[PATCH] uml: s390 preparation, elf.h
[linux-2.6] / arch / ppc / math-emu / op-4.h
1 /*
2  * Basic four-word fraction declaration and manipulation.
3  *
4  * When adding quadword support for 32 bit machines, we need
5  * to be a little careful as double multiply uses some of these
6  * macros: (in op-2.h)
7  * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4,
8  * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4
9  * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use
10  * _FP_FRAC_DECL_4: it appears to be broken and is not used
11  * anywhere anyway. )
12  *
13  * I've now fixed all the macros that were here from the sparc64 code.
14  * [*none* of the shift macros were correct!] -- PMM 02/1998
15  *
16  * The only quadword stuff that remains to be coded is:
17  * 1) the conversion to/from ints, which requires
18  * that we check (in op-common.h) that the following do the right thing
19  * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt)
20  * 2) multiply, divide and sqrt, which require:
21  * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q),
22  * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to
23  * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h.
24  * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for
25  * these; they are used nowhere else. ]
26  */
27
28 #define _FP_FRAC_DECL_4(X)      _FP_W_TYPE X##_f[4]
29 #define _FP_FRAC_COPY_4(D,S)                    \
30   (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1],    \
31    D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
32 /* The _FP_FRAC_SET_n(X,I) macro is intended for use with another
33  * macro such as _FP_ZEROFRAC_n which returns n comma separated values.
34  * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3)
35  * which just assigns the In values to the array X##_f[].
36  * This is why the number of parameters doesn't appear to match
37  * at first glance...      -- PMM
38  */
39 #define _FP_FRAC_SET_4(X,I)     __FP_FRAC_SET_4(X, I)
40 #define _FP_FRAC_HIGH_4(X)      (X##_f[3])
41 #define _FP_FRAC_LOW_4(X)       (X##_f[0])
42 #define _FP_FRAC_WORD_4(X,w)    (X##_f[w])
43
44 #define _FP_FRAC_SLL_4(X,N)                                             \
45   do {                                                                  \
46     _FP_I_TYPE _up, _down, _skip, _i;                                   \
47     _skip = (N) / _FP_W_TYPE_SIZE;                                      \
48     _up = (N) % _FP_W_TYPE_SIZE;                                        \
49     _down = _FP_W_TYPE_SIZE - _up;                                      \
50     for (_i = 3; _i > _skip; --_i)                                      \
51       X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down;  \
52 /* bugfixed: was X##_f[_i] <<= _up;  -- PMM 02/1998 */                  \
53     X##_f[_i] = X##_f[0] << _up;                                        \
54     for (--_i; _i >= 0; --_i)                                           \
55       X##_f[_i] = 0;                                                    \
56   } while (0)
57
58 /* This one was broken too */
59 #define _FP_FRAC_SRL_4(X,N)                                             \
60   do {                                                                  \
61     _FP_I_TYPE _up, _down, _skip, _i;                                   \
62     _skip = (N) / _FP_W_TYPE_SIZE;                                      \
63     _down = (N) % _FP_W_TYPE_SIZE;                                      \
64     _up = _FP_W_TYPE_SIZE - _down;                                      \
65     for (_i = 0; _i < 3-_skip; ++_i)                                    \
66       X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;  \
67     X##_f[_i] = X##_f[3] >> _down;                                      \
68     for (++_i; _i < 4; ++_i)                                            \
69       X##_f[_i] = 0;                                                    \
70   } while (0)
71
72
73 /* Right shift with sticky-lsb.
74  * What this actually means is that we do a standard right-shift,
75  * but that if any of the bits that fall off the right hand side
76  * were one then we always set the LSbit.
77  */
78 #define _FP_FRAC_SRS_4(X,N,size)                                        \
79   do {                                                                  \
80     _FP_I_TYPE _up, _down, _skip, _i;                                   \
81     _FP_W_TYPE _s;                                                      \
82     _skip = (N) / _FP_W_TYPE_SIZE;                                      \
83     _down = (N) % _FP_W_TYPE_SIZE;                                      \
84     _up = _FP_W_TYPE_SIZE - _down;                                      \
85     for (_s = _i = 0; _i < _skip; ++_i)                                 \
86       _s |= X##_f[_i];                                                  \
87     _s |= X##_f[_i] << _up;                                             \
88 /* s is now != 0 if we want to set the LSbit */                         \
89     for (_i = 0; _i < 3-_skip; ++_i)                                    \
90       X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;  \
91     X##_f[_i] = X##_f[3] >> _down;                                      \
92     for (++_i; _i < 4; ++_i)                                            \
93       X##_f[_i] = 0;                                                    \
94     /* don't fix the LSB until the very end when we're sure f[0] is stable */ \
95     X##_f[0] |= (_s != 0);                                              \
96   } while (0)
97
98 #define _FP_FRAC_ADD_4(R,X,Y)                                           \
99   __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],               \
100                   X##_f[3], X##_f[2], X##_f[1], X##_f[0],               \
101                   Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
102
103 #define _FP_FRAC_SUB_4(R,X,Y)                                           \
104   __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],               \
105                   X##_f[3], X##_f[2], X##_f[1], X##_f[0],               \
106                   Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
107
108 #define _FP_FRAC_ADDI_4(X,I)                                            \
109   __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
110
111 #define _FP_ZEROFRAC_4  0,0,0,0
112 #define _FP_MINFRAC_4   0,0,0,1
113
114 #define _FP_FRAC_ZEROP_4(X)     ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
115 #define _FP_FRAC_NEGP_4(X)      ((_FP_WS_TYPE)X##_f[3] < 0)
116 #define _FP_FRAC_OVERP_4(fs,X)  (X##_f[0] & _FP_OVERFLOW_##fs)
117
118 #define _FP_FRAC_EQ_4(X,Y)                              \
119  (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1]          \
120   && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
121
122 #define _FP_FRAC_GT_4(X,Y)                              \
123  (X##_f[3] > Y##_f[3] ||                                \
124   (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
125    (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
126     (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0])       \
127    ))                                                   \
128   ))                                                    \
129  )
130
131 #define _FP_FRAC_GE_4(X,Y)                              \
132  (X##_f[3] > Y##_f[3] ||                                \
133   (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
134    (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
135     (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0])      \
136    ))                                                   \
137   ))                                                    \
138  )
139
140
141 #define _FP_FRAC_CLZ_4(R,X)             \
142   do {                                  \
143     if (X##_f[3])                       \
144     {                                   \
145         __FP_CLZ(R,X##_f[3]);           \
146     }                                   \
147     else if (X##_f[2])                  \
148     {                                   \
149         __FP_CLZ(R,X##_f[2]);           \
150         R += _FP_W_TYPE_SIZE;           \
151     }                                   \
152     else if (X##_f[1])                  \
153     {                                   \
154         __FP_CLZ(R,X##_f[2]);           \
155         R += _FP_W_TYPE_SIZE*2;         \
156     }                                   \
157     else                                \
158     {                                   \
159         __FP_CLZ(R,X##_f[0]);           \
160         R += _FP_W_TYPE_SIZE*3;         \
161     }                                   \
162   } while(0)
163
164
165 #define _FP_UNPACK_RAW_4(fs, X, val)                            \
166   do {                                                          \
167     union _FP_UNION_##fs _flo; _flo.flt = (val);                \
168     X##_f[0] = _flo.bits.frac0;                                 \
169     X##_f[1] = _flo.bits.frac1;                                 \
170     X##_f[2] = _flo.bits.frac2;                                 \
171     X##_f[3] = _flo.bits.frac3;                                 \
172     X##_e  = _flo.bits.exp;                                     \
173     X##_s  = _flo.bits.sign;                                    \
174   } while (0)
175
176 #define _FP_PACK_RAW_4(fs, val, X)                              \
177   do {                                                          \
178     union _FP_UNION_##fs _flo;                                  \
179     _flo.bits.frac0 = X##_f[0];                                 \
180     _flo.bits.frac1 = X##_f[1];                                 \
181     _flo.bits.frac2 = X##_f[2];                                 \
182     _flo.bits.frac3 = X##_f[3];                                 \
183     _flo.bits.exp   = X##_e;                                    \
184     _flo.bits.sign  = X##_s;                                    \
185     (val) = _flo.flt;                                           \
186   } while (0)
187
188
189 /*
190  * Internals
191  */
192
193 #define __FP_FRAC_SET_4(X,I3,I2,I1,I0)                                  \
194   (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
195
196 #ifndef __FP_FRAC_ADD_4
197 #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)            \
198   (r0 = x0 + y0,                                                        \
199    r1 = x1 + y1 + (r0 < x0),                                            \
200    r2 = x2 + y2 + (r1 < x1),                                            \
201    r3 = x3 + y3 + (r2 < x2))
202 #endif
203
204 #ifndef __FP_FRAC_SUB_4
205 #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)            \
206   (r0 = x0 - y0,                                                        \
207    r1 = x1 - y1 - (r0 > x0),                                            \
208    r2 = x2 - y2 - (r1 > x1),                                            \
209    r3 = x3 - y3 - (r2 > x2))
210 #endif
211
212 #ifndef __FP_FRAC_ADDI_4
213 /* I always wanted to be a lisp programmer :-> */
214 #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)                                 \
215   (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2)))
216 #endif
217
218 /* Convert FP values between word sizes. This appears to be more
219  * complicated than I'd have expected it to be, so these might be
220  * wrong... These macros are in any case somewhat bogus because they
221  * use information about what various FRAC_n variables look like
222  * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
223  * the ones in op-2.h and op-1.h.
224  */
225 #define _FP_FRAC_CONV_1_4(dfs, sfs, D, S)                               \
226    do {                                                                 \
227      _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
228                         _FP_WFRACBITS_##sfs);                           \
229      D##_f = S##_f[0];                                                   \
230   } while (0)
231
232 #define _FP_FRAC_CONV_2_4(dfs, sfs, D, S)                               \
233    do {                                                                 \
234      _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
235                         _FP_WFRACBITS_##sfs);                           \
236      D##_f0 = S##_f[0];                                                  \
237      D##_f1 = S##_f[1];                                                  \
238   } while (0)
239
240 /* Assembly/disassembly for converting to/from integral types.
241  * No shifting or overflow handled here.
242  */
243 /* Put the FP value X into r, which is an integer of size rsize. */
244 #define _FP_FRAC_ASSEMBLE_4(r, X, rsize)                                \
245   do {                                                                  \
246     if (rsize <= _FP_W_TYPE_SIZE)                                       \
247       r = X##_f[0];                                                     \
248     else if (rsize <= 2*_FP_W_TYPE_SIZE)                                \
249     {                                                                   \
250       r = X##_f[1];                                                     \
251       r <<= _FP_W_TYPE_SIZE;                                            \
252       r += X##_f[0];                                                    \
253     }                                                                   \
254     else                                                                \
255     {                                                                   \
256       /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
257       /* and int == 4words as a single case.                         */ \
258       r = X##_f[3];                                                     \
259       r <<= _FP_W_TYPE_SIZE;                                            \
260       r += X##_f[2];                                                    \
261       r <<= _FP_W_TYPE_SIZE;                                            \
262       r += X##_f[1];                                                    \
263       r <<= _FP_W_TYPE_SIZE;                                            \
264       r += X##_f[0];                                                    \
265     }                                                                   \
266   } while (0)
267
268 /* "No disassemble Number Five!" */
269 /* move an integer of size rsize into X's fractional part. We rely on
270  * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
271  * having to mask the values we store into it.
272  */
273 #define _FP_FRAC_DISASSEMBLE_4(X, r, rsize)                             \
274   do {                                                                  \
275     X##_f[0] = r;                                                       \
276     X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);   \
277     X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
278     X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
279   } while (0)
280
281 #define _FP_FRAC_CONV_4_1(dfs, sfs, D, S)                               \
282    do {                                                                 \
283      D##_f[0] = S##_f;                                                  \
284      D##_f[1] = D##_f[2] = D##_f[3] = 0;                                \
285      _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
286    } while (0)
287
288 #define _FP_FRAC_CONV_4_2(dfs, sfs, D, S)                               \
289    do {                                                                 \
290      D##_f[0] = S##_f0;                                                 \
291      D##_f[1] = S##_f1;                                                 \
292      D##_f[2] = D##_f[3] = 0;                                           \
293      _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
294    } while (0)
295
296 /* FIXME! This has to be written */
297 #define _FP_SQRT_MEAT_4(R, S, T, X, q)