[ARM] omap: allow double-registering of clocks
[linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48                                 int, int, unsigned long);
49
50 /*
51  * If we don't support core dumping, then supply a NULL so we
52  * don't even try.
53  */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump   NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN   PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75                 .module         = THIS_MODULE,
76                 .load_binary    = load_elf_binary,
77                 .load_shlib     = load_elf_library,
78                 .core_dump      = elf_core_dump,
79                 .min_coredump   = ELF_EXEC_PAGESIZE,
80                 .hasvdso        = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87         start = ELF_PAGEALIGN(start);
88         end = ELF_PAGEALIGN(end);
89         if (end > start) {
90                 unsigned long addr;
91                 down_write(&current->mm->mmap_sem);
92                 addr = do_brk(start, end - start);
93                 up_write(&current->mm->mmap_sem);
94                 if (BAD_ADDR(addr))
95                         return addr;
96         }
97         current->mm->start_brk = current->mm->brk = end;
98         return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108         unsigned long nbyte;
109
110         nbyte = ELF_PAGEOFFSET(elf_bss);
111         if (nbyte) {
112                 nbyte = ELF_MIN_ALIGN - nbyte;
113                 if (clear_user((void __user *) elf_bss, nbyte))
114                         return -EFAULT;
115         }
116         return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126         old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130         (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145                 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147         unsigned long p = bprm->p;
148         int argc = bprm->argc;
149         int envc = bprm->envc;
150         elf_addr_t __user *argv;
151         elf_addr_t __user *envp;
152         elf_addr_t __user *sp;
153         elf_addr_t __user *u_platform;
154         elf_addr_t __user *u_base_platform;
155         elf_addr_t __user *u_rand_bytes;
156         const char *k_platform = ELF_PLATFORM;
157         const char *k_base_platform = ELF_BASE_PLATFORM;
158         unsigned char k_rand_bytes[16];
159         int items;
160         elf_addr_t *elf_info;
161         int ei_index = 0;
162         const struct cred *cred = current_cred();
163         struct vm_area_struct *vma;
164
165         /*
166          * In some cases (e.g. Hyper-Threading), we want to avoid L1
167          * evictions by the processes running on the same package. One
168          * thing we can do is to shuffle the initial stack for them.
169          */
170
171         p = arch_align_stack(p);
172
173         /*
174          * If this architecture has a platform capability string, copy it
175          * to userspace.  In some cases (Sparc), this info is impossible
176          * for userspace to get any other way, in others (i386) it is
177          * merely difficult.
178          */
179         u_platform = NULL;
180         if (k_platform) {
181                 size_t len = strlen(k_platform) + 1;
182
183                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184                 if (__copy_to_user(u_platform, k_platform, len))
185                         return -EFAULT;
186         }
187
188         /*
189          * If this architecture has a "base" platform capability
190          * string, copy it to userspace.
191          */
192         u_base_platform = NULL;
193         if (k_base_platform) {
194                 size_t len = strlen(k_base_platform) + 1;
195
196                 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197                 if (__copy_to_user(u_base_platform, k_base_platform, len))
198                         return -EFAULT;
199         }
200
201         /*
202          * Generate 16 random bytes for userspace PRNG seeding.
203          */
204         get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205         u_rand_bytes = (elf_addr_t __user *)
206                        STACK_ALLOC(p, sizeof(k_rand_bytes));
207         if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208                 return -EFAULT;
209
210         /* Create the ELF interpreter info */
211         elf_info = (elf_addr_t *)current->mm->saved_auxv;
212         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214         do { \
215                 elf_info[ei_index++] = id; \
216                 elf_info[ei_index++] = val; \
217         } while (0)
218
219 #ifdef ARCH_DLINFO
220         /* 
221          * ARCH_DLINFO must come first so PPC can do its special alignment of
222          * AUXV.
223          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224          * ARCH_DLINFO changes
225          */
226         ARCH_DLINFO;
227 #endif
228         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234         NEW_AUX_ENT(AT_BASE, interp_load_addr);
235         NEW_AUX_ENT(AT_FLAGS, 0);
236         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237         NEW_AUX_ENT(AT_UID, cred->uid);
238         NEW_AUX_ENT(AT_EUID, cred->euid);
239         NEW_AUX_ENT(AT_GID, cred->gid);
240         NEW_AUX_ENT(AT_EGID, cred->egid);
241         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242         NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243         NEW_AUX_ENT(AT_EXECFN, bprm->exec);
244         if (k_platform) {
245                 NEW_AUX_ENT(AT_PLATFORM,
246                             (elf_addr_t)(unsigned long)u_platform);
247         }
248         if (k_base_platform) {
249                 NEW_AUX_ENT(AT_BASE_PLATFORM,
250                             (elf_addr_t)(unsigned long)u_base_platform);
251         }
252         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
253                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
254         }
255 #undef NEW_AUX_ENT
256         /* AT_NULL is zero; clear the rest too */
257         memset(&elf_info[ei_index], 0,
258                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
259
260         /* And advance past the AT_NULL entry.  */
261         ei_index += 2;
262
263         sp = STACK_ADD(p, ei_index);
264
265         items = (argc + 1) + (envc + 1) + 1;
266         bprm->p = STACK_ROUND(sp, items);
267
268         /* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
271         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
272 #else
273         sp = (elf_addr_t __user *)bprm->p;
274 #endif
275
276
277         /*
278          * Grow the stack manually; some architectures have a limit on how
279          * far ahead a user-space access may be in order to grow the stack.
280          */
281         vma = find_extend_vma(current->mm, bprm->p);
282         if (!vma)
283                 return -EFAULT;
284
285         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
286         if (__put_user(argc, sp++))
287                 return -EFAULT;
288         argv = sp;
289         envp = argv + argc + 1;
290
291         /* Populate argv and envp */
292         p = current->mm->arg_end = current->mm->arg_start;
293         while (argc-- > 0) {
294                 size_t len;
295                 if (__put_user((elf_addr_t)p, argv++))
296                         return -EFAULT;
297                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298                 if (!len || len > MAX_ARG_STRLEN)
299                         return -EINVAL;
300                 p += len;
301         }
302         if (__put_user(0, argv))
303                 return -EFAULT;
304         current->mm->arg_end = current->mm->env_start = p;
305         while (envc-- > 0) {
306                 size_t len;
307                 if (__put_user((elf_addr_t)p, envp++))
308                         return -EFAULT;
309                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
310                 if (!len || len > MAX_ARG_STRLEN)
311                         return -EINVAL;
312                 p += len;
313         }
314         if (__put_user(0, envp))
315                 return -EFAULT;
316         current->mm->env_end = p;
317
318         /* Put the elf_info on the stack in the right place.  */
319         sp = (elf_addr_t __user *)envp + 1;
320         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
321                 return -EFAULT;
322         return 0;
323 }
324
325 #ifndef elf_map
326
327 static unsigned long elf_map(struct file *filep, unsigned long addr,
328                 struct elf_phdr *eppnt, int prot, int type,
329                 unsigned long total_size)
330 {
331         unsigned long map_addr;
332         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
333         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
334         addr = ELF_PAGESTART(addr);
335         size = ELF_PAGEALIGN(size);
336
337         /* mmap() will return -EINVAL if given a zero size, but a
338          * segment with zero filesize is perfectly valid */
339         if (!size)
340                 return addr;
341
342         down_write(&current->mm->mmap_sem);
343         /*
344         * total_size is the size of the ELF (interpreter) image.
345         * The _first_ mmap needs to know the full size, otherwise
346         * randomization might put this image into an overlapping
347         * position with the ELF binary image. (since size < total_size)
348         * So we first map the 'big' image - and unmap the remainder at
349         * the end. (which unmap is needed for ELF images with holes.)
350         */
351         if (total_size) {
352                 total_size = ELF_PAGEALIGN(total_size);
353                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
354                 if (!BAD_ADDR(map_addr))
355                         do_munmap(current->mm, map_addr+size, total_size-size);
356         } else
357                 map_addr = do_mmap(filep, addr, size, prot, type, off);
358
359         up_write(&current->mm->mmap_sem);
360         return(map_addr);
361 }
362
363 #endif /* !elf_map */
364
365 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
366 {
367         int i, first_idx = -1, last_idx = -1;
368
369         for (i = 0; i < nr; i++) {
370                 if (cmds[i].p_type == PT_LOAD) {
371                         last_idx = i;
372                         if (first_idx == -1)
373                                 first_idx = i;
374                 }
375         }
376         if (first_idx == -1)
377                 return 0;
378
379         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
380                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
381 }
382
383
384 /* This is much more generalized than the library routine read function,
385    so we keep this separate.  Technically the library read function
386    is only provided so that we can read a.out libraries that have
387    an ELF header */
388
389 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
390                 struct file *interpreter, unsigned long *interp_map_addr,
391                 unsigned long no_base)
392 {
393         struct elf_phdr *elf_phdata;
394         struct elf_phdr *eppnt;
395         unsigned long load_addr = 0;
396         int load_addr_set = 0;
397         unsigned long last_bss = 0, elf_bss = 0;
398         unsigned long error = ~0UL;
399         unsigned long total_size;
400         int retval, i, size;
401
402         /* First of all, some simple consistency checks */
403         if (interp_elf_ex->e_type != ET_EXEC &&
404             interp_elf_ex->e_type != ET_DYN)
405                 goto out;
406         if (!elf_check_arch(interp_elf_ex))
407                 goto out;
408         if (!interpreter->f_op || !interpreter->f_op->mmap)
409                 goto out;
410
411         /*
412          * If the size of this structure has changed, then punt, since
413          * we will be doing the wrong thing.
414          */
415         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
416                 goto out;
417         if (interp_elf_ex->e_phnum < 1 ||
418                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
419                 goto out;
420
421         /* Now read in all of the header information */
422         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
423         if (size > ELF_MIN_ALIGN)
424                 goto out;
425         elf_phdata = kmalloc(size, GFP_KERNEL);
426         if (!elf_phdata)
427                 goto out;
428
429         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
430                              (char *)elf_phdata,size);
431         error = -EIO;
432         if (retval != size) {
433                 if (retval < 0)
434                         error = retval; 
435                 goto out_close;
436         }
437
438         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
439         if (!total_size) {
440                 error = -EINVAL;
441                 goto out_close;
442         }
443
444         eppnt = elf_phdata;
445         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
446                 if (eppnt->p_type == PT_LOAD) {
447                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
448                         int elf_prot = 0;
449                         unsigned long vaddr = 0;
450                         unsigned long k, map_addr;
451
452                         if (eppnt->p_flags & PF_R)
453                                 elf_prot = PROT_READ;
454                         if (eppnt->p_flags & PF_W)
455                                 elf_prot |= PROT_WRITE;
456                         if (eppnt->p_flags & PF_X)
457                                 elf_prot |= PROT_EXEC;
458                         vaddr = eppnt->p_vaddr;
459                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
460                                 elf_type |= MAP_FIXED;
461                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
462                                 load_addr = -vaddr;
463
464                         map_addr = elf_map(interpreter, load_addr + vaddr,
465                                         eppnt, elf_prot, elf_type, total_size);
466                         total_size = 0;
467                         if (!*interp_map_addr)
468                                 *interp_map_addr = map_addr;
469                         error = map_addr;
470                         if (BAD_ADDR(map_addr))
471                                 goto out_close;
472
473                         if (!load_addr_set &&
474                             interp_elf_ex->e_type == ET_DYN) {
475                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
476                                 load_addr_set = 1;
477                         }
478
479                         /*
480                          * Check to see if the section's size will overflow the
481                          * allowed task size. Note that p_filesz must always be
482                          * <= p_memsize so it's only necessary to check p_memsz.
483                          */
484                         k = load_addr + eppnt->p_vaddr;
485                         if (BAD_ADDR(k) ||
486                             eppnt->p_filesz > eppnt->p_memsz ||
487                             eppnt->p_memsz > TASK_SIZE ||
488                             TASK_SIZE - eppnt->p_memsz < k) {
489                                 error = -ENOMEM;
490                                 goto out_close;
491                         }
492
493                         /*
494                          * Find the end of the file mapping for this phdr, and
495                          * keep track of the largest address we see for this.
496                          */
497                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
498                         if (k > elf_bss)
499                                 elf_bss = k;
500
501                         /*
502                          * Do the same thing for the memory mapping - between
503                          * elf_bss and last_bss is the bss section.
504                          */
505                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
506                         if (k > last_bss)
507                                 last_bss = k;
508                 }
509         }
510
511         /*
512          * Now fill out the bss section.  First pad the last page up
513          * to the page boundary, and then perform a mmap to make sure
514          * that there are zero-mapped pages up to and including the 
515          * last bss page.
516          */
517         if (padzero(elf_bss)) {
518                 error = -EFAULT;
519                 goto out_close;
520         }
521
522         /* What we have mapped so far */
523         elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
524
525         /* Map the last of the bss segment */
526         if (last_bss > elf_bss) {
527                 down_write(&current->mm->mmap_sem);
528                 error = do_brk(elf_bss, last_bss - elf_bss);
529                 up_write(&current->mm->mmap_sem);
530                 if (BAD_ADDR(error))
531                         goto out_close;
532         }
533
534         error = load_addr;
535
536 out_close:
537         kfree(elf_phdata);
538 out:
539         return error;
540 }
541
542 /*
543  * These are the functions used to load ELF style executables and shared
544  * libraries.  There is no binary dependent code anywhere else.
545  */
546
547 #define INTERPRETER_NONE 0
548 #define INTERPRETER_ELF 2
549
550 #ifndef STACK_RND_MASK
551 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
552 #endif
553
554 static unsigned long randomize_stack_top(unsigned long stack_top)
555 {
556         unsigned int random_variable = 0;
557
558         if ((current->flags & PF_RANDOMIZE) &&
559                 !(current->personality & ADDR_NO_RANDOMIZE)) {
560                 random_variable = get_random_int() & STACK_RND_MASK;
561                 random_variable <<= PAGE_SHIFT;
562         }
563 #ifdef CONFIG_STACK_GROWSUP
564         return PAGE_ALIGN(stack_top) + random_variable;
565 #else
566         return PAGE_ALIGN(stack_top) - random_variable;
567 #endif
568 }
569
570 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
571 {
572         struct file *interpreter = NULL; /* to shut gcc up */
573         unsigned long load_addr = 0, load_bias = 0;
574         int load_addr_set = 0;
575         char * elf_interpreter = NULL;
576         unsigned long error;
577         struct elf_phdr *elf_ppnt, *elf_phdata;
578         unsigned long elf_bss, elf_brk;
579         int elf_exec_fileno;
580         int retval, i;
581         unsigned int size;
582         unsigned long elf_entry;
583         unsigned long interp_load_addr = 0;
584         unsigned long start_code, end_code, start_data, end_data;
585         unsigned long reloc_func_desc = 0;
586         int executable_stack = EXSTACK_DEFAULT;
587         unsigned long def_flags = 0;
588         struct {
589                 struct elfhdr elf_ex;
590                 struct elfhdr interp_elf_ex;
591         } *loc;
592
593         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
594         if (!loc) {
595                 retval = -ENOMEM;
596                 goto out_ret;
597         }
598         
599         /* Get the exec-header */
600         loc->elf_ex = *((struct elfhdr *)bprm->buf);
601
602         retval = -ENOEXEC;
603         /* First of all, some simple consistency checks */
604         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
605                 goto out;
606
607         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
608                 goto out;
609         if (!elf_check_arch(&loc->elf_ex))
610                 goto out;
611         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
612                 goto out;
613
614         /* Now read in all of the header information */
615         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
616                 goto out;
617         if (loc->elf_ex.e_phnum < 1 ||
618                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
619                 goto out;
620         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
621         retval = -ENOMEM;
622         elf_phdata = kmalloc(size, GFP_KERNEL);
623         if (!elf_phdata)
624                 goto out;
625
626         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
627                              (char *)elf_phdata, size);
628         if (retval != size) {
629                 if (retval >= 0)
630                         retval = -EIO;
631                 goto out_free_ph;
632         }
633
634         retval = get_unused_fd();
635         if (retval < 0)
636                 goto out_free_ph;
637         get_file(bprm->file);
638         fd_install(elf_exec_fileno = retval, bprm->file);
639
640         elf_ppnt = elf_phdata;
641         elf_bss = 0;
642         elf_brk = 0;
643
644         start_code = ~0UL;
645         end_code = 0;
646         start_data = 0;
647         end_data = 0;
648
649         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
650                 if (elf_ppnt->p_type == PT_INTERP) {
651                         /* This is the program interpreter used for
652                          * shared libraries - for now assume that this
653                          * is an a.out format binary
654                          */
655                         retval = -ENOEXEC;
656                         if (elf_ppnt->p_filesz > PATH_MAX || 
657                             elf_ppnt->p_filesz < 2)
658                                 goto out_free_file;
659
660                         retval = -ENOMEM;
661                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
662                                                   GFP_KERNEL);
663                         if (!elf_interpreter)
664                                 goto out_free_file;
665
666                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
667                                              elf_interpreter,
668                                              elf_ppnt->p_filesz);
669                         if (retval != elf_ppnt->p_filesz) {
670                                 if (retval >= 0)
671                                         retval = -EIO;
672                                 goto out_free_interp;
673                         }
674                         /* make sure path is NULL terminated */
675                         retval = -ENOEXEC;
676                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
677                                 goto out_free_interp;
678
679                         /*
680                          * The early SET_PERSONALITY here is so that the lookup
681                          * for the interpreter happens in the namespace of the 
682                          * to-be-execed image.  SET_PERSONALITY can select an
683                          * alternate root.
684                          *
685                          * However, SET_PERSONALITY is NOT allowed to switch
686                          * this task into the new images's memory mapping
687                          * policy - that is, TASK_SIZE must still evaluate to
688                          * that which is appropriate to the execing application.
689                          * This is because exit_mmap() needs to have TASK_SIZE
690                          * evaluate to the size of the old image.
691                          *
692                          * So if (say) a 64-bit application is execing a 32-bit
693                          * application it is the architecture's responsibility
694                          * to defer changing the value of TASK_SIZE until the
695                          * switch really is going to happen - do this in
696                          * flush_thread().      - akpm
697                          */
698                         SET_PERSONALITY(loc->elf_ex);
699
700                         interpreter = open_exec(elf_interpreter);
701                         retval = PTR_ERR(interpreter);
702                         if (IS_ERR(interpreter))
703                                 goto out_free_interp;
704
705                         /*
706                          * If the binary is not readable then enforce
707                          * mm->dumpable = 0 regardless of the interpreter's
708                          * permissions.
709                          */
710                         if (file_permission(interpreter, MAY_READ) < 0)
711                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
712
713                         retval = kernel_read(interpreter, 0, bprm->buf,
714                                              BINPRM_BUF_SIZE);
715                         if (retval != BINPRM_BUF_SIZE) {
716                                 if (retval >= 0)
717                                         retval = -EIO;
718                                 goto out_free_dentry;
719                         }
720
721                         /* Get the exec headers */
722                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
723                         break;
724                 }
725                 elf_ppnt++;
726         }
727
728         elf_ppnt = elf_phdata;
729         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
730                 if (elf_ppnt->p_type == PT_GNU_STACK) {
731                         if (elf_ppnt->p_flags & PF_X)
732                                 executable_stack = EXSTACK_ENABLE_X;
733                         else
734                                 executable_stack = EXSTACK_DISABLE_X;
735                         break;
736                 }
737
738         /* Some simple consistency checks for the interpreter */
739         if (elf_interpreter) {
740                 retval = -ELIBBAD;
741                 /* Not an ELF interpreter */
742                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
743                         goto out_free_dentry;
744                 /* Verify the interpreter has a valid arch */
745                 if (!elf_check_arch(&loc->interp_elf_ex))
746                         goto out_free_dentry;
747         } else {
748                 /* Executables without an interpreter also need a personality  */
749                 SET_PERSONALITY(loc->elf_ex);
750         }
751
752         /* Flush all traces of the currently running executable */
753         retval = flush_old_exec(bprm);
754         if (retval)
755                 goto out_free_dentry;
756
757         /* OK, This is the point of no return */
758         current->flags &= ~PF_FORKNOEXEC;
759         current->mm->def_flags = def_flags;
760
761         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
762            may depend on the personality.  */
763         SET_PERSONALITY(loc->elf_ex);
764         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
765                 current->personality |= READ_IMPLIES_EXEC;
766
767         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
768                 current->flags |= PF_RANDOMIZE;
769         arch_pick_mmap_layout(current->mm);
770
771         /* Do this so that we can load the interpreter, if need be.  We will
772            change some of these later */
773         current->mm->free_area_cache = current->mm->mmap_base;
774         current->mm->cached_hole_size = 0;
775         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
776                                  executable_stack);
777         if (retval < 0) {
778                 send_sig(SIGKILL, current, 0);
779                 goto out_free_dentry;
780         }
781         
782         current->mm->start_stack = bprm->p;
783
784         /* Now we do a little grungy work by mmaping the ELF image into
785            the correct location in memory. */
786         for(i = 0, elf_ppnt = elf_phdata;
787             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
788                 int elf_prot = 0, elf_flags;
789                 unsigned long k, vaddr;
790
791                 if (elf_ppnt->p_type != PT_LOAD)
792                         continue;
793
794                 if (unlikely (elf_brk > elf_bss)) {
795                         unsigned long nbyte;
796                     
797                         /* There was a PT_LOAD segment with p_memsz > p_filesz
798                            before this one. Map anonymous pages, if needed,
799                            and clear the area.  */
800                         retval = set_brk (elf_bss + load_bias,
801                                           elf_brk + load_bias);
802                         if (retval) {
803                                 send_sig(SIGKILL, current, 0);
804                                 goto out_free_dentry;
805                         }
806                         nbyte = ELF_PAGEOFFSET(elf_bss);
807                         if (nbyte) {
808                                 nbyte = ELF_MIN_ALIGN - nbyte;
809                                 if (nbyte > elf_brk - elf_bss)
810                                         nbyte = elf_brk - elf_bss;
811                                 if (clear_user((void __user *)elf_bss +
812                                                         load_bias, nbyte)) {
813                                         /*
814                                          * This bss-zeroing can fail if the ELF
815                                          * file specifies odd protections. So
816                                          * we don't check the return value
817                                          */
818                                 }
819                         }
820                 }
821
822                 if (elf_ppnt->p_flags & PF_R)
823                         elf_prot |= PROT_READ;
824                 if (elf_ppnt->p_flags & PF_W)
825                         elf_prot |= PROT_WRITE;
826                 if (elf_ppnt->p_flags & PF_X)
827                         elf_prot |= PROT_EXEC;
828
829                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
830
831                 vaddr = elf_ppnt->p_vaddr;
832                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
833                         elf_flags |= MAP_FIXED;
834                 } else if (loc->elf_ex.e_type == ET_DYN) {
835                         /* Try and get dynamic programs out of the way of the
836                          * default mmap base, as well as whatever program they
837                          * might try to exec.  This is because the brk will
838                          * follow the loader, and is not movable.  */
839 #ifdef CONFIG_X86
840                         load_bias = 0;
841 #else
842                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
843 #endif
844                 }
845
846                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
847                                 elf_prot, elf_flags, 0);
848                 if (BAD_ADDR(error)) {
849                         send_sig(SIGKILL, current, 0);
850                         retval = IS_ERR((void *)error) ?
851                                 PTR_ERR((void*)error) : -EINVAL;
852                         goto out_free_dentry;
853                 }
854
855                 if (!load_addr_set) {
856                         load_addr_set = 1;
857                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
858                         if (loc->elf_ex.e_type == ET_DYN) {
859                                 load_bias += error -
860                                              ELF_PAGESTART(load_bias + vaddr);
861                                 load_addr += load_bias;
862                                 reloc_func_desc = load_bias;
863                         }
864                 }
865                 k = elf_ppnt->p_vaddr;
866                 if (k < start_code)
867                         start_code = k;
868                 if (start_data < k)
869                         start_data = k;
870
871                 /*
872                  * Check to see if the section's size will overflow the
873                  * allowed task size. Note that p_filesz must always be
874                  * <= p_memsz so it is only necessary to check p_memsz.
875                  */
876                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
877                     elf_ppnt->p_memsz > TASK_SIZE ||
878                     TASK_SIZE - elf_ppnt->p_memsz < k) {
879                         /* set_brk can never work. Avoid overflows. */
880                         send_sig(SIGKILL, current, 0);
881                         retval = -EINVAL;
882                         goto out_free_dentry;
883                 }
884
885                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
886
887                 if (k > elf_bss)
888                         elf_bss = k;
889                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
890                         end_code = k;
891                 if (end_data < k)
892                         end_data = k;
893                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
894                 if (k > elf_brk)
895                         elf_brk = k;
896         }
897
898         loc->elf_ex.e_entry += load_bias;
899         elf_bss += load_bias;
900         elf_brk += load_bias;
901         start_code += load_bias;
902         end_code += load_bias;
903         start_data += load_bias;
904         end_data += load_bias;
905
906         /* Calling set_brk effectively mmaps the pages that we need
907          * for the bss and break sections.  We must do this before
908          * mapping in the interpreter, to make sure it doesn't wind
909          * up getting placed where the bss needs to go.
910          */
911         retval = set_brk(elf_bss, elf_brk);
912         if (retval) {
913                 send_sig(SIGKILL, current, 0);
914                 goto out_free_dentry;
915         }
916         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
917                 send_sig(SIGSEGV, current, 0);
918                 retval = -EFAULT; /* Nobody gets to see this, but.. */
919                 goto out_free_dentry;
920         }
921
922         if (elf_interpreter) {
923                 unsigned long uninitialized_var(interp_map_addr);
924
925                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
926                                             interpreter,
927                                             &interp_map_addr,
928                                             load_bias);
929                 if (!IS_ERR((void *)elf_entry)) {
930                         /*
931                          * load_elf_interp() returns relocation
932                          * adjustment
933                          */
934                         interp_load_addr = elf_entry;
935                         elf_entry += loc->interp_elf_ex.e_entry;
936                 }
937                 if (BAD_ADDR(elf_entry)) {
938                         force_sig(SIGSEGV, current);
939                         retval = IS_ERR((void *)elf_entry) ?
940                                         (int)elf_entry : -EINVAL;
941                         goto out_free_dentry;
942                 }
943                 reloc_func_desc = interp_load_addr;
944
945                 allow_write_access(interpreter);
946                 fput(interpreter);
947                 kfree(elf_interpreter);
948         } else {
949                 elf_entry = loc->elf_ex.e_entry;
950                 if (BAD_ADDR(elf_entry)) {
951                         force_sig(SIGSEGV, current);
952                         retval = -EINVAL;
953                         goto out_free_dentry;
954                 }
955         }
956
957         kfree(elf_phdata);
958
959         sys_close(elf_exec_fileno);
960
961         set_binfmt(&elf_format);
962
963 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
964         retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
965         if (retval < 0) {
966                 send_sig(SIGKILL, current, 0);
967                 goto out;
968         }
969 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
970
971         install_exec_creds(bprm);
972         current->flags &= ~PF_FORKNOEXEC;
973         retval = create_elf_tables(bprm, &loc->elf_ex,
974                           load_addr, interp_load_addr);
975         if (retval < 0) {
976                 send_sig(SIGKILL, current, 0);
977                 goto out;
978         }
979         /* N.B. passed_fileno might not be initialized? */
980         current->mm->end_code = end_code;
981         current->mm->start_code = start_code;
982         current->mm->start_data = start_data;
983         current->mm->end_data = end_data;
984         current->mm->start_stack = bprm->p;
985
986 #ifdef arch_randomize_brk
987         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
988                 current->mm->brk = current->mm->start_brk =
989                         arch_randomize_brk(current->mm);
990 #endif
991
992         if (current->personality & MMAP_PAGE_ZERO) {
993                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
994                    and some applications "depend" upon this behavior.
995                    Since we do not have the power to recompile these, we
996                    emulate the SVr4 behavior. Sigh. */
997                 down_write(&current->mm->mmap_sem);
998                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
999                                 MAP_FIXED | MAP_PRIVATE, 0);
1000                 up_write(&current->mm->mmap_sem);
1001         }
1002
1003 #ifdef ELF_PLAT_INIT
1004         /*
1005          * The ABI may specify that certain registers be set up in special
1006          * ways (on i386 %edx is the address of a DT_FINI function, for
1007          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1008          * that the e_entry field is the address of the function descriptor
1009          * for the startup routine, rather than the address of the startup
1010          * routine itself.  This macro performs whatever initialization to
1011          * the regs structure is required as well as any relocations to the
1012          * function descriptor entries when executing dynamically links apps.
1013          */
1014         ELF_PLAT_INIT(regs, reloc_func_desc);
1015 #endif
1016
1017         start_thread(regs, elf_entry, bprm->p);
1018         retval = 0;
1019 out:
1020         kfree(loc);
1021 out_ret:
1022         return retval;
1023
1024         /* error cleanup */
1025 out_free_dentry:
1026         allow_write_access(interpreter);
1027         if (interpreter)
1028                 fput(interpreter);
1029 out_free_interp:
1030         kfree(elf_interpreter);
1031 out_free_file:
1032         sys_close(elf_exec_fileno);
1033 out_free_ph:
1034         kfree(elf_phdata);
1035         goto out;
1036 }
1037
1038 /* This is really simpleminded and specialized - we are loading an
1039    a.out library that is given an ELF header. */
1040 static int load_elf_library(struct file *file)
1041 {
1042         struct elf_phdr *elf_phdata;
1043         struct elf_phdr *eppnt;
1044         unsigned long elf_bss, bss, len;
1045         int retval, error, i, j;
1046         struct elfhdr elf_ex;
1047
1048         error = -ENOEXEC;
1049         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1050         if (retval != sizeof(elf_ex))
1051                 goto out;
1052
1053         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1054                 goto out;
1055
1056         /* First of all, some simple consistency checks */
1057         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1058             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1059                 goto out;
1060
1061         /* Now read in all of the header information */
1062
1063         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1064         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1065
1066         error = -ENOMEM;
1067         elf_phdata = kmalloc(j, GFP_KERNEL);
1068         if (!elf_phdata)
1069                 goto out;
1070
1071         eppnt = elf_phdata;
1072         error = -ENOEXEC;
1073         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1074         if (retval != j)
1075                 goto out_free_ph;
1076
1077         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1078                 if ((eppnt + i)->p_type == PT_LOAD)
1079                         j++;
1080         if (j != 1)
1081                 goto out_free_ph;
1082
1083         while (eppnt->p_type != PT_LOAD)
1084                 eppnt++;
1085
1086         /* Now use mmap to map the library into memory. */
1087         down_write(&current->mm->mmap_sem);
1088         error = do_mmap(file,
1089                         ELF_PAGESTART(eppnt->p_vaddr),
1090                         (eppnt->p_filesz +
1091                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1092                         PROT_READ | PROT_WRITE | PROT_EXEC,
1093                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1094                         (eppnt->p_offset -
1095                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1096         up_write(&current->mm->mmap_sem);
1097         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1098                 goto out_free_ph;
1099
1100         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1101         if (padzero(elf_bss)) {
1102                 error = -EFAULT;
1103                 goto out_free_ph;
1104         }
1105
1106         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1107                             ELF_MIN_ALIGN - 1);
1108         bss = eppnt->p_memsz + eppnt->p_vaddr;
1109         if (bss > len) {
1110                 down_write(&current->mm->mmap_sem);
1111                 do_brk(len, bss - len);
1112                 up_write(&current->mm->mmap_sem);
1113         }
1114         error = 0;
1115
1116 out_free_ph:
1117         kfree(elf_phdata);
1118 out:
1119         return error;
1120 }
1121
1122 /*
1123  * Note that some platforms still use traditional core dumps and not
1124  * the ELF core dump.  Each platform can select it as appropriate.
1125  */
1126 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1127
1128 /*
1129  * ELF core dumper
1130  *
1131  * Modelled on fs/exec.c:aout_core_dump()
1132  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1133  */
1134 /*
1135  * These are the only things you should do on a core-file: use only these
1136  * functions to write out all the necessary info.
1137  */
1138 static int dump_write(struct file *file, const void *addr, int nr)
1139 {
1140         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1141 }
1142
1143 static int dump_seek(struct file *file, loff_t off)
1144 {
1145         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1146                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1147                         return 0;
1148         } else {
1149                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1150                 if (!buf)
1151                         return 0;
1152                 while (off > 0) {
1153                         unsigned long n = off;
1154                         if (n > PAGE_SIZE)
1155                                 n = PAGE_SIZE;
1156                         if (!dump_write(file, buf, n))
1157                                 return 0;
1158                         off -= n;
1159                 }
1160                 free_page((unsigned long)buf);
1161         }
1162         return 1;
1163 }
1164
1165 /*
1166  * Decide what to dump of a segment, part, all or none.
1167  */
1168 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1169                                    unsigned long mm_flags)
1170 {
1171 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1172
1173         /* The vma can be set up to tell us the answer directly.  */
1174         if (vma->vm_flags & VM_ALWAYSDUMP)
1175                 goto whole;
1176
1177         /* Hugetlb memory check */
1178         if (vma->vm_flags & VM_HUGETLB) {
1179                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1180                         goto whole;
1181                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1182                         goto whole;
1183         }
1184
1185         /* Do not dump I/O mapped devices or special mappings */
1186         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1187                 return 0;
1188
1189         /* By default, dump shared memory if mapped from an anonymous file. */
1190         if (vma->vm_flags & VM_SHARED) {
1191                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1192                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1193                         goto whole;
1194                 return 0;
1195         }
1196
1197         /* Dump segments that have been written to.  */
1198         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1199                 goto whole;
1200         if (vma->vm_file == NULL)
1201                 return 0;
1202
1203         if (FILTER(MAPPED_PRIVATE))
1204                 goto whole;
1205
1206         /*
1207          * If this looks like the beginning of a DSO or executable mapping,
1208          * check for an ELF header.  If we find one, dump the first page to
1209          * aid in determining what was mapped here.
1210          */
1211         if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1212                 u32 __user *header = (u32 __user *) vma->vm_start;
1213                 u32 word;
1214                 /*
1215                  * Doing it this way gets the constant folded by GCC.
1216                  */
1217                 union {
1218                         u32 cmp;
1219                         char elfmag[SELFMAG];
1220                 } magic;
1221                 BUILD_BUG_ON(SELFMAG != sizeof word);
1222                 magic.elfmag[EI_MAG0] = ELFMAG0;
1223                 magic.elfmag[EI_MAG1] = ELFMAG1;
1224                 magic.elfmag[EI_MAG2] = ELFMAG2;
1225                 magic.elfmag[EI_MAG3] = ELFMAG3;
1226                 if (get_user(word, header) == 0 && word == magic.cmp)
1227                         return PAGE_SIZE;
1228         }
1229
1230 #undef  FILTER
1231
1232         return 0;
1233
1234 whole:
1235         return vma->vm_end - vma->vm_start;
1236 }
1237
1238 /* An ELF note in memory */
1239 struct memelfnote
1240 {
1241         const char *name;
1242         int type;
1243         unsigned int datasz;
1244         void *data;
1245 };
1246
1247 static int notesize(struct memelfnote *en)
1248 {
1249         int sz;
1250
1251         sz = sizeof(struct elf_note);
1252         sz += roundup(strlen(en->name) + 1, 4);
1253         sz += roundup(en->datasz, 4);
1254
1255         return sz;
1256 }
1257
1258 #define DUMP_WRITE(addr, nr, foffset)   \
1259         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1260
1261 static int alignfile(struct file *file, loff_t *foffset)
1262 {
1263         static const char buf[4] = { 0, };
1264         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1265         return 1;
1266 }
1267
1268 static int writenote(struct memelfnote *men, struct file *file,
1269                         loff_t *foffset)
1270 {
1271         struct elf_note en;
1272         en.n_namesz = strlen(men->name) + 1;
1273         en.n_descsz = men->datasz;
1274         en.n_type = men->type;
1275
1276         DUMP_WRITE(&en, sizeof(en), foffset);
1277         DUMP_WRITE(men->name, en.n_namesz, foffset);
1278         if (!alignfile(file, foffset))
1279                 return 0;
1280         DUMP_WRITE(men->data, men->datasz, foffset);
1281         if (!alignfile(file, foffset))
1282                 return 0;
1283
1284         return 1;
1285 }
1286 #undef DUMP_WRITE
1287
1288 #define DUMP_WRITE(addr, nr)    \
1289         if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1290                 goto end_coredump;
1291 #define DUMP_SEEK(off)  \
1292         if (!dump_seek(file, (off))) \
1293                 goto end_coredump;
1294
1295 static void fill_elf_header(struct elfhdr *elf, int segs,
1296                             u16 machine, u32 flags, u8 osabi)
1297 {
1298         memset(elf, 0, sizeof(*elf));
1299
1300         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1301         elf->e_ident[EI_CLASS] = ELF_CLASS;
1302         elf->e_ident[EI_DATA] = ELF_DATA;
1303         elf->e_ident[EI_VERSION] = EV_CURRENT;
1304         elf->e_ident[EI_OSABI] = ELF_OSABI;
1305
1306         elf->e_type = ET_CORE;
1307         elf->e_machine = machine;
1308         elf->e_version = EV_CURRENT;
1309         elf->e_phoff = sizeof(struct elfhdr);
1310         elf->e_flags = flags;
1311         elf->e_ehsize = sizeof(struct elfhdr);
1312         elf->e_phentsize = sizeof(struct elf_phdr);
1313         elf->e_phnum = segs;
1314
1315         return;
1316 }
1317
1318 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1319 {
1320         phdr->p_type = PT_NOTE;
1321         phdr->p_offset = offset;
1322         phdr->p_vaddr = 0;
1323         phdr->p_paddr = 0;
1324         phdr->p_filesz = sz;
1325         phdr->p_memsz = 0;
1326         phdr->p_flags = 0;
1327         phdr->p_align = 0;
1328         return;
1329 }
1330
1331 static void fill_note(struct memelfnote *note, const char *name, int type, 
1332                 unsigned int sz, void *data)
1333 {
1334         note->name = name;
1335         note->type = type;
1336         note->datasz = sz;
1337         note->data = data;
1338         return;
1339 }
1340
1341 /*
1342  * fill up all the fields in prstatus from the given task struct, except
1343  * registers which need to be filled up separately.
1344  */
1345 static void fill_prstatus(struct elf_prstatus *prstatus,
1346                 struct task_struct *p, long signr)
1347 {
1348         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1349         prstatus->pr_sigpend = p->pending.signal.sig[0];
1350         prstatus->pr_sighold = p->blocked.sig[0];
1351         prstatus->pr_pid = task_pid_vnr(p);
1352         prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1353         prstatus->pr_pgrp = task_pgrp_vnr(p);
1354         prstatus->pr_sid = task_session_vnr(p);
1355         if (thread_group_leader(p)) {
1356                 struct task_cputime cputime;
1357
1358                 /*
1359                  * This is the record for the group leader.  It shows the
1360                  * group-wide total, not its individual thread total.
1361                  */
1362                 thread_group_cputime(p, &cputime);
1363                 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1364                 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1365         } else {
1366                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1367                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1368         }
1369         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1370         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1371 }
1372
1373 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1374                        struct mm_struct *mm)
1375 {
1376         const struct cred *cred;
1377         unsigned int i, len;
1378         
1379         /* first copy the parameters from user space */
1380         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1381
1382         len = mm->arg_end - mm->arg_start;
1383         if (len >= ELF_PRARGSZ)
1384                 len = ELF_PRARGSZ-1;
1385         if (copy_from_user(&psinfo->pr_psargs,
1386                            (const char __user *)mm->arg_start, len))
1387                 return -EFAULT;
1388         for(i = 0; i < len; i++)
1389                 if (psinfo->pr_psargs[i] == 0)
1390                         psinfo->pr_psargs[i] = ' ';
1391         psinfo->pr_psargs[len] = 0;
1392
1393         psinfo->pr_pid = task_pid_vnr(p);
1394         psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1395         psinfo->pr_pgrp = task_pgrp_vnr(p);
1396         psinfo->pr_sid = task_session_vnr(p);
1397
1398         i = p->state ? ffz(~p->state) + 1 : 0;
1399         psinfo->pr_state = i;
1400         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1401         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1402         psinfo->pr_nice = task_nice(p);
1403         psinfo->pr_flag = p->flags;
1404         rcu_read_lock();
1405         cred = __task_cred(p);
1406         SET_UID(psinfo->pr_uid, cred->uid);
1407         SET_GID(psinfo->pr_gid, cred->gid);
1408         rcu_read_unlock();
1409         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1410         
1411         return 0;
1412 }
1413
1414 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1415 {
1416         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1417         int i = 0;
1418         do
1419                 i += 2;
1420         while (auxv[i - 2] != AT_NULL);
1421         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1422 }
1423
1424 #ifdef CORE_DUMP_USE_REGSET
1425 #include <linux/regset.h>
1426
1427 struct elf_thread_core_info {
1428         struct elf_thread_core_info *next;
1429         struct task_struct *task;
1430         struct elf_prstatus prstatus;
1431         struct memelfnote notes[0];
1432 };
1433
1434 struct elf_note_info {
1435         struct elf_thread_core_info *thread;
1436         struct memelfnote psinfo;
1437         struct memelfnote auxv;
1438         size_t size;
1439         int thread_notes;
1440 };
1441
1442 /*
1443  * When a regset has a writeback hook, we call it on each thread before
1444  * dumping user memory.  On register window machines, this makes sure the
1445  * user memory backing the register data is up to date before we read it.
1446  */
1447 static void do_thread_regset_writeback(struct task_struct *task,
1448                                        const struct user_regset *regset)
1449 {
1450         if (regset->writeback)
1451                 regset->writeback(task, regset, 1);
1452 }
1453
1454 static int fill_thread_core_info(struct elf_thread_core_info *t,
1455                                  const struct user_regset_view *view,
1456                                  long signr, size_t *total)
1457 {
1458         unsigned int i;
1459
1460         /*
1461          * NT_PRSTATUS is the one special case, because the regset data
1462          * goes into the pr_reg field inside the note contents, rather
1463          * than being the whole note contents.  We fill the reset in here.
1464          * We assume that regset 0 is NT_PRSTATUS.
1465          */
1466         fill_prstatus(&t->prstatus, t->task, signr);
1467         (void) view->regsets[0].get(t->task, &view->regsets[0],
1468                                     0, sizeof(t->prstatus.pr_reg),
1469                                     &t->prstatus.pr_reg, NULL);
1470
1471         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1472                   sizeof(t->prstatus), &t->prstatus);
1473         *total += notesize(&t->notes[0]);
1474
1475         do_thread_regset_writeback(t->task, &view->regsets[0]);
1476
1477         /*
1478          * Each other regset might generate a note too.  For each regset
1479          * that has no core_note_type or is inactive, we leave t->notes[i]
1480          * all zero and we'll know to skip writing it later.
1481          */
1482         for (i = 1; i < view->n; ++i) {
1483                 const struct user_regset *regset = &view->regsets[i];
1484                 do_thread_regset_writeback(t->task, regset);
1485                 if (regset->core_note_type &&
1486                     (!regset->active || regset->active(t->task, regset))) {
1487                         int ret;
1488                         size_t size = regset->n * regset->size;
1489                         void *data = kmalloc(size, GFP_KERNEL);
1490                         if (unlikely(!data))
1491                                 return 0;
1492                         ret = regset->get(t->task, regset,
1493                                           0, size, data, NULL);
1494                         if (unlikely(ret))
1495                                 kfree(data);
1496                         else {
1497                                 if (regset->core_note_type != NT_PRFPREG)
1498                                         fill_note(&t->notes[i], "LINUX",
1499                                                   regset->core_note_type,
1500                                                   size, data);
1501                                 else {
1502                                         t->prstatus.pr_fpvalid = 1;
1503                                         fill_note(&t->notes[i], "CORE",
1504                                                   NT_PRFPREG, size, data);
1505                                 }
1506                                 *total += notesize(&t->notes[i]);
1507                         }
1508                 }
1509         }
1510
1511         return 1;
1512 }
1513
1514 static int fill_note_info(struct elfhdr *elf, int phdrs,
1515                           struct elf_note_info *info,
1516                           long signr, struct pt_regs *regs)
1517 {
1518         struct task_struct *dump_task = current;
1519         const struct user_regset_view *view = task_user_regset_view(dump_task);
1520         struct elf_thread_core_info *t;
1521         struct elf_prpsinfo *psinfo;
1522         struct core_thread *ct;
1523         unsigned int i;
1524
1525         info->size = 0;
1526         info->thread = NULL;
1527
1528         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1529         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1530
1531         if (psinfo == NULL)
1532                 return 0;
1533
1534         /*
1535          * Figure out how many notes we're going to need for each thread.
1536          */
1537         info->thread_notes = 0;
1538         for (i = 0; i < view->n; ++i)
1539                 if (view->regsets[i].core_note_type != 0)
1540                         ++info->thread_notes;
1541
1542         /*
1543          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1544          * since it is our one special case.
1545          */
1546         if (unlikely(info->thread_notes == 0) ||
1547             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1548                 WARN_ON(1);
1549                 return 0;
1550         }
1551
1552         /*
1553          * Initialize the ELF file header.
1554          */
1555         fill_elf_header(elf, phdrs,
1556                         view->e_machine, view->e_flags, view->ei_osabi);
1557
1558         /*
1559          * Allocate a structure for each thread.
1560          */
1561         for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1562                 t = kzalloc(offsetof(struct elf_thread_core_info,
1563                                      notes[info->thread_notes]),
1564                             GFP_KERNEL);
1565                 if (unlikely(!t))
1566                         return 0;
1567
1568                 t->task = ct->task;
1569                 if (ct->task == dump_task || !info->thread) {
1570                         t->next = info->thread;
1571                         info->thread = t;
1572                 } else {
1573                         /*
1574                          * Make sure to keep the original task at
1575                          * the head of the list.
1576                          */
1577                         t->next = info->thread->next;
1578                         info->thread->next = t;
1579                 }
1580         }
1581
1582         /*
1583          * Now fill in each thread's information.
1584          */
1585         for (t = info->thread; t != NULL; t = t->next)
1586                 if (!fill_thread_core_info(t, view, signr, &info->size))
1587                         return 0;
1588
1589         /*
1590          * Fill in the two process-wide notes.
1591          */
1592         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1593         info->size += notesize(&info->psinfo);
1594
1595         fill_auxv_note(&info->auxv, current->mm);
1596         info->size += notesize(&info->auxv);
1597
1598         return 1;
1599 }
1600
1601 static size_t get_note_info_size(struct elf_note_info *info)
1602 {
1603         return info->size;
1604 }
1605
1606 /*
1607  * Write all the notes for each thread.  When writing the first thread, the
1608  * process-wide notes are interleaved after the first thread-specific note.
1609  */
1610 static int write_note_info(struct elf_note_info *info,
1611                            struct file *file, loff_t *foffset)
1612 {
1613         bool first = 1;
1614         struct elf_thread_core_info *t = info->thread;
1615
1616         do {
1617                 int i;
1618
1619                 if (!writenote(&t->notes[0], file, foffset))
1620                         return 0;
1621
1622                 if (first && !writenote(&info->psinfo, file, foffset))
1623                         return 0;
1624                 if (first && !writenote(&info->auxv, file, foffset))
1625                         return 0;
1626
1627                 for (i = 1; i < info->thread_notes; ++i)
1628                         if (t->notes[i].data &&
1629                             !writenote(&t->notes[i], file, foffset))
1630                                 return 0;
1631
1632                 first = 0;
1633                 t = t->next;
1634         } while (t);
1635
1636         return 1;
1637 }
1638
1639 static void free_note_info(struct elf_note_info *info)
1640 {
1641         struct elf_thread_core_info *threads = info->thread;
1642         while (threads) {
1643                 unsigned int i;
1644                 struct elf_thread_core_info *t = threads;
1645                 threads = t->next;
1646                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1647                 for (i = 1; i < info->thread_notes; ++i)
1648                         kfree(t->notes[i].data);
1649                 kfree(t);
1650         }
1651         kfree(info->psinfo.data);
1652 }
1653
1654 #else
1655
1656 /* Here is the structure in which status of each thread is captured. */
1657 struct elf_thread_status
1658 {
1659         struct list_head list;
1660         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1661         elf_fpregset_t fpu;             /* NT_PRFPREG */
1662         struct task_struct *thread;
1663 #ifdef ELF_CORE_COPY_XFPREGS
1664         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1665 #endif
1666         struct memelfnote notes[3];
1667         int num_notes;
1668 };
1669
1670 /*
1671  * In order to add the specific thread information for the elf file format,
1672  * we need to keep a linked list of every threads pr_status and then create
1673  * a single section for them in the final core file.
1674  */
1675 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1676 {
1677         int sz = 0;
1678         struct task_struct *p = t->thread;
1679         t->num_notes = 0;
1680
1681         fill_prstatus(&t->prstatus, p, signr);
1682         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1683         
1684         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1685                   &(t->prstatus));
1686         t->num_notes++;
1687         sz += notesize(&t->notes[0]);
1688
1689         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1690                                                                 &t->fpu))) {
1691                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1692                           &(t->fpu));
1693                 t->num_notes++;
1694                 sz += notesize(&t->notes[1]);
1695         }
1696
1697 #ifdef ELF_CORE_COPY_XFPREGS
1698         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1699                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1700                           sizeof(t->xfpu), &t->xfpu);
1701                 t->num_notes++;
1702                 sz += notesize(&t->notes[2]);
1703         }
1704 #endif  
1705         return sz;
1706 }
1707
1708 struct elf_note_info {
1709         struct memelfnote *notes;
1710         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1711         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1712         struct list_head thread_list;
1713         elf_fpregset_t *fpu;
1714 #ifdef ELF_CORE_COPY_XFPREGS
1715         elf_fpxregset_t *xfpu;
1716 #endif
1717         int thread_status_size;
1718         int numnote;
1719 };
1720
1721 static int fill_note_info(struct elfhdr *elf, int phdrs,
1722                           struct elf_note_info *info,
1723                           long signr, struct pt_regs *regs)
1724 {
1725 #define NUM_NOTES       6
1726         struct list_head *t;
1727
1728         info->notes = NULL;
1729         info->prstatus = NULL;
1730         info->psinfo = NULL;
1731         info->fpu = NULL;
1732 #ifdef ELF_CORE_COPY_XFPREGS
1733         info->xfpu = NULL;
1734 #endif
1735         INIT_LIST_HEAD(&info->thread_list);
1736
1737         info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1738                               GFP_KERNEL);
1739         if (!info->notes)
1740                 return 0;
1741         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1742         if (!info->psinfo)
1743                 return 0;
1744         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1745         if (!info->prstatus)
1746                 return 0;
1747         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1748         if (!info->fpu)
1749                 return 0;
1750 #ifdef ELF_CORE_COPY_XFPREGS
1751         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1752         if (!info->xfpu)
1753                 return 0;
1754 #endif
1755
1756         info->thread_status_size = 0;
1757         if (signr) {
1758                 struct core_thread *ct;
1759                 struct elf_thread_status *ets;
1760
1761                 for (ct = current->mm->core_state->dumper.next;
1762                                                 ct; ct = ct->next) {
1763                         ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1764                         if (!ets)
1765                                 return 0;
1766
1767                         ets->thread = ct->task;
1768                         list_add(&ets->list, &info->thread_list);
1769                 }
1770
1771                 list_for_each(t, &info->thread_list) {
1772                         int sz;
1773
1774                         ets = list_entry(t, struct elf_thread_status, list);
1775                         sz = elf_dump_thread_status(signr, ets);
1776                         info->thread_status_size += sz;
1777                 }
1778         }
1779         /* now collect the dump for the current */
1780         memset(info->prstatus, 0, sizeof(*info->prstatus));
1781         fill_prstatus(info->prstatus, current, signr);
1782         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1783
1784         /* Set up header */
1785         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1786
1787         /*
1788          * Set up the notes in similar form to SVR4 core dumps made
1789          * with info from their /proc.
1790          */
1791
1792         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1793                   sizeof(*info->prstatus), info->prstatus);
1794         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1795         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1796                   sizeof(*info->psinfo), info->psinfo);
1797
1798         info->numnote = 2;
1799
1800         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1801
1802         /* Try to dump the FPU. */
1803         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1804                                                                info->fpu);
1805         if (info->prstatus->pr_fpvalid)
1806                 fill_note(info->notes + info->numnote++,
1807                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1808 #ifdef ELF_CORE_COPY_XFPREGS
1809         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1810                 fill_note(info->notes + info->numnote++,
1811                           "LINUX", ELF_CORE_XFPREG_TYPE,
1812                           sizeof(*info->xfpu), info->xfpu);
1813 #endif
1814
1815         return 1;
1816
1817 #undef NUM_NOTES
1818 }
1819
1820 static size_t get_note_info_size(struct elf_note_info *info)
1821 {
1822         int sz = 0;
1823         int i;
1824
1825         for (i = 0; i < info->numnote; i++)
1826                 sz += notesize(info->notes + i);
1827
1828         sz += info->thread_status_size;
1829
1830         return sz;
1831 }
1832
1833 static int write_note_info(struct elf_note_info *info,
1834                            struct file *file, loff_t *foffset)
1835 {
1836         int i;
1837         struct list_head *t;
1838
1839         for (i = 0; i < info->numnote; i++)
1840                 if (!writenote(info->notes + i, file, foffset))
1841                         return 0;
1842
1843         /* write out the thread status notes section */
1844         list_for_each(t, &info->thread_list) {
1845                 struct elf_thread_status *tmp =
1846                                 list_entry(t, struct elf_thread_status, list);
1847
1848                 for (i = 0; i < tmp->num_notes; i++)
1849                         if (!writenote(&tmp->notes[i], file, foffset))
1850                                 return 0;
1851         }
1852
1853         return 1;
1854 }
1855
1856 static void free_note_info(struct elf_note_info *info)
1857 {
1858         while (!list_empty(&info->thread_list)) {
1859                 struct list_head *tmp = info->thread_list.next;
1860                 list_del(tmp);
1861                 kfree(list_entry(tmp, struct elf_thread_status, list));
1862         }
1863
1864         kfree(info->prstatus);
1865         kfree(info->psinfo);
1866         kfree(info->notes);
1867         kfree(info->fpu);
1868 #ifdef ELF_CORE_COPY_XFPREGS
1869         kfree(info->xfpu);
1870 #endif
1871 }
1872
1873 #endif
1874
1875 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1876                                         struct vm_area_struct *gate_vma)
1877 {
1878         struct vm_area_struct *ret = tsk->mm->mmap;
1879
1880         if (ret)
1881                 return ret;
1882         return gate_vma;
1883 }
1884 /*
1885  * Helper function for iterating across a vma list.  It ensures that the caller
1886  * will visit `gate_vma' prior to terminating the search.
1887  */
1888 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1889                                         struct vm_area_struct *gate_vma)
1890 {
1891         struct vm_area_struct *ret;
1892
1893         ret = this_vma->vm_next;
1894         if (ret)
1895                 return ret;
1896         if (this_vma == gate_vma)
1897                 return NULL;
1898         return gate_vma;
1899 }
1900
1901 /*
1902  * Actual dumper
1903  *
1904  * This is a two-pass process; first we find the offsets of the bits,
1905  * and then they are actually written out.  If we run out of core limit
1906  * we just truncate.
1907  */
1908 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1909 {
1910         int has_dumped = 0;
1911         mm_segment_t fs;
1912         int segs;
1913         size_t size = 0;
1914         struct vm_area_struct *vma, *gate_vma;
1915         struct elfhdr *elf = NULL;
1916         loff_t offset = 0, dataoff, foffset;
1917         unsigned long mm_flags;
1918         struct elf_note_info info;
1919
1920         /*
1921          * We no longer stop all VM operations.
1922          * 
1923          * This is because those proceses that could possibly change map_count
1924          * or the mmap / vma pages are now blocked in do_exit on current
1925          * finishing this core dump.
1926          *
1927          * Only ptrace can touch these memory addresses, but it doesn't change
1928          * the map_count or the pages allocated. So no possibility of crashing
1929          * exists while dumping the mm->vm_next areas to the core file.
1930          */
1931   
1932         /* alloc memory for large data structures: too large to be on stack */
1933         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1934         if (!elf)
1935                 goto out;
1936         
1937         segs = current->mm->map_count;
1938 #ifdef ELF_CORE_EXTRA_PHDRS
1939         segs += ELF_CORE_EXTRA_PHDRS;
1940 #endif
1941
1942         gate_vma = get_gate_vma(current);
1943         if (gate_vma != NULL)
1944                 segs++;
1945
1946         /*
1947          * Collect all the non-memory information about the process for the
1948          * notes.  This also sets up the file header.
1949          */
1950         if (!fill_note_info(elf, segs + 1, /* including notes section */
1951                             &info, signr, regs))
1952                 goto cleanup;
1953
1954         has_dumped = 1;
1955         current->flags |= PF_DUMPCORE;
1956   
1957         fs = get_fs();
1958         set_fs(KERNEL_DS);
1959
1960         DUMP_WRITE(elf, sizeof(*elf));
1961         offset += sizeof(*elf);                         /* Elf header */
1962         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1963         foffset = offset;
1964
1965         /* Write notes phdr entry */
1966         {
1967                 struct elf_phdr phdr;
1968                 size_t sz = get_note_info_size(&info);
1969
1970                 sz += elf_coredump_extra_notes_size();
1971
1972                 fill_elf_note_phdr(&phdr, sz, offset);
1973                 offset += sz;
1974                 DUMP_WRITE(&phdr, sizeof(phdr));
1975         }
1976
1977         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1978
1979         /*
1980          * We must use the same mm->flags while dumping core to avoid
1981          * inconsistency between the program headers and bodies, otherwise an
1982          * unusable core file can be generated.
1983          */
1984         mm_flags = current->mm->flags;
1985
1986         /* Write program headers for segments dump */
1987         for (vma = first_vma(current, gate_vma); vma != NULL;
1988                         vma = next_vma(vma, gate_vma)) {
1989                 struct elf_phdr phdr;
1990
1991                 phdr.p_type = PT_LOAD;
1992                 phdr.p_offset = offset;
1993                 phdr.p_vaddr = vma->vm_start;
1994                 phdr.p_paddr = 0;
1995                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1996                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1997                 offset += phdr.p_filesz;
1998                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1999                 if (vma->vm_flags & VM_WRITE)
2000                         phdr.p_flags |= PF_W;
2001                 if (vma->vm_flags & VM_EXEC)
2002                         phdr.p_flags |= PF_X;
2003                 phdr.p_align = ELF_EXEC_PAGESIZE;
2004
2005                 DUMP_WRITE(&phdr, sizeof(phdr));
2006         }
2007
2008 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2009         ELF_CORE_WRITE_EXTRA_PHDRS;
2010 #endif
2011
2012         /* write out the notes section */
2013         if (!write_note_info(&info, file, &foffset))
2014                 goto end_coredump;
2015
2016         if (elf_coredump_extra_notes_write(file, &foffset))
2017                 goto end_coredump;
2018
2019         /* Align to page */
2020         DUMP_SEEK(dataoff - foffset);
2021
2022         for (vma = first_vma(current, gate_vma); vma != NULL;
2023                         vma = next_vma(vma, gate_vma)) {
2024                 unsigned long addr;
2025                 unsigned long end;
2026
2027                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2028
2029                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2030                         struct page *page;
2031                         struct vm_area_struct *tmp_vma;
2032
2033                         if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2034                                                 &page, &tmp_vma) <= 0) {
2035                                 DUMP_SEEK(PAGE_SIZE);
2036                         } else {
2037                                 if (page == ZERO_PAGE(0)) {
2038                                         if (!dump_seek(file, PAGE_SIZE)) {
2039                                                 page_cache_release(page);
2040                                                 goto end_coredump;
2041                                         }
2042                                 } else {
2043                                         void *kaddr;
2044                                         flush_cache_page(tmp_vma, addr,
2045                                                          page_to_pfn(page));
2046                                         kaddr = kmap(page);
2047                                         if ((size += PAGE_SIZE) > limit ||
2048                                             !dump_write(file, kaddr,
2049                                             PAGE_SIZE)) {
2050                                                 kunmap(page);
2051                                                 page_cache_release(page);
2052                                                 goto end_coredump;
2053                                         }
2054                                         kunmap(page);
2055                                 }
2056                                 page_cache_release(page);
2057                         }
2058                 }
2059         }
2060
2061 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2062         ELF_CORE_WRITE_EXTRA_DATA;
2063 #endif
2064
2065 end_coredump:
2066         set_fs(fs);
2067
2068 cleanup:
2069         free_note_info(&info);
2070         kfree(elf);
2071 out:
2072         return has_dumped;
2073 }
2074
2075 #endif          /* USE_ELF_CORE_DUMP */
2076
2077 static int __init init_elf_binfmt(void)
2078 {
2079         return register_binfmt(&elf_format);
2080 }
2081
2082 static void __exit exit_elf_binfmt(void)
2083 {
2084         /* Remove the COFF and ELF loaders. */
2085         unregister_binfmt(&elf_format);
2086 }
2087
2088 core_initcall(init_elf_binfmt);
2089 module_exit(exit_elf_binfmt);
2090 MODULE_LICENSE("GPL");