
6864
6865         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6866                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
6867     } else if (hw->phy_type == e1000_phy_ife) {
6868         /* e1000_phy_ife supports 10/100 speed only */
6869         hw->speed_downgraded = false;
6870     }
6871
6872     return E1000_SUCCESS;
6873 }
6874
6875 /*****************************************************************************
6876  *
6877  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6878  * gigabit link is achieved to improve link quality.
6879  *
6880  * hw: Struct containing variables accessed by shared code
6881  *
6882  * returns: - E1000_ERR_PHY if fail to read/write the PHY
6883  *            E1000_SUCCESS at any other case.
6884  *
6885  ****************************************************************************/
6886
6887 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
6888 {
6889     s32 ret_val;
6890     u16 phy_data, phy_saved_data, speed, duplex, i;
6891     u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6892                                         {IGP01E1000_PHY_AGC_PARAM_A,
6893                                         IGP01E1000_PHY_AGC_PARAM_B,
6894                                         IGP01E1000_PHY_AGC_PARAM_C,
6895                                         IGP01E1000_PHY_AGC_PARAM_D};
6896     u16 min_length, max_length;
6897
6898     DEBUGFUNC("e1000_config_dsp_after_link_change");
6899
6900     if (hw->phy_type != e1000_phy_igp)
6901         return E1000_SUCCESS;
6902
6903     if (link_up) {
6904         ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6905         if (ret_val) {
6906             DEBUGOUT("Error getting link speed and duplex\n");
6907             return ret_val;
6908         }
6909
6910         if (speed == SPEED_1000) {
6911
6912             ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6913             if (ret_val)
6914                 return ret_val;
6915
6916             if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
6917                 min_length >= e1000_igp_cable_length_50) {
6918
6919                 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6920                     ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
6921                                                  &phy_data);
6922                     if (ret_val)
6923                         return ret_val;
6924
6925                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6926
6927                     ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
6928                                                   phy_data);
6929                     if (ret_val)
6930                         return ret_val;
6931                 }
6932                 hw->dsp_config_state = e1000_dsp_config_activated;
6933             }
6934
6935             if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
6936                (min_length < e1000_igp_cable_length_50)) {
6937
6938                 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
6939                 u32 idle_errs = 0;
6940
6941                 /* clear previous idle error counts */
6942                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6943                                              &phy_data);
6944                 if (ret_val)
6945                     return ret_val;
6946
6947                 for (i = 0; i < ffe_idle_err_timeout; i++) {
6948                     udelay(1000);
6949                     ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6950                                                  &phy_data);
6951                     if (ret_val)
6952                         return ret_val;
6953
6954                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
6955                     if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
6956                         hw->ffe_config_state = e1000_ffe_config_active;
6957
6958                         ret_val = e1000_write_phy_reg(hw,
6959                                     IGP01E1000_PHY_DSP_FFE,
6960                                     IGP01E1000_PHY_DSP_FFE_CM_CP);
6961                         if (ret_val)
6962                             return ret_val;
6963                         break;
6964                     }
6965
6966                     if (idle_errs)
6967                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
6968                 }
6969             }
6970         }
6971     } else {
6972         if (hw->dsp_config_state == e1000_dsp_config_activated) {
6973             /* Save off the current value of register 0x2F5B to be restored at
6974              * the end of the routines. */
6975             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
6976
6977             if (ret_val)
6978                 return ret_val;
6979
6980             /* Disable the PHY transmitter */
6981             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
6982
6983             if (ret_val)
6984                 return ret_val;
6985
6986             mdelay(20);
6987
6988             ret_val = e1000_write_phy_reg(hw, 0x0000,
6989                                           IGP01E1000_IEEE_FORCE_GIGA);
6990             if (ret_val)
6991                 return ret_val;
6992             for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6993                 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
6994                 if (ret_val)
6995                     return ret_val;
6996
6997                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6998                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
6999
7000                 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7001                 if (ret_val)
7002                     return ret_val;
7003             }
7004
7005             ret_val = e1000_write_phy_reg(hw, 0x0000,
7006                                           IGP01E1000_IEEE_RESTART_AUTONEG);
7007             if (ret_val)
7008                 return ret_val;
7009
7010             mdelay(20);
7011
7012             /* Now enable the transmitter */
7013             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7014
7015             if (ret_val)
7016                 return ret_val;
7017
7018             hw->dsp_config_state = e1000_dsp_config_enabled;
7019         }
7020
7021         if (hw->ffe_config_state == e1000_ffe_config_active) {
7022             /* Save off the current value of register 0x2F5B to be restored at
7023              * the end of the routines. */
7024             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7025
7026             if (ret_val)
7027                 return ret_val;
7028
7029             /* Disable the PHY transmitter */
7030             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7031
7032             if (ret_val)
7033                 return ret_val;
7034
7035             mdelay(20);
7036
7037             ret_val = e1000_write_phy_reg(hw, 0x0000,
7038                                           IGP01E1000_IEEE_FORCE_GIGA);
7039             if (ret_val)
7040                 return ret_val;
7041             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7042                                           IGP01E1000_PHY_DSP_FFE_DEFAULT);
7043             if (ret_val)
7044                 return ret_val;
7045
7046             ret_val = e1000_write_phy_reg(hw, 0x0000,
7047                                           IGP01E1000_IEEE_RESTART_AUTONEG);
7048             if (ret_val)
7049                 return ret_val;
7050
7051             mdelay(20);
7052
7053             /* Now enable the transmitter */
7054             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7055
7056             if (ret_val)
7057                 return ret_val;
7058
7059             hw->ffe_config_state = e1000_ffe_config_enabled;
7060         }
7061     }
7062     return E1000_SUCCESS;
7063 }
7064
7065 /*****************************************************************************
7066  * Set PHY to class A mode
7067  * Assumes the following operations will follow to enable the new class mode.
7068  *  1. Do a PHY soft reset
7069  *  2. Restart auto-negotiation or force link.
7070  *
7071  * hw - Struct containing variables accessed by shared code
7072  ****************************************************************************/
7073 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
7074 {
7075     s32 ret_val;
7076     u16 eeprom_data;
7077
7078     DEBUGFUNC("e1000_set_phy_mode");
7079
7080     if ((hw->mac_type == e1000_82545_rev_3) &&
7081         (hw->media_type == e1000_media_type_copper)) {
7082         ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7083         if (ret_val) {
7084             return ret_val;
7085         }
7086
7087         if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7088             (eeprom_data & EEPROM_PHY_CLASS_A)) {
7089             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7090             if (ret_val)
7091                 return ret_val;
7092             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7093             if (ret_val)
7094                 return ret_val;
7095
7096             hw->phy_reset_disable = false;
7097         }
7098     }
7099
7100     return E1000_SUCCESS;
7101 }
7102
7103 /*****************************************************************************
7104  *
7105  * This function sets the lplu state according to the active flag.  When
7106  * activating lplu this function also disables smart speed and vise versa.
7107  * lplu will not be activated unless the device autonegotiation advertisment
7108  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7109  * hw: Struct containing variables accessed by shared code
7110  * active - true to enable lplu false to disable lplu.
7111  *
7112  * returns: - E1000_ERR_PHY if fail to read/write the PHY
7113  *            E1000_SUCCESS at any other case.
7114  *
7115  ****************************************************************************/
7116
7117 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
7118 {
7119     u32 phy_ctrl = 0;
7120     s32 ret_val;
7121     u16 phy_data;
7122     DEBUGFUNC("e1000_set_d3_lplu_state");
7123
7124     if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7125         && hw->phy_type != e1000_phy_igp_3)
7126         return E1000_SUCCESS;
7127
7128     /* During driver activity LPLU should not be used or it will attain link
7129      * from the lowest speeds starting from 10Mbps. The capability is used for
7130      * Dx transitions and states */
7131     if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7132         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7133         if (ret_val)
7134             return ret_val;
7135     } else if (hw->mac_type == e1000_ich8lan) {
7136         /* MAC writes into PHY register based on the state transition
7137          * and start auto-negotiation. SW driver can overwrite the settings
7138          * in CSR PHY power control E1000_PHY_CTRL register. */
7139         phy_ctrl = er32(PHY_CTRL);
7140     } else {
7141         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7142         if (ret_val)
7143             return ret_val;
7144     }
7145
7146     if (!active) {
7147         if (hw->mac_type == e1000_82541_rev_2 ||
7148             hw->mac_type == e1000_82547_rev_2) {
7149             phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7150             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7151             if (ret_val)
7152                 return ret_val;
7153         } else {
7154             if (hw->mac_type == e1000_ich8lan) {
7155                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7156                 ew32(PHY_CTRL, phy_ctrl);
7157             } else {
7158                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7159                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7160                                               phy_data);
7161                 if (ret_val)
7162                     return ret_val;
7163             }
7164         }
7165
7166         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7167          * Dx states where the power conservation is most important.  During
7168          * driver activity we should enable SmartSpeed, so performance is
7169          * maintained. */
7170         if (hw->smart_speed == e1000_smart_speed_on) {
7171             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7172                                          &phy_data);
7173             if (ret_val)
7174                 return ret_val;
7175
7176             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7177             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7178                                           phy_data);
7179             if (ret_val)
7180                 return ret_val;
7181         } else if (hw->smart_speed == e1000_smart_speed_off) {
7182             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7183                                          &phy_data);
7184             if (ret_val)
7185                 return ret_val;
7186
7187             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7188             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7189                                           phy_data);
7190             if (ret_val)
7191                 return ret_val;
7192         }
7193
7194     } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7195                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7196                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7197
7198         if (hw->mac_type == e1000_82541_rev_2 ||
7199             hw->mac_type == e1000_82547_rev_2) {
7200             phy_data |= IGP01E1000_GMII_FLEX_SPD;
7201             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7202             if (ret_val)
7203                 return ret_val;
7204         } else {
7205             if (hw->mac_type == e1000_ich8lan) {
7206                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7207                 ew32(PHY_CTRL, phy_ctrl);
7208             } else {
7209                 phy_data |= IGP02E1000_PM_D3_LPLU;
7210                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7211                                               phy_data);
7212                 if (ret_val)
7213                     return ret_val;
7214             }
7215         }
7216
7217         /* When LPLU is enabled we should disable SmartSpeed */
7218         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7219         if (ret_val)
7220             return ret_val;
7221
7222         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7223         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7224         if (ret_val)
7225             return ret_val;
7226
7227     }
7228     return E1000_SUCCESS;
7229 }
7230
7231 /*****************************************************************************
7232  *
7233  * This function sets the lplu d0 state according to the active flag.  When
7234  * activating lplu this function also disables smart speed and vise versa.
7235  * lplu will not be activated unless the device autonegotiation advertisment
7236  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7237  * hw: Struct containing variables accessed by shared code
7238  * active - true to enable lplu false to disable lplu.
7239  *
7240  * returns: - E1000_ERR_PHY if fail to read/write the PHY
7241  *            E1000_SUCCESS at any other case.
7242  *
7243  ****************************************************************************/
7244
7245 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
7246 {
7247     u32 phy_ctrl = 0;
7248     s32 ret_val;
7249     u16 phy_data;
7250     DEBUGFUNC("e1000_set_d0_lplu_state");
7251
7252     if (hw->mac_type <= e1000_82547_rev_2)
7253         return E1000_SUCCESS;
7254
7255     if (hw->mac_type == e1000_ich8lan) {
7256         phy_ctrl = er32(PHY_CTRL);
7257     } else {
7258         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7259         if (ret_val)
7260             return ret_val;
7261     }
7262
7263     if (!active) {
7264         if (hw->mac_type == e1000_ich8lan) {
7265             phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7266             ew32(PHY_CTRL, phy_ctrl);
7267         } else {
7268             phy_data &= ~IGP02E1000_PM_D0_LPLU;
7269             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7270             if (ret_val)
7271                 return ret_val;
7272         }
7273
7274         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7275          * Dx states where the power conservation is most important.  During
7276          * driver activity we should enable SmartSpeed, so performance is
7277          * maintained. */
7278         if (hw->smart_speed == e1000_smart_speed_on) {
7279             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7280                                          &phy_data);
7281             if (ret_val)
7282                 return ret_val;
7283
7284             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7285             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7286                                           phy_data);
7287             if (ret_val)
7288                 return ret_val;
7289         } else if (hw->smart_speed == e1000_smart_speed_off) {
7290             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7291                                          &phy_data);
7292             if (ret_val)
7293                 return ret_val;
7294
7295             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7296             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7297                                           phy_data);
7298             if (ret_val)
7299                 return ret_val;
7300         }
7301
7302
7303     } else {
7304
7305         if (hw->mac_type == e1000_ich8lan) {
7306             phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7307             ew32(PHY_CTRL, phy_ctrl);
7308         } else {
7309             phy_data |= IGP02E1000_PM_D0_LPLU;
7310             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7311             if (ret_val)
7312                 return ret_val;
7313         }
7314
7315         /* When LPLU is enabled we should disable SmartSpeed */
7316         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7317         if (ret_val)
7318             return ret_val;
7319
7320         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7321         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7322         if (ret_val)
7323             return ret_val;
7324
7325     }
7326     return E1000_SUCCESS;
7327 }
7328
7329 /******************************************************************************
7330  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7331  *
7332  * hw - Struct containing variables accessed by shared code
7333  *****************************************************************************/
7334 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
7335 {
7336     s32  ret_val;
7337     u16 default_page = 0;
7338     u16 phy_data;
7339
7340     DEBUGFUNC("e1000_set_vco_speed");
7341
7342     switch (hw->mac_type) {
7343     case e1000_82545_rev_3:
7344     case e1000_82546_rev_3:
7345        break;
7346     default:
7347         return E1000_SUCCESS;
7348     }
7349
7350     /* Set PHY register 30, page 5, bit 8 to 0 */
7351
7352     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7353     if (ret_val)
7354         return ret_val;
7355
7356     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7357     if (ret_val)
7358         return ret_val;
7359
7360     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7361     if (ret_val)
7362         return ret_val;
7363
7364     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7365     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7366     if (ret_val)
7367         return ret_val;
7368
7369     /* Set PHY register 30, page 4, bit 11 to 1 */
7370
7371     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7372     if (ret_val)
7373         return ret_val;
7374
7375     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7376     if (ret_val)
7377         return ret_val;
7378
7379     phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7380     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7381     if (ret_val)
7382         return ret_val;
7383
7384     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7385     if (ret_val)
7386         return ret_val;
7387
7388     return E1000_SUCCESS;
7389 }
7390
7391
7392 /*****************************************************************************
7393  * This function reads the cookie from ARC ram.
7394  *
7395  * returns: - E1000_SUCCESS .
7396  ****************************************************************************/
7397 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer)
7398 {
7399     u8 i;
7400     u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7401     u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
7402
7403     length = (length >> 2);
7404     offset = (offset >> 2);
7405
7406     for (i = 0; i < length; i++) {
7407         *((u32 *)buffer + i) =
7408             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7409     }
7410     return E1000_SUCCESS;
7411 }
7412
7413
7414 /*****************************************************************************
7415  * This function checks whether the HOST IF is enabled for command operaton
7416  * and also checks whether the previous command is completed.
7417  * It busy waits in case of previous command is not completed.
7418  *
7419  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7420  *            timeout
7421  *          - E1000_SUCCESS for success.
7422  ****************************************************************************/
7423 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
7424 {
7425     u32 hicr;
7426     u8 i;
7427
7428     /* Check that the host interface is enabled. */
7429     hicr = er32(HICR);
7430     if ((hicr & E1000_HICR_EN) == 0) {
7431         DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7432         return -E1000_ERR_HOST_INTERFACE_COMMAND;
7433     }
7434     /* check the previous command is completed */
7435     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7436         hicr = er32(HICR);
7437         if (!(hicr & E1000_HICR_C))
7438             break;
7439         mdelay(1);
7440     }
7441
7442     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7443         DEBUGOUT("Previous command timeout failed .\n");
7444         return -E1000_ERR_HOST_INTERFACE_COMMAND;
7445     }
7446     return E1000_SUCCESS;
7447 }
7448
7449 /*****************************************************************************
7450  * This function writes the buffer content at the offset given on the host if.
7451  * It also does alignment considerations to do the writes in most efficient way.
7452  * Also fills up the sum of the buffer in *buffer parameter.
7453  *
7454  * returns  - E1000_SUCCESS for success.
7455  ****************************************************************************/
7456 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
7457                                    u16 offset, u8 *sum)
7458 {
7459     u8 *tmp;
7460     u8 *bufptr = buffer;
7461     u32 data = 0;
7462     u16 remaining, i, j, prev_bytes;
7463
7464     /* sum = only sum of the data and it is not checksum */
7465
7466     if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7467         return -E1000_ERR_PARAM;
7468     }
7469
7470     tmp = (u8 *)&data;
7471     prev_bytes = offset & 0x3;
7472     offset &= 0xFFFC;
7473     offset >>= 2;
7474
7475     if (prev_bytes) {
7476         data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7477         for (j = prev_bytes; j < sizeof(u32); j++) {
7478             *(tmp + j) = *bufptr++;
7479             *sum += *(tmp + j);
7480         }
7481         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7482         length -= j - prev_bytes;
7483         offset++;
7484     }
7485
7486     remaining = length & 0x3;
7487     length -= remaining;
7488
7489     /* Calculate length in DWORDs */
7490     length >>= 2;
7491
7492     /* The device driver writes the relevant command block into the
7493      * ram area. */
7494     for (i = 0; i < length; i++) {
7495         for (j = 0; j < sizeof(u32); j++) {
7496             *(tmp + j) = *bufptr++;
7497             *sum += *(tmp + j);
7498         }
7499
7500         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7501     }
7502     if (remaining) {
7503         for (j = 0; j < sizeof(u32); j++) {
7504             if (j < remaining)
7505                 *(tmp + j) = *bufptr++;
7506             else
7507                 *(tmp + j) = 0;
7508
7509             *sum += *(tmp + j);
7510         }
7511         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7512     }
7513
7514     return E1000_SUCCESS;
7515 }
7516
7517
7518 /*****************************************************************************
7519  * This function writes the command header after does the checksum calculation.
7520  *
7521  * returns  - E1000_SUCCESS for success.
7522  ****************************************************************************/
7523 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
7524                                       struct e1000_host_mng_command_header *hdr)
7525 {
7526     u16 i;
7527     u8 sum;
7528     u8 *buffer;
7529
7530     /* Write the whole command header structure which includes sum of
7531      * the buffer */
7532
7533     u16 length = sizeof(struct e1000_host_mng_command_header);
7534
7535     sum = hdr->checksum;
7536     hdr->checksum = 0;
7537
7538     buffer = (u8 *)hdr;
7539     i = length;
7540     while (i--)
7541         sum += buffer[i];
7542
7543     hdr->checksum = 0 - sum;
7544
7545     length >>= 2;
7546     /* The device driver writes the relevant command block into the ram area. */
7547     for (i = 0; i < length; i++) {
7548         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i));
7549         E1000_WRITE_FLUSH();
7550     }
7551
7552     return E1000_SUCCESS;
7553 }
7554
7555
7556 /*****************************************************************************
7557  * This function indicates to ARC that a new command is pending which completes
7558  * one write operation by the driver.
7559  *
7560  * returns  - E1000_SUCCESS for success.
7561  ****************************************************************************/
7562 static s32 e1000_mng_write_commit(struct e1000_hw *hw)
7563 {
7564     u32 hicr;
7565
7566     hicr = er32(HICR);
7567     /* Setting this bit tells the ARC that a new command is pending. */
7568     ew32(HICR, hicr | E1000_HICR_C);
7569
7570     return E1000_SUCCESS;
7571 }
7572
7573
7574 /*****************************************************************************
7575  * This function checks the mode of the firmware.
7576  *
7577  * returns  - true when the mode is IAMT or false.
7578  ****************************************************************************/
7579 bool e1000_check_mng_mode(struct e1000_hw *hw)
7580 {
7581     u32 fwsm;
7582
7583     fwsm = er32(FWSM);
7584
7585     if (hw->mac_type == e1000_ich8lan) {
7586         if ((fwsm & E1000_FWSM_MODE_MASK) ==
7587             (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7588             return true;
7589     } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7590                (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7591         return true;
7592
7593     return false;
7594 }
7595
7596
7597 /*****************************************************************************
7598  * This function writes the dhcp info .
7599  ****************************************************************************/
7600 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
7601 {
7602     s32 ret_val;
7603     struct e1000_host_mng_command_header hdr;
7604
7605     hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7606     hdr.command_length = length;
7607     hdr.reserved1 = 0;
7608     hdr.reserved2 = 0;
7609     hdr.checksum = 0;
7610
7611     ret_val = e1000_mng_enable_host_if(hw);
7612     if (ret_val == E1000_SUCCESS) {
7613         ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7614                                           &(hdr.checksum));
7615         if (ret_val == E1000_SUCCESS) {
7616             ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7617             if (ret_val == E1000_SUCCESS)
7618                 ret_val = e1000_mng_write_commit(hw);
7619         }
7620     }
7621     return ret_val;
7622 }
7623
7624
7625 /*****************************************************************************
7626  * This function calculates the checksum.
7627  *
7628  * returns  - checksum of buffer contents.
7629  ****************************************************************************/
7630 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length)
7631 {
7632     u8 sum = 0;
7633     u32 i;
7634
7635     if (!buffer)
7636         return 0;
7637
7638     for (i=0; i < length; i++)
7639         sum += buffer[i];
7640
7641     return (u8)(0 - sum);
7642 }
7643
7644 /*****************************************************************************
7645  * This function checks whether tx pkt filtering needs to be enabled or not.
7646  *
7647  * returns  - true for packet filtering or false.
7648  ****************************************************************************/
7649 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7650 {
7651     /* called in init as well as watchdog timer functions */
7652
7653     s32 ret_val, checksum;
7654     bool tx_filter = false;
7655     struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7656     u8 *buffer = (u8 *) &(hw->mng_cookie);
7657
7658     if (e1000_check_mng_mode(hw)) {
7659         ret_val = e1000_mng_enable_host_if(hw);
7660         if (ret_val == E1000_SUCCESS) {
7661             ret_val = e1000_host_if_read_cookie(hw, buffer);
7662             if (ret_val == E1000_SUCCESS) {
7663                 checksum = hdr->checksum;
7664                 hdr->checksum = 0;
7665                 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7666                     checksum == e1000_calculate_mng_checksum((char *)buffer,
7667                                                E1000_MNG_DHCP_COOKIE_LENGTH)) {
7668                     if (hdr->status &
7669                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7670                         tx_filter = true;
7671                 } else
7672                     tx_filter = true;
7673             } else
7674                 tx_filter = true;
7675         }
7676     }
7677
7678     hw->tx_pkt_filtering = tx_filter;
7679     return tx_filter;
7680 }
7681
7682 /******************************************************************************
7683  * Verifies the hardware needs to allow ARPs to be processed by the host
7684  *
7685  * hw - Struct containing variables accessed by shared code
7686  *
7687  * returns: - true/false
7688  *
7689  *****************************************************************************/
7690 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7691 {
7692     u32 manc;
7693     u32 fwsm, factps;
7694
7695     if (hw->asf_firmware_present) {
7696         manc = er32(MANC);
7697
7698         if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7699             !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7700             return false;
7701         if (e1000_arc_subsystem_valid(hw)) {
7702             fwsm = er32(FWSM);
7703             factps = er32(FACTPS);
7704
7705             if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
7706                    e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
7707                 return true;
7708         } else
7709             if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7710                 return true;
7711     }
7712     return false;
7713 }
7714
7715 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7716 {
7717     s32 ret_val;
7718     u16 mii_status_reg;
7719     u16 i;
7720
7721     /* Polarity reversal workaround for forced 10F/10H links. */
7722
7723     /* Disable the transmitter on the PHY */
7724
7725     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7726     if (ret_val)
7727         return ret_val;
7728     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7729     if (ret_val)
7730         return ret_val;
7731
7732     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7733     if (ret_val)
7734         return ret_val;
7735
7736     /* This loop will early-out if the NO link condition has been met. */
7737     for (i = PHY_FORCE_TIME; i > 0; i--) {
7738         /* Read the MII Status Register and wait for Link Status bit
7739          * to be clear.
7740          */
7741
7742         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7743         if (ret_val)
7744             return ret_val;
7745
7746         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7747         if (ret_val)
7748             return ret_val;
7749
7750         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7751         mdelay(100);
7752     }
7753
7754     /* Recommended delay time after link has been lost */
7755     mdelay(1000);
7756
7757     /* Now we will re-enable th transmitter on the PHY */
7758
7759     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7760     if (ret_val)
7761         return ret_val;
7762     mdelay(50);
7763     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7764     if (ret_val)
7765         return ret_val;
7766     mdelay(50);
7767     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7768     if (ret_val)
7769         return ret_val;
7770     mdelay(50);
7771     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7772     if (ret_val)
7773         return ret_val;
7774
7775     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7776     if (ret_val)
7777         return ret_val;
7778
7779     /* This loop will early-out if the link condition has been met. */
7780     for (i = PHY_FORCE_TIME; i > 0; i--) {
7781         /* Read the MII Status Register and wait for Link Status bit
7782          * to be set.
7783          */
7784
7785         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7786         if (ret_val)
7787             return ret_val;
7788
7789         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7790         if (ret_val)
7791             return ret_val;
7792
7793         if (mii_status_reg & MII_SR_LINK_STATUS) break;
7794         mdelay(100);
7795     }
7796     return E1000_SUCCESS;
7797 }
7798
7799 /***************************************************************************
7800  *
7801  * Disables PCI-Express master access.
7802  *
7803  * hw: Struct containing variables accessed by shared code
7804  *
7805  * returns: - none.
7806  *
7807  ***************************************************************************/
7808 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7809 {
7810     u32 ctrl;
7811
7812     DEBUGFUNC("e1000_set_pci_express_master_disable");
7813
7814     if (hw->bus_type != e1000_bus_type_pci_express)
7815         return;
7816
7817     ctrl = er32(CTRL);
7818     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7819     ew32(CTRL, ctrl);
7820 }
7821
7822 /*******************************************************************************
7823  *
7824  * Disables PCI-Express master access and verifies there are no pending requests
7825  *
7826  * hw: Struct containing variables accessed by shared code
7827  *
7828  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7829  *            caused the master requests to be disabled.
7830  *            E1000_SUCCESS master requests disabled.
7831  *
7832  ******************************************************************************/
7833 s32 e1000_disable_pciex_master(struct e1000_hw *hw)
7834 {
7835     s32 timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
7836
7837     DEBUGFUNC("e1000_disable_pciex_master");
7838
7839     if (hw->bus_type != e1000_bus_type_pci_express)
7840         return E1000_SUCCESS;
7841
7842     e1000_set_pci_express_master_disable(hw);
7843
7844     while (timeout) {
7845         if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7846             break;
7847         else
7848             udelay(100);
7849         timeout--;
7850     }
7851
7852     if (!timeout) {
7853         DEBUGOUT("Master requests are pending.\n");
7854         return -E1000_ERR_MASTER_REQUESTS_PENDING;
7855     }
7856
7857     return E1000_SUCCESS;
7858 }
7859
7860 /*******************************************************************************
7861  *
7862  * Check for EEPROM Auto Read bit done.
7863  *
7864  * hw: Struct containing variables accessed by shared code
7865  *
7866  * returns: - E1000_ERR_RESET if fail to reset MAC
7867  *            E1000_SUCCESS at any other case.
7868  *
7869  ******************************************************************************/
7870 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
7871 {
7872     s32 timeout = AUTO_READ_DONE_TIMEOUT;
7873
7874     DEBUGFUNC("e1000_get_auto_rd_done");
7875
7876     switch (hw->mac_type) {
7877     default:
7878         msleep(5);
7879         break;
7880     case e1000_82571:
7881     case e1000_82572:
7882     case e1000_82573:
7883     case e1000_80003es2lan:
7884     case e1000_ich8lan:
7885         while (timeout) {
7886             if (er32(EECD) & E1000_EECD_AUTO_RD)
7887                 break;
7888             else msleep(1);
7889             timeout--;
7890         }
7891
7892         if (!timeout) {
7893             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
7894             return -E1000_ERR_RESET;
7895         }
7896         break;
7897     }
7898
7899     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
7900      * Need to wait for PHY configuration completion before accessing NVM
7901      * and PHY. */
7902     if (hw->mac_type == e1000_82573)
7903         msleep(25);
7904
7905     return E1000_SUCCESS;
7906 }
7907
7908 /***************************************************************************
7909  * Checks if the PHY configuration is done
7910  *
7911  * hw: Struct containing variables accessed by shared code
7912  *
7913  * returns: - E1000_ERR_RESET if fail to reset MAC
7914  *            E1000_SUCCESS at any other case.
7915  *
7916  ***************************************************************************/
7917 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
7918 {
7919     s32 timeout = PHY_CFG_TIMEOUT;
7920     u32 cfg_mask = E1000_EEPROM_CFG_DONE;
7921
7922     DEBUGFUNC("e1000_get_phy_cfg_done");
7923
7924     switch (hw->mac_type) {
7925     default:
7926         mdelay(10);
7927         break;
7928     case e1000_80003es2lan:
7929         /* Separate *_CFG_DONE_* bit for each port */
7930         if (er32(STATUS) & E1000_STATUS_FUNC_1)
7931             cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
7932         /* Fall Through */
7933     case e1000_82571:
7934     case e1000_82572:
7935         while (timeout) {
7936             if (er32(EEMNGCTL) & cfg_mask)
7937                 break;
7938             else
7939                 msleep(1);
7940             timeout--;
7941         }
7942         if (!timeout) {
7943             DEBUGOUT("MNG configuration cycle has not completed.\n");
7944             return -E1000_ERR_RESET;
7945         }
7946         break;
7947     }
7948
7949     return E1000_SUCCESS;
7950 }
7951
7952 /***************************************************************************
7953  *
7954  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
7955  * adapter or Eeprom access.
7956  *
7957  * hw: Struct containing variables accessed by shared code
7958  *
7959  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
7960  *            E1000_SUCCESS at any other case.
7961  *
7962  ***************************************************************************/
7963 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
7964 {
7965     s32 timeout;
7966     u32 swsm;
7967
7968     DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
7969
7970     if (!hw->eeprom_semaphore_present)
7971         return E1000_SUCCESS;
7972
7973     if (hw->mac_type == e1000_80003es2lan) {
7974         /* Get the SW semaphore. */
7975         if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
7976             return -E1000_ERR_EEPROM;
7977     }
7978
7979     /* Get the FW semaphore. */
7980     timeout = hw->eeprom.word_size + 1;
7981     while (timeout) {
7982         swsm = er32(SWSM);
7983         swsm |= E1000_SWSM_SWESMBI;
7984         ew32(SWSM, swsm);
7985         /* if we managed to set the bit we got the semaphore. */
7986         swsm = er32(SWSM);
7987         if (swsm & E1000_SWSM_SWESMBI)
7988             break;
7989
7990         udelay(50);
7991         timeout--;
7992     }
7993
7994     if (!timeout) {
7995         /* Release semaphores */
7996         e1000_put_hw_eeprom_semaphore(hw);
7997         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
7998         return -E1000_ERR_EEPROM;
7999     }
8000
8001     return E1000_SUCCESS;
8002 }
8003
8004 /***************************************************************************
8005  * This function clears HW semaphore bits.
8006  *
8007  * hw: Struct containing variables accessed by shared code
8008  *
8009  * returns: - None.
8010  *
8011  ***************************************************************************/
8012 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8013 {
8014     u32 swsm;
8015
8016     DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8017
8018     if (!hw->eeprom_semaphore_present)
8019         return;
8020
8021     swsm = er32(SWSM);
8022     if (hw->mac_type == e1000_80003es2lan) {
8023         /* Release both semaphores. */
8024         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8025     } else
8026         swsm &= ~(E1000_SWSM_SWESMBI);
8027     ew32(SWSM, swsm);
8028 }
8029
8030 /***************************************************************************
8031  *
8032  * Obtaining software semaphore bit (SMBI) before resetting PHY.
8033  *
8034  * hw: Struct containing variables accessed by shared code
8035  *
8036  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8037  *            E1000_SUCCESS at any other case.
8038  *
8039  ***************************************************************************/
8040 static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
8041 {
8042     s32 timeout = hw->eeprom.word_size + 1;
8043     u32 swsm;
8044
8045     DEBUGFUNC("e1000_get_software_semaphore");
8046
8047     if (hw->mac_type != e1000_80003es2lan) {
8048         return E1000_SUCCESS;
8049     }
8050
8051     while (timeout) {
8052         swsm = er32(SWSM);
8053         /* If SMBI bit cleared, it is now set and we hold the semaphore */
8054         if (!(swsm & E1000_SWSM_SMBI))
8055             break;
8056         mdelay(1);
8057         timeout--;
8058     }
8059
8060     if (!timeout) {
8061         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8062         return -E1000_ERR_RESET;
8063     }
8064
8065     return E1000_SUCCESS;
8066 }
8067
8068 /***************************************************************************
8069  *
8070  * Release semaphore bit (SMBI).
8071  *
8072  * hw: Struct containing variables accessed by shared code
8073  *
8074  ***************************************************************************/
8075 static void e1000_release_software_semaphore(struct e1000_hw *hw)
8076 {
8077     u32 swsm;
8078
8079     DEBUGFUNC("e1000_release_software_semaphore");
8080
8081     if (hw->mac_type != e1000_80003es2lan) {
8082         return;
8083     }
8084
8085     swsm = er32(SWSM);
8086     /* Release the SW semaphores.*/
8087     swsm &= ~E1000_SWSM_SMBI;
8088     ew32(SWSM, swsm);
8089 }
8090
8091 /******************************************************************************
8092  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8093  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
8094  * the caller to figure out how to deal with it.
8095  *
8096  * hw - Struct containing variables accessed by shared code
8097  *
8098  * returns: - E1000_BLK_PHY_RESET
8099  *            E1000_SUCCESS
8100  *
8101  *****************************************************************************/
8102 s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
8103 {
8104     u32 manc = 0;
8105     u32 fwsm = 0;
8106
8107     if (hw->mac_type == e1000_ich8lan) {
8108         fwsm = er32(FWSM);
8109         return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8110                                             : E1000_BLK_PHY_RESET;
8111     }
8112
8113     if (hw->mac_type > e1000_82547_rev_2)
8114         manc = er32(MANC);
8115     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8116         E1000_BLK_PHY_RESET : E1000_SUCCESS;
8117 }
8118
8119 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
8120 {
8121     u32 fwsm;
8122
8123     /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8124      * may not be provided a DMA clock when no manageability features are
8125      * enabled.  We do not want to perform any reads/writes to these registers
8126      * if this is the case.  We read FWSM to determine the manageability mode.
8127      */
8128     switch (hw->mac_type) {
8129     case e1000_82571:
8130     case e1000_82572:
8131     case e1000_82573:
8132     case e1000_80003es2lan:
8133         fwsm = er32(FWSM);
8134         if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8135             return true;
8136         break;
8137     case e1000_ich8lan:
8138         return true;
8139     default:
8140         break;
8141     }
8142     return false;
8143 }
8144
8145
8146 /******************************************************************************
8147  * Configure PCI-Ex no-snoop
8148  *
8149  * hw - Struct containing variables accessed by shared code.
8150  * no_snoop - Bitmap of no-snoop events.
8151  *
8152  * returns: E1000_SUCCESS
8153  *
8154  *****************************************************************************/
8155 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
8156 {
8157     u32 gcr_reg = 0;
8158
8159     DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8160
8161     if (hw->bus_type == e1000_bus_type_unknown)
8162         e1000_get_bus_info(hw);
8163
8164     if (hw->bus_type != e1000_bus_type_pci_express)
8165         return E1000_SUCCESS;
8166
8167     if (no_snoop) {
8168         gcr_reg = er32(GCR);
8169         gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8170         gcr_reg |= no_snoop;
8171         ew32(GCR, gcr_reg);
8172     }
8173     if (hw->mac_type == e1000_ich8lan) {
8174         u32 ctrl_ext;
8175
8176         ew32(GCR, PCI_EX_82566_SNOOP_ALL);
8177
8178         ctrl_ext = er32(CTRL_EXT);
8179         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8180         ew32(CTRL_EXT, ctrl_ext);
8181     }
8182
8183     return E1000_SUCCESS;
8184 }
8185
8186 /***************************************************************************
8187  *
8188  * Get software semaphore FLAG bit (SWFLAG).
8189  * SWFLAG is used to synchronize the access to all shared resource between
8190  * SW, FW and HW.
8191  *
8192  * hw: Struct containing variables accessed by shared code
8193  *
8194  ***************************************************************************/
8195 static s32 e1000_get_software_flag(struct e1000_hw *hw)
8196 {
8197     s32 timeout = PHY_CFG_TIMEOUT;
8198     u32 extcnf_ctrl;
8199
8200     DEBUGFUNC("e1000_get_software_flag");
8201
8202     if (hw->mac_type == e1000_ich8lan) {
8203         while (timeout) {
8204             extcnf_ctrl = er32(EXTCNF_CTRL);
8205             extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8206             ew32(EXTCNF_CTRL, extcnf_ctrl);
8207
8208             extcnf_ctrl = er32(EXTCNF_CTRL);
8209             if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8210                 break;
8211             mdelay(1);
8212             timeout--;
8213         }
8214
8215         if (!timeout) {
8216             DEBUGOUT("FW or HW locks the resource too long.\n");
8217             return -E1000_ERR_CONFIG;
8218         }
8219     }
8220
8221     return E1000_SUCCESS;
8222 }
8223
8224 /***************************************************************************
8225  *
8226  * Release software semaphore FLAG bit (SWFLAG).
8227  * SWFLAG is used to synchronize the access to all shared resource between
8228  * SW, FW and HW.
8229  *
8230  * hw: Struct containing variables accessed by shared code
8231  *
8232  ***************************************************************************/
8233 static void e1000_release_software_flag(struct e1000_hw *hw)
8234 {
8235     u32 extcnf_ctrl;
8236
8237     DEBUGFUNC("e1000_release_software_flag");
8238
8239     if (hw->mac_type == e1000_ich8lan) {
8240         extcnf_ctrl= er32(EXTCNF_CTRL);
8241         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8242         ew32(EXTCNF_CTRL, extcnf_ctrl);
8243     }
8244
8245     return;
8246 }
8247
8248 /******************************************************************************
8249  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8250  * register.
8251  *
8252  * hw - Struct containing variables accessed by shared code
8253  * offset - offset of word in the EEPROM to read
8254  * data - word read from the EEPROM
8255  * words - number of words to read
8256  *****************************************************************************/
8257 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8258                                   u16 *data)
8259 {
8260     s32  error = E1000_SUCCESS;
8261     u32 flash_bank = 0;
8262     u32 act_offset = 0;
8263     u32 bank_offset = 0;
8264     u16 word = 0;
8265     u16 i = 0;
8266
8267     /* We need to know which is the valid flash bank.  In the event
8268      * that we didn't allocate eeprom_shadow_ram, we may not be
8269      * managing flash_bank.  So it cannot be trusted and needs
8270      * to be updated with each read.
8271      */
8272     /* Value of bit 22 corresponds to the flash bank we're on. */
8273     flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8274
8275     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8276     bank_offset = flash_bank * (hw->flash_bank_size * 2);
8277
8278     error = e1000_get_software_flag(hw);
8279     if (error != E1000_SUCCESS)
8280         return error;
8281
8282     for (i = 0; i < words; i++) {
8283         if (hw->eeprom_shadow_ram != NULL &&
8284             hw->eeprom_shadow_ram[offset+i].modified) {
8285             data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8286         } else {
8287             /* The NVM part needs a byte offset, hence * 2 */
8288             act_offset = bank_offset + ((offset + i) * 2);
8289             error = e1000_read_ich8_word(hw, act_offset, &word);
8290             if (error != E1000_SUCCESS)
8291                 break;
8292             data[i] = word;
8293         }
8294     }
8295
8296     e1000_release_software_flag(hw);
8297
8298     return error;
8299 }
8300
8301 /******************************************************************************
8302  * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8303  * register.  Actually, writes are written to the shadow ram cache in the hw
8304  * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
8305  * the NVM, which occurs when the NVM checksum is updated.
8306  *
8307  * hw - Struct containing variables accessed by shared code
8308  * offset - offset of word in the EEPROM to write
8309  * words - number of words to write
8310  * data - words to write to the EEPROM
8311  *****************************************************************************/
8312 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8313                                    u16 *data)
8314 {
8315     u32 i = 0;
8316     s32 error = E1000_SUCCESS;
8317
8318     error = e1000_get_software_flag(hw);
8319     if (error != E1000_SUCCESS)
8320         return error;
8321
8322     /* A driver can write to the NVM only if it has eeprom_shadow_ram
8323      * allocated.  Subsequent reads to the modified words are read from
8324      * this cached structure as well.  Writes will only go into this
8325      * cached structure unless it's followed by a call to
8326      * e1000_update_eeprom_checksum() where it will commit the changes
8327      * and clear the "modified" field.
8328      */
8329     if (hw->eeprom_shadow_ram != NULL) {
8330         for (i = 0; i < words; i++) {
8331             if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8332                 hw->eeprom_shadow_ram[offset+i].modified = true;
8333                 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8334             } else {
8335                 error = -E1000_ERR_EEPROM;
8336                 break;
8337             }
8338         }
8339     } else {
8340         /* Drivers have the option to not allocate eeprom_shadow_ram as long
8341          * as they don't perform any NVM writes.  An attempt in doing so
8342          * will result in this error.
8343          */
8344         error = -E1000_ERR_EEPROM;
8345     }
8346
8347     e1000_release_software_flag(hw);
8348
8349     return error;
8350 }
8351
8352 /******************************************************************************
8353  * This function does initial flash setup so that a new read/write/erase cycle
8354  * can be started.
8355  *
8356  * hw - The pointer to the hw structure
8357  ****************************************************************************/
8358 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw)
8359 {
8360     union ich8_hws_flash_status hsfsts;
8361     s32 error = E1000_ERR_EEPROM;
8362     s32 i     = 0;
8363
8364     DEBUGFUNC("e1000_ich8_cycle_init");
8365
8366     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8367
8368     /* May be check the Flash Des Valid bit in Hw status */
8369     if (hsfsts.hsf_status.fldesvalid == 0) {
8370         DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
8371         return error;
8372     }
8373
8374     /* Clear FCERR in Hw status by writing 1 */
8375     /* Clear DAEL in Hw status by writing a 1 */
8376     hsfsts.hsf_status.flcerr = 1;
8377     hsfsts.hsf_status.dael = 1;
8378
8379     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8380
8381     /* Either we should have a hardware SPI cycle in progress bit to check
8382      * against, in order to start a new cycle or FDONE bit should be changed
8383      * in the hardware so that it is 1 after harware reset, which can then be
8384      * used as an indication whether a cycle is in progress or has been
8385      * completed .. we should also have some software semaphore mechanism to
8386      * guard FDONE or the cycle in progress bit so that two threads access to
8387      * those bits can be sequentiallized or a way so that 2 threads dont
8388      * start the cycle at the same time */
8389
8390     if (hsfsts.hsf_status.flcinprog == 0) {
8391         /* There is no cycle running at present, so we can start a cycle */
8392         /* Begin by setting Flash Cycle Done. */
8393         hsfsts.hsf_status.flcdone = 1;
8394         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8395         error = E1000_SUCCESS;
8396     } else {
8397         /* otherwise poll for sometime so the current cycle has a chance
8398          * to end before giving up. */
8399         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
8400             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8401             if (hsfsts.hsf_status.flcinprog == 0) {
8402                 error = E1000_SUCCESS;
8403                 break;
8404             }
8405             udelay(1);
8406         }
8407         if (error == E1000_SUCCESS) {
8408             /* Successful in waiting for previous cycle to timeout,
8409              * now set the Flash Cycle Done. */
8410             hsfsts.hsf_status.flcdone = 1;
8411             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8412         } else {
8413             DEBUGOUT("Flash controller busy, cannot get access");
8414         }
8415     }
8416     return error;
8417 }
8418
8419 /******************************************************************************
8420  * This function starts a flash cycle and waits for its completion
8421  *
8422  * hw - The pointer to the hw structure
8423  ****************************************************************************/
8424 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
8425 {
8426     union ich8_hws_flash_ctrl hsflctl;
8427     union ich8_hws_flash_status hsfsts;
8428     s32 error = E1000_ERR_EEPROM;
8429     u32 i = 0;
8430
8431     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8432     hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8433     hsflctl.hsf_ctrl.flcgo = 1;
8434     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8435
8436     /* wait till FDONE bit is set to 1 */
8437     do {
8438         hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8439         if (hsfsts.hsf_status.flcdone == 1)
8440             break;
8441         udelay(1);
8442         i++;
8443     } while (i < timeout);
8444     if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8445         error = E1000_SUCCESS;
8446     }
8447     return error;
8448 }
8449
8450 /******************************************************************************
8451  * Reads a byte or word from the NVM using the ICH8 flash access registers.
8452  *
8453  * hw - The pointer to the hw structure
8454  * index - The index of the byte or word to read.
8455  * size - Size of data to read, 1=byte 2=word
8456  * data - Pointer to the word to store the value read.
8457  *****************************************************************************/
8458 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8459                                 u16 *data)
8460 {
8461     union ich8_hws_flash_status hsfsts;
8462     union ich8_hws_flash_ctrl hsflctl;
8463     u32 flash_linear_address;
8464     u32 flash_data = 0;
8465     s32 error = -E1000_ERR_EEPROM;
8466     s32 count = 0;
8467
8468     DEBUGFUNC("e1000_read_ich8_data");
8469
8470     if (size < 1  || size > 2 || data == NULL ||
8471         index > ICH_FLASH_LINEAR_ADDR_MASK)
8472         return error;
8473
8474     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8475                            hw->flash_base_addr;
8476
8477     do {
8478         udelay(1);
8479         /* Steps */
8480         error = e1000_ich8_cycle_init(hw);
8481         if (error != E1000_SUCCESS)
8482             break;
8483
8484         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8485         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8486         hsflctl.hsf_ctrl.fldbcount = size - 1;
8487         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
8488         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8489
8490         /* Write the last 24 bits of index into Flash Linear address field in
8491          * Flash Address */
8492         /* TODO: TBD maybe check the index against the size of flash */
8493
8494         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8495
8496         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8497
8498         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8499          * sequence a few more times, else read in (shift in) the Flash Data0,
8500          * the order is least significant byte first msb to lsb */
8501         if (error == E1000_SUCCESS) {
8502             flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
8503             if (size == 1) {
8504                 *data = (u8)(flash_data & 0x000000FF);
8505             } else if (size == 2) {
8506                 *data = (u16)(flash_data & 0x0000FFFF);
8507             }
8508             break;
8509         } else {
8510             /* If we've gotten here, then things are probably completely hosed,
8511              * but if the error condition is detected, it won't hurt to give
8512              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8513              */
8514             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8515             if (hsfsts.hsf_status.flcerr == 1) {
8516                 /* Repeat for some time before giving up. */
8517                 continue;
8518             } else if (hsfsts.hsf_status.flcdone == 0) {
8519                 DEBUGOUT("Timeout error - flash cycle did not complete.");
8520                 break;
8521             }
8522         }
8523     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8524
8525     return error;
8526 }
8527
8528 /******************************************************************************
8529  * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8530  *
8531  * hw - The pointer to the hw structure
8532  * index - The index of the byte/word to read.
8533  * size - Size of data to read, 1=byte 2=word
8534  * data - The byte(s) to write to the NVM.
8535  *****************************************************************************/
8536 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8537                                  u16 data)
8538 {
8539     union ich8_hws_flash_status hsfsts;
8540     union ich8_hws_flash_ctrl hsflctl;
8541     u32 flash_linear_address;
8542     u32 flash_data = 0;
8543     s32 error = -E1000_ERR_EEPROM;
8544     s32 count = 0;
8545
8546     DEBUGFUNC("e1000_write_ich8_data");
8547
8548     if (size < 1  || size > 2 || data > size * 0xff ||
8549         index > ICH_FLASH_LINEAR_ADDR_MASK)
8550         return error;
8551
8552     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8553                            hw->flash_base_addr;
8554
8555     do {
8556         udelay(1);
8557         /* Steps */
8558         error = e1000_ich8_cycle_init(hw);
8559         if (error != E1000_SUCCESS)
8560             break;
8561
8562         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8563         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8564         hsflctl.hsf_ctrl.fldbcount = size -1;
8565         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
8566         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8567
8568         /* Write the last 24 bits of index into Flash Linear address field in
8569          * Flash Address */
8570         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8571
8572         if (size == 1)
8573             flash_data = (u32)data & 0x00FF;
8574         else
8575             flash_data = (u32)data;
8576
8577         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
8578
8579         /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8580          * sequence a few more times else done */
8581         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8582         if (error == E1000_SUCCESS) {
8583             break;
8584         } else {
8585             /* If we're here, then things are most likely completely hosed,
8586              * but if the error condition is detected, it won't hurt to give
8587              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8588              */
8589             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8590             if (hsfsts.hsf_status.flcerr == 1) {
8591                 /* Repeat for some time before giving up. */
8592                 continue;
8593             } else if (hsfsts.hsf_status.flcdone == 0) {
8594                 DEBUGOUT("Timeout error - flash cycle did not complete.");
8595                 break;
8596             }
8597         }
8598     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8599
8600     return error;
8601 }
8602
8603 /******************************************************************************
8604  * Reads a single byte from the NVM using the ICH8 flash access registers.
8605  *
8606  * hw - pointer to e1000_hw structure
8607  * index - The index of the byte to read.
8608  * data - Pointer to a byte to store the value read.
8609  *****************************************************************************/
8610 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data)
8611 {
8612     s32 status = E1000_SUCCESS;
8613     u16 word = 0;
8614
8615     status = e1000_read_ich8_data(hw, index, 1, &word);
8616     if (status == E1000_SUCCESS) {
8617         *data = (u8)word;
8618     }
8619
8620     return status;
8621 }
8622
8623 /******************************************************************************
8624  * Writes a single byte to the NVM using the ICH8 flash access registers.
8625  * Performs verification by reading back the value and then going through
8626  * a retry algorithm before giving up.
8627  *
8628  * hw - pointer to e1000_hw structure
8629  * index - The index of the byte to write.
8630  * byte - The byte to write to the NVM.
8631  *****************************************************************************/
8632 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
8633 {
8634     s32 error = E1000_SUCCESS;
8635     s32 program_retries = 0;
8636
8637     DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
8638
8639     error = e1000_write_ich8_byte(hw, index, byte);
8640
8641     if (error != E1000_SUCCESS) {
8642         for (program_retries = 0; program_retries < 100; program_retries++) {
8643             DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8644             error = e1000_write_ich8_byte(hw, index, byte);
8645             udelay(100);
8646             if (error == E1000_SUCCESS)
8647                 break;
8648         }
8649     }
8650
8651     if (program_retries == 100)
8652         error = E1000_ERR_EEPROM;
8653
8654     return error;
8655 }
8656
8657 /******************************************************************************
8658  * Writes a single byte to the NVM using the ICH8 flash access registers.
8659  *
8660  * hw - pointer to e1000_hw structure
8661  * index - The index of the byte to read.
8662  * data - The byte to write to the NVM.
8663  *****************************************************************************/
8664 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
8665 {
8666     s32 status = E1000_SUCCESS;
8667     u16 word = (u16)data;
8668
8669     status = e1000_write_ich8_data(hw, index, 1, word);
8670
8671     return status;
8672 }
8673
8674 /******************************************************************************
8675  * Reads a word from the NVM using the ICH8 flash access registers.
8676  *
8677  * hw - pointer to e1000_hw structure
8678  * index - The starting byte index of the word to read.
8679  * data - Pointer to a word to store the value read.
8680  *****************************************************************************/
8681 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
8682 {
8683     s32 status = E1000_SUCCESS;
8684     status = e1000_read_ich8_data(hw, index, 2, data);
8685     return status;
8686 }
8687
8688 /******************************************************************************
8689  * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8690  * based.
8691  *
8692  * hw - pointer to e1000_hw structure
8693  * bank - 0 for first bank, 1 for second bank
8694  *
8695  * Note that this function may actually erase as much as 8 or 64 KBytes.  The
8696  * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8697  * bank size may be 4, 8 or 64 KBytes
8698  *****************************************************************************/
8699 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
8700 {
8701     union ich8_hws_flash_status hsfsts;
8702     union ich8_hws_flash_ctrl hsflctl;
8703     u32 flash_linear_address;
8704     s32  count = 0;
8705     s32  error = E1000_ERR_EEPROM;
8706     s32  iteration;
8707     s32  sub_sector_size = 0;
8708     s32  bank_size;
8709     s32  j = 0;
8710     s32  error_flag = 0;
8711
8712     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8713
8714     /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8715     /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8716      *     consecutive sectors.  The start index for the nth Hw sector can be
8717      *     calculated as bank * 4096 + n * 256
8718      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8719      *     The start index for the nth Hw sector can be calculated
8720      *     as bank * 4096
8721      * 10: The HW sector is 8K bytes
8722      * 11: The Hw sector size is 64K bytes */
8723     if (hsfsts.hsf_status.berasesz == 0x0) {
8724         /* Hw sector size 256 */
8725         sub_sector_size = ICH_FLASH_SEG_SIZE_256;
8726         bank_size = ICH_FLASH_SECTOR_SIZE;
8727         iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
8728     } else if (hsfsts.hsf_status.berasesz == 0x1) {
8729         bank_size = ICH_FLASH_SEG_SIZE_4K;
8730         iteration = 1;
8731     } else if (hsfsts.hsf_status.berasesz == 0x3) {
8732         bank_size = ICH_FLASH_SEG_SIZE_64K;
8733         iteration = 1;
8734     } else {
8735         return error;
8736     }
8737
8738     for (j = 0; j < iteration ; j++) {
8739         do {
8740             count++;
8741             /* Steps */
8742             error = e1000_ich8_cycle_init(hw);
8743             if (error != E1000_SUCCESS) {
8744                 error_flag = 1;
8745                 break;
8746             }
8747
8748             /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8749              * Control */
8750             hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8751             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
8752             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8753
8754             /* Write the last 24 bits of an index within the block into Flash
8755              * Linear address field in Flash Address.  This probably needs to
8756              * be calculated here based off the on-chip erase sector size and
8757              * the software bank size (4, 8 or 64 KBytes) */
8758             flash_linear_address = bank * bank_size + j * sub_sector_size;
8759             flash_linear_address += hw->flash_base_addr;
8760             flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
8761
8762             E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8763
8764             error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
8765             /* Check if FCERR is set to 1.  If 1, clear it and try the whole
8766              * sequence a few more times else Done */
8767             if (error == E1000_SUCCESS) {
8768                 break;
8769             } else {
8770                 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8771                 if (hsfsts.hsf_status.flcerr == 1) {
8772                     /* repeat for some time before giving up */
8773                     continue;
8774                 } else if (hsfsts.hsf_status.flcdone == 0) {
8775                     error_flag = 1;
8776                     break;
8777                 }
8778             }
8779         } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8780         if (error_flag == 1)
8781             break;
8782     }
8783     if (error_flag != 1)
8784         error = E1000_SUCCESS;
8785     return error;
8786 }
8787
8788 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8789                                                  u32 cnf_base_addr,
8790                                                  u32 cnf_size)
8791 {
8792     u32 ret_val = E1000_SUCCESS;
8793     u16 word_addr, reg_data, reg_addr;
8794     u16 i;
8795
8796     /* cnf_base_addr is in DWORD */
8797     word_addr = (u16)(cnf_base_addr << 1);
8798
8799     /* cnf_size is returned in size of dwords */
8800     for (i = 0; i < cnf_size; i++) {
8801         ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8802         if (ret_val)
8803             return ret_val;
8804
8805         ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8806         if (ret_val)
8807             return ret_val;
8808
8809         ret_val = e1000_get_software_flag(hw);
8810         if (ret_val != E1000_SUCCESS)
8811             return ret_val;
8812
8813         ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
8814
8815         e1000_release_software_flag(hw);
8816     }
8817
8818     return ret_val;
8819 }
8820
8821
8822 /******************************************************************************
8823  * This function initializes the PHY from the NVM on ICH8 platforms. This
8824  * is needed due to an issue where the NVM configuration is not properly
8825  * autoloaded after power transitions. Therefore, after each PHY reset, we
8826  * will load the configuration data out of the NVM manually.
8827  *
8828  * hw: Struct containing variables accessed by shared code
8829  *****************************************************************************/
8830 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8831 {
8832     u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8833
8834     if (hw->phy_type != e1000_phy_igp_3)
8835           return E1000_SUCCESS;
8836
8837     /* Check if SW needs configure the PHY */
8838     reg_data = er32(FEXTNVM);
8839     if (!(reg_data & FEXTNVM_SW_CONFIG))
8840         return E1000_SUCCESS;
8841
8842     /* Wait for basic configuration completes before proceeding*/
8843     loop = 0;
8844     do {
8845         reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
8846         udelay(100);
8847         loop++;
8848     } while ((!reg_data) && (loop < 50));
8849
8850     /* Clear the Init Done bit for the next init event */
8851     reg_data = er32(STATUS);
8852     reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
8853     ew32(STATUS, reg_data);
8854
8855     /* Make sure HW does not configure LCD from PHY extended configuration
8856        before SW configuration */
8857     reg_data = er32(EXTCNF_CTRL);
8858     if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
8859         reg_data = er32(EXTCNF_SIZE);
8860         cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
8861         cnf_size >>= 16;
8862         if (cnf_size) {
8863             reg_data = er32(EXTCNF_CTRL);
8864             cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
8865             /* cnf_base_addr is in DWORD */
8866             cnf_base_addr >>= 16;
8867
8868             /* Configure LCD from extended configuration region. */
8869             ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
8870                                                             cnf_size);
8871             if (ret_val)
8872                 return ret_val;
8873         }
8874     }
8875
8876     return E1000_SUCCESS;
8877 }
8878