2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
34 #include <scsi/scsi_cmnd.h>
36 static void blk_unplug_work(void *data);
37 static void blk_unplug_timeout(unsigned long data);
38 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
41 * For the allocated request tables
43 static kmem_cache_t *request_cachep;
46 * For queue allocation
48 static kmem_cache_t *requestq_cachep;
51 * For io context allocations
53 static kmem_cache_t *iocontext_cachep;
55 static wait_queue_head_t congestion_wqh[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 unsigned long blk_max_low_pfn, blk_max_pfn;
67 EXPORT_SYMBOL(blk_max_low_pfn);
68 EXPORT_SYMBOL(blk_max_pfn);
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME (HZ/50UL)
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ 32
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
81 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 return q->nr_congestion_on;
87 * The threshold at which a queue is considered to be uncongested
89 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 return q->nr_congestion_off;
94 static void blk_queue_congestion_threshold(struct request_queue *q)
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
101 q->nr_congestion_on = nr;
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 q->nr_congestion_off = nr;
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
114 static void clear_queue_congested(request_queue_t *q, int rw)
117 wait_queue_head_t *wqh = &congestion_wqh[rw];
119 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
120 clear_bit(bit, &q->backing_dev_info.state);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh))
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
130 static void set_queue_congested(request_queue_t *q, int rw)
134 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
135 set_bit(bit, &q->backing_dev_info.state);
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * Locates the passed device's request queue and returns the address of its
145 * Will return NULL if the request queue cannot be located.
147 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149 struct backing_dev_info *ret = NULL;
150 request_queue_t *q = bdev_get_queue(bdev);
153 ret = &q->backing_dev_info;
157 EXPORT_SYMBOL(blk_get_backing_dev_info);
159 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162 q->activity_data = data;
165 EXPORT_SYMBOL(blk_queue_activity_fn);
168 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @pfn: prepare_request function
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
178 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
183 EXPORT_SYMBOL(blk_queue_prep_rq);
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @mbfn: merge_bvec_fn
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203 q->merge_bvec_fn = mbfn;
206 EXPORT_SYMBOL(blk_queue_merge_bvec);
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
230 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
235 q->nr_requests = BLKDEV_MAX_RQ;
236 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
237 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
238 q->make_request_fn = mfn;
239 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
240 q->backing_dev_info.state = 0;
241 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
242 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
243 blk_queue_hardsect_size(q, 512);
244 blk_queue_dma_alignment(q, 511);
245 blk_queue_congestion_threshold(q);
246 q->nr_batching = BLK_BATCH_REQ;
248 q->unplug_thresh = 4; /* hmm */
249 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
250 if (q->unplug_delay == 0)
253 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255 q->unplug_timer.function = blk_unplug_timeout;
256 q->unplug_timer.data = (unsigned long)q;
259 * by default assume old behaviour and bounce for any highmem page
261 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263 blk_queue_activity_fn(q, NULL, NULL);
266 EXPORT_SYMBOL(blk_queue_make_request);
268 static inline void rq_init(request_queue_t *q, struct request *rq)
270 INIT_LIST_HEAD(&rq->queuelist);
273 rq->rq_status = RQ_ACTIVE;
274 rq->bio = rq->biotail = NULL;
283 rq->nr_phys_segments = 0;
286 rq->end_io_data = NULL;
290 * blk_queue_ordered - does this queue support ordered writes
291 * @q: the request queue
295 * For journalled file systems, doing ordered writes on a commit
296 * block instead of explicitly doing wait_on_buffer (which is bad
297 * for performance) can be a big win. Block drivers supporting this
298 * feature should call this function and indicate so.
301 void blk_queue_ordered(request_queue_t *q, int flag)
304 case QUEUE_ORDERED_NONE:
306 kmem_cache_free(request_cachep, q->flush_rq);
310 case QUEUE_ORDERED_TAG:
313 case QUEUE_ORDERED_FLUSH:
316 q->flush_rq = kmem_cache_alloc(request_cachep,
320 printk("blk_queue_ordered: bad value %d\n", flag);
325 EXPORT_SYMBOL(blk_queue_ordered);
328 * blk_queue_issue_flush_fn - set function for issuing a flush
329 * @q: the request queue
330 * @iff: the function to be called issuing the flush
333 * If a driver supports issuing a flush command, the support is notified
334 * to the block layer by defining it through this call.
337 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339 q->issue_flush_fn = iff;
342 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
345 * Cache flushing for ordered writes handling
347 static void blk_pre_flush_end_io(struct request *flush_rq)
349 struct request *rq = flush_rq->end_io_data;
350 request_queue_t *q = rq->q;
352 elv_completed_request(q, flush_rq);
354 rq->flags |= REQ_BAR_PREFLUSH;
356 if (!flush_rq->errors)
357 elv_requeue_request(q, rq);
359 q->end_flush_fn(q, flush_rq);
360 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
365 static void blk_post_flush_end_io(struct request *flush_rq)
367 struct request *rq = flush_rq->end_io_data;
368 request_queue_t *q = rq->q;
370 elv_completed_request(q, flush_rq);
372 rq->flags |= REQ_BAR_POSTFLUSH;
374 q->end_flush_fn(q, flush_rq);
375 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
379 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
381 struct request *flush_rq = q->flush_rq;
383 BUG_ON(!blk_barrier_rq(rq));
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
388 rq_init(q, flush_rq);
389 flush_rq->elevator_private = NULL;
390 flush_rq->flags = REQ_BAR_FLUSH;
391 flush_rq->rq_disk = rq->rq_disk;
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
398 if (!q->prepare_flush_fn(q, flush_rq)) {
399 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
400 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
408 if (!list_empty(&rq->queuelist))
409 blkdev_dequeue_request(rq);
411 flush_rq->end_io_data = rq;
412 flush_rq->end_io = blk_pre_flush_end_io;
414 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
418 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
420 struct request *flush_rq = q->flush_rq;
422 BUG_ON(!blk_barrier_rq(rq));
424 rq_init(q, flush_rq);
425 flush_rq->elevator_private = NULL;
426 flush_rq->flags = REQ_BAR_FLUSH;
427 flush_rq->rq_disk = rq->rq_disk;
430 if (q->prepare_flush_fn(q, flush_rq)) {
431 flush_rq->end_io_data = rq;
432 flush_rq->end_io = blk_post_flush_end_io;
434 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
439 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
442 if (sectors > rq->nr_sectors)
443 sectors = rq->nr_sectors;
445 rq->nr_sectors -= sectors;
446 return rq->nr_sectors;
449 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
450 int sectors, int queue_locked)
452 if (q->ordered != QUEUE_ORDERED_FLUSH)
454 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
456 if (blk_barrier_postflush(rq))
459 if (!blk_check_end_barrier(q, rq, sectors)) {
460 unsigned long flags = 0;
463 spin_lock_irqsave(q->queue_lock, flags);
465 blk_start_post_flush(q, rq);
468 spin_unlock_irqrestore(q->queue_lock, flags);
475 * blk_complete_barrier_rq - complete possible barrier request
476 * @q: the request queue for the device
478 * @sectors: number of sectors to complete
481 * Used in driver end_io handling to determine whether to postpone
482 * completion of a barrier request until a post flush has been done. This
483 * is the unlocked variant, used if the caller doesn't already hold the
486 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
488 return __blk_complete_barrier_rq(q, rq, sectors, 0);
490 EXPORT_SYMBOL(blk_complete_barrier_rq);
493 * blk_complete_barrier_rq_locked - complete possible barrier request
494 * @q: the request queue for the device
496 * @sectors: number of sectors to complete
499 * See blk_complete_barrier_rq(). This variant must be used if the caller
500 * holds the queue lock.
502 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
505 return __blk_complete_barrier_rq(q, rq, sectors, 1);
507 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
510 * blk_queue_bounce_limit - set bounce buffer limit for queue
511 * @q: the request queue for the device
512 * @dma_addr: bus address limit
515 * Different hardware can have different requirements as to what pages
516 * it can do I/O directly to. A low level driver can call
517 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
518 * buffers for doing I/O to pages residing above @page. By default
519 * the block layer sets this to the highest numbered "low" memory page.
521 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
523 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
526 * set appropriate bounce gfp mask -- unfortunately we don't have a
527 * full 4GB zone, so we have to resort to low memory for any bounces.
528 * ISA has its own < 16MB zone.
530 if (bounce_pfn < blk_max_low_pfn) {
531 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
532 init_emergency_isa_pool();
533 q->bounce_gfp = GFP_NOIO | GFP_DMA;
535 q->bounce_gfp = GFP_NOIO;
537 q->bounce_pfn = bounce_pfn;
540 EXPORT_SYMBOL(blk_queue_bounce_limit);
543 * blk_queue_max_sectors - set max sectors for a request for this queue
544 * @q: the request queue for the device
545 * @max_sectors: max sectors in the usual 512b unit
548 * Enables a low level driver to set an upper limit on the size of
551 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
553 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
554 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
555 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
558 if (BLK_DEF_MAX_SECTORS > max_sectors)
559 q->max_hw_sectors = q->max_sectors = max_sectors;
561 q->max_sectors = BLK_DEF_MAX_SECTORS;
562 q->max_hw_sectors = max_sectors;
566 EXPORT_SYMBOL(blk_queue_max_sectors);
569 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
570 * @q: the request queue for the device
571 * @max_segments: max number of segments
574 * Enables a low level driver to set an upper limit on the number of
575 * physical data segments in a request. This would be the largest sized
576 * scatter list the driver could handle.
578 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
582 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
585 q->max_phys_segments = max_segments;
588 EXPORT_SYMBOL(blk_queue_max_phys_segments);
591 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
592 * @q: the request queue for the device
593 * @max_segments: max number of segments
596 * Enables a low level driver to set an upper limit on the number of
597 * hw data segments in a request. This would be the largest number of
598 * address/length pairs the host adapter can actually give as once
601 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
605 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
608 q->max_hw_segments = max_segments;
611 EXPORT_SYMBOL(blk_queue_max_hw_segments);
614 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
615 * @q: the request queue for the device
616 * @max_size: max size of segment in bytes
619 * Enables a low level driver to set an upper limit on the size of a
622 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
624 if (max_size < PAGE_CACHE_SIZE) {
625 max_size = PAGE_CACHE_SIZE;
626 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
629 q->max_segment_size = max_size;
632 EXPORT_SYMBOL(blk_queue_max_segment_size);
635 * blk_queue_hardsect_size - set hardware sector size for the queue
636 * @q: the request queue for the device
637 * @size: the hardware sector size, in bytes
640 * This should typically be set to the lowest possible sector size
641 * that the hardware can operate on (possible without reverting to
642 * even internal read-modify-write operations). Usually the default
643 * of 512 covers most hardware.
645 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
647 q->hardsect_size = size;
650 EXPORT_SYMBOL(blk_queue_hardsect_size);
653 * Returns the minimum that is _not_ zero, unless both are zero.
655 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
658 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
659 * @t: the stacking driver (top)
660 * @b: the underlying device (bottom)
662 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
664 /* zero is "infinity" */
665 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
666 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
668 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
669 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
670 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
671 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
674 EXPORT_SYMBOL(blk_queue_stack_limits);
677 * blk_queue_segment_boundary - set boundary rules for segment merging
678 * @q: the request queue for the device
679 * @mask: the memory boundary mask
681 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
683 if (mask < PAGE_CACHE_SIZE - 1) {
684 mask = PAGE_CACHE_SIZE - 1;
685 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
688 q->seg_boundary_mask = mask;
691 EXPORT_SYMBOL(blk_queue_segment_boundary);
694 * blk_queue_dma_alignment - set dma length and memory alignment
695 * @q: the request queue for the device
696 * @mask: alignment mask
699 * set required memory and length aligment for direct dma transactions.
700 * this is used when buiding direct io requests for the queue.
703 void blk_queue_dma_alignment(request_queue_t *q, int mask)
705 q->dma_alignment = mask;
708 EXPORT_SYMBOL(blk_queue_dma_alignment);
711 * blk_queue_find_tag - find a request by its tag and queue
712 * @q: The request queue for the device
713 * @tag: The tag of the request
716 * Should be used when a device returns a tag and you want to match
719 * no locks need be held.
721 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
723 struct blk_queue_tag *bqt = q->queue_tags;
725 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
728 return bqt->tag_index[tag];
731 EXPORT_SYMBOL(blk_queue_find_tag);
734 * __blk_queue_free_tags - release tag maintenance info
735 * @q: the request queue for the device
738 * blk_cleanup_queue() will take care of calling this function, if tagging
739 * has been used. So there's no need to call this directly.
741 static void __blk_queue_free_tags(request_queue_t *q)
743 struct blk_queue_tag *bqt = q->queue_tags;
748 if (atomic_dec_and_test(&bqt->refcnt)) {
750 BUG_ON(!list_empty(&bqt->busy_list));
752 kfree(bqt->tag_index);
753 bqt->tag_index = NULL;
761 q->queue_tags = NULL;
762 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
766 * blk_queue_free_tags - release tag maintenance info
767 * @q: the request queue for the device
770 * This is used to disabled tagged queuing to a device, yet leave
773 void blk_queue_free_tags(request_queue_t *q)
775 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
778 EXPORT_SYMBOL(blk_queue_free_tags);
781 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
783 struct request **tag_index;
784 unsigned long *tag_map;
787 if (depth > q->nr_requests * 2) {
788 depth = q->nr_requests * 2;
789 printk(KERN_ERR "%s: adjusted depth to %d\n",
790 __FUNCTION__, depth);
793 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
797 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
798 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
802 memset(tag_index, 0, depth * sizeof(struct request *));
803 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
804 tags->real_max_depth = depth;
805 tags->max_depth = depth;
806 tags->tag_index = tag_index;
807 tags->tag_map = tag_map;
816 * blk_queue_init_tags - initialize the queue tag info
817 * @q: the request queue for the device
818 * @depth: the maximum queue depth supported
819 * @tags: the tag to use
821 int blk_queue_init_tags(request_queue_t *q, int depth,
822 struct blk_queue_tag *tags)
826 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828 if (!tags && !q->queue_tags) {
829 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
833 if (init_tag_map(q, tags, depth))
836 INIT_LIST_HEAD(&tags->busy_list);
838 atomic_set(&tags->refcnt, 1);
839 } else if (q->queue_tags) {
840 if ((rc = blk_queue_resize_tags(q, depth)))
842 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
845 atomic_inc(&tags->refcnt);
848 * assign it, all done
850 q->queue_tags = tags;
851 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
858 EXPORT_SYMBOL(blk_queue_init_tags);
861 * blk_queue_resize_tags - change the queueing depth
862 * @q: the request queue for the device
863 * @new_depth: the new max command queueing depth
866 * Must be called with the queue lock held.
868 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870 struct blk_queue_tag *bqt = q->queue_tags;
871 struct request **tag_index;
872 unsigned long *tag_map;
873 int max_depth, nr_ulongs;
879 * if we already have large enough real_max_depth. just
880 * adjust max_depth. *NOTE* as requests with tag value
881 * between new_depth and real_max_depth can be in-flight, tag
882 * map can not be shrunk blindly here.
884 if (new_depth <= bqt->real_max_depth) {
885 bqt->max_depth = new_depth;
890 * save the old state info, so we can copy it back
892 tag_index = bqt->tag_index;
893 tag_map = bqt->tag_map;
894 max_depth = bqt->real_max_depth;
896 if (init_tag_map(q, bqt, new_depth))
899 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
900 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
901 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
908 EXPORT_SYMBOL(blk_queue_resize_tags);
911 * blk_queue_end_tag - end tag operations for a request
912 * @q: the request queue for the device
913 * @rq: the request that has completed
916 * Typically called when end_that_request_first() returns 0, meaning
917 * all transfers have been done for a request. It's important to call
918 * this function before end_that_request_last(), as that will put the
919 * request back on the free list thus corrupting the internal tag list.
922 * queue lock must be held.
924 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
926 struct blk_queue_tag *bqt = q->queue_tags;
931 if (unlikely(tag >= bqt->real_max_depth))
933 * This can happen after tag depth has been reduced.
934 * FIXME: how about a warning or info message here?
938 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
939 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
944 list_del_init(&rq->queuelist);
945 rq->flags &= ~REQ_QUEUED;
948 if (unlikely(bqt->tag_index[tag] == NULL))
949 printk(KERN_ERR "%s: tag %d is missing\n",
952 bqt->tag_index[tag] = NULL;
956 EXPORT_SYMBOL(blk_queue_end_tag);
959 * blk_queue_start_tag - find a free tag and assign it
960 * @q: the request queue for the device
961 * @rq: the block request that needs tagging
964 * This can either be used as a stand-alone helper, or possibly be
965 * assigned as the queue &prep_rq_fn (in which case &struct request
966 * automagically gets a tag assigned). Note that this function
967 * assumes that any type of request can be queued! if this is not
968 * true for your device, you must check the request type before
969 * calling this function. The request will also be removed from
970 * the request queue, so it's the drivers responsibility to readd
971 * it if it should need to be restarted for some reason.
974 * queue lock must be held.
976 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
978 struct blk_queue_tag *bqt = q->queue_tags;
981 if (unlikely((rq->flags & REQ_QUEUED))) {
983 "%s: request %p for device [%s] already tagged %d",
985 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
989 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
990 if (tag >= bqt->max_depth)
993 __set_bit(tag, bqt->tag_map);
995 rq->flags |= REQ_QUEUED;
997 bqt->tag_index[tag] = rq;
998 blkdev_dequeue_request(rq);
999 list_add(&rq->queuelist, &bqt->busy_list);
1004 EXPORT_SYMBOL(blk_queue_start_tag);
1007 * blk_queue_invalidate_tags - invalidate all pending tags
1008 * @q: the request queue for the device
1011 * Hardware conditions may dictate a need to stop all pending requests.
1012 * In this case, we will safely clear the block side of the tag queue and
1013 * readd all requests to the request queue in the right order.
1016 * queue lock must be held.
1018 void blk_queue_invalidate_tags(request_queue_t *q)
1020 struct blk_queue_tag *bqt = q->queue_tags;
1021 struct list_head *tmp, *n;
1024 list_for_each_safe(tmp, n, &bqt->busy_list) {
1025 rq = list_entry_rq(tmp);
1027 if (rq->tag == -1) {
1029 "%s: bad tag found on list\n", __FUNCTION__);
1030 list_del_init(&rq->queuelist);
1031 rq->flags &= ~REQ_QUEUED;
1033 blk_queue_end_tag(q, rq);
1035 rq->flags &= ~REQ_STARTED;
1036 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1040 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1042 static char *rq_flags[] = {
1062 "REQ_DRIVE_TASKFILE",
1069 void blk_dump_rq_flags(struct request *rq, char *msg)
1073 printk("%s: dev %s: flags = ", msg,
1074 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1077 if (rq->flags & (1 << bit))
1078 printk("%s ", rq_flags[bit]);
1080 } while (bit < __REQ_NR_BITS);
1082 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1084 rq->current_nr_sectors);
1085 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1087 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1089 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1090 printk("%02x ", rq->cmd[bit]);
1095 EXPORT_SYMBOL(blk_dump_rq_flags);
1097 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1099 struct bio_vec *bv, *bvprv = NULL;
1100 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1101 int high, highprv = 1;
1103 if (unlikely(!bio->bi_io_vec))
1106 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1107 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1108 bio_for_each_segment(bv, bio, i) {
1110 * the trick here is making sure that a high page is never
1111 * considered part of another segment, since that might
1112 * change with the bounce page.
1114 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1115 if (high || highprv)
1116 goto new_hw_segment;
1118 if (seg_size + bv->bv_len > q->max_segment_size)
1120 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1122 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1124 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1125 goto new_hw_segment;
1127 seg_size += bv->bv_len;
1128 hw_seg_size += bv->bv_len;
1133 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1134 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1135 hw_seg_size += bv->bv_len;
1138 if (hw_seg_size > bio->bi_hw_front_size)
1139 bio->bi_hw_front_size = hw_seg_size;
1140 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1146 seg_size = bv->bv_len;
1149 if (hw_seg_size > bio->bi_hw_back_size)
1150 bio->bi_hw_back_size = hw_seg_size;
1151 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1152 bio->bi_hw_front_size = hw_seg_size;
1153 bio->bi_phys_segments = nr_phys_segs;
1154 bio->bi_hw_segments = nr_hw_segs;
1155 bio->bi_flags |= (1 << BIO_SEG_VALID);
1159 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1162 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1165 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1167 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1171 * bio and nxt are contigous in memory, check if the queue allows
1172 * these two to be merged into one
1174 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1180 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1183 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1184 blk_recount_segments(q, bio);
1185 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1186 blk_recount_segments(q, nxt);
1187 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1188 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1190 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1197 * map a request to scatterlist, return number of sg entries setup. Caller
1198 * must make sure sg can hold rq->nr_phys_segments entries
1200 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1202 struct bio_vec *bvec, *bvprv;
1204 int nsegs, i, cluster;
1207 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1210 * for each bio in rq
1213 rq_for_each_bio(bio, rq) {
1215 * for each segment in bio
1217 bio_for_each_segment(bvec, bio, i) {
1218 int nbytes = bvec->bv_len;
1220 if (bvprv && cluster) {
1221 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1224 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1226 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1229 sg[nsegs - 1].length += nbytes;
1232 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1233 sg[nsegs].page = bvec->bv_page;
1234 sg[nsegs].length = nbytes;
1235 sg[nsegs].offset = bvec->bv_offset;
1240 } /* segments in bio */
1246 EXPORT_SYMBOL(blk_rq_map_sg);
1249 * the standard queue merge functions, can be overridden with device
1250 * specific ones if so desired
1253 static inline int ll_new_mergeable(request_queue_t *q,
1254 struct request *req,
1257 int nr_phys_segs = bio_phys_segments(q, bio);
1259 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1260 req->flags |= REQ_NOMERGE;
1261 if (req == q->last_merge)
1262 q->last_merge = NULL;
1267 * A hw segment is just getting larger, bump just the phys
1270 req->nr_phys_segments += nr_phys_segs;
1274 static inline int ll_new_hw_segment(request_queue_t *q,
1275 struct request *req,
1278 int nr_hw_segs = bio_hw_segments(q, bio);
1279 int nr_phys_segs = bio_phys_segments(q, bio);
1281 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1282 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1283 req->flags |= REQ_NOMERGE;
1284 if (req == q->last_merge)
1285 q->last_merge = NULL;
1290 * This will form the start of a new hw segment. Bump both
1293 req->nr_hw_segments += nr_hw_segs;
1294 req->nr_phys_segments += nr_phys_segs;
1298 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1301 unsigned short max_sectors;
1304 if (unlikely(blk_pc_request(req)))
1305 max_sectors = q->max_hw_sectors;
1307 max_sectors = q->max_sectors;
1309 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1310 req->flags |= REQ_NOMERGE;
1311 if (req == q->last_merge)
1312 q->last_merge = NULL;
1315 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1316 blk_recount_segments(q, req->biotail);
1317 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1318 blk_recount_segments(q, bio);
1319 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1320 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1321 !BIOVEC_VIRT_OVERSIZE(len)) {
1322 int mergeable = ll_new_mergeable(q, req, bio);
1325 if (req->nr_hw_segments == 1)
1326 req->bio->bi_hw_front_size = len;
1327 if (bio->bi_hw_segments == 1)
1328 bio->bi_hw_back_size = len;
1333 return ll_new_hw_segment(q, req, bio);
1336 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1339 unsigned short max_sectors;
1342 if (unlikely(blk_pc_request(req)))
1343 max_sectors = q->max_hw_sectors;
1345 max_sectors = q->max_sectors;
1348 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1349 req->flags |= REQ_NOMERGE;
1350 if (req == q->last_merge)
1351 q->last_merge = NULL;
1354 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1355 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1356 blk_recount_segments(q, bio);
1357 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1358 blk_recount_segments(q, req->bio);
1359 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1360 !BIOVEC_VIRT_OVERSIZE(len)) {
1361 int mergeable = ll_new_mergeable(q, req, bio);
1364 if (bio->bi_hw_segments == 1)
1365 bio->bi_hw_front_size = len;
1366 if (req->nr_hw_segments == 1)
1367 req->biotail->bi_hw_back_size = len;
1372 return ll_new_hw_segment(q, req, bio);
1375 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1376 struct request *next)
1378 int total_phys_segments;
1379 int total_hw_segments;
1382 * First check if the either of the requests are re-queued
1383 * requests. Can't merge them if they are.
1385 if (req->special || next->special)
1389 * Will it become too large?
1391 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1394 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1395 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1396 total_phys_segments--;
1398 if (total_phys_segments > q->max_phys_segments)
1401 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1402 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1403 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1405 * propagate the combined length to the end of the requests
1407 if (req->nr_hw_segments == 1)
1408 req->bio->bi_hw_front_size = len;
1409 if (next->nr_hw_segments == 1)
1410 next->biotail->bi_hw_back_size = len;
1411 total_hw_segments--;
1414 if (total_hw_segments > q->max_hw_segments)
1417 /* Merge is OK... */
1418 req->nr_phys_segments = total_phys_segments;
1419 req->nr_hw_segments = total_hw_segments;
1424 * "plug" the device if there are no outstanding requests: this will
1425 * force the transfer to start only after we have put all the requests
1428 * This is called with interrupts off and no requests on the queue and
1429 * with the queue lock held.
1431 void blk_plug_device(request_queue_t *q)
1433 WARN_ON(!irqs_disabled());
1436 * don't plug a stopped queue, it must be paired with blk_start_queue()
1437 * which will restart the queueing
1439 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1442 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1443 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1446 EXPORT_SYMBOL(blk_plug_device);
1449 * remove the queue from the plugged list, if present. called with
1450 * queue lock held and interrupts disabled.
1452 int blk_remove_plug(request_queue_t *q)
1454 WARN_ON(!irqs_disabled());
1456 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1459 del_timer(&q->unplug_timer);
1463 EXPORT_SYMBOL(blk_remove_plug);
1466 * remove the plug and let it rip..
1468 void __generic_unplug_device(request_queue_t *q)
1470 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1473 if (!blk_remove_plug(q))
1478 EXPORT_SYMBOL(__generic_unplug_device);
1481 * generic_unplug_device - fire a request queue
1482 * @q: The &request_queue_t in question
1485 * Linux uses plugging to build bigger requests queues before letting
1486 * the device have at them. If a queue is plugged, the I/O scheduler
1487 * is still adding and merging requests on the queue. Once the queue
1488 * gets unplugged, the request_fn defined for the queue is invoked and
1489 * transfers started.
1491 void generic_unplug_device(request_queue_t *q)
1493 spin_lock_irq(q->queue_lock);
1494 __generic_unplug_device(q);
1495 spin_unlock_irq(q->queue_lock);
1497 EXPORT_SYMBOL(generic_unplug_device);
1499 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1502 request_queue_t *q = bdi->unplug_io_data;
1505 * devices don't necessarily have an ->unplug_fn defined
1511 static void blk_unplug_work(void *data)
1513 request_queue_t *q = data;
1518 static void blk_unplug_timeout(unsigned long data)
1520 request_queue_t *q = (request_queue_t *)data;
1522 kblockd_schedule_work(&q->unplug_work);
1526 * blk_start_queue - restart a previously stopped queue
1527 * @q: The &request_queue_t in question
1530 * blk_start_queue() will clear the stop flag on the queue, and call
1531 * the request_fn for the queue if it was in a stopped state when
1532 * entered. Also see blk_stop_queue(). Queue lock must be held.
1534 void blk_start_queue(request_queue_t *q)
1536 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1539 * one level of recursion is ok and is much faster than kicking
1540 * the unplug handling
1542 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1544 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1547 kblockd_schedule_work(&q->unplug_work);
1551 EXPORT_SYMBOL(blk_start_queue);
1554 * blk_stop_queue - stop a queue
1555 * @q: The &request_queue_t in question
1558 * The Linux block layer assumes that a block driver will consume all
1559 * entries on the request queue when the request_fn strategy is called.
1560 * Often this will not happen, because of hardware limitations (queue
1561 * depth settings). If a device driver gets a 'queue full' response,
1562 * or if it simply chooses not to queue more I/O at one point, it can
1563 * call this function to prevent the request_fn from being called until
1564 * the driver has signalled it's ready to go again. This happens by calling
1565 * blk_start_queue() to restart queue operations. Queue lock must be held.
1567 void blk_stop_queue(request_queue_t *q)
1570 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1572 EXPORT_SYMBOL(blk_stop_queue);
1575 * blk_sync_queue - cancel any pending callbacks on a queue
1579 * The block layer may perform asynchronous callback activity
1580 * on a queue, such as calling the unplug function after a timeout.
1581 * A block device may call blk_sync_queue to ensure that any
1582 * such activity is cancelled, thus allowing it to release resources
1583 * the the callbacks might use. The caller must already have made sure
1584 * that its ->make_request_fn will not re-add plugging prior to calling
1588 void blk_sync_queue(struct request_queue *q)
1590 del_timer_sync(&q->unplug_timer);
1593 EXPORT_SYMBOL(blk_sync_queue);
1596 * blk_run_queue - run a single device queue
1597 * @q: The queue to run
1599 void blk_run_queue(struct request_queue *q)
1601 unsigned long flags;
1603 spin_lock_irqsave(q->queue_lock, flags);
1605 if (!elv_queue_empty(q))
1607 spin_unlock_irqrestore(q->queue_lock, flags);
1609 EXPORT_SYMBOL(blk_run_queue);
1612 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1613 * @q: the request queue to be released
1616 * blk_cleanup_queue is the pair to blk_init_queue() or
1617 * blk_queue_make_request(). It should be called when a request queue is
1618 * being released; typically when a block device is being de-registered.
1619 * Currently, its primary task it to free all the &struct request
1620 * structures that were allocated to the queue and the queue itself.
1623 * Hopefully the low level driver will have finished any
1624 * outstanding requests first...
1626 void blk_cleanup_queue(request_queue_t * q)
1628 struct request_list *rl = &q->rq;
1630 if (!atomic_dec_and_test(&q->refcnt))
1634 elevator_exit(q->elevator);
1639 mempool_destroy(rl->rq_pool);
1642 __blk_queue_free_tags(q);
1644 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1646 kmem_cache_free(requestq_cachep, q);
1649 EXPORT_SYMBOL(blk_cleanup_queue);
1651 static int blk_init_free_list(request_queue_t *q)
1653 struct request_list *rl = &q->rq;
1655 rl->count[READ] = rl->count[WRITE] = 0;
1656 rl->starved[READ] = rl->starved[WRITE] = 0;
1658 init_waitqueue_head(&rl->wait[READ]);
1659 init_waitqueue_head(&rl->wait[WRITE]);
1661 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1662 mempool_free_slab, request_cachep, q->node);
1670 static int __make_request(request_queue_t *, struct bio *);
1672 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1674 return blk_alloc_queue_node(gfp_mask, -1);
1676 EXPORT_SYMBOL(blk_alloc_queue);
1678 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1682 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1686 memset(q, 0, sizeof(*q));
1687 init_timer(&q->unplug_timer);
1688 atomic_set(&q->refcnt, 1);
1690 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1691 q->backing_dev_info.unplug_io_data = q;
1695 EXPORT_SYMBOL(blk_alloc_queue_node);
1698 * blk_init_queue - prepare a request queue for use with a block device
1699 * @rfn: The function to be called to process requests that have been
1700 * placed on the queue.
1701 * @lock: Request queue spin lock
1704 * If a block device wishes to use the standard request handling procedures,
1705 * which sorts requests and coalesces adjacent requests, then it must
1706 * call blk_init_queue(). The function @rfn will be called when there
1707 * are requests on the queue that need to be processed. If the device
1708 * supports plugging, then @rfn may not be called immediately when requests
1709 * are available on the queue, but may be called at some time later instead.
1710 * Plugged queues are generally unplugged when a buffer belonging to one
1711 * of the requests on the queue is needed, or due to memory pressure.
1713 * @rfn is not required, or even expected, to remove all requests off the
1714 * queue, but only as many as it can handle at a time. If it does leave
1715 * requests on the queue, it is responsible for arranging that the requests
1716 * get dealt with eventually.
1718 * The queue spin lock must be held while manipulating the requests on the
1721 * Function returns a pointer to the initialized request queue, or NULL if
1722 * it didn't succeed.
1725 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1726 * when the block device is deactivated (such as at module unload).
1729 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1731 return blk_init_queue_node(rfn, lock, -1);
1733 EXPORT_SYMBOL(blk_init_queue);
1736 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1738 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1744 if (blk_init_free_list(q))
1748 * if caller didn't supply a lock, they get per-queue locking with
1752 spin_lock_init(&q->__queue_lock);
1753 lock = &q->__queue_lock;
1756 q->request_fn = rfn;
1757 q->back_merge_fn = ll_back_merge_fn;
1758 q->front_merge_fn = ll_front_merge_fn;
1759 q->merge_requests_fn = ll_merge_requests_fn;
1760 q->prep_rq_fn = NULL;
1761 q->unplug_fn = generic_unplug_device;
1762 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1763 q->queue_lock = lock;
1765 blk_queue_segment_boundary(q, 0xffffffff);
1767 blk_queue_make_request(q, __make_request);
1768 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1770 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1771 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1776 if (!elevator_init(q, NULL)) {
1777 blk_queue_congestion_threshold(q);
1781 blk_cleanup_queue(q);
1783 kmem_cache_free(requestq_cachep, q);
1786 EXPORT_SYMBOL(blk_init_queue_node);
1788 int blk_get_queue(request_queue_t *q)
1790 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1791 atomic_inc(&q->refcnt);
1798 EXPORT_SYMBOL(blk_get_queue);
1800 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1802 if (rq->flags & REQ_ELVPRIV)
1803 elv_put_request(q, rq);
1804 mempool_free(rq, q->rq.rq_pool);
1807 static inline struct request *
1808 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
1809 int priv, gfp_t gfp_mask)
1811 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1817 * first three bits are identical in rq->flags and bio->bi_rw,
1818 * see bio.h and blkdev.h
1823 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1824 mempool_free(rq, q->rq.rq_pool);
1827 rq->flags |= REQ_ELVPRIV;
1834 * ioc_batching returns true if the ioc is a valid batching request and
1835 * should be given priority access to a request.
1837 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1843 * Make sure the process is able to allocate at least 1 request
1844 * even if the batch times out, otherwise we could theoretically
1847 return ioc->nr_batch_requests == q->nr_batching ||
1848 (ioc->nr_batch_requests > 0
1849 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1853 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1854 * will cause the process to be a "batcher" on all queues in the system. This
1855 * is the behaviour we want though - once it gets a wakeup it should be given
1858 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1860 if (!ioc || ioc_batching(q, ioc))
1863 ioc->nr_batch_requests = q->nr_batching;
1864 ioc->last_waited = jiffies;
1867 static void __freed_request(request_queue_t *q, int rw)
1869 struct request_list *rl = &q->rq;
1871 if (rl->count[rw] < queue_congestion_off_threshold(q))
1872 clear_queue_congested(q, rw);
1874 if (rl->count[rw] + 1 <= q->nr_requests) {
1875 if (waitqueue_active(&rl->wait[rw]))
1876 wake_up(&rl->wait[rw]);
1878 blk_clear_queue_full(q, rw);
1883 * A request has just been released. Account for it, update the full and
1884 * congestion status, wake up any waiters. Called under q->queue_lock.
1886 static void freed_request(request_queue_t *q, int rw, int priv)
1888 struct request_list *rl = &q->rq;
1894 __freed_request(q, rw);
1896 if (unlikely(rl->starved[rw ^ 1]))
1897 __freed_request(q, rw ^ 1);
1900 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1902 * Get a free request, queue_lock must be held.
1903 * Returns NULL on failure, with queue_lock held.
1904 * Returns !NULL on success, with queue_lock *not held*.
1906 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1909 struct request *rq = NULL;
1910 struct request_list *rl = &q->rq;
1911 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1914 if (rl->count[rw]+1 >= q->nr_requests) {
1916 * The queue will fill after this allocation, so set it as
1917 * full, and mark this process as "batching". This process
1918 * will be allowed to complete a batch of requests, others
1921 if (!blk_queue_full(q, rw)) {
1922 ioc_set_batching(q, ioc);
1923 blk_set_queue_full(q, rw);
1927 switch (elv_may_queue(q, rw, bio)) {
1930 case ELV_MQUEUE_MAY:
1932 case ELV_MQUEUE_MUST:
1936 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1938 * The queue is full and the allocating process is not a
1939 * "batcher", and not exempted by the IO scheduler
1946 * Only allow batching queuers to allocate up to 50% over the defined
1947 * limit of requests, otherwise we could have thousands of requests
1948 * allocated with any setting of ->nr_requests
1950 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1954 rl->starved[rw] = 0;
1955 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1956 set_queue_congested(q, rw);
1958 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1962 spin_unlock_irq(q->queue_lock);
1964 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
1967 * Allocation failed presumably due to memory. Undo anything
1968 * we might have messed up.
1970 * Allocating task should really be put onto the front of the
1971 * wait queue, but this is pretty rare.
1973 spin_lock_irq(q->queue_lock);
1974 freed_request(q, rw, priv);
1977 * in the very unlikely event that allocation failed and no
1978 * requests for this direction was pending, mark us starved
1979 * so that freeing of a request in the other direction will
1980 * notice us. another possible fix would be to split the
1981 * rq mempool into READ and WRITE
1984 if (unlikely(rl->count[rw] == 0))
1985 rl->starved[rw] = 1;
1990 if (ioc_batching(q, ioc))
1991 ioc->nr_batch_requests--;
2000 * No available requests for this queue, unplug the device and wait for some
2001 * requests to become available.
2003 * Called with q->queue_lock held, and returns with it unlocked.
2005 static struct request *get_request_wait(request_queue_t *q, int rw,
2010 rq = get_request(q, rw, bio, GFP_NOIO);
2013 struct request_list *rl = &q->rq;
2015 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2016 TASK_UNINTERRUPTIBLE);
2018 rq = get_request(q, rw, bio, GFP_NOIO);
2021 struct io_context *ioc;
2023 __generic_unplug_device(q);
2024 spin_unlock_irq(q->queue_lock);
2028 * After sleeping, we become a "batching" process and
2029 * will be able to allocate at least one request, and
2030 * up to a big batch of them for a small period time.
2031 * See ioc_batching, ioc_set_batching
2033 ioc = current_io_context(GFP_NOIO);
2034 ioc_set_batching(q, ioc);
2036 spin_lock_irq(q->queue_lock);
2038 finish_wait(&rl->wait[rw], &wait);
2044 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2048 BUG_ON(rw != READ && rw != WRITE);
2050 spin_lock_irq(q->queue_lock);
2051 if (gfp_mask & __GFP_WAIT) {
2052 rq = get_request_wait(q, rw, NULL);
2054 rq = get_request(q, rw, NULL, gfp_mask);
2056 spin_unlock_irq(q->queue_lock);
2058 /* q->queue_lock is unlocked at this point */
2062 EXPORT_SYMBOL(blk_get_request);
2065 * blk_requeue_request - put a request back on queue
2066 * @q: request queue where request should be inserted
2067 * @rq: request to be inserted
2070 * Drivers often keep queueing requests until the hardware cannot accept
2071 * more, when that condition happens we need to put the request back
2072 * on the queue. Must be called with queue lock held.
2074 void blk_requeue_request(request_queue_t *q, struct request *rq)
2076 if (blk_rq_tagged(rq))
2077 blk_queue_end_tag(q, rq);
2079 elv_requeue_request(q, rq);
2082 EXPORT_SYMBOL(blk_requeue_request);
2085 * blk_insert_request - insert a special request in to a request queue
2086 * @q: request queue where request should be inserted
2087 * @rq: request to be inserted
2088 * @at_head: insert request at head or tail of queue
2089 * @data: private data
2092 * Many block devices need to execute commands asynchronously, so they don't
2093 * block the whole kernel from preemption during request execution. This is
2094 * accomplished normally by inserting aritficial requests tagged as
2095 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2096 * scheduled for actual execution by the request queue.
2098 * We have the option of inserting the head or the tail of the queue.
2099 * Typically we use the tail for new ioctls and so forth. We use the head
2100 * of the queue for things like a QUEUE_FULL message from a device, or a
2101 * host that is unable to accept a particular command.
2103 void blk_insert_request(request_queue_t *q, struct request *rq,
2104 int at_head, void *data)
2106 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2107 unsigned long flags;
2110 * tell I/O scheduler that this isn't a regular read/write (ie it
2111 * must not attempt merges on this) and that it acts as a soft
2114 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2118 spin_lock_irqsave(q->queue_lock, flags);
2121 * If command is tagged, release the tag
2123 if (blk_rq_tagged(rq))
2124 blk_queue_end_tag(q, rq);
2126 drive_stat_acct(rq, rq->nr_sectors, 1);
2127 __elv_add_request(q, rq, where, 0);
2129 if (blk_queue_plugged(q))
2130 __generic_unplug_device(q);
2133 spin_unlock_irqrestore(q->queue_lock, flags);
2136 EXPORT_SYMBOL(blk_insert_request);
2139 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2140 * @q: request queue where request should be inserted
2141 * @rq: request structure to fill
2142 * @ubuf: the user buffer
2143 * @len: length of user data
2146 * Data will be mapped directly for zero copy io, if possible. Otherwise
2147 * a kernel bounce buffer is used.
2149 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2150 * still in process context.
2152 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2153 * before being submitted to the device, as pages mapped may be out of
2154 * reach. It's the callers responsibility to make sure this happens. The
2155 * original bio must be passed back in to blk_rq_unmap_user() for proper
2158 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2161 unsigned long uaddr;
2165 if (len > (q->max_hw_sectors << 9))
2170 reading = rq_data_dir(rq) == READ;
2173 * if alignment requirement is satisfied, map in user pages for
2174 * direct dma. else, set up kernel bounce buffers
2176 uaddr = (unsigned long) ubuf;
2177 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2178 bio = bio_map_user(q, NULL, uaddr, len, reading);
2180 bio = bio_copy_user(q, uaddr, len, reading);
2183 rq->bio = rq->biotail = bio;
2184 blk_rq_bio_prep(q, rq, bio);
2186 rq->buffer = rq->data = NULL;
2192 * bio is the err-ptr
2194 return PTR_ERR(bio);
2197 EXPORT_SYMBOL(blk_rq_map_user);
2200 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2201 * @q: request queue where request should be inserted
2202 * @rq: request to map data to
2203 * @iov: pointer to the iovec
2204 * @iov_count: number of elements in the iovec
2207 * Data will be mapped directly for zero copy io, if possible. Otherwise
2208 * a kernel bounce buffer is used.
2210 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2211 * still in process context.
2213 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2214 * before being submitted to the device, as pages mapped may be out of
2215 * reach. It's the callers responsibility to make sure this happens. The
2216 * original bio must be passed back in to blk_rq_unmap_user() for proper
2219 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2220 struct sg_iovec *iov, int iov_count)
2224 if (!iov || iov_count <= 0)
2227 /* we don't allow misaligned data like bio_map_user() does. If the
2228 * user is using sg, they're expected to know the alignment constraints
2229 * and respect them accordingly */
2230 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2232 return PTR_ERR(bio);
2234 rq->bio = rq->biotail = bio;
2235 blk_rq_bio_prep(q, rq, bio);
2236 rq->buffer = rq->data = NULL;
2237 rq->data_len = bio->bi_size;
2241 EXPORT_SYMBOL(blk_rq_map_user_iov);
2244 * blk_rq_unmap_user - unmap a request with user data
2245 * @bio: bio to be unmapped
2246 * @ulen: length of user buffer
2249 * Unmap a bio previously mapped by blk_rq_map_user().
2251 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2256 if (bio_flagged(bio, BIO_USER_MAPPED))
2257 bio_unmap_user(bio);
2259 ret = bio_uncopy_user(bio);
2265 EXPORT_SYMBOL(blk_rq_unmap_user);
2268 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2269 * @q: request queue where request should be inserted
2270 * @rq: request to fill
2271 * @kbuf: the kernel buffer
2272 * @len: length of user data
2273 * @gfp_mask: memory allocation flags
2275 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2276 unsigned int len, gfp_t gfp_mask)
2280 if (len > (q->max_hw_sectors << 9))
2285 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2287 return PTR_ERR(bio);
2289 if (rq_data_dir(rq) == WRITE)
2290 bio->bi_rw |= (1 << BIO_RW);
2292 rq->bio = rq->biotail = bio;
2293 blk_rq_bio_prep(q, rq, bio);
2295 rq->buffer = rq->data = NULL;
2300 EXPORT_SYMBOL(blk_rq_map_kern);
2303 * blk_execute_rq_nowait - insert a request into queue for execution
2304 * @q: queue to insert the request in
2305 * @bd_disk: matching gendisk
2306 * @rq: request to insert
2307 * @at_head: insert request at head or tail of queue
2308 * @done: I/O completion handler
2311 * Insert a fully prepared request at the back of the io scheduler queue
2312 * for execution. Don't wait for completion.
2314 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2315 struct request *rq, int at_head,
2316 void (*done)(struct request *))
2318 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2320 rq->rq_disk = bd_disk;
2321 rq->flags |= REQ_NOMERGE;
2323 elv_add_request(q, rq, where, 1);
2324 generic_unplug_device(q);
2327 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2330 * blk_execute_rq - insert a request into queue for execution
2331 * @q: queue to insert the request in
2332 * @bd_disk: matching gendisk
2333 * @rq: request to insert
2334 * @at_head: insert request at head or tail of queue
2337 * Insert a fully prepared request at the back of the io scheduler queue
2338 * for execution and wait for completion.
2340 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2341 struct request *rq, int at_head)
2343 DECLARE_COMPLETION(wait);
2344 char sense[SCSI_SENSE_BUFFERSIZE];
2348 * we need an extra reference to the request, so we can look at
2349 * it after io completion
2354 memset(sense, 0, sizeof(sense));
2359 rq->waiting = &wait;
2360 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2361 wait_for_completion(&wait);
2370 EXPORT_SYMBOL(blk_execute_rq);
2373 * blkdev_issue_flush - queue a flush
2374 * @bdev: blockdev to issue flush for
2375 * @error_sector: error sector
2378 * Issue a flush for the block device in question. Caller can supply
2379 * room for storing the error offset in case of a flush error, if they
2380 * wish to. Caller must run wait_for_completion() on its own.
2382 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2386 if (bdev->bd_disk == NULL)
2389 q = bdev_get_queue(bdev);
2392 if (!q->issue_flush_fn)
2395 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2398 EXPORT_SYMBOL(blkdev_issue_flush);
2400 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2402 int rw = rq_data_dir(rq);
2404 if (!blk_fs_request(rq) || !rq->rq_disk)
2408 __disk_stat_inc(rq->rq_disk, merges[rw]);
2410 disk_round_stats(rq->rq_disk);
2411 rq->rq_disk->in_flight++;
2416 * add-request adds a request to the linked list.
2417 * queue lock is held and interrupts disabled, as we muck with the
2418 * request queue list.
2420 static inline void add_request(request_queue_t * q, struct request * req)
2422 drive_stat_acct(req, req->nr_sectors, 1);
2425 q->activity_fn(q->activity_data, rq_data_dir(req));
2428 * elevator indicated where it wants this request to be
2429 * inserted at elevator_merge time
2431 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2435 * disk_round_stats() - Round off the performance stats on a struct
2438 * The average IO queue length and utilisation statistics are maintained
2439 * by observing the current state of the queue length and the amount of
2440 * time it has been in this state for.
2442 * Normally, that accounting is done on IO completion, but that can result
2443 * in more than a second's worth of IO being accounted for within any one
2444 * second, leading to >100% utilisation. To deal with that, we call this
2445 * function to do a round-off before returning the results when reading
2446 * /proc/diskstats. This accounts immediately for all queue usage up to
2447 * the current jiffies and restarts the counters again.
2449 void disk_round_stats(struct gendisk *disk)
2451 unsigned long now = jiffies;
2453 if (now == disk->stamp)
2456 if (disk->in_flight) {
2457 __disk_stat_add(disk, time_in_queue,
2458 disk->in_flight * (now - disk->stamp));
2459 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2465 * queue lock must be held
2467 void __blk_put_request(request_queue_t *q, struct request *req)
2469 struct request_list *rl = req->rl;
2473 if (unlikely(--req->ref_count))
2476 elv_completed_request(q, req);
2478 req->rq_status = RQ_INACTIVE;
2482 * Request may not have originated from ll_rw_blk. if not,
2483 * it didn't come out of our reserved rq pools
2486 int rw = rq_data_dir(req);
2487 int priv = req->flags & REQ_ELVPRIV;
2489 BUG_ON(!list_empty(&req->queuelist));
2491 blk_free_request(q, req);
2492 freed_request(q, rw, priv);
2496 EXPORT_SYMBOL_GPL(__blk_put_request);
2498 void blk_put_request(struct request *req)
2500 unsigned long flags;
2501 request_queue_t *q = req->q;
2504 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2505 * following if (q) test.
2508 spin_lock_irqsave(q->queue_lock, flags);
2509 __blk_put_request(q, req);
2510 spin_unlock_irqrestore(q->queue_lock, flags);
2514 EXPORT_SYMBOL(blk_put_request);
2517 * blk_end_sync_rq - executes a completion event on a request
2518 * @rq: request to complete
2520 void blk_end_sync_rq(struct request *rq)
2522 struct completion *waiting = rq->waiting;
2525 __blk_put_request(rq->q, rq);
2528 * complete last, if this is a stack request the process (and thus
2529 * the rq pointer) could be invalid right after this complete()
2533 EXPORT_SYMBOL(blk_end_sync_rq);
2536 * blk_congestion_wait - wait for a queue to become uncongested
2537 * @rw: READ or WRITE
2538 * @timeout: timeout in jiffies
2540 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2541 * If no queues are congested then just wait for the next request to be
2544 long blk_congestion_wait(int rw, long timeout)
2548 wait_queue_head_t *wqh = &congestion_wqh[rw];
2550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2551 ret = io_schedule_timeout(timeout);
2552 finish_wait(wqh, &wait);
2556 EXPORT_SYMBOL(blk_congestion_wait);
2559 * Has to be called with the request spinlock acquired
2561 static int attempt_merge(request_queue_t *q, struct request *req,
2562 struct request *next)
2564 if (!rq_mergeable(req) || !rq_mergeable(next))
2570 if (req->sector + req->nr_sectors != next->sector)
2573 if (rq_data_dir(req) != rq_data_dir(next)
2574 || req->rq_disk != next->rq_disk
2575 || next->waiting || next->special)
2579 * If we are allowed to merge, then append bio list
2580 * from next to rq and release next. merge_requests_fn
2581 * will have updated segment counts, update sector
2584 if (!q->merge_requests_fn(q, req, next))
2588 * At this point we have either done a back merge
2589 * or front merge. We need the smaller start_time of
2590 * the merged requests to be the current request
2591 * for accounting purposes.
2593 if (time_after(req->start_time, next->start_time))
2594 req->start_time = next->start_time;
2596 req->biotail->bi_next = next->bio;
2597 req->biotail = next->biotail;
2599 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2601 elv_merge_requests(q, req, next);
2604 disk_round_stats(req->rq_disk);
2605 req->rq_disk->in_flight--;
2608 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2610 __blk_put_request(q, next);
2614 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2616 struct request *next = elv_latter_request(q, rq);
2619 return attempt_merge(q, rq, next);
2624 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2626 struct request *prev = elv_former_request(q, rq);
2629 return attempt_merge(q, prev, rq);
2635 * blk_attempt_remerge - attempt to remerge active head with next request
2636 * @q: The &request_queue_t belonging to the device
2637 * @rq: The head request (usually)
2640 * For head-active devices, the queue can easily be unplugged so quickly
2641 * that proper merging is not done on the front request. This may hurt
2642 * performance greatly for some devices. The block layer cannot safely
2643 * do merging on that first request for these queues, but the driver can
2644 * call this function and make it happen any way. Only the driver knows
2645 * when it is safe to do so.
2647 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2649 unsigned long flags;
2651 spin_lock_irqsave(q->queue_lock, flags);
2652 attempt_back_merge(q, rq);
2653 spin_unlock_irqrestore(q->queue_lock, flags);
2656 EXPORT_SYMBOL(blk_attempt_remerge);
2658 static int __make_request(request_queue_t *q, struct bio *bio)
2660 struct request *req;
2661 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2662 unsigned short prio;
2665 sector = bio->bi_sector;
2666 nr_sectors = bio_sectors(bio);
2667 cur_nr_sectors = bio_cur_sectors(bio);
2668 prio = bio_prio(bio);
2670 rw = bio_data_dir(bio);
2671 sync = bio_sync(bio);
2674 * low level driver can indicate that it wants pages above a
2675 * certain limit bounced to low memory (ie for highmem, or even
2676 * ISA dma in theory)
2678 blk_queue_bounce(q, &bio);
2680 spin_lock_prefetch(q->queue_lock);
2682 barrier = bio_barrier(bio);
2683 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2688 spin_lock_irq(q->queue_lock);
2690 if (unlikely(barrier) || elv_queue_empty(q))
2693 el_ret = elv_merge(q, &req, bio);
2695 case ELEVATOR_BACK_MERGE:
2696 BUG_ON(!rq_mergeable(req));
2698 if (!q->back_merge_fn(q, req, bio))
2701 req->biotail->bi_next = bio;
2703 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2704 req->ioprio = ioprio_best(req->ioprio, prio);
2705 drive_stat_acct(req, nr_sectors, 0);
2706 if (!attempt_back_merge(q, req))
2707 elv_merged_request(q, req);
2710 case ELEVATOR_FRONT_MERGE:
2711 BUG_ON(!rq_mergeable(req));
2713 if (!q->front_merge_fn(q, req, bio))
2716 bio->bi_next = req->bio;
2720 * may not be valid. if the low level driver said
2721 * it didn't need a bounce buffer then it better
2722 * not touch req->buffer either...
2724 req->buffer = bio_data(bio);
2725 req->current_nr_sectors = cur_nr_sectors;
2726 req->hard_cur_sectors = cur_nr_sectors;
2727 req->sector = req->hard_sector = sector;
2728 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2729 req->ioprio = ioprio_best(req->ioprio, prio);
2730 drive_stat_acct(req, nr_sectors, 0);
2731 if (!attempt_front_merge(q, req))
2732 elv_merged_request(q, req);
2735 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2742 * Grab a free request. This is might sleep but can not fail.
2743 * Returns with the queue unlocked.
2745 req = get_request_wait(q, rw, bio);
2748 * After dropping the lock and possibly sleeping here, our request
2749 * may now be mergeable after it had proven unmergeable (above).
2750 * We don't worry about that case for efficiency. It won't happen
2751 * often, and the elevators are able to handle it.
2754 req->flags |= REQ_CMD;
2757 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2759 if (bio_rw_ahead(bio) || bio_failfast(bio))
2760 req->flags |= REQ_FAILFAST;
2763 * REQ_BARRIER implies no merging, but lets make it explicit
2765 if (unlikely(barrier))
2766 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2769 req->hard_sector = req->sector = sector;
2770 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2771 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2772 req->nr_phys_segments = bio_phys_segments(q, bio);
2773 req->nr_hw_segments = bio_hw_segments(q, bio);
2774 req->buffer = bio_data(bio); /* see ->buffer comment above */
2775 req->waiting = NULL;
2776 req->bio = req->biotail = bio;
2778 req->rq_disk = bio->bi_bdev->bd_disk;
2779 req->start_time = jiffies;
2781 spin_lock_irq(q->queue_lock);
2782 if (elv_queue_empty(q))
2784 add_request(q, req);
2787 __generic_unplug_device(q);
2789 spin_unlock_irq(q->queue_lock);
2793 bio_endio(bio, nr_sectors << 9, err);
2798 * If bio->bi_dev is a partition, remap the location
2800 static inline void blk_partition_remap(struct bio *bio)
2802 struct block_device *bdev = bio->bi_bdev;
2804 if (bdev != bdev->bd_contains) {
2805 struct hd_struct *p = bdev->bd_part;
2806 const int rw = bio_data_dir(bio);
2808 p->sectors[rw] += bio_sectors(bio);
2811 bio->bi_sector += p->start_sect;
2812 bio->bi_bdev = bdev->bd_contains;
2816 static void handle_bad_sector(struct bio *bio)
2818 char b[BDEVNAME_SIZE];
2820 printk(KERN_INFO "attempt to access beyond end of device\n");
2821 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2822 bdevname(bio->bi_bdev, b),
2824 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2825 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2827 set_bit(BIO_EOF, &bio->bi_flags);
2831 * generic_make_request: hand a buffer to its device driver for I/O
2832 * @bio: The bio describing the location in memory and on the device.
2834 * generic_make_request() is used to make I/O requests of block
2835 * devices. It is passed a &struct bio, which describes the I/O that needs
2838 * generic_make_request() does not return any status. The
2839 * success/failure status of the request, along with notification of
2840 * completion, is delivered asynchronously through the bio->bi_end_io
2841 * function described (one day) else where.
2843 * The caller of generic_make_request must make sure that bi_io_vec
2844 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2845 * set to describe the device address, and the
2846 * bi_end_io and optionally bi_private are set to describe how
2847 * completion notification should be signaled.
2849 * generic_make_request and the drivers it calls may use bi_next if this
2850 * bio happens to be merged with someone else, and may change bi_dev and
2851 * bi_sector for remaps as it sees fit. So the values of these fields
2852 * should NOT be depended on after the call to generic_make_request.
2854 void generic_make_request(struct bio *bio)
2858 int ret, nr_sectors = bio_sectors(bio);
2861 /* Test device or partition size, when known. */
2862 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2864 sector_t sector = bio->bi_sector;
2866 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2868 * This may well happen - the kernel calls bread()
2869 * without checking the size of the device, e.g., when
2870 * mounting a device.
2872 handle_bad_sector(bio);
2878 * Resolve the mapping until finished. (drivers are
2879 * still free to implement/resolve their own stacking
2880 * by explicitly returning 0)
2882 * NOTE: we don't repeat the blk_size check for each new device.
2883 * Stacking drivers are expected to know what they are doing.
2886 char b[BDEVNAME_SIZE];
2888 q = bdev_get_queue(bio->bi_bdev);
2891 "generic_make_request: Trying to access "
2892 "nonexistent block-device %s (%Lu)\n",
2893 bdevname(bio->bi_bdev, b),
2894 (long long) bio->bi_sector);
2896 bio_endio(bio, bio->bi_size, -EIO);
2900 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2901 printk("bio too big device %s (%u > %u)\n",
2902 bdevname(bio->bi_bdev, b),
2908 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2912 * If this device has partitions, remap block n
2913 * of partition p to block n+start(p) of the disk.
2915 blk_partition_remap(bio);
2917 ret = q->make_request_fn(q, bio);
2921 EXPORT_SYMBOL(generic_make_request);
2924 * submit_bio: submit a bio to the block device layer for I/O
2925 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2926 * @bio: The &struct bio which describes the I/O
2928 * submit_bio() is very similar in purpose to generic_make_request(), and
2929 * uses that function to do most of the work. Both are fairly rough
2930 * interfaces, @bio must be presetup and ready for I/O.
2933 void submit_bio(int rw, struct bio *bio)
2935 int count = bio_sectors(bio);
2937 BIO_BUG_ON(!bio->bi_size);
2938 BIO_BUG_ON(!bio->bi_io_vec);
2941 mod_page_state(pgpgout, count);
2943 mod_page_state(pgpgin, count);
2945 if (unlikely(block_dump)) {
2946 char b[BDEVNAME_SIZE];
2947 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2948 current->comm, current->pid,
2949 (rw & WRITE) ? "WRITE" : "READ",
2950 (unsigned long long)bio->bi_sector,
2951 bdevname(bio->bi_bdev,b));
2954 generic_make_request(bio);
2957 EXPORT_SYMBOL(submit_bio);
2959 static void blk_recalc_rq_segments(struct request *rq)
2961 struct bio *bio, *prevbio = NULL;
2962 int nr_phys_segs, nr_hw_segs;
2963 unsigned int phys_size, hw_size;
2964 request_queue_t *q = rq->q;
2969 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2970 rq_for_each_bio(bio, rq) {
2971 /* Force bio hw/phys segs to be recalculated. */
2972 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2974 nr_phys_segs += bio_phys_segments(q, bio);
2975 nr_hw_segs += bio_hw_segments(q, bio);
2977 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2978 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2980 if (blk_phys_contig_segment(q, prevbio, bio) &&
2981 pseg <= q->max_segment_size) {
2983 phys_size += prevbio->bi_size + bio->bi_size;
2987 if (blk_hw_contig_segment(q, prevbio, bio) &&
2988 hseg <= q->max_segment_size) {
2990 hw_size += prevbio->bi_size + bio->bi_size;
2997 rq->nr_phys_segments = nr_phys_segs;
2998 rq->nr_hw_segments = nr_hw_segs;
3001 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3003 if (blk_fs_request(rq)) {
3004 rq->hard_sector += nsect;
3005 rq->hard_nr_sectors -= nsect;
3008 * Move the I/O submission pointers ahead if required.
3010 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3011 (rq->sector <= rq->hard_sector)) {
3012 rq->sector = rq->hard_sector;
3013 rq->nr_sectors = rq->hard_nr_sectors;
3014 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3015 rq->current_nr_sectors = rq->hard_cur_sectors;
3016 rq->buffer = bio_data(rq->bio);
3020 * if total number of sectors is less than the first segment
3021 * size, something has gone terribly wrong
3023 if (rq->nr_sectors < rq->current_nr_sectors) {
3024 printk("blk: request botched\n");
3025 rq->nr_sectors = rq->current_nr_sectors;
3030 static int __end_that_request_first(struct request *req, int uptodate,
3033 int total_bytes, bio_nbytes, error, next_idx = 0;
3037 * extend uptodate bool to allow < 0 value to be direct io error
3040 if (end_io_error(uptodate))
3041 error = !uptodate ? -EIO : uptodate;
3044 * for a REQ_BLOCK_PC request, we want to carry any eventual
3045 * sense key with us all the way through
3047 if (!blk_pc_request(req))
3051 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3052 printk("end_request: I/O error, dev %s, sector %llu\n",
3053 req->rq_disk ? req->rq_disk->disk_name : "?",
3054 (unsigned long long)req->sector);
3057 if (blk_fs_request(req) && req->rq_disk) {
3058 const int rw = rq_data_dir(req);
3060 __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3063 total_bytes = bio_nbytes = 0;
3064 while ((bio = req->bio) != NULL) {
3067 if (nr_bytes >= bio->bi_size) {
3068 req->bio = bio->bi_next;
3069 nbytes = bio->bi_size;
3070 bio_endio(bio, nbytes, error);
3074 int idx = bio->bi_idx + next_idx;
3076 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3077 blk_dump_rq_flags(req, "__end_that");
3078 printk("%s: bio idx %d >= vcnt %d\n",
3080 bio->bi_idx, bio->bi_vcnt);
3084 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3085 BIO_BUG_ON(nbytes > bio->bi_size);
3088 * not a complete bvec done
3090 if (unlikely(nbytes > nr_bytes)) {
3091 bio_nbytes += nr_bytes;
3092 total_bytes += nr_bytes;
3097 * advance to the next vector
3100 bio_nbytes += nbytes;
3103 total_bytes += nbytes;
3106 if ((bio = req->bio)) {
3108 * end more in this run, or just return 'not-done'
3110 if (unlikely(nr_bytes <= 0))
3122 * if the request wasn't completed, update state
3125 bio_endio(bio, bio_nbytes, error);
3126 bio->bi_idx += next_idx;
3127 bio_iovec(bio)->bv_offset += nr_bytes;
3128 bio_iovec(bio)->bv_len -= nr_bytes;
3131 blk_recalc_rq_sectors(req, total_bytes >> 9);
3132 blk_recalc_rq_segments(req);
3137 * end_that_request_first - end I/O on a request
3138 * @req: the request being processed
3139 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3140 * @nr_sectors: number of sectors to end I/O on
3143 * Ends I/O on a number of sectors attached to @req, and sets it up
3144 * for the next range of segments (if any) in the cluster.
3147 * 0 - we are done with this request, call end_that_request_last()
3148 * 1 - still buffers pending for this request
3150 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3152 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3155 EXPORT_SYMBOL(end_that_request_first);
3158 * end_that_request_chunk - end I/O on a request
3159 * @req: the request being processed
3160 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3161 * @nr_bytes: number of bytes to complete
3164 * Ends I/O on a number of bytes attached to @req, and sets it up
3165 * for the next range of segments (if any). Like end_that_request_first(),
3166 * but deals with bytes instead of sectors.
3169 * 0 - we are done with this request, call end_that_request_last()
3170 * 1 - still buffers pending for this request
3172 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3174 return __end_that_request_first(req, uptodate, nr_bytes);
3177 EXPORT_SYMBOL(end_that_request_chunk);
3180 * queue lock must be held
3182 void end_that_request_last(struct request *req)
3184 struct gendisk *disk = req->rq_disk;
3186 if (unlikely(laptop_mode) && blk_fs_request(req))
3187 laptop_io_completion();
3189 if (disk && blk_fs_request(req)) {
3190 unsigned long duration = jiffies - req->start_time;
3191 const int rw = rq_data_dir(req);
3193 __disk_stat_inc(disk, ios[rw]);
3194 __disk_stat_add(disk, ticks[rw], duration);
3195 disk_round_stats(disk);
3201 __blk_put_request(req->q, req);
3204 EXPORT_SYMBOL(end_that_request_last);
3206 void end_request(struct request *req, int uptodate)
3208 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3209 add_disk_randomness(req->rq_disk);
3210 blkdev_dequeue_request(req);
3211 end_that_request_last(req);
3215 EXPORT_SYMBOL(end_request);
3217 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3219 /* first three bits are identical in rq->flags and bio->bi_rw */
3220 rq->flags |= (bio->bi_rw & 7);
3222 rq->nr_phys_segments = bio_phys_segments(q, bio);
3223 rq->nr_hw_segments = bio_hw_segments(q, bio);
3224 rq->current_nr_sectors = bio_cur_sectors(bio);
3225 rq->hard_cur_sectors = rq->current_nr_sectors;
3226 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3227 rq->buffer = bio_data(bio);
3229 rq->bio = rq->biotail = bio;
3232 EXPORT_SYMBOL(blk_rq_bio_prep);
3234 int kblockd_schedule_work(struct work_struct *work)
3236 return queue_work(kblockd_workqueue, work);
3239 EXPORT_SYMBOL(kblockd_schedule_work);
3241 void kblockd_flush(void)
3243 flush_workqueue(kblockd_workqueue);
3245 EXPORT_SYMBOL(kblockd_flush);
3247 int __init blk_dev_init(void)
3249 kblockd_workqueue = create_workqueue("kblockd");
3250 if (!kblockd_workqueue)
3251 panic("Failed to create kblockd\n");
3253 request_cachep = kmem_cache_create("blkdev_requests",
3254 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3256 requestq_cachep = kmem_cache_create("blkdev_queue",
3257 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3259 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3260 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3262 blk_max_low_pfn = max_low_pfn;
3263 blk_max_pfn = max_pfn;
3269 * IO Context helper functions
3271 void put_io_context(struct io_context *ioc)
3276 BUG_ON(atomic_read(&ioc->refcount) == 0);
3278 if (atomic_dec_and_test(&ioc->refcount)) {
3279 if (ioc->aic && ioc->aic->dtor)
3280 ioc->aic->dtor(ioc->aic);
3281 if (ioc->cic && ioc->cic->dtor)
3282 ioc->cic->dtor(ioc->cic);
3284 kmem_cache_free(iocontext_cachep, ioc);
3287 EXPORT_SYMBOL(put_io_context);
3289 /* Called by the exitting task */
3290 void exit_io_context(void)
3292 unsigned long flags;
3293 struct io_context *ioc;
3295 local_irq_save(flags);
3297 ioc = current->io_context;
3298 current->io_context = NULL;
3300 task_unlock(current);
3301 local_irq_restore(flags);
3303 if (ioc->aic && ioc->aic->exit)
3304 ioc->aic->exit(ioc->aic);
3305 if (ioc->cic && ioc->cic->exit)
3306 ioc->cic->exit(ioc->cic);
3308 put_io_context(ioc);
3312 * If the current task has no IO context then create one and initialise it.
3313 * Otherwise, return its existing IO context.
3315 * This returned IO context doesn't have a specifically elevated refcount,
3316 * but since the current task itself holds a reference, the context can be
3317 * used in general code, so long as it stays within `current` context.
3319 struct io_context *current_io_context(gfp_t gfp_flags)
3321 struct task_struct *tsk = current;
3322 struct io_context *ret;
3324 ret = tsk->io_context;
3328 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3330 atomic_set(&ret->refcount, 1);
3331 ret->task = current;
3332 ret->set_ioprio = NULL;
3333 ret->last_waited = jiffies; /* doesn't matter... */
3334 ret->nr_batch_requests = 0; /* because this is 0 */
3337 tsk->io_context = ret;
3342 EXPORT_SYMBOL(current_io_context);
3345 * If the current task has no IO context then create one and initialise it.
3346 * If it does have a context, take a ref on it.
3348 * This is always called in the context of the task which submitted the I/O.
3350 struct io_context *get_io_context(gfp_t gfp_flags)
3352 struct io_context *ret;
3353 ret = current_io_context(gfp_flags);
3355 atomic_inc(&ret->refcount);
3358 EXPORT_SYMBOL(get_io_context);
3360 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3362 struct io_context *src = *psrc;
3363 struct io_context *dst = *pdst;
3366 BUG_ON(atomic_read(&src->refcount) == 0);
3367 atomic_inc(&src->refcount);
3368 put_io_context(dst);
3372 EXPORT_SYMBOL(copy_io_context);
3374 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3376 struct io_context *temp;
3381 EXPORT_SYMBOL(swap_io_context);
3386 struct queue_sysfs_entry {
3387 struct attribute attr;
3388 ssize_t (*show)(struct request_queue *, char *);
3389 ssize_t (*store)(struct request_queue *, const char *, size_t);
3393 queue_var_show(unsigned int var, char *page)
3395 return sprintf(page, "%d\n", var);
3399 queue_var_store(unsigned long *var, const char *page, size_t count)
3401 char *p = (char *) page;
3403 *var = simple_strtoul(p, &p, 10);
3407 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3409 return queue_var_show(q->nr_requests, (page));
3413 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3415 struct request_list *rl = &q->rq;
3417 int ret = queue_var_store(&q->nr_requests, page, count);
3418 if (q->nr_requests < BLKDEV_MIN_RQ)
3419 q->nr_requests = BLKDEV_MIN_RQ;
3420 blk_queue_congestion_threshold(q);
3422 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3423 set_queue_congested(q, READ);
3424 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3425 clear_queue_congested(q, READ);
3427 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3428 set_queue_congested(q, WRITE);
3429 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3430 clear_queue_congested(q, WRITE);
3432 if (rl->count[READ] >= q->nr_requests) {
3433 blk_set_queue_full(q, READ);
3434 } else if (rl->count[READ]+1 <= q->nr_requests) {
3435 blk_clear_queue_full(q, READ);
3436 wake_up(&rl->wait[READ]);
3439 if (rl->count[WRITE] >= q->nr_requests) {
3440 blk_set_queue_full(q, WRITE);
3441 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3442 blk_clear_queue_full(q, WRITE);
3443 wake_up(&rl->wait[WRITE]);
3448 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3450 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3452 return queue_var_show(ra_kb, (page));
3456 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3458 unsigned long ra_kb;
3459 ssize_t ret = queue_var_store(&ra_kb, page, count);
3461 spin_lock_irq(q->queue_lock);
3462 if (ra_kb > (q->max_sectors >> 1))
3463 ra_kb = (q->max_sectors >> 1);
3465 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3466 spin_unlock_irq(q->queue_lock);
3471 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3473 int max_sectors_kb = q->max_sectors >> 1;
3475 return queue_var_show(max_sectors_kb, (page));
3479 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3481 unsigned long max_sectors_kb,
3482 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3483 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3484 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3487 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3490 * Take the queue lock to update the readahead and max_sectors
3491 * values synchronously:
3493 spin_lock_irq(q->queue_lock);
3495 * Trim readahead window as well, if necessary:
3497 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3498 if (ra_kb > max_sectors_kb)
3499 q->backing_dev_info.ra_pages =
3500 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3502 q->max_sectors = max_sectors_kb << 1;
3503 spin_unlock_irq(q->queue_lock);
3508 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3510 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3512 return queue_var_show(max_hw_sectors_kb, (page));
3516 static struct queue_sysfs_entry queue_requests_entry = {
3517 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3518 .show = queue_requests_show,
3519 .store = queue_requests_store,
3522 static struct queue_sysfs_entry queue_ra_entry = {
3523 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3524 .show = queue_ra_show,
3525 .store = queue_ra_store,
3528 static struct queue_sysfs_entry queue_max_sectors_entry = {
3529 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3530 .show = queue_max_sectors_show,
3531 .store = queue_max_sectors_store,
3534 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3535 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3536 .show = queue_max_hw_sectors_show,
3539 static struct queue_sysfs_entry queue_iosched_entry = {
3540 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3541 .show = elv_iosched_show,
3542 .store = elv_iosched_store,
3545 static struct attribute *default_attrs[] = {
3546 &queue_requests_entry.attr,
3547 &queue_ra_entry.attr,
3548 &queue_max_hw_sectors_entry.attr,
3549 &queue_max_sectors_entry.attr,
3550 &queue_iosched_entry.attr,
3554 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3557 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3559 struct queue_sysfs_entry *entry = to_queue(attr);
3560 struct request_queue *q;
3562 q = container_of(kobj, struct request_queue, kobj);
3566 return entry->show(q, page);
3570 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3571 const char *page, size_t length)
3573 struct queue_sysfs_entry *entry = to_queue(attr);
3574 struct request_queue *q;
3576 q = container_of(kobj, struct request_queue, kobj);
3580 return entry->store(q, page, length);
3583 static struct sysfs_ops queue_sysfs_ops = {
3584 .show = queue_attr_show,
3585 .store = queue_attr_store,
3588 static struct kobj_type queue_ktype = {
3589 .sysfs_ops = &queue_sysfs_ops,
3590 .default_attrs = default_attrs,
3593 int blk_register_queue(struct gendisk *disk)
3597 request_queue_t *q = disk->queue;
3599 if (!q || !q->request_fn)
3602 q->kobj.parent = kobject_get(&disk->kobj);
3603 if (!q->kobj.parent)
3606 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3607 q->kobj.ktype = &queue_ktype;
3609 ret = kobject_register(&q->kobj);
3613 ret = elv_register_queue(q);
3615 kobject_unregister(&q->kobj);
3622 void blk_unregister_queue(struct gendisk *disk)
3624 request_queue_t *q = disk->queue;
3626 if (q && q->request_fn) {
3627 elv_unregister_queue(q);
3629 kobject_unregister(&q->kobj);
3630 kobject_put(&disk->kobj);