Merge commit 'v2.6.30-rc6' into perfcounters/core
[linux-2.6] / arch / powerpc / kernel / perf_counter.c
1 /*
2  * Performance counter support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_counters {
23         int n_counters;
24         int n_percpu;
25         int disabled;
26         int n_added;
27         int n_limited;
28         u8  pmcs_enabled;
29         struct perf_counter *counter[MAX_HWCOUNTERS];
30         u64 events[MAX_HWCOUNTERS];
31         unsigned int flags[MAX_HWCOUNTERS];
32         u64 mmcr[3];
33         struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 };
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38 struct power_pmu *ppmu;
39
40 /*
41  * Normally, to ignore kernel events we set the FCS (freeze counters
42  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43  * hypervisor bit set in the MSR, or if we are running on a processor
44  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45  * then we need to use the FCHV bit to ignore kernel events.
46  */
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
49 static void perf_counter_interrupt(struct pt_regs *regs);
50
51 void perf_counter_print_debug(void)
52 {
53 }
54
55 /*
56  * Read one performance monitor counter (PMC).
57  */
58 static unsigned long read_pmc(int idx)
59 {
60         unsigned long val;
61
62         switch (idx) {
63         case 1:
64                 val = mfspr(SPRN_PMC1);
65                 break;
66         case 2:
67                 val = mfspr(SPRN_PMC2);
68                 break;
69         case 3:
70                 val = mfspr(SPRN_PMC3);
71                 break;
72         case 4:
73                 val = mfspr(SPRN_PMC4);
74                 break;
75         case 5:
76                 val = mfspr(SPRN_PMC5);
77                 break;
78         case 6:
79                 val = mfspr(SPRN_PMC6);
80                 break;
81         case 7:
82                 val = mfspr(SPRN_PMC7);
83                 break;
84         case 8:
85                 val = mfspr(SPRN_PMC8);
86                 break;
87         default:
88                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
89                 val = 0;
90         }
91         return val;
92 }
93
94 /*
95  * Write one PMC.
96  */
97 static void write_pmc(int idx, unsigned long val)
98 {
99         switch (idx) {
100         case 1:
101                 mtspr(SPRN_PMC1, val);
102                 break;
103         case 2:
104                 mtspr(SPRN_PMC2, val);
105                 break;
106         case 3:
107                 mtspr(SPRN_PMC3, val);
108                 break;
109         case 4:
110                 mtspr(SPRN_PMC4, val);
111                 break;
112         case 5:
113                 mtspr(SPRN_PMC5, val);
114                 break;
115         case 6:
116                 mtspr(SPRN_PMC6, val);
117                 break;
118         case 7:
119                 mtspr(SPRN_PMC7, val);
120                 break;
121         case 8:
122                 mtspr(SPRN_PMC8, val);
123                 break;
124         default:
125                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
126         }
127 }
128
129 /*
130  * Check if a set of events can all go on the PMU at once.
131  * If they can't, this will look at alternative codes for the events
132  * and see if any combination of alternative codes is feasible.
133  * The feasible set is returned in event[].
134  */
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
136                                    int n_ev)
137 {
138         u64 mask, value, nv;
139         u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140         u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141         u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142         u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143         int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
144         int i, j;
145         u64 addf = ppmu->add_fields;
146         u64 tadd = ppmu->test_adder;
147
148         if (n_ev > ppmu->n_counter)
149                 return -1;
150
151         /* First see if the events will go on as-is */
152         for (i = 0; i < n_ev; ++i) {
153                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154                     && !ppmu->limited_pmc_event(event[i])) {
155                         ppmu->get_alternatives(event[i], cflags[i],
156                                                alternatives[i]);
157                         event[i] = alternatives[i][0];
158                 }
159                 if (ppmu->get_constraint(event[i], &amasks[i][0],
160                                          &avalues[i][0]))
161                         return -1;
162         }
163         value = mask = 0;
164         for (i = 0; i < n_ev; ++i) {
165                 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166                 if ((((nv + tadd) ^ value) & mask) != 0 ||
167                     (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
168                         break;
169                 value = nv;
170                 mask |= amasks[i][0];
171         }
172         if (i == n_ev)
173                 return 0;       /* all OK */
174
175         /* doesn't work, gather alternatives... */
176         if (!ppmu->get_alternatives)
177                 return -1;
178         for (i = 0; i < n_ev; ++i) {
179                 choice[i] = 0;
180                 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
181                                                   alternatives[i]);
182                 for (j = 1; j < n_alt[i]; ++j)
183                         ppmu->get_constraint(alternatives[i][j],
184                                              &amasks[i][j], &avalues[i][j]);
185         }
186
187         /* enumerate all possibilities and see if any will work */
188         i = 0;
189         j = -1;
190         value = mask = nv = 0;
191         while (i < n_ev) {
192                 if (j >= 0) {
193                         /* we're backtracking, restore context */
194                         value = svalues[i];
195                         mask = smasks[i];
196                         j = choice[i];
197                 }
198                 /*
199                  * See if any alternative k for event i,
200                  * where k > j, will satisfy the constraints.
201                  */
202                 while (++j < n_alt[i]) {
203                         nv = (value | avalues[i][j]) +
204                                 (value & avalues[i][j] & addf);
205                         if ((((nv + tadd) ^ value) & mask) == 0 &&
206                             (((nv + tadd) ^ avalues[i][j])
207                              & amasks[i][j]) == 0)
208                                 break;
209                 }
210                 if (j >= n_alt[i]) {
211                         /*
212                          * No feasible alternative, backtrack
213                          * to event i-1 and continue enumerating its
214                          * alternatives from where we got up to.
215                          */
216                         if (--i < 0)
217                                 return -1;
218                 } else {
219                         /*
220                          * Found a feasible alternative for event i,
221                          * remember where we got up to with this event,
222                          * go on to the next event, and start with
223                          * the first alternative for it.
224                          */
225                         choice[i] = j;
226                         svalues[i] = value;
227                         smasks[i] = mask;
228                         value = nv;
229                         mask |= amasks[i][j];
230                         ++i;
231                         j = -1;
232                 }
233         }
234
235         /* OK, we have a feasible combination, tell the caller the solution */
236         for (i = 0; i < n_ev; ++i)
237                 event[i] = alternatives[i][choice[i]];
238         return 0;
239 }
240
241 /*
242  * Check if newly-added counters have consistent settings for
243  * exclude_{user,kernel,hv} with each other and any previously
244  * added counters.
245  */
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247                           int n_prev, int n_new)
248 {
249         int eu = 0, ek = 0, eh = 0;
250         int i, n, first;
251         struct perf_counter *counter;
252
253         n = n_prev + n_new;
254         if (n <= 1)
255                 return 0;
256
257         first = 1;
258         for (i = 0; i < n; ++i) {
259                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
261                         continue;
262                 }
263                 counter = ctrs[i];
264                 if (first) {
265                         eu = counter->hw_event.exclude_user;
266                         ek = counter->hw_event.exclude_kernel;
267                         eh = counter->hw_event.exclude_hv;
268                         first = 0;
269                 } else if (counter->hw_event.exclude_user != eu ||
270                            counter->hw_event.exclude_kernel != ek ||
271                            counter->hw_event.exclude_hv != eh) {
272                         return -EAGAIN;
273                 }
274         }
275
276         if (eu || ek || eh)
277                 for (i = 0; i < n; ++i)
278                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
279                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
280
281         return 0;
282 }
283
284 static void power_pmu_read(struct perf_counter *counter)
285 {
286         long val, delta, prev;
287
288         if (!counter->hw.idx)
289                 return;
290         /*
291          * Performance monitor interrupts come even when interrupts
292          * are soft-disabled, as long as interrupts are hard-enabled.
293          * Therefore we treat them like NMIs.
294          */
295         do {
296                 prev = atomic64_read(&counter->hw.prev_count);
297                 barrier();
298                 val = read_pmc(counter->hw.idx);
299         } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
300
301         /* The counters are only 32 bits wide */
302         delta = (val - prev) & 0xfffffffful;
303         atomic64_add(delta, &counter->count);
304         atomic64_sub(delta, &counter->hw.period_left);
305 }
306
307 /*
308  * On some machines, PMC5 and PMC6 can't be written, don't respect
309  * the freeze conditions, and don't generate interrupts.  This tells
310  * us if `counter' is using such a PMC.
311  */
312 static int is_limited_pmc(int pmcnum)
313 {
314         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315                 && (pmcnum == 5 || pmcnum == 6);
316 }
317
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319                                     unsigned long pmc5, unsigned long pmc6)
320 {
321         struct perf_counter *counter;
322         u64 val, prev, delta;
323         int i;
324
325         for (i = 0; i < cpuhw->n_limited; ++i) {
326                 counter = cpuhw->limited_counter[i];
327                 if (!counter->hw.idx)
328                         continue;
329                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330                 prev = atomic64_read(&counter->hw.prev_count);
331                 counter->hw.idx = 0;
332                 delta = (val - prev) & 0xfffffffful;
333                 atomic64_add(delta, &counter->count);
334         }
335 }
336
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338                                   unsigned long pmc5, unsigned long pmc6)
339 {
340         struct perf_counter *counter;
341         u64 val;
342         int i;
343
344         for (i = 0; i < cpuhw->n_limited; ++i) {
345                 counter = cpuhw->limited_counter[i];
346                 counter->hw.idx = cpuhw->limited_hwidx[i];
347                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348                 atomic64_set(&counter->hw.prev_count, val);
349                 perf_counter_update_userpage(counter);
350         }
351 }
352
353 /*
354  * Since limited counters don't respect the freeze conditions, we
355  * have to read them immediately after freezing or unfreezing the
356  * other counters.  We try to keep the values from the limited
357  * counters as consistent as possible by keeping the delay (in
358  * cycles and instructions) between freezing/unfreezing and reading
359  * the limited counters as small and consistent as possible.
360  * Therefore, if any limited counters are in use, we read them
361  * both, and always in the same order, to minimize variability,
362  * and do it inside the same asm that writes MMCR0.
363  */
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
365 {
366         unsigned long pmc5, pmc6;
367
368         if (!cpuhw->n_limited) {
369                 mtspr(SPRN_MMCR0, mmcr0);
370                 return;
371         }
372
373         /*
374          * Write MMCR0, then read PMC5 and PMC6 immediately.
375          */
376         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
377                      : "=&r" (pmc5), "=&r" (pmc6)
378                      : "r" (mmcr0), "i" (SPRN_MMCR0),
379                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
380
381         if (mmcr0 & MMCR0_FC)
382                 freeze_limited_counters(cpuhw, pmc5, pmc6);
383         else
384                 thaw_limited_counters(cpuhw, pmc5, pmc6);
385 }
386
387 /*
388  * Disable all counters to prevent PMU interrupts and to allow
389  * counters to be added or removed.
390  */
391 void hw_perf_disable(void)
392 {
393         struct cpu_hw_counters *cpuhw;
394         unsigned long ret;
395         unsigned long flags;
396
397         local_irq_save(flags);
398         cpuhw = &__get_cpu_var(cpu_hw_counters);
399
400         ret = cpuhw->disabled;
401         if (!ret) {
402                 cpuhw->disabled = 1;
403                 cpuhw->n_added = 0;
404
405                 /*
406                  * Check if we ever enabled the PMU on this cpu.
407                  */
408                 if (!cpuhw->pmcs_enabled) {
409                         if (ppc_md.enable_pmcs)
410                                 ppc_md.enable_pmcs();
411                         cpuhw->pmcs_enabled = 1;
412                 }
413
414                 /*
415                  * Disable instruction sampling if it was enabled
416                  */
417                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
418                         mtspr(SPRN_MMCRA,
419                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
420                         mb();
421                 }
422
423                 /*
424                  * Set the 'freeze counters' bit.
425                  * The barrier is to make sure the mtspr has been
426                  * executed and the PMU has frozen the counters
427                  * before we return.
428                  */
429                 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
430                 mb();
431         }
432         local_irq_restore(flags);
433 }
434
435 /*
436  * Re-enable all counters if disable == 0.
437  * If we were previously disabled and counters were added, then
438  * put the new config on the PMU.
439  */
440 void hw_perf_enable(void)
441 {
442         struct perf_counter *counter;
443         struct cpu_hw_counters *cpuhw;
444         unsigned long flags;
445         long i;
446         unsigned long val;
447         s64 left;
448         unsigned int hwc_index[MAX_HWCOUNTERS];
449         int n_lim;
450         int idx;
451
452         local_irq_save(flags);
453         if (!cpuhw->disabled) {
454                 local_irq_restore(flags);
455                 return;
456         }
457
458         cpuhw = &__get_cpu_var(cpu_hw_counters);
459         cpuhw->disabled = 0;
460
461         /*
462          * If we didn't change anything, or only removed counters,
463          * no need to recalculate MMCR* settings and reset the PMCs.
464          * Just reenable the PMU with the current MMCR* settings
465          * (possibly updated for removal of counters).
466          */
467         if (!cpuhw->n_added) {
468                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
469                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
470                 if (cpuhw->n_counters == 0)
471                         get_lppaca()->pmcregs_in_use = 0;
472                 goto out_enable;
473         }
474
475         /*
476          * Compute MMCR* values for the new set of counters
477          */
478         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
479                                cpuhw->mmcr)) {
480                 /* shouldn't ever get here */
481                 printk(KERN_ERR "oops compute_mmcr failed\n");
482                 goto out;
483         }
484
485         /*
486          * Add in MMCR0 freeze bits corresponding to the
487          * hw_event.exclude_* bits for the first counter.
488          * We have already checked that all counters have the
489          * same values for these bits as the first counter.
490          */
491         counter = cpuhw->counter[0];
492         if (counter->hw_event.exclude_user)
493                 cpuhw->mmcr[0] |= MMCR0_FCP;
494         if (counter->hw_event.exclude_kernel)
495                 cpuhw->mmcr[0] |= freeze_counters_kernel;
496         if (counter->hw_event.exclude_hv)
497                 cpuhw->mmcr[0] |= MMCR0_FCHV;
498
499         /*
500          * Write the new configuration to MMCR* with the freeze
501          * bit set and set the hardware counters to their initial values.
502          * Then unfreeze the counters.
503          */
504         get_lppaca()->pmcregs_in_use = 1;
505         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
506         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
507         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
508                                 | MMCR0_FC);
509
510         /*
511          * Read off any pre-existing counters that need to move
512          * to another PMC.
513          */
514         for (i = 0; i < cpuhw->n_counters; ++i) {
515                 counter = cpuhw->counter[i];
516                 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
517                         power_pmu_read(counter);
518                         write_pmc(counter->hw.idx, 0);
519                         counter->hw.idx = 0;
520                 }
521         }
522
523         /*
524          * Initialize the PMCs for all the new and moved counters.
525          */
526         cpuhw->n_limited = n_lim = 0;
527         for (i = 0; i < cpuhw->n_counters; ++i) {
528                 counter = cpuhw->counter[i];
529                 if (counter->hw.idx)
530                         continue;
531                 idx = hwc_index[i] + 1;
532                 if (is_limited_pmc(idx)) {
533                         cpuhw->limited_counter[n_lim] = counter;
534                         cpuhw->limited_hwidx[n_lim] = idx;
535                         ++n_lim;
536                         continue;
537                 }
538                 val = 0;
539                 if (counter->hw.irq_period) {
540                         left = atomic64_read(&counter->hw.period_left);
541                         if (left < 0x80000000L)
542                                 val = 0x80000000L - left;
543                 }
544                 atomic64_set(&counter->hw.prev_count, val);
545                 counter->hw.idx = idx;
546                 write_pmc(idx, val);
547                 perf_counter_update_userpage(counter);
548         }
549         cpuhw->n_limited = n_lim;
550         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
551
552  out_enable:
553         mb();
554         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
555
556         /*
557          * Enable instruction sampling if necessary
558          */
559         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
560                 mb();
561                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
562         }
563
564  out:
565         local_irq_restore(flags);
566 }
567
568 static int collect_events(struct perf_counter *group, int max_count,
569                           struct perf_counter *ctrs[], u64 *events,
570                           unsigned int *flags)
571 {
572         int n = 0;
573         struct perf_counter *counter;
574
575         if (!is_software_counter(group)) {
576                 if (n >= max_count)
577                         return -1;
578                 ctrs[n] = group;
579                 flags[n] = group->hw.counter_base;
580                 events[n++] = group->hw.config;
581         }
582         list_for_each_entry(counter, &group->sibling_list, list_entry) {
583                 if (!is_software_counter(counter) &&
584                     counter->state != PERF_COUNTER_STATE_OFF) {
585                         if (n >= max_count)
586                                 return -1;
587                         ctrs[n] = counter;
588                         flags[n] = counter->hw.counter_base;
589                         events[n++] = counter->hw.config;
590                 }
591         }
592         return n;
593 }
594
595 static void counter_sched_in(struct perf_counter *counter, int cpu)
596 {
597         counter->state = PERF_COUNTER_STATE_ACTIVE;
598         counter->oncpu = cpu;
599         counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
600         if (is_software_counter(counter))
601                 counter->pmu->enable(counter);
602 }
603
604 /*
605  * Called to enable a whole group of counters.
606  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
607  * Assumes the caller has disabled interrupts and has
608  * frozen the PMU with hw_perf_save_disable.
609  */
610 int hw_perf_group_sched_in(struct perf_counter *group_leader,
611                struct perf_cpu_context *cpuctx,
612                struct perf_counter_context *ctx, int cpu)
613 {
614         struct cpu_hw_counters *cpuhw;
615         long i, n, n0;
616         struct perf_counter *sub;
617
618         cpuhw = &__get_cpu_var(cpu_hw_counters);
619         n0 = cpuhw->n_counters;
620         n = collect_events(group_leader, ppmu->n_counter - n0,
621                            &cpuhw->counter[n0], &cpuhw->events[n0],
622                            &cpuhw->flags[n0]);
623         if (n < 0)
624                 return -EAGAIN;
625         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
626                 return -EAGAIN;
627         i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
628         if (i < 0)
629                 return -EAGAIN;
630         cpuhw->n_counters = n0 + n;
631         cpuhw->n_added += n;
632
633         /*
634          * OK, this group can go on; update counter states etc.,
635          * and enable any software counters
636          */
637         for (i = n0; i < n0 + n; ++i)
638                 cpuhw->counter[i]->hw.config = cpuhw->events[i];
639         cpuctx->active_oncpu += n;
640         n = 1;
641         counter_sched_in(group_leader, cpu);
642         list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
643                 if (sub->state != PERF_COUNTER_STATE_OFF) {
644                         counter_sched_in(sub, cpu);
645                         ++n;
646                 }
647         }
648         ctx->nr_active += n;
649
650         return 1;
651 }
652
653 /*
654  * Add a counter to the PMU.
655  * If all counters are not already frozen, then we disable and
656  * re-enable the PMU in order to get hw_perf_enable to do the
657  * actual work of reconfiguring the PMU.
658  */
659 static int power_pmu_enable(struct perf_counter *counter)
660 {
661         struct cpu_hw_counters *cpuhw;
662         unsigned long flags;
663         int n0;
664         int ret = -EAGAIN;
665
666         local_irq_save(flags);
667         perf_disable();
668
669         /*
670          * Add the counter to the list (if there is room)
671          * and check whether the total set is still feasible.
672          */
673         cpuhw = &__get_cpu_var(cpu_hw_counters);
674         n0 = cpuhw->n_counters;
675         if (n0 >= ppmu->n_counter)
676                 goto out;
677         cpuhw->counter[n0] = counter;
678         cpuhw->events[n0] = counter->hw.config;
679         cpuhw->flags[n0] = counter->hw.counter_base;
680         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
681                 goto out;
682         if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
683                 goto out;
684
685         counter->hw.config = cpuhw->events[n0];
686         ++cpuhw->n_counters;
687         ++cpuhw->n_added;
688
689         ret = 0;
690  out:
691         perf_enable();
692         local_irq_restore(flags);
693         return ret;
694 }
695
696 /*
697  * Remove a counter from the PMU.
698  */
699 static void power_pmu_disable(struct perf_counter *counter)
700 {
701         struct cpu_hw_counters *cpuhw;
702         long i;
703         unsigned long flags;
704
705         local_irq_save(flags);
706         perf_disable();
707
708         power_pmu_read(counter);
709
710         cpuhw = &__get_cpu_var(cpu_hw_counters);
711         for (i = 0; i < cpuhw->n_counters; ++i) {
712                 if (counter == cpuhw->counter[i]) {
713                         while (++i < cpuhw->n_counters)
714                                 cpuhw->counter[i-1] = cpuhw->counter[i];
715                         --cpuhw->n_counters;
716                         ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
717                         if (counter->hw.idx) {
718                                 write_pmc(counter->hw.idx, 0);
719                                 counter->hw.idx = 0;
720                         }
721                         perf_counter_update_userpage(counter);
722                         break;
723                 }
724         }
725         for (i = 0; i < cpuhw->n_limited; ++i)
726                 if (counter == cpuhw->limited_counter[i])
727                         break;
728         if (i < cpuhw->n_limited) {
729                 while (++i < cpuhw->n_limited) {
730                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
731                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
732                 }
733                 --cpuhw->n_limited;
734         }
735         if (cpuhw->n_counters == 0) {
736                 /* disable exceptions if no counters are running */
737                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
738         }
739
740         perf_enable();
741         local_irq_restore(flags);
742 }
743
744 struct pmu power_pmu = {
745         .enable         = power_pmu_enable,
746         .disable        = power_pmu_disable,
747         .read           = power_pmu_read,
748 };
749
750 /*
751  * Return 1 if we might be able to put counter on a limited PMC,
752  * or 0 if not.
753  * A counter can only go on a limited PMC if it counts something
754  * that a limited PMC can count, doesn't require interrupts, and
755  * doesn't exclude any processor mode.
756  */
757 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
758                                  unsigned int flags)
759 {
760         int n;
761         u64 alt[MAX_EVENT_ALTERNATIVES];
762
763         if (counter->hw_event.exclude_user
764             || counter->hw_event.exclude_kernel
765             || counter->hw_event.exclude_hv
766             || counter->hw_event.irq_period)
767                 return 0;
768
769         if (ppmu->limited_pmc_event(ev))
770                 return 1;
771
772         /*
773          * The requested event isn't on a limited PMC already;
774          * see if any alternative code goes on a limited PMC.
775          */
776         if (!ppmu->get_alternatives)
777                 return 0;
778
779         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
780         n = ppmu->get_alternatives(ev, flags, alt);
781
782         return n > 0;
783 }
784
785 /*
786  * Find an alternative event that goes on a normal PMC, if possible,
787  * and return the event code, or 0 if there is no such alternative.
788  * (Note: event code 0 is "don't count" on all machines.)
789  */
790 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
791 {
792         u64 alt[MAX_EVENT_ALTERNATIVES];
793         int n;
794
795         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
796         n = ppmu->get_alternatives(ev, flags, alt);
797         if (!n)
798                 return 0;
799         return alt[0];
800 }
801
802 /* Number of perf_counters counting hardware events */
803 static atomic_t num_counters;
804 /* Used to avoid races in calling reserve/release_pmc_hardware */
805 static DEFINE_MUTEX(pmc_reserve_mutex);
806
807 /*
808  * Release the PMU if this is the last perf_counter.
809  */
810 static void hw_perf_counter_destroy(struct perf_counter *counter)
811 {
812         if (!atomic_add_unless(&num_counters, -1, 1)) {
813                 mutex_lock(&pmc_reserve_mutex);
814                 if (atomic_dec_return(&num_counters) == 0)
815                         release_pmc_hardware();
816                 mutex_unlock(&pmc_reserve_mutex);
817         }
818 }
819
820 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
821 {
822         u64 ev;
823         unsigned long flags;
824         struct perf_counter *ctrs[MAX_HWCOUNTERS];
825         u64 events[MAX_HWCOUNTERS];
826         unsigned int cflags[MAX_HWCOUNTERS];
827         int n;
828         int err;
829
830         if (!ppmu)
831                 return ERR_PTR(-ENXIO);
832         if (!perf_event_raw(&counter->hw_event)) {
833                 ev = perf_event_id(&counter->hw_event);
834                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
835                         return ERR_PTR(-EOPNOTSUPP);
836                 ev = ppmu->generic_events[ev];
837         } else {
838                 ev = perf_event_config(&counter->hw_event);
839         }
840         counter->hw.config_base = ev;
841         counter->hw.idx = 0;
842
843         /*
844          * If we are not running on a hypervisor, force the
845          * exclude_hv bit to 0 so that we don't care what
846          * the user set it to.
847          */
848         if (!firmware_has_feature(FW_FEATURE_LPAR))
849                 counter->hw_event.exclude_hv = 0;
850
851         /*
852          * If this is a per-task counter, then we can use
853          * PM_RUN_* events interchangeably with their non RUN_*
854          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
855          * XXX we should check if the task is an idle task.
856          */
857         flags = 0;
858         if (counter->ctx->task)
859                 flags |= PPMU_ONLY_COUNT_RUN;
860
861         /*
862          * If this machine has limited counters, check whether this
863          * event could go on a limited counter.
864          */
865         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
866                 if (can_go_on_limited_pmc(counter, ev, flags)) {
867                         flags |= PPMU_LIMITED_PMC_OK;
868                 } else if (ppmu->limited_pmc_event(ev)) {
869                         /*
870                          * The requested event is on a limited PMC,
871                          * but we can't use a limited PMC; see if any
872                          * alternative goes on a normal PMC.
873                          */
874                         ev = normal_pmc_alternative(ev, flags);
875                         if (!ev)
876                                 return ERR_PTR(-EINVAL);
877                 }
878         }
879
880         /*
881          * If this is in a group, check if it can go on with all the
882          * other hardware counters in the group.  We assume the counter
883          * hasn't been linked into its leader's sibling list at this point.
884          */
885         n = 0;
886         if (counter->group_leader != counter) {
887                 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
888                                    ctrs, events, cflags);
889                 if (n < 0)
890                         return ERR_PTR(-EINVAL);
891         }
892         events[n] = ev;
893         ctrs[n] = counter;
894         cflags[n] = flags;
895         if (check_excludes(ctrs, cflags, n, 1))
896                 return ERR_PTR(-EINVAL);
897         if (power_check_constraints(events, cflags, n + 1))
898                 return ERR_PTR(-EINVAL);
899
900         counter->hw.config = events[n];
901         counter->hw.counter_base = cflags[n];
902         atomic64_set(&counter->hw.period_left, counter->hw.irq_period);
903
904         /*
905          * See if we need to reserve the PMU.
906          * If no counters are currently in use, then we have to take a
907          * mutex to ensure that we don't race with another task doing
908          * reserve_pmc_hardware or release_pmc_hardware.
909          */
910         err = 0;
911         if (!atomic_inc_not_zero(&num_counters)) {
912                 mutex_lock(&pmc_reserve_mutex);
913                 if (atomic_read(&num_counters) == 0 &&
914                     reserve_pmc_hardware(perf_counter_interrupt))
915                         err = -EBUSY;
916                 else
917                         atomic_inc(&num_counters);
918                 mutex_unlock(&pmc_reserve_mutex);
919         }
920         counter->destroy = hw_perf_counter_destroy;
921
922         if (err)
923                 return ERR_PTR(err);
924         return &power_pmu;
925 }
926
927 /*
928  * A counter has overflowed; update its count and record
929  * things if requested.  Note that interrupts are hard-disabled
930  * here so there is no possibility of being interrupted.
931  */
932 static void record_and_restart(struct perf_counter *counter, long val,
933                                struct pt_regs *regs, int nmi)
934 {
935         u64 period = counter->hw.irq_period;
936         s64 prev, delta, left;
937         int record = 0;
938         u64 addr, mmcra, sdsync;
939
940         /* we don't have to worry about interrupts here */
941         prev = atomic64_read(&counter->hw.prev_count);
942         delta = (val - prev) & 0xfffffffful;
943         atomic64_add(delta, &counter->count);
944
945         /*
946          * See if the total period for this counter has expired,
947          * and update for the next period.
948          */
949         val = 0;
950         left = atomic64_read(&counter->hw.period_left) - delta;
951         if (period) {
952                 if (left <= 0) {
953                         left += period;
954                         if (left <= 0)
955                                 left = period;
956                         record = 1;
957                 }
958                 if (left < 0x80000000L)
959                         val = 0x80000000L - left;
960         }
961         write_pmc(counter->hw.idx, val);
962         atomic64_set(&counter->hw.prev_count, val);
963         atomic64_set(&counter->hw.period_left, left);
964         perf_counter_update_userpage(counter);
965
966         /*
967          * Finally record data if requested.
968          */
969         if (record) {
970                 addr = 0;
971                 if (counter->hw_event.record_type & PERF_RECORD_ADDR) {
972                         /*
973                          * The user wants a data address recorded.
974                          * If we're not doing instruction sampling,
975                          * give them the SDAR (sampled data address).
976                          * If we are doing instruction sampling, then only
977                          * give them the SDAR if it corresponds to the
978                          * instruction pointed to by SIAR; this is indicated
979                          * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
980                          */
981                         mmcra = regs->dsisr;
982                         sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
983                                 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
984                         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
985                                 addr = mfspr(SPRN_SDAR);
986                 }
987                 perf_counter_overflow(counter, nmi, regs, addr);
988         }
989 }
990
991 /*
992  * Called from generic code to get the misc flags (i.e. processor mode)
993  * for an event.
994  */
995 unsigned long perf_misc_flags(struct pt_regs *regs)
996 {
997         unsigned long mmcra;
998
999         if (TRAP(regs) != 0xf00) {
1000                 /* not a PMU interrupt */
1001                 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1002                         PERF_EVENT_MISC_KERNEL;
1003         }
1004
1005         mmcra = regs->dsisr;
1006         if (ppmu->flags & PPMU_ALT_SIPR) {
1007                 if (mmcra & POWER6_MMCRA_SIHV)
1008                         return PERF_EVENT_MISC_HYPERVISOR;
1009                 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1010                         PERF_EVENT_MISC_KERNEL;
1011         }
1012         if (mmcra & MMCRA_SIHV)
1013                 return PERF_EVENT_MISC_HYPERVISOR;
1014         return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1015                         PERF_EVENT_MISC_KERNEL;
1016 }
1017
1018 /*
1019  * Called from generic code to get the instruction pointer
1020  * for an event.
1021  */
1022 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1023 {
1024         unsigned long mmcra;
1025         unsigned long ip;
1026         unsigned long slot;
1027
1028         if (TRAP(regs) != 0xf00)
1029                 return regs->nip;       /* not a PMU interrupt */
1030
1031         ip = mfspr(SPRN_SIAR);
1032         mmcra = regs->dsisr;
1033         if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1034                 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1035                 if (slot > 1)
1036                         ip += 4 * (slot - 1);
1037         }
1038         return ip;
1039 }
1040
1041 /*
1042  * Performance monitor interrupt stuff
1043  */
1044 static void perf_counter_interrupt(struct pt_regs *regs)
1045 {
1046         int i;
1047         struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1048         struct perf_counter *counter;
1049         long val;
1050         int found = 0;
1051         int nmi;
1052
1053         if (cpuhw->n_limited)
1054                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1055                                         mfspr(SPRN_PMC6));
1056
1057         /*
1058          * Overload regs->dsisr to store MMCRA so we only need to read it once.
1059          */
1060         regs->dsisr = mfspr(SPRN_MMCRA);
1061
1062         /*
1063          * If interrupts were soft-disabled when this PMU interrupt
1064          * occurred, treat it as an NMI.
1065          */
1066         nmi = !regs->softe;
1067         if (nmi)
1068                 nmi_enter();
1069         else
1070                 irq_enter();
1071
1072         for (i = 0; i < cpuhw->n_counters; ++i) {
1073                 counter = cpuhw->counter[i];
1074                 if (is_limited_pmc(counter->hw.idx))
1075                         continue;
1076                 val = read_pmc(counter->hw.idx);
1077                 if ((int)val < 0) {
1078                         /* counter has overflowed */
1079                         found = 1;
1080                         record_and_restart(counter, val, regs, nmi);
1081                 }
1082         }
1083
1084         /*
1085          * In case we didn't find and reset the counter that caused
1086          * the interrupt, scan all counters and reset any that are
1087          * negative, to avoid getting continual interrupts.
1088          * Any that we processed in the previous loop will not be negative.
1089          */
1090         if (!found) {
1091                 for (i = 0; i < ppmu->n_counter; ++i) {
1092                         if (is_limited_pmc(i + 1))
1093                                 continue;
1094                         val = read_pmc(i + 1);
1095                         if ((int)val < 0)
1096                                 write_pmc(i + 1, 0);
1097                 }
1098         }
1099
1100         /*
1101          * Reset MMCR0 to its normal value.  This will set PMXE and
1102          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1103          * and thus allow interrupts to occur again.
1104          * XXX might want to use MSR.PM to keep the counters frozen until
1105          * we get back out of this interrupt.
1106          */
1107         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1108
1109         if (nmi)
1110                 nmi_exit();
1111         else
1112                 irq_exit();
1113 }
1114
1115 void hw_perf_counter_setup(int cpu)
1116 {
1117         struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1118
1119         memset(cpuhw, 0, sizeof(*cpuhw));
1120         cpuhw->mmcr[0] = MMCR0_FC;
1121 }
1122
1123 extern struct power_pmu power4_pmu;
1124 extern struct power_pmu ppc970_pmu;
1125 extern struct power_pmu power5_pmu;
1126 extern struct power_pmu power5p_pmu;
1127 extern struct power_pmu power6_pmu;
1128
1129 static int init_perf_counters(void)
1130 {
1131         unsigned long pvr;
1132
1133         /* XXX should get this from cputable */
1134         pvr = mfspr(SPRN_PVR);
1135         switch (PVR_VER(pvr)) {
1136         case PV_POWER4:
1137         case PV_POWER4p:
1138                 ppmu = &power4_pmu;
1139                 break;
1140         case PV_970:
1141         case PV_970FX:
1142         case PV_970MP:
1143                 ppmu = &ppc970_pmu;
1144                 break;
1145         case PV_POWER5:
1146                 ppmu = &power5_pmu;
1147                 break;
1148         case PV_POWER5p:
1149                 ppmu = &power5p_pmu;
1150                 break;
1151         case 0x3e:
1152                 ppmu = &power6_pmu;
1153                 break;
1154         }
1155
1156         /*
1157          * Use FCHV to ignore kernel events if MSR.HV is set.
1158          */
1159         if (mfmsr() & MSR_HV)
1160                 freeze_counters_kernel = MMCR0_FCHV;
1161
1162         return 0;
1163 }
1164
1165 arch_initcall(init_perf_counters);