2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
26 #define DM_MSG_PREFIX "crypt"
27 #define MESG_STR(x) x, sizeof(x)
30 * per bio private data
33 struct dm_target *target;
35 struct bio *first_clone;
36 struct work_struct work;
43 * context holding the current state of a multi-part conversion
45 struct convert_context {
48 unsigned int offset_in;
49 unsigned int offset_out;
58 struct crypt_iv_operations {
59 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
61 void (*dtr)(struct crypt_config *cc);
62 const char *(*status)(struct crypt_config *cc);
63 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
70 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
76 * pool for per bio private data and
77 * for encryption buffer pages
86 struct crypt_iv_operations *iv_gen_ops;
88 struct crypto_cipher *iv_gen_private;
92 char cipher[CRYPTO_MAX_ALG_NAME];
93 char chainmode[CRYPTO_MAX_ALG_NAME];
94 struct crypto_blkcipher *tfm;
96 unsigned int key_size;
101 #define MIN_POOL_PAGES 32
102 #define MIN_BIO_PAGES 8
104 static kmem_cache_t *_crypt_io_pool;
107 * Different IV generation algorithms:
109 * plain: the initial vector is the 32-bit little-endian version of the sector
110 * number, padded with zeros if neccessary.
112 * essiv: "encrypted sector|salt initial vector", the sector number is
113 * encrypted with the bulk cipher using a salt as key. The salt
114 * should be derived from the bulk cipher's key via hashing.
116 * plumb: unimplemented, see:
117 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
120 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
122 memset(iv, 0, cc->iv_size);
123 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
128 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
131 struct crypto_cipher *essiv_tfm;
132 struct crypto_hash *hash_tfm;
133 struct hash_desc desc;
134 struct scatterlist sg;
135 unsigned int saltsize;
140 ti->error = "Digest algorithm missing for ESSIV mode";
144 /* Hash the cipher key with the given hash algorithm */
145 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
146 if (IS_ERR(hash_tfm)) {
147 ti->error = "Error initializing ESSIV hash";
148 return PTR_ERR(hash_tfm);
151 saltsize = crypto_hash_digestsize(hash_tfm);
152 salt = kmalloc(saltsize, GFP_KERNEL);
154 ti->error = "Error kmallocing salt storage in ESSIV";
155 crypto_free_hash(hash_tfm);
159 sg_set_buf(&sg, cc->key, cc->key_size);
161 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
162 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
163 crypto_free_hash(hash_tfm);
166 ti->error = "Error calculating hash in ESSIV";
170 /* Setup the essiv_tfm with the given salt */
171 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
172 if (IS_ERR(essiv_tfm)) {
173 ti->error = "Error allocating crypto tfm for ESSIV";
175 return PTR_ERR(essiv_tfm);
177 if (crypto_cipher_blocksize(essiv_tfm) !=
178 crypto_blkcipher_ivsize(cc->tfm)) {
179 ti->error = "Block size of ESSIV cipher does "
180 "not match IV size of block cipher";
181 crypto_free_cipher(essiv_tfm);
185 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
187 ti->error = "Failed to set key for ESSIV cipher";
188 crypto_free_cipher(essiv_tfm);
194 cc->iv_gen_private = essiv_tfm;
198 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
200 crypto_free_cipher(cc->iv_gen_private);
201 cc->iv_gen_private = NULL;
204 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
206 memset(iv, 0, cc->iv_size);
207 *(u64 *)iv = cpu_to_le64(sector);
208 crypto_cipher_encrypt_one(cc->iv_gen_private, iv, iv);
212 static struct crypt_iv_operations crypt_iv_plain_ops = {
213 .generator = crypt_iv_plain_gen
216 static struct crypt_iv_operations crypt_iv_essiv_ops = {
217 .ctr = crypt_iv_essiv_ctr,
218 .dtr = crypt_iv_essiv_dtr,
219 .generator = crypt_iv_essiv_gen
224 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
225 struct scatterlist *in, unsigned int length,
226 int write, sector_t sector)
229 struct blkcipher_desc desc = {
232 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
236 if (cc->iv_gen_ops) {
237 r = cc->iv_gen_ops->generator(cc, iv, sector);
242 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
244 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
247 r = crypto_blkcipher_encrypt(&desc, out, in, length);
249 r = crypto_blkcipher_decrypt(&desc, out, in, length);
256 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
257 struct bio *bio_out, struct bio *bio_in,
258 sector_t sector, int write)
260 ctx->bio_in = bio_in;
261 ctx->bio_out = bio_out;
264 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
265 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
266 ctx->sector = sector + cc->iv_offset;
271 * Encrypt / decrypt data from one bio to another one (can be the same one)
273 static int crypt_convert(struct crypt_config *cc,
274 struct convert_context *ctx)
278 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
279 ctx->idx_out < ctx->bio_out->bi_vcnt) {
280 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
281 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
282 struct scatterlist sg_in = {
283 .page = bv_in->bv_page,
284 .offset = bv_in->bv_offset + ctx->offset_in,
285 .length = 1 << SECTOR_SHIFT
287 struct scatterlist sg_out = {
288 .page = bv_out->bv_page,
289 .offset = bv_out->bv_offset + ctx->offset_out,
290 .length = 1 << SECTOR_SHIFT
293 ctx->offset_in += sg_in.length;
294 if (ctx->offset_in >= bv_in->bv_len) {
299 ctx->offset_out += sg_out.length;
300 if (ctx->offset_out >= bv_out->bv_len) {
305 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
306 ctx->write, ctx->sector);
316 static void dm_crypt_bio_destructor(struct bio *bio)
318 struct crypt_io *io = bio->bi_private;
319 struct crypt_config *cc = io->target->private;
321 bio_free(bio, cc->bs);
325 * Generate a new unfragmented bio with the given size
326 * This should never violate the device limitations
327 * May return a smaller bio when running out of pages
330 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
331 struct bio *base_bio, unsigned int *bio_vec_idx)
334 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
335 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
339 clone = bio_alloc_bioset(GFP_NOIO, base_bio->bi_max_vecs, cc->bs);
340 __bio_clone(clone, base_bio);
342 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
347 clone->bi_destructor = dm_crypt_bio_destructor;
349 /* if the last bio was not complete, continue where that one ended */
350 clone->bi_idx = *bio_vec_idx;
351 clone->bi_vcnt = *bio_vec_idx;
353 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
355 /* clone->bi_idx pages have already been allocated */
356 size -= clone->bi_idx * PAGE_SIZE;
358 for (i = clone->bi_idx; i < nr_iovecs; i++) {
359 struct bio_vec *bv = bio_iovec_idx(clone, i);
361 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
366 * if additional pages cannot be allocated without waiting,
367 * return a partially allocated bio, the caller will then try
368 * to allocate additional bios while submitting this partial bio
370 if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
371 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
374 if (size > PAGE_SIZE)
375 bv->bv_len = PAGE_SIZE;
379 clone->bi_size += bv->bv_len;
384 if (!clone->bi_size) {
390 * Remember the last bio_vec allocated to be able
391 * to correctly continue after the splitting.
393 *bio_vec_idx = clone->bi_vcnt;
398 static void crypt_free_buffer_pages(struct crypt_config *cc,
399 struct bio *clone, unsigned int bytes)
401 unsigned int i, start, end;
405 * This is ugly, but Jens Axboe thinks that using bi_idx in the
406 * endio function is too dangerous at the moment, so I calculate the
407 * correct position using bi_vcnt and bi_size.
408 * The bv_offset and bv_len fields might already be modified but we
409 * know that we always allocated whole pages.
410 * A fix to the bi_idx issue in the kernel is in the works, so
411 * we will hopefully be able to revert to the cleaner solution soon.
413 i = clone->bi_vcnt - 1;
414 bv = bio_iovec_idx(clone, i);
415 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
418 start >>= PAGE_SHIFT;
420 end = clone->bi_vcnt;
424 for (i = start; i < end; i++) {
425 bv = bio_iovec_idx(clone, i);
426 BUG_ON(!bv->bv_page);
427 mempool_free(bv->bv_page, cc->page_pool);
433 * One of the bios was finished. Check for completion of
434 * the whole request and correctly clean up the buffer.
436 static void dec_pending(struct crypt_io *io, int error)
438 struct crypt_config *cc = (struct crypt_config *) io->target->private;
443 if (!atomic_dec_and_test(&io->pending))
447 bio_put(io->first_clone);
449 bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
451 mempool_free(io, cc->io_pool);
457 * Needed because it would be very unwise to do decryption in an
460 static struct workqueue_struct *_kcryptd_workqueue;
461 static void kcryptd_do_work(void *data);
463 static void kcryptd_queue_io(struct crypt_io *io)
465 INIT_WORK(&io->work, kcryptd_do_work, io);
466 queue_work(_kcryptd_workqueue, &io->work);
469 static int crypt_endio(struct bio *clone, unsigned int done, int error)
471 struct crypt_io *io = clone->bi_private;
472 struct crypt_config *cc = io->target->private;
473 unsigned read_io = bio_data_dir(clone) == READ;
476 * free the processed pages, even if
477 * it's only a partially completed write
480 crypt_free_buffer_pages(cc, clone, done);
482 /* keep going - not finished yet */
483 if (unlikely(clone->bi_size))
489 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
495 io->post_process = 1;
496 kcryptd_queue_io(io);
501 dec_pending(io, error);
505 static void clone_init(struct crypt_io *io, struct bio *clone)
507 struct crypt_config *cc = io->target->private;
509 clone->bi_private = io;
510 clone->bi_end_io = crypt_endio;
511 clone->bi_bdev = cc->dev->bdev;
512 clone->bi_rw = io->base_bio->bi_rw;
515 static void process_read(struct crypt_io *io)
517 struct crypt_config *cc = io->target->private;
518 struct bio *base_bio = io->base_bio;
520 sector_t sector = base_bio->bi_sector - io->target->begin;
522 atomic_inc(&io->pending);
525 * The block layer might modify the bvec array, so always
526 * copy the required bvecs because we need the original
527 * one in order to decrypt the whole bio data *afterwards*.
529 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
530 if (unlikely(!clone)) {
531 dec_pending(io, -ENOMEM);
535 clone_init(io, clone);
536 clone->bi_destructor = dm_crypt_bio_destructor;
538 clone->bi_vcnt = bio_segments(base_bio);
539 clone->bi_size = base_bio->bi_size;
540 clone->bi_sector = cc->start + sector;
541 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
542 sizeof(struct bio_vec) * clone->bi_vcnt);
544 generic_make_request(clone);
547 static void process_write(struct crypt_io *io)
549 struct crypt_config *cc = io->target->private;
550 struct bio *base_bio = io->base_bio;
552 struct convert_context ctx;
553 unsigned remaining = base_bio->bi_size;
554 sector_t sector = base_bio->bi_sector - io->target->begin;
555 unsigned bvec_idx = 0;
557 atomic_inc(&io->pending);
559 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
562 * The allocated buffers can be smaller than the whole bio,
563 * so repeat the whole process until all the data can be handled.
566 clone = crypt_alloc_buffer(cc, base_bio->bi_size,
567 io->first_clone, &bvec_idx);
568 if (unlikely(!clone)) {
569 dec_pending(io, -ENOMEM);
575 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
576 crypt_free_buffer_pages(cc, clone, clone->bi_size);
578 dec_pending(io, -EIO);
582 clone_init(io, clone);
583 clone->bi_sector = cc->start + sector;
585 if (!io->first_clone) {
587 * hold a reference to the first clone, because it
588 * holds the bio_vec array and that can't be freed
589 * before all other clones are released
592 io->first_clone = clone;
595 remaining -= clone->bi_size;
596 sector += bio_sectors(clone);
598 /* prevent bio_put of first_clone */
600 atomic_inc(&io->pending);
602 generic_make_request(clone);
604 /* out of memory -> run queues */
606 congestion_wait(bio_data_dir(clone), HZ/100);
610 static void process_read_endio(struct crypt_io *io)
612 struct crypt_config *cc = io->target->private;
613 struct convert_context ctx;
615 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
616 io->base_bio->bi_sector - io->target->begin, 0);
618 dec_pending(io, crypt_convert(cc, &ctx));
621 static void kcryptd_do_work(void *data)
623 struct crypt_io *io = data;
625 if (io->post_process)
626 process_read_endio(io);
627 else if (bio_data_dir(io->base_bio) == READ)
634 * Decode key from its hex representation
636 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
644 for (i = 0; i < size; i++) {
648 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
650 if (endp != &buffer[2])
661 * Encode key into its hex representation
663 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
667 for (i = 0; i < size; i++) {
668 sprintf(hex, "%02x", *key);
674 static int crypt_set_key(struct crypt_config *cc, char *key)
676 unsigned key_size = strlen(key) >> 1;
678 if (cc->key_size && cc->key_size != key_size)
681 cc->key_size = key_size; /* initial settings */
683 if ((!key_size && strcmp(key, "-")) ||
684 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
687 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
692 static int crypt_wipe_key(struct crypt_config *cc)
694 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
695 memset(&cc->key, 0, cc->key_size * sizeof(u8));
700 * Construct an encryption mapping:
701 * <cipher> <key> <iv_offset> <dev_path> <start>
703 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
705 struct crypt_config *cc;
706 struct crypto_blkcipher *tfm;
712 unsigned int key_size;
713 unsigned long long tmpll;
716 ti->error = "Not enough arguments";
721 cipher = strsep(&tmp, "-");
722 chainmode = strsep(&tmp, "-");
723 ivopts = strsep(&tmp, "-");
724 ivmode = strsep(&ivopts, ":");
727 DMWARN("Unexpected additional cipher options");
729 key_size = strlen(argv[1]) >> 1;
731 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
734 "Cannot allocate transparent encryption context";
738 if (crypt_set_key(cc, argv[1])) {
739 ti->error = "Error decoding key";
743 /* Compatiblity mode for old dm-crypt cipher strings */
744 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
749 if (strcmp(chainmode, "ecb") && !ivmode) {
750 ti->error = "This chaining mode requires an IV mechanism";
754 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
755 cipher) >= CRYPTO_MAX_ALG_NAME) {
756 ti->error = "Chain mode + cipher name is too long";
760 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
762 ti->error = "Error allocating crypto tfm";
766 strcpy(cc->cipher, cipher);
767 strcpy(cc->chainmode, chainmode);
771 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
772 * See comments at iv code
776 cc->iv_gen_ops = NULL;
777 else if (strcmp(ivmode, "plain") == 0)
778 cc->iv_gen_ops = &crypt_iv_plain_ops;
779 else if (strcmp(ivmode, "essiv") == 0)
780 cc->iv_gen_ops = &crypt_iv_essiv_ops;
782 ti->error = "Invalid IV mode";
786 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
787 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
790 cc->iv_size = crypto_blkcipher_ivsize(tfm);
792 /* at least a 64 bit sector number should fit in our buffer */
793 cc->iv_size = max(cc->iv_size,
794 (unsigned int)(sizeof(u64) / sizeof(u8)));
796 if (cc->iv_gen_ops) {
797 DMWARN("Selected cipher does not support IVs");
798 if (cc->iv_gen_ops->dtr)
799 cc->iv_gen_ops->dtr(cc);
800 cc->iv_gen_ops = NULL;
804 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
806 ti->error = "Cannot allocate crypt io mempool";
810 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
811 if (!cc->page_pool) {
812 ti->error = "Cannot allocate page mempool";
816 cc->bs = bioset_create(MIN_IOS, MIN_IOS, 4);
818 ti->error = "Cannot allocate crypt bioset";
822 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
823 ti->error = "Error setting key";
827 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
828 ti->error = "Invalid iv_offset sector";
831 cc->iv_offset = tmpll;
833 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
834 ti->error = "Invalid device sector";
839 if (dm_get_device(ti, argv[3], cc->start, ti->len,
840 dm_table_get_mode(ti->table), &cc->dev)) {
841 ti->error = "Device lookup failed";
845 if (ivmode && cc->iv_gen_ops) {
848 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
850 ti->error = "Error kmallocing iv_mode string";
853 strcpy(cc->iv_mode, ivmode);
863 mempool_destroy(cc->page_pool);
865 mempool_destroy(cc->io_pool);
867 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
868 cc->iv_gen_ops->dtr(cc);
870 crypto_free_blkcipher(tfm);
872 /* Must zero key material before freeing */
873 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
878 static void crypt_dtr(struct dm_target *ti)
880 struct crypt_config *cc = (struct crypt_config *) ti->private;
883 mempool_destroy(cc->page_pool);
884 mempool_destroy(cc->io_pool);
887 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
888 cc->iv_gen_ops->dtr(cc);
889 crypto_free_blkcipher(cc->tfm);
890 dm_put_device(ti, cc->dev);
892 /* Must zero key material before freeing */
893 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
897 static int crypt_map(struct dm_target *ti, struct bio *bio,
898 union map_info *map_context)
900 struct crypt_config *cc = ti->private;
903 io = mempool_alloc(cc->io_pool, GFP_NOIO);
906 io->first_clone = NULL;
907 io->error = io->post_process = 0;
908 atomic_set(&io->pending, 0);
909 kcryptd_queue_io(io);
914 static int crypt_status(struct dm_target *ti, status_type_t type,
915 char *result, unsigned int maxlen)
917 struct crypt_config *cc = (struct crypt_config *) ti->private;
921 case STATUSTYPE_INFO:
925 case STATUSTYPE_TABLE:
927 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
930 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
932 if (cc->key_size > 0) {
933 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
936 crypt_encode_key(result + sz, cc->key, cc->key_size);
937 sz += cc->key_size << 1;
944 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
945 cc->dev->name, (unsigned long long)cc->start);
951 static void crypt_postsuspend(struct dm_target *ti)
953 struct crypt_config *cc = ti->private;
955 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
958 static int crypt_preresume(struct dm_target *ti)
960 struct crypt_config *cc = ti->private;
962 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
963 DMERR("aborting resume - crypt key is not set.");
970 static void crypt_resume(struct dm_target *ti)
972 struct crypt_config *cc = ti->private;
974 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
981 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
983 struct crypt_config *cc = ti->private;
988 if (!strnicmp(argv[0], MESG_STR("key"))) {
989 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
990 DMWARN("not suspended during key manipulation.");
993 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
994 return crypt_set_key(cc, argv[2]);
995 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
996 return crypt_wipe_key(cc);
1000 DMWARN("unrecognised message received.");
1004 static struct target_type crypt_target = {
1006 .version= {1, 3, 0},
1007 .module = THIS_MODULE,
1011 .status = crypt_status,
1012 .postsuspend = crypt_postsuspend,
1013 .preresume = crypt_preresume,
1014 .resume = crypt_resume,
1015 .message = crypt_message,
1018 static int __init dm_crypt_init(void)
1022 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
1023 sizeof(struct crypt_io),
1025 if (!_crypt_io_pool)
1028 _kcryptd_workqueue = create_workqueue("kcryptd");
1029 if (!_kcryptd_workqueue) {
1031 DMERR("couldn't create kcryptd");
1035 r = dm_register_target(&crypt_target);
1037 DMERR("register failed %d", r);
1044 destroy_workqueue(_kcryptd_workqueue);
1046 kmem_cache_destroy(_crypt_io_pool);
1050 static void __exit dm_crypt_exit(void)
1052 int r = dm_unregister_target(&crypt_target);
1055 DMERR("unregister failed %d", r);
1057 destroy_workqueue(_kcryptd_workqueue);
1058 kmem_cache_destroy(_crypt_io_pool);
1061 module_init(dm_crypt_init);
1062 module_exit(dm_crypt_exit);
1064 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1065 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1066 MODULE_LICENSE("GPL");