2 * Performance counter support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_counters {
29 struct perf_counter *counter[MAX_HWCOUNTERS];
30 u64 events[MAX_HWCOUNTERS];
31 unsigned int flags[MAX_HWCOUNTERS];
33 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
38 struct power_pmu *ppmu;
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
49 static void perf_counter_interrupt(struct pt_regs *regs);
51 void perf_counter_print_debug(void)
56 * Read one performance monitor counter (PMC).
58 static unsigned long read_pmc(int idx)
64 val = mfspr(SPRN_PMC1);
67 val = mfspr(SPRN_PMC2);
70 val = mfspr(SPRN_PMC3);
73 val = mfspr(SPRN_PMC4);
76 val = mfspr(SPRN_PMC5);
79 val = mfspr(SPRN_PMC6);
82 val = mfspr(SPRN_PMC7);
85 val = mfspr(SPRN_PMC8);
88 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
97 static void write_pmc(int idx, unsigned long val)
101 mtspr(SPRN_PMC1, val);
104 mtspr(SPRN_PMC2, val);
107 mtspr(SPRN_PMC3, val);
110 mtspr(SPRN_PMC4, val);
113 mtspr(SPRN_PMC5, val);
116 mtspr(SPRN_PMC6, val);
119 mtspr(SPRN_PMC7, val);
122 mtspr(SPRN_PMC8, val);
125 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
130 * Check if a set of events can all go on the PMU at once.
131 * If they can't, this will look at alternative codes for the events
132 * and see if any combination of alternative codes is feasible.
133 * The feasible set is returned in event[].
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
139 u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
145 u64 addf = ppmu->add_fields;
146 u64 tadd = ppmu->test_adder;
148 if (n_ev > ppmu->n_counter)
151 /* First see if the events will go on as-is */
152 for (i = 0; i < n_ev; ++i) {
153 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154 && !ppmu->limited_pmc_event(event[i])) {
155 ppmu->get_alternatives(event[i], cflags[i],
157 event[i] = alternatives[i][0];
159 if (ppmu->get_constraint(event[i], &amasks[i][0],
164 for (i = 0; i < n_ev; ++i) {
165 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166 if ((((nv + tadd) ^ value) & mask) != 0 ||
167 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
170 mask |= amasks[i][0];
173 return 0; /* all OK */
175 /* doesn't work, gather alternatives... */
176 if (!ppmu->get_alternatives)
178 for (i = 0; i < n_ev; ++i) {
180 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
182 for (j = 1; j < n_alt[i]; ++j)
183 ppmu->get_constraint(alternatives[i][j],
184 &amasks[i][j], &avalues[i][j]);
187 /* enumerate all possibilities and see if any will work */
190 value = mask = nv = 0;
193 /* we're backtracking, restore context */
199 * See if any alternative k for event i,
200 * where k > j, will satisfy the constraints.
202 while (++j < n_alt[i]) {
203 nv = (value | avalues[i][j]) +
204 (value & avalues[i][j] & addf);
205 if ((((nv + tadd) ^ value) & mask) == 0 &&
206 (((nv + tadd) ^ avalues[i][j])
207 & amasks[i][j]) == 0)
212 * No feasible alternative, backtrack
213 * to event i-1 and continue enumerating its
214 * alternatives from where we got up to.
220 * Found a feasible alternative for event i,
221 * remember where we got up to with this event,
222 * go on to the next event, and start with
223 * the first alternative for it.
229 mask |= amasks[i][j];
235 /* OK, we have a feasible combination, tell the caller the solution */
236 for (i = 0; i < n_ev; ++i)
237 event[i] = alternatives[i][choice[i]];
242 * Check if newly-added counters have consistent settings for
243 * exclude_{user,kernel,hv} with each other and any previously
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247 int n_prev, int n_new)
249 int eu = 0, ek = 0, eh = 0;
251 struct perf_counter *counter;
258 for (i = 0; i < n; ++i) {
259 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
265 eu = counter->hw_event.exclude_user;
266 ek = counter->hw_event.exclude_kernel;
267 eh = counter->hw_event.exclude_hv;
269 } else if (counter->hw_event.exclude_user != eu ||
270 counter->hw_event.exclude_kernel != ek ||
271 counter->hw_event.exclude_hv != eh) {
277 for (i = 0; i < n; ++i)
278 if (cflags[i] & PPMU_LIMITED_PMC_OK)
279 cflags[i] |= PPMU_LIMITED_PMC_REQD;
284 static void power_pmu_read(struct perf_counter *counter)
286 long val, delta, prev;
288 if (!counter->hw.idx)
291 * Performance monitor interrupts come even when interrupts
292 * are soft-disabled, as long as interrupts are hard-enabled.
293 * Therefore we treat them like NMIs.
296 prev = atomic64_read(&counter->hw.prev_count);
298 val = read_pmc(counter->hw.idx);
299 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
301 /* The counters are only 32 bits wide */
302 delta = (val - prev) & 0xfffffffful;
303 atomic64_add(delta, &counter->count);
304 atomic64_sub(delta, &counter->hw.period_left);
308 * On some machines, PMC5 and PMC6 can't be written, don't respect
309 * the freeze conditions, and don't generate interrupts. This tells
310 * us if `counter' is using such a PMC.
312 static int is_limited_pmc(int pmcnum)
314 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315 && (pmcnum == 5 || pmcnum == 6);
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319 unsigned long pmc5, unsigned long pmc6)
321 struct perf_counter *counter;
322 u64 val, prev, delta;
325 for (i = 0; i < cpuhw->n_limited; ++i) {
326 counter = cpuhw->limited_counter[i];
327 if (!counter->hw.idx)
329 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330 prev = atomic64_read(&counter->hw.prev_count);
332 delta = (val - prev) & 0xfffffffful;
333 atomic64_add(delta, &counter->count);
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338 unsigned long pmc5, unsigned long pmc6)
340 struct perf_counter *counter;
344 for (i = 0; i < cpuhw->n_limited; ++i) {
345 counter = cpuhw->limited_counter[i];
346 counter->hw.idx = cpuhw->limited_hwidx[i];
347 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348 atomic64_set(&counter->hw.prev_count, val);
349 perf_counter_update_userpage(counter);
354 * Since limited counters don't respect the freeze conditions, we
355 * have to read them immediately after freezing or unfreezing the
356 * other counters. We try to keep the values from the limited
357 * counters as consistent as possible by keeping the delay (in
358 * cycles and instructions) between freezing/unfreezing and reading
359 * the limited counters as small and consistent as possible.
360 * Therefore, if any limited counters are in use, we read them
361 * both, and always in the same order, to minimize variability,
362 * and do it inside the same asm that writes MMCR0.
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
366 unsigned long pmc5, pmc6;
368 if (!cpuhw->n_limited) {
369 mtspr(SPRN_MMCR0, mmcr0);
374 * Write MMCR0, then read PMC5 and PMC6 immediately.
376 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
377 : "=&r" (pmc5), "=&r" (pmc6)
378 : "r" (mmcr0), "i" (SPRN_MMCR0),
379 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
381 if (mmcr0 & MMCR0_FC)
382 freeze_limited_counters(cpuhw, pmc5, pmc6);
384 thaw_limited_counters(cpuhw, pmc5, pmc6);
388 * Disable all counters to prevent PMU interrupts and to allow
389 * counters to be added or removed.
391 void hw_perf_disable(void)
393 struct cpu_hw_counters *cpuhw;
397 local_irq_save(flags);
398 cpuhw = &__get_cpu_var(cpu_hw_counters);
400 ret = cpuhw->disabled;
406 * Check if we ever enabled the PMU on this cpu.
408 if (!cpuhw->pmcs_enabled) {
409 if (ppc_md.enable_pmcs)
410 ppc_md.enable_pmcs();
411 cpuhw->pmcs_enabled = 1;
415 * Disable instruction sampling if it was enabled
417 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
419 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
424 * Set the 'freeze counters' bit.
425 * The barrier is to make sure the mtspr has been
426 * executed and the PMU has frozen the counters
429 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
432 local_irq_restore(flags);
436 * Re-enable all counters if disable == 0.
437 * If we were previously disabled and counters were added, then
438 * put the new config on the PMU.
440 void hw_perf_enable(void)
442 struct perf_counter *counter;
443 struct cpu_hw_counters *cpuhw;
448 unsigned int hwc_index[MAX_HWCOUNTERS];
452 local_irq_save(flags);
453 if (!cpuhw->disabled) {
454 local_irq_restore(flags);
458 cpuhw = &__get_cpu_var(cpu_hw_counters);
462 * If we didn't change anything, or only removed counters,
463 * no need to recalculate MMCR* settings and reset the PMCs.
464 * Just reenable the PMU with the current MMCR* settings
465 * (possibly updated for removal of counters).
467 if (!cpuhw->n_added) {
468 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
469 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
470 if (cpuhw->n_counters == 0)
471 get_lppaca()->pmcregs_in_use = 0;
476 * Compute MMCR* values for the new set of counters
478 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
480 /* shouldn't ever get here */
481 printk(KERN_ERR "oops compute_mmcr failed\n");
486 * Add in MMCR0 freeze bits corresponding to the
487 * hw_event.exclude_* bits for the first counter.
488 * We have already checked that all counters have the
489 * same values for these bits as the first counter.
491 counter = cpuhw->counter[0];
492 if (counter->hw_event.exclude_user)
493 cpuhw->mmcr[0] |= MMCR0_FCP;
494 if (counter->hw_event.exclude_kernel)
495 cpuhw->mmcr[0] |= freeze_counters_kernel;
496 if (counter->hw_event.exclude_hv)
497 cpuhw->mmcr[0] |= MMCR0_FCHV;
500 * Write the new configuration to MMCR* with the freeze
501 * bit set and set the hardware counters to their initial values.
502 * Then unfreeze the counters.
504 get_lppaca()->pmcregs_in_use = 1;
505 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
506 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
507 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
511 * Read off any pre-existing counters that need to move
514 for (i = 0; i < cpuhw->n_counters; ++i) {
515 counter = cpuhw->counter[i];
516 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
517 power_pmu_read(counter);
518 write_pmc(counter->hw.idx, 0);
524 * Initialize the PMCs for all the new and moved counters.
526 cpuhw->n_limited = n_lim = 0;
527 for (i = 0; i < cpuhw->n_counters; ++i) {
528 counter = cpuhw->counter[i];
531 idx = hwc_index[i] + 1;
532 if (is_limited_pmc(idx)) {
533 cpuhw->limited_counter[n_lim] = counter;
534 cpuhw->limited_hwidx[n_lim] = idx;
539 if (counter->hw.irq_period) {
540 left = atomic64_read(&counter->hw.period_left);
541 if (left < 0x80000000L)
542 val = 0x80000000L - left;
544 atomic64_set(&counter->hw.prev_count, val);
545 counter->hw.idx = idx;
547 perf_counter_update_userpage(counter);
549 cpuhw->n_limited = n_lim;
550 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
554 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
557 * Enable instruction sampling if necessary
559 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
561 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
565 local_irq_restore(flags);
568 static int collect_events(struct perf_counter *group, int max_count,
569 struct perf_counter *ctrs[], u64 *events,
573 struct perf_counter *counter;
575 if (!is_software_counter(group)) {
579 flags[n] = group->hw.counter_base;
580 events[n++] = group->hw.config;
582 list_for_each_entry(counter, &group->sibling_list, list_entry) {
583 if (!is_software_counter(counter) &&
584 counter->state != PERF_COUNTER_STATE_OFF) {
588 flags[n] = counter->hw.counter_base;
589 events[n++] = counter->hw.config;
595 static void counter_sched_in(struct perf_counter *counter, int cpu)
597 counter->state = PERF_COUNTER_STATE_ACTIVE;
598 counter->oncpu = cpu;
599 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
600 if (is_software_counter(counter))
601 counter->pmu->enable(counter);
605 * Called to enable a whole group of counters.
606 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
607 * Assumes the caller has disabled interrupts and has
608 * frozen the PMU with hw_perf_save_disable.
610 int hw_perf_group_sched_in(struct perf_counter *group_leader,
611 struct perf_cpu_context *cpuctx,
612 struct perf_counter_context *ctx, int cpu)
614 struct cpu_hw_counters *cpuhw;
616 struct perf_counter *sub;
618 cpuhw = &__get_cpu_var(cpu_hw_counters);
619 n0 = cpuhw->n_counters;
620 n = collect_events(group_leader, ppmu->n_counter - n0,
621 &cpuhw->counter[n0], &cpuhw->events[n0],
625 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
627 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
630 cpuhw->n_counters = n0 + n;
634 * OK, this group can go on; update counter states etc.,
635 * and enable any software counters
637 for (i = n0; i < n0 + n; ++i)
638 cpuhw->counter[i]->hw.config = cpuhw->events[i];
639 cpuctx->active_oncpu += n;
641 counter_sched_in(group_leader, cpu);
642 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
643 if (sub->state != PERF_COUNTER_STATE_OFF) {
644 counter_sched_in(sub, cpu);
654 * Add a counter to the PMU.
655 * If all counters are not already frozen, then we disable and
656 * re-enable the PMU in order to get hw_perf_enable to do the
657 * actual work of reconfiguring the PMU.
659 static int power_pmu_enable(struct perf_counter *counter)
661 struct cpu_hw_counters *cpuhw;
666 local_irq_save(flags);
670 * Add the counter to the list (if there is room)
671 * and check whether the total set is still feasible.
673 cpuhw = &__get_cpu_var(cpu_hw_counters);
674 n0 = cpuhw->n_counters;
675 if (n0 >= ppmu->n_counter)
677 cpuhw->counter[n0] = counter;
678 cpuhw->events[n0] = counter->hw.config;
679 cpuhw->flags[n0] = counter->hw.counter_base;
680 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
682 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
685 counter->hw.config = cpuhw->events[n0];
692 local_irq_restore(flags);
697 * Remove a counter from the PMU.
699 static void power_pmu_disable(struct perf_counter *counter)
701 struct cpu_hw_counters *cpuhw;
705 local_irq_save(flags);
708 power_pmu_read(counter);
710 cpuhw = &__get_cpu_var(cpu_hw_counters);
711 for (i = 0; i < cpuhw->n_counters; ++i) {
712 if (counter == cpuhw->counter[i]) {
713 while (++i < cpuhw->n_counters)
714 cpuhw->counter[i-1] = cpuhw->counter[i];
716 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
717 if (counter->hw.idx) {
718 write_pmc(counter->hw.idx, 0);
721 perf_counter_update_userpage(counter);
725 for (i = 0; i < cpuhw->n_limited; ++i)
726 if (counter == cpuhw->limited_counter[i])
728 if (i < cpuhw->n_limited) {
729 while (++i < cpuhw->n_limited) {
730 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
731 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
735 if (cpuhw->n_counters == 0) {
736 /* disable exceptions if no counters are running */
737 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
741 local_irq_restore(flags);
744 struct pmu power_pmu = {
745 .enable = power_pmu_enable,
746 .disable = power_pmu_disable,
747 .read = power_pmu_read,
751 * Return 1 if we might be able to put counter on a limited PMC,
753 * A counter can only go on a limited PMC if it counts something
754 * that a limited PMC can count, doesn't require interrupts, and
755 * doesn't exclude any processor mode.
757 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
761 u64 alt[MAX_EVENT_ALTERNATIVES];
763 if (counter->hw_event.exclude_user
764 || counter->hw_event.exclude_kernel
765 || counter->hw_event.exclude_hv
766 || counter->hw_event.irq_period)
769 if (ppmu->limited_pmc_event(ev))
773 * The requested event isn't on a limited PMC already;
774 * see if any alternative code goes on a limited PMC.
776 if (!ppmu->get_alternatives)
779 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
780 n = ppmu->get_alternatives(ev, flags, alt);
786 * Find an alternative event that goes on a normal PMC, if possible,
787 * and return the event code, or 0 if there is no such alternative.
788 * (Note: event code 0 is "don't count" on all machines.)
790 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
792 u64 alt[MAX_EVENT_ALTERNATIVES];
795 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
796 n = ppmu->get_alternatives(ev, flags, alt);
802 /* Number of perf_counters counting hardware events */
803 static atomic_t num_counters;
804 /* Used to avoid races in calling reserve/release_pmc_hardware */
805 static DEFINE_MUTEX(pmc_reserve_mutex);
808 * Release the PMU if this is the last perf_counter.
810 static void hw_perf_counter_destroy(struct perf_counter *counter)
812 if (!atomic_add_unless(&num_counters, -1, 1)) {
813 mutex_lock(&pmc_reserve_mutex);
814 if (atomic_dec_return(&num_counters) == 0)
815 release_pmc_hardware();
816 mutex_unlock(&pmc_reserve_mutex);
820 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
824 struct perf_counter *ctrs[MAX_HWCOUNTERS];
825 u64 events[MAX_HWCOUNTERS];
826 unsigned int cflags[MAX_HWCOUNTERS];
831 return ERR_PTR(-ENXIO);
832 if (!perf_event_raw(&counter->hw_event)) {
833 ev = perf_event_id(&counter->hw_event);
834 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
835 return ERR_PTR(-EOPNOTSUPP);
836 ev = ppmu->generic_events[ev];
838 ev = perf_event_config(&counter->hw_event);
840 counter->hw.config_base = ev;
844 * If we are not running on a hypervisor, force the
845 * exclude_hv bit to 0 so that we don't care what
846 * the user set it to.
848 if (!firmware_has_feature(FW_FEATURE_LPAR))
849 counter->hw_event.exclude_hv = 0;
852 * If this is a per-task counter, then we can use
853 * PM_RUN_* events interchangeably with their non RUN_*
854 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
855 * XXX we should check if the task is an idle task.
858 if (counter->ctx->task)
859 flags |= PPMU_ONLY_COUNT_RUN;
862 * If this machine has limited counters, check whether this
863 * event could go on a limited counter.
865 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
866 if (can_go_on_limited_pmc(counter, ev, flags)) {
867 flags |= PPMU_LIMITED_PMC_OK;
868 } else if (ppmu->limited_pmc_event(ev)) {
870 * The requested event is on a limited PMC,
871 * but we can't use a limited PMC; see if any
872 * alternative goes on a normal PMC.
874 ev = normal_pmc_alternative(ev, flags);
876 return ERR_PTR(-EINVAL);
881 * If this is in a group, check if it can go on with all the
882 * other hardware counters in the group. We assume the counter
883 * hasn't been linked into its leader's sibling list at this point.
886 if (counter->group_leader != counter) {
887 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
888 ctrs, events, cflags);
890 return ERR_PTR(-EINVAL);
895 if (check_excludes(ctrs, cflags, n, 1))
896 return ERR_PTR(-EINVAL);
897 if (power_check_constraints(events, cflags, n + 1))
898 return ERR_PTR(-EINVAL);
900 counter->hw.config = events[n];
901 counter->hw.counter_base = cflags[n];
902 atomic64_set(&counter->hw.period_left, counter->hw.irq_period);
905 * See if we need to reserve the PMU.
906 * If no counters are currently in use, then we have to take a
907 * mutex to ensure that we don't race with another task doing
908 * reserve_pmc_hardware or release_pmc_hardware.
911 if (!atomic_inc_not_zero(&num_counters)) {
912 mutex_lock(&pmc_reserve_mutex);
913 if (atomic_read(&num_counters) == 0 &&
914 reserve_pmc_hardware(perf_counter_interrupt))
917 atomic_inc(&num_counters);
918 mutex_unlock(&pmc_reserve_mutex);
920 counter->destroy = hw_perf_counter_destroy;
928 * A counter has overflowed; update its count and record
929 * things if requested. Note that interrupts are hard-disabled
930 * here so there is no possibility of being interrupted.
932 static void record_and_restart(struct perf_counter *counter, long val,
933 struct pt_regs *regs, int nmi)
935 u64 period = counter->hw.irq_period;
936 s64 prev, delta, left;
938 u64 addr, mmcra, sdsync;
940 /* we don't have to worry about interrupts here */
941 prev = atomic64_read(&counter->hw.prev_count);
942 delta = (val - prev) & 0xfffffffful;
943 atomic64_add(delta, &counter->count);
946 * See if the total period for this counter has expired,
947 * and update for the next period.
950 left = atomic64_read(&counter->hw.period_left) - delta;
958 if (left < 0x80000000L)
959 val = 0x80000000L - left;
961 write_pmc(counter->hw.idx, val);
962 atomic64_set(&counter->hw.prev_count, val);
963 atomic64_set(&counter->hw.period_left, left);
964 perf_counter_update_userpage(counter);
967 * Finally record data if requested.
971 if (counter->hw_event.record_type & PERF_RECORD_ADDR) {
973 * The user wants a data address recorded.
974 * If we're not doing instruction sampling,
975 * give them the SDAR (sampled data address).
976 * If we are doing instruction sampling, then only
977 * give them the SDAR if it corresponds to the
978 * instruction pointed to by SIAR; this is indicated
979 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
982 sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
983 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
984 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
985 addr = mfspr(SPRN_SDAR);
987 perf_counter_overflow(counter, nmi, regs, addr);
992 * Called from generic code to get the misc flags (i.e. processor mode)
995 unsigned long perf_misc_flags(struct pt_regs *regs)
999 if (TRAP(regs) != 0xf00) {
1000 /* not a PMU interrupt */
1001 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1002 PERF_EVENT_MISC_KERNEL;
1005 mmcra = regs->dsisr;
1006 if (ppmu->flags & PPMU_ALT_SIPR) {
1007 if (mmcra & POWER6_MMCRA_SIHV)
1008 return PERF_EVENT_MISC_HYPERVISOR;
1009 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1010 PERF_EVENT_MISC_KERNEL;
1012 if (mmcra & MMCRA_SIHV)
1013 return PERF_EVENT_MISC_HYPERVISOR;
1014 return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1015 PERF_EVENT_MISC_KERNEL;
1019 * Called from generic code to get the instruction pointer
1022 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1024 unsigned long mmcra;
1028 if (TRAP(regs) != 0xf00)
1029 return regs->nip; /* not a PMU interrupt */
1031 ip = mfspr(SPRN_SIAR);
1032 mmcra = regs->dsisr;
1033 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1034 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1036 ip += 4 * (slot - 1);
1042 * Performance monitor interrupt stuff
1044 static void perf_counter_interrupt(struct pt_regs *regs)
1047 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1048 struct perf_counter *counter;
1053 if (cpuhw->n_limited)
1054 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1058 * Overload regs->dsisr to store MMCRA so we only need to read it once.
1060 regs->dsisr = mfspr(SPRN_MMCRA);
1063 * If interrupts were soft-disabled when this PMU interrupt
1064 * occurred, treat it as an NMI.
1072 for (i = 0; i < cpuhw->n_counters; ++i) {
1073 counter = cpuhw->counter[i];
1074 if (is_limited_pmc(counter->hw.idx))
1076 val = read_pmc(counter->hw.idx);
1078 /* counter has overflowed */
1080 record_and_restart(counter, val, regs, nmi);
1085 * In case we didn't find and reset the counter that caused
1086 * the interrupt, scan all counters and reset any that are
1087 * negative, to avoid getting continual interrupts.
1088 * Any that we processed in the previous loop will not be negative.
1091 for (i = 0; i < ppmu->n_counter; ++i) {
1092 if (is_limited_pmc(i + 1))
1094 val = read_pmc(i + 1);
1096 write_pmc(i + 1, 0);
1101 * Reset MMCR0 to its normal value. This will set PMXE and
1102 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1103 * and thus allow interrupts to occur again.
1104 * XXX might want to use MSR.PM to keep the counters frozen until
1105 * we get back out of this interrupt.
1107 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1115 void hw_perf_counter_setup(int cpu)
1117 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1119 memset(cpuhw, 0, sizeof(*cpuhw));
1120 cpuhw->mmcr[0] = MMCR0_FC;
1123 extern struct power_pmu power4_pmu;
1124 extern struct power_pmu ppc970_pmu;
1125 extern struct power_pmu power5_pmu;
1126 extern struct power_pmu power5p_pmu;
1127 extern struct power_pmu power6_pmu;
1129 static int init_perf_counters(void)
1133 /* XXX should get this from cputable */
1134 pvr = mfspr(SPRN_PVR);
1135 switch (PVR_VER(pvr)) {
1149 ppmu = &power5p_pmu;
1157 * Use FCHV to ignore kernel events if MSR.HV is set.
1159 if (mfmsr() & MSR_HV)
1160 freeze_counters_kernel = MMCR0_FCHV;
1165 arch_initcall(init_perf_counters);