Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105  * Module load parameter definitions
106  */
107
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119                  "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
120
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128                  "(default = Y, faster but buggy = N)");
129
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145                  "(default = 0 = use SCSI stack's default)");
146
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163                  "(default = Y, use N for concurrent initiators)");
164
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - power condition
190  *   Set the power condition field in the START STOP UNIT commands sent by
191  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192  *   Some disks need this to spin down or to resume properly.
193  *
194  * - override internal blacklist
195  *   Instead of adding to the built-in blacklist, use only the workarounds
196  *   specified in the module load parameter.
197  *   Useful if a blacklist entry interfered with a non-broken device.
198  */
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
204         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207         ", set power condition in start stop unit = "
208                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210         ", or a combination)");
211
212 /*
213  * This influences the format of the sysfs attribute
214  * /sys/bus/scsi/devices/.../ieee1394_id.
215  *
216  * The default format is like in older kernels:  %016Lx:%d:%d
217  * It contains the target's EUI-64, a number given to the logical unit by
218  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
219  *
220  * The long format is:  %016Lx:%06x:%04x
221  * It contains the target's EUI-64, the unit directory's directory_ID as per
222  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
223  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
225  * independent of the implementation of the ieee1394 nodemgr, the longer format
226  * is recommended for future use.
227  */
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231                  "(default = backwards-compatible = N, SAM-conforming = Y)");
232
233
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
236
237 /*
238  * Globals
239  */
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242                                       void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251                                     u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254                                       struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
257
258
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
260
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
262
263 static struct hpsb_highlevel sbp2_highlevel = {
264         .name           = SBP2_DEVICE_NAME,
265         .host_reset     = sbp2_host_reset,
266 };
267
268 static struct hpsb_address_ops sbp2_ops = {
269         .write          = sbp2_handle_status_write
270 };
271
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274                                      u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276                                     size_t, u16);
277
278 static struct hpsb_address_ops sbp2_physdma_ops = {
279         .read           = sbp2_handle_physdma_read,
280         .write          = sbp2_handle_physdma_write,
281 };
282 #endif
283
284
285 /*
286  * Interface to driver core and IEEE 1394 core
287  */
288 static struct ieee1394_device_id sbp2_id_table[] = {
289         {
290          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
293         {}
294 };
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
296
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
300
301 static struct hpsb_protocol_driver sbp2_driver = {
302         .name           = SBP2_DEVICE_NAME,
303         .id_table       = sbp2_id_table,
304         .update         = sbp2_update,
305         .driver         = {
306                 .probe          = sbp2_probe,
307                 .remove         = sbp2_remove,
308         },
309 };
310
311
312 /*
313  * Interface to SCSI core
314  */
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316                                  void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323                                            struct device_attribute *, char *);
324
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
326
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328         &dev_attr_ieee1394_id,
329         NULL
330 };
331
332 static struct scsi_host_template sbp2_shost_template = {
333         .module                  = THIS_MODULE,
334         .name                    = "SBP-2 IEEE-1394",
335         .proc_name               = SBP2_DEVICE_NAME,
336         .queuecommand            = sbp2scsi_queuecommand,
337         .eh_abort_handler        = sbp2scsi_abort,
338         .eh_device_reset_handler = sbp2scsi_reset,
339         .slave_alloc             = sbp2scsi_slave_alloc,
340         .slave_configure         = sbp2scsi_slave_configure,
341         .slave_destroy           = sbp2scsi_slave_destroy,
342         .this_id                 = -1,
343         .sg_tablesize            = SG_ALL,
344         .use_clustering          = ENABLE_CLUSTERING,
345         .cmd_per_lun             = SBP2_MAX_CMDS,
346         .can_queue               = SBP2_MAX_CMDS,
347         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
348 };
349
350 /* for match-all entries in sbp2_workarounds_table */
351 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
352
353 /*
354  * List of devices with known bugs.
355  *
356  * The firmware_revision field, masked with 0xffff00, is the best indicator
357  * for the type of bridge chip of a device.  It yields a few false positives
358  * but this did not break correctly behaving devices so far.
359  */
360 static const struct {
361         u32 firmware_revision;
362         u32 model_id;
363         unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366                 .firmware_revision      = 0x002800,
367                 .model_id               = 0x001010,
368                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
369                                           SBP2_WORKAROUND_MODE_SENSE_8 |
370                                           SBP2_WORKAROUND_POWER_CONDITION,
371         },
372         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373                 .firmware_revision      = 0x002800,
374                 .model_id               = 0x000000,
375                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY |
376                                           SBP2_WORKAROUND_POWER_CONDITION,
377         },
378         /* Initio bridges, actually only needed for some older ones */ {
379                 .firmware_revision      = 0x000200,
380                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
381                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
382         },
383         /* PL-3507 bridge with Prolific firmware */ {
384                 .firmware_revision      = 0x012800,
385                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
386                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
387         },
388         /* Symbios bridge */ {
389                 .firmware_revision      = 0xa0b800,
390                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
391                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
392         },
393         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394                 .firmware_revision      = 0x002600,
395                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
396                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
397         },
398         /* iPod 4th generation */ {
399                 .firmware_revision      = 0x0a2700,
400                 .model_id               = 0x000021,
401                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
402         },
403         /* iPod mini */ {
404                 .firmware_revision      = 0x0a2700,
405                 .model_id               = 0x000023,
406                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
407         },
408         /* iPod Photo */ {
409                 .firmware_revision      = 0x0a2700,
410                 .model_id               = 0x00007e,
411                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
412         }
413 };
414
415 /**************************************
416  * General utility functions
417  **************************************/
418
419 #ifndef __BIG_ENDIAN
420 /*
421  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
422  */
423 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
424 {
425         u32 *temp = buffer;
426
427         for (length = (length >> 2); length--; )
428                 temp[length] = be32_to_cpu(temp[length]);
429 }
430
431 /*
432  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
433  */
434 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
435 {
436         u32 *temp = buffer;
437
438         for (length = (length >> 2); length--; )
439                 temp[length] = cpu_to_be32(temp[length]);
440 }
441 #else /* BIG_ENDIAN */
442 /* Why waste the cpu cycles? */
443 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
444 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
445 #endif
446
447 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
448
449 /*
450  * Waits for completion of an SBP-2 access request.
451  * Returns nonzero if timed out or prematurely interrupted.
452  */
453 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
454 {
455         long leftover;
456
457         leftover = wait_event_interruptible_timeout(
458                         sbp2_access_wq, lu->access_complete, timeout);
459         lu->access_complete = 0;
460         return leftover <= 0;
461 }
462
463 static void sbp2_free_packet(void *packet)
464 {
465         hpsb_free_tlabel(packet);
466         hpsb_free_packet(packet);
467 }
468
469 /*
470  * This is much like hpsb_node_write(), except it ignores the response
471  * subaction and returns immediately. Can be used from atomic context.
472  */
473 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
474                                        quadlet_t *buf, size_t len)
475 {
476         struct hpsb_packet *packet;
477
478         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
479         if (!packet)
480                 return -ENOMEM;
481
482         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
483         hpsb_node_fill_packet(ne, packet);
484         if (hpsb_send_packet(packet) < 0) {
485                 sbp2_free_packet(packet);
486                 return -EIO;
487         }
488         return 0;
489 }
490
491 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
492                                         quadlet_t *data, size_t len)
493 {
494         /* There is a small window after a bus reset within which the node
495          * entry's generation is current but the reconnect wasn't completed. */
496         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
497                 return;
498
499         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
500                             data, len))
501                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
502
503         /* Now accept new SCSI commands, unless a bus reset happended during
504          * hpsb_node_write. */
505         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
506                 scsi_unblock_requests(lu->shost);
507 }
508
509 static void sbp2util_write_orb_pointer(struct work_struct *work)
510 {
511         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
512         quadlet_t data[2];
513
514         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
515         data[1] = lu->last_orb_dma;
516         sbp2util_cpu_to_be32_buffer(data, 8);
517         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
518 }
519
520 static void sbp2util_write_doorbell(struct work_struct *work)
521 {
522         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
523
524         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
525 }
526
527 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
528 {
529         struct sbp2_fwhost_info *hi = lu->hi;
530         struct sbp2_command_info *cmd;
531         int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
532
533         for (i = 0; i < orbs; i++) {
534                 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
535                 if (!cmd)
536                         return -ENOMEM;
537                 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
538                                                 &cmd->command_orb,
539                                                 sizeof(struct sbp2_command_orb),
540                                                 DMA_TO_DEVICE);
541                 cmd->sge_dma = dma_map_single(hi->host->device.parent,
542                                         &cmd->scatter_gather_element,
543                                         sizeof(cmd->scatter_gather_element),
544                                         DMA_TO_DEVICE);
545                 INIT_LIST_HEAD(&cmd->list);
546                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
547         }
548         return 0;
549 }
550
551 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
552                                              struct hpsb_host *host)
553 {
554         struct list_head *lh, *next;
555         struct sbp2_command_info *cmd;
556         unsigned long flags;
557
558         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
559         if (!list_empty(&lu->cmd_orb_completed))
560                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
561                         cmd = list_entry(lh, struct sbp2_command_info, list);
562                         dma_unmap_single(host->device.parent,
563                                          cmd->command_orb_dma,
564                                          sizeof(struct sbp2_command_orb),
565                                          DMA_TO_DEVICE);
566                         dma_unmap_single(host->device.parent, cmd->sge_dma,
567                                          sizeof(cmd->scatter_gather_element),
568                                          DMA_TO_DEVICE);
569                         kfree(cmd);
570                 }
571         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
572         return;
573 }
574
575 /*
576  * Finds the sbp2_command for a given outstanding command ORB.
577  * Only looks at the in-use list.
578  */
579 static struct sbp2_command_info *sbp2util_find_command_for_orb(
580                                 struct sbp2_lu *lu, dma_addr_t orb)
581 {
582         struct sbp2_command_info *cmd;
583         unsigned long flags;
584
585         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
586         if (!list_empty(&lu->cmd_orb_inuse))
587                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
588                         if (cmd->command_orb_dma == orb) {
589                                 spin_unlock_irqrestore(
590                                                 &lu->cmd_orb_lock, flags);
591                                 return cmd;
592                         }
593         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
594         return NULL;
595 }
596
597 /*
598  * Finds the sbp2_command for a given outstanding SCpnt.
599  * Only looks at the in-use list.
600  * Must be called with lu->cmd_orb_lock held.
601  */
602 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
603                                 struct sbp2_lu *lu, void *SCpnt)
604 {
605         struct sbp2_command_info *cmd;
606
607         if (!list_empty(&lu->cmd_orb_inuse))
608                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
609                         if (cmd->Current_SCpnt == SCpnt)
610                                 return cmd;
611         return NULL;
612 }
613
614 static struct sbp2_command_info *sbp2util_allocate_command_orb(
615                                 struct sbp2_lu *lu,
616                                 struct scsi_cmnd *Current_SCpnt,
617                                 void (*Current_done)(struct scsi_cmnd *))
618 {
619         struct list_head *lh;
620         struct sbp2_command_info *cmd = NULL;
621         unsigned long flags;
622
623         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
624         if (!list_empty(&lu->cmd_orb_completed)) {
625                 lh = lu->cmd_orb_completed.next;
626                 list_del(lh);
627                 cmd = list_entry(lh, struct sbp2_command_info, list);
628                 cmd->Current_done = Current_done;
629                 cmd->Current_SCpnt = Current_SCpnt;
630                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
631         } else
632                 SBP2_ERR("%s: no orbs available", __func__);
633         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
634         return cmd;
635 }
636
637 /*
638  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
639  * Must be called with lu->cmd_orb_lock held.
640  */
641 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
642                                             struct sbp2_command_info *cmd)
643 {
644         struct hpsb_host *host = lu->ud->ne->host;
645
646         if (cmd->cmd_dma) {
647                 if (cmd->dma_type == CMD_DMA_SINGLE)
648                         dma_unmap_single(host->device.parent, cmd->cmd_dma,
649                                          cmd->dma_size, cmd->dma_dir);
650                 else if (cmd->dma_type == CMD_DMA_PAGE)
651                         dma_unmap_page(host->device.parent, cmd->cmd_dma,
652                                        cmd->dma_size, cmd->dma_dir);
653                 /* XXX: Check for CMD_DMA_NONE bug */
654                 cmd->dma_type = CMD_DMA_NONE;
655                 cmd->cmd_dma = 0;
656         }
657         if (cmd->sge_buffer) {
658                 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
659                              cmd->dma_size, cmd->dma_dir);
660                 cmd->sge_buffer = NULL;
661         }
662         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
663 }
664
665 /*
666  * Is lu valid? Is the 1394 node still present?
667  */
668 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
669 {
670         return lu && lu->ne && !lu->ne->in_limbo;
671 }
672
673 /*********************************************
674  * IEEE-1394 core driver stack related section
675  *********************************************/
676
677 static int sbp2_probe(struct device *dev)
678 {
679         struct unit_directory *ud;
680         struct sbp2_lu *lu;
681
682         ud = container_of(dev, struct unit_directory, device);
683
684         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
685          * instead. */
686         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
687                 return -ENODEV;
688
689         lu = sbp2_alloc_device(ud);
690         if (!lu)
691                 return -ENOMEM;
692
693         sbp2_parse_unit_directory(lu, ud);
694         return sbp2_start_device(lu);
695 }
696
697 static int sbp2_remove(struct device *dev)
698 {
699         struct unit_directory *ud;
700         struct sbp2_lu *lu;
701         struct scsi_device *sdev;
702
703         ud = container_of(dev, struct unit_directory, device);
704         lu = ud->device.driver_data;
705         if (!lu)
706                 return 0;
707
708         if (lu->shost) {
709                 /* Get rid of enqueued commands if there is no chance to
710                  * send them. */
711                 if (!sbp2util_node_is_available(lu))
712                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
713                 /* scsi_remove_device() may trigger shutdown functions of SCSI
714                  * highlevel drivers which would deadlock if blocked. */
715                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
716                 scsi_unblock_requests(lu->shost);
717         }
718         sdev = lu->sdev;
719         if (sdev) {
720                 lu->sdev = NULL;
721                 scsi_remove_device(sdev);
722         }
723
724         sbp2_logout_device(lu);
725         sbp2_remove_device(lu);
726
727         return 0;
728 }
729
730 static int sbp2_update(struct unit_directory *ud)
731 {
732         struct sbp2_lu *lu = ud->device.driver_data;
733
734         if (sbp2_reconnect_device(lu)) {
735                 /* Reconnect has failed. Perhaps we didn't reconnect fast
736                  * enough. Try a regular login, but first log out just in
737                  * case of any weirdness. */
738                 sbp2_logout_device(lu);
739
740                 if (sbp2_login_device(lu)) {
741                         /* Login failed too, just fail, and the backend
742                          * will call our sbp2_remove for us */
743                         SBP2_ERR("Failed to reconnect to sbp2 device!");
744                         return -EBUSY;
745                 }
746         }
747
748         sbp2_set_busy_timeout(lu);
749         sbp2_agent_reset(lu, 1);
750         sbp2_max_speed_and_size(lu);
751
752         /* Complete any pending commands with busy (so they get retried)
753          * and remove them from our queue. */
754         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
755
756         /* Accept new commands unless there was another bus reset in the
757          * meantime. */
758         if (hpsb_node_entry_valid(lu->ne)) {
759                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
760                 scsi_unblock_requests(lu->shost);
761         }
762         return 0;
763 }
764
765 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
766 {
767         struct sbp2_fwhost_info *hi;
768         struct Scsi_Host *shost = NULL;
769         struct sbp2_lu *lu = NULL;
770         unsigned long flags;
771
772         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
773         if (!lu) {
774                 SBP2_ERR("failed to create lu");
775                 goto failed_alloc;
776         }
777
778         lu->ne = ud->ne;
779         lu->ud = ud;
780         lu->speed_code = IEEE1394_SPEED_100;
781         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
782         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
783         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
784         INIT_LIST_HEAD(&lu->cmd_orb_completed);
785         INIT_LIST_HEAD(&lu->lu_list);
786         spin_lock_init(&lu->cmd_orb_lock);
787         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
788         INIT_WORK(&lu->protocol_work, NULL);
789
790         ud->device.driver_data = lu;
791
792         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
793         if (!hi) {
794                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
795                                           sizeof(*hi));
796                 if (!hi) {
797                         SBP2_ERR("failed to allocate hostinfo");
798                         goto failed_alloc;
799                 }
800                 hi->host = ud->ne->host;
801                 INIT_LIST_HEAD(&hi->logical_units);
802
803 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
804                 /* Handle data movement if physical dma is not
805                  * enabled or not supported on host controller */
806                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
807                                              &sbp2_physdma_ops,
808                                              0x0ULL, 0xfffffffcULL)) {
809                         SBP2_ERR("failed to register lower 4GB address range");
810                         goto failed_alloc;
811                 }
812 #endif
813         }
814
815         /* Prevent unloading of the 1394 host */
816         if (!try_module_get(hi->host->driver->owner)) {
817                 SBP2_ERR("failed to get a reference on 1394 host driver");
818                 goto failed_alloc;
819         }
820
821         lu->hi = hi;
822
823         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
824         list_add_tail(&lu->lu_list, &hi->logical_units);
825         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
826
827         /* Register the status FIFO address range. We could use the same FIFO
828          * for targets at different nodes. However we need different FIFOs per
829          * target in order to support multi-unit devices.
830          * The FIFO is located out of the local host controller's physical range
831          * but, if possible, within the posted write area. Status writes will
832          * then be performed as unified transactions. This slightly reduces
833          * bandwidth usage, and some Prolific based devices seem to require it.
834          */
835         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
836                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
837                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
838                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
839         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
840                 SBP2_ERR("failed to allocate status FIFO address range");
841                 goto failed_alloc;
842         }
843
844         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
845         if (!shost) {
846                 SBP2_ERR("failed to register scsi host");
847                 goto failed_alloc;
848         }
849
850         shost->hostdata[0] = (unsigned long)lu;
851
852         if (!scsi_add_host(shost, &ud->device)) {
853                 lu->shost = shost;
854                 return lu;
855         }
856
857         SBP2_ERR("failed to add scsi host");
858         scsi_host_put(shost);
859
860 failed_alloc:
861         sbp2_remove_device(lu);
862         return NULL;
863 }
864
865 static void sbp2_host_reset(struct hpsb_host *host)
866 {
867         struct sbp2_fwhost_info *hi;
868         struct sbp2_lu *lu;
869         unsigned long flags;
870
871         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
872         if (!hi)
873                 return;
874
875         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
876         list_for_each_entry(lu, &hi->logical_units, lu_list)
877                 if (likely(atomic_read(&lu->state) !=
878                            SBP2LU_STATE_IN_SHUTDOWN)) {
879                         atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
880                         scsi_block_requests(lu->shost);
881                 }
882         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
883 }
884
885 static int sbp2_start_device(struct sbp2_lu *lu)
886 {
887         struct sbp2_fwhost_info *hi = lu->hi;
888         int error;
889
890         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
891                                      sizeof(struct sbp2_login_response),
892                                      &lu->login_response_dma, GFP_KERNEL);
893         if (!lu->login_response)
894                 goto alloc_fail;
895
896         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
897                                      sizeof(struct sbp2_query_logins_orb),
898                                      &lu->query_logins_orb_dma, GFP_KERNEL);
899         if (!lu->query_logins_orb)
900                 goto alloc_fail;
901
902         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
903                                      sizeof(struct sbp2_query_logins_response),
904                                      &lu->query_logins_response_dma, GFP_KERNEL);
905         if (!lu->query_logins_response)
906                 goto alloc_fail;
907
908         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
909                                      sizeof(struct sbp2_reconnect_orb),
910                                      &lu->reconnect_orb_dma, GFP_KERNEL);
911         if (!lu->reconnect_orb)
912                 goto alloc_fail;
913
914         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
915                                      sizeof(struct sbp2_logout_orb),
916                                      &lu->logout_orb_dma, GFP_KERNEL);
917         if (!lu->logout_orb)
918                 goto alloc_fail;
919
920         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
921                                      sizeof(struct sbp2_login_orb),
922                                      &lu->login_orb_dma, GFP_KERNEL);
923         if (!lu->login_orb)
924                 goto alloc_fail;
925
926         if (sbp2util_create_command_orb_pool(lu))
927                 goto alloc_fail;
928
929         /* Wait a second before trying to log in. Previously logged in
930          * initiators need a chance to reconnect. */
931         if (msleep_interruptible(1000)) {
932                 sbp2_remove_device(lu);
933                 return -EINTR;
934         }
935
936         if (sbp2_login_device(lu)) {
937                 sbp2_remove_device(lu);
938                 return -EBUSY;
939         }
940
941         sbp2_set_busy_timeout(lu);
942         sbp2_agent_reset(lu, 1);
943         sbp2_max_speed_and_size(lu);
944
945         if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
946                 ssleep(SBP2_INQUIRY_DELAY);
947
948         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
949         if (error) {
950                 SBP2_ERR("scsi_add_device failed");
951                 sbp2_logout_device(lu);
952                 sbp2_remove_device(lu);
953                 return error;
954         }
955
956         return 0;
957
958 alloc_fail:
959         SBP2_ERR("Could not allocate memory for lu");
960         sbp2_remove_device(lu);
961         return -ENOMEM;
962 }
963
964 static void sbp2_remove_device(struct sbp2_lu *lu)
965 {
966         struct sbp2_fwhost_info *hi;
967         unsigned long flags;
968
969         if (!lu)
970                 return;
971         hi = lu->hi;
972         if (!hi)
973                 goto no_hi;
974
975         if (lu->shost) {
976                 scsi_remove_host(lu->shost);
977                 scsi_host_put(lu->shost);
978         }
979         flush_scheduled_work();
980         sbp2util_remove_command_orb_pool(lu, hi->host);
981
982         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
983         list_del(&lu->lu_list);
984         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
985
986         if (lu->login_response)
987                 dma_free_coherent(hi->host->device.parent,
988                                     sizeof(struct sbp2_login_response),
989                                     lu->login_response,
990                                     lu->login_response_dma);
991         if (lu->login_orb)
992                 dma_free_coherent(hi->host->device.parent,
993                                     sizeof(struct sbp2_login_orb),
994                                     lu->login_orb,
995                                     lu->login_orb_dma);
996         if (lu->reconnect_orb)
997                 dma_free_coherent(hi->host->device.parent,
998                                     sizeof(struct sbp2_reconnect_orb),
999                                     lu->reconnect_orb,
1000                                     lu->reconnect_orb_dma);
1001         if (lu->logout_orb)
1002                 dma_free_coherent(hi->host->device.parent,
1003                                     sizeof(struct sbp2_logout_orb),
1004                                     lu->logout_orb,
1005                                     lu->logout_orb_dma);
1006         if (lu->query_logins_orb)
1007                 dma_free_coherent(hi->host->device.parent,
1008                                     sizeof(struct sbp2_query_logins_orb),
1009                                     lu->query_logins_orb,
1010                                     lu->query_logins_orb_dma);
1011         if (lu->query_logins_response)
1012                 dma_free_coherent(hi->host->device.parent,
1013                                     sizeof(struct sbp2_query_logins_response),
1014                                     lu->query_logins_response,
1015                                     lu->query_logins_response_dma);
1016
1017         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1018                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1019                                           lu->status_fifo_addr);
1020
1021         lu->ud->device.driver_data = NULL;
1022
1023         module_put(hi->host->driver->owner);
1024 no_hi:
1025         kfree(lu);
1026 }
1027
1028 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1029 /*
1030  * Deal with write requests on adapters which do not support physical DMA or
1031  * have it switched off.
1032  */
1033 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1034                                      int destid, quadlet_t *data, u64 addr,
1035                                      size_t length, u16 flags)
1036 {
1037         memcpy(bus_to_virt((u32) addr), data, length);
1038         return RCODE_COMPLETE;
1039 }
1040
1041 /*
1042  * Deal with read requests on adapters which do not support physical DMA or
1043  * have it switched off.
1044  */
1045 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1046                                     quadlet_t *data, u64 addr, size_t length,
1047                                     u16 flags)
1048 {
1049         memcpy(data, bus_to_virt((u32) addr), length);
1050         return RCODE_COMPLETE;
1051 }
1052 #endif
1053
1054 /**************************************
1055  * SBP-2 protocol related section
1056  **************************************/
1057
1058 static int sbp2_query_logins(struct sbp2_lu *lu)
1059 {
1060         struct sbp2_fwhost_info *hi = lu->hi;
1061         quadlet_t data[2];
1062         int max_logins;
1063         int active_logins;
1064
1065         lu->query_logins_orb->reserved1 = 0x0;
1066         lu->query_logins_orb->reserved2 = 0x0;
1067
1068         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1069         lu->query_logins_orb->query_response_hi =
1070                         ORB_SET_NODE_ID(hi->host->node_id);
1071         lu->query_logins_orb->lun_misc =
1072                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1073         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1074         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1075
1076         lu->query_logins_orb->reserved_resp_length =
1077                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1078                         sizeof(struct sbp2_query_logins_response));
1079
1080         lu->query_logins_orb->status_fifo_hi =
1081                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1082         lu->query_logins_orb->status_fifo_lo =
1083                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1084
1085         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1086                                     sizeof(struct sbp2_query_logins_orb));
1087
1088         memset(lu->query_logins_response, 0,
1089                sizeof(struct sbp2_query_logins_response));
1090
1091         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1092         data[1] = lu->query_logins_orb_dma;
1093         sbp2util_cpu_to_be32_buffer(data, 8);
1094
1095         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1096
1097         if (sbp2util_access_timeout(lu, 2*HZ)) {
1098                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1099                 return -EIO;
1100         }
1101
1102         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1103                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1104                 return -EIO;
1105         }
1106
1107         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1108                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1109                 return -EIO;
1110         }
1111
1112         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1113                                     sizeof(struct sbp2_query_logins_response));
1114
1115         max_logins = RESPONSE_GET_MAX_LOGINS(
1116                         lu->query_logins_response->length_max_logins);
1117         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1118
1119         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1120                         lu->query_logins_response->length_max_logins);
1121         SBP2_INFO("Number of active logins: %d", active_logins);
1122
1123         if (active_logins >= max_logins) {
1124                 return -EIO;
1125         }
1126
1127         return 0;
1128 }
1129
1130 static int sbp2_login_device(struct sbp2_lu *lu)
1131 {
1132         struct sbp2_fwhost_info *hi = lu->hi;
1133         quadlet_t data[2];
1134
1135         if (!lu->login_orb)
1136                 return -EIO;
1137
1138         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1139                 SBP2_INFO("Device does not support any more concurrent logins");
1140                 return -EIO;
1141         }
1142
1143         /* assume no password */
1144         lu->login_orb->password_hi = 0;
1145         lu->login_orb->password_lo = 0;
1146
1147         lu->login_orb->login_response_lo = lu->login_response_dma;
1148         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1149         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1150
1151         /* one second reconnect time */
1152         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1153         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1154         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1155         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1156
1157         lu->login_orb->passwd_resp_lengths =
1158                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1159
1160         lu->login_orb->status_fifo_hi =
1161                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1162         lu->login_orb->status_fifo_lo =
1163                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1164
1165         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1166                                     sizeof(struct sbp2_login_orb));
1167
1168         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1169
1170         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1171         data[1] = lu->login_orb_dma;
1172         sbp2util_cpu_to_be32_buffer(data, 8);
1173
1174         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1175
1176         /* wait up to 20 seconds for login status */
1177         if (sbp2util_access_timeout(lu, 20*HZ)) {
1178                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1179                 return -EIO;
1180         }
1181
1182         /* make sure that the returned status matches the login ORB */
1183         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1184                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1185                 return -EIO;
1186         }
1187
1188         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1189                 SBP2_ERR("Error logging into SBP-2 device - failed");
1190                 return -EIO;
1191         }
1192
1193         sbp2util_cpu_to_be32_buffer(lu->login_response,
1194                                     sizeof(struct sbp2_login_response));
1195         lu->command_block_agent_addr =
1196                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1197         lu->command_block_agent_addr |=
1198                         ((u64)lu->login_response->command_block_agent_lo);
1199         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1200
1201         SBP2_INFO("Logged into SBP-2 device");
1202         return 0;
1203 }
1204
1205 static int sbp2_logout_device(struct sbp2_lu *lu)
1206 {
1207         struct sbp2_fwhost_info *hi = lu->hi;
1208         quadlet_t data[2];
1209         int error;
1210
1211         lu->logout_orb->reserved1 = 0x0;
1212         lu->logout_orb->reserved2 = 0x0;
1213         lu->logout_orb->reserved3 = 0x0;
1214         lu->logout_orb->reserved4 = 0x0;
1215
1216         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1217         lu->logout_orb->login_ID_misc |=
1218                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1219         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1220
1221         lu->logout_orb->reserved5 = 0x0;
1222         lu->logout_orb->status_fifo_hi =
1223                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1224         lu->logout_orb->status_fifo_lo =
1225                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1226
1227         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1228                                     sizeof(struct sbp2_logout_orb));
1229
1230         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1231         data[1] = lu->logout_orb_dma;
1232         sbp2util_cpu_to_be32_buffer(data, 8);
1233
1234         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1235         if (error)
1236                 return error;
1237
1238         /* wait up to 1 second for the device to complete logout */
1239         if (sbp2util_access_timeout(lu, HZ))
1240                 return -EIO;
1241
1242         SBP2_INFO("Logged out of SBP-2 device");
1243         return 0;
1244 }
1245
1246 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1247 {
1248         struct sbp2_fwhost_info *hi = lu->hi;
1249         quadlet_t data[2];
1250         int error;
1251
1252         lu->reconnect_orb->reserved1 = 0x0;
1253         lu->reconnect_orb->reserved2 = 0x0;
1254         lu->reconnect_orb->reserved3 = 0x0;
1255         lu->reconnect_orb->reserved4 = 0x0;
1256
1257         lu->reconnect_orb->login_ID_misc =
1258                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1259         lu->reconnect_orb->login_ID_misc |=
1260                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1261         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1262
1263         lu->reconnect_orb->reserved5 = 0x0;
1264         lu->reconnect_orb->status_fifo_hi =
1265                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1266         lu->reconnect_orb->status_fifo_lo =
1267                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1268
1269         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1270                                     sizeof(struct sbp2_reconnect_orb));
1271
1272         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1273         data[1] = lu->reconnect_orb_dma;
1274         sbp2util_cpu_to_be32_buffer(data, 8);
1275
1276         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1277         if (error)
1278                 return error;
1279
1280         /* wait up to 1 second for reconnect status */
1281         if (sbp2util_access_timeout(lu, HZ)) {
1282                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1283                 return -EIO;
1284         }
1285
1286         /* make sure that the returned status matches the reconnect ORB */
1287         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1288                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1289                 return -EIO;
1290         }
1291
1292         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1293                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1294                 return -EIO;
1295         }
1296
1297         SBP2_INFO("Reconnected to SBP-2 device");
1298         return 0;
1299 }
1300
1301 /*
1302  * Set the target node's Single Phase Retry limit. Affects the target's retry
1303  * behaviour if our node is too busy to accept requests.
1304  */
1305 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1306 {
1307         quadlet_t data;
1308
1309         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1310         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1311                 SBP2_ERR("%s error", __func__);
1312         return 0;
1313 }
1314
1315 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1316                                       struct unit_directory *ud)
1317 {
1318         struct csr1212_keyval *kv;
1319         struct csr1212_dentry *dentry;
1320         u64 management_agent_addr;
1321         u32 unit_characteristics, firmware_revision;
1322         unsigned workarounds;
1323         int i;
1324
1325         management_agent_addr = 0;
1326         unit_characteristics = 0;
1327         firmware_revision = 0;
1328
1329         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1330                 switch (kv->key.id) {
1331                 case CSR1212_KV_ID_DEPENDENT_INFO:
1332                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1333                                 management_agent_addr =
1334                                     CSR1212_REGISTER_SPACE_BASE +
1335                                     (kv->value.csr_offset << 2);
1336
1337                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1338                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1339                         break;
1340
1341                 case SBP2_UNIT_CHARACTERISTICS_KEY:
1342                         /* FIXME: This is ignored so far.
1343                          * See SBP-2 clause 7.4.8. */
1344                         unit_characteristics = kv->value.immediate;
1345                         break;
1346
1347                 case SBP2_FIRMWARE_REVISION_KEY:
1348                         firmware_revision = kv->value.immediate;
1349                         break;
1350
1351                 default:
1352                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1353                          * Its "ordered" bit has consequences for command ORB
1354                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1355                         break;
1356                 }
1357         }
1358
1359         workarounds = sbp2_default_workarounds;
1360
1361         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1362                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1363                         if (sbp2_workarounds_table[i].firmware_revision !=
1364                             SBP2_ROM_VALUE_WILDCARD &&
1365                             sbp2_workarounds_table[i].firmware_revision !=
1366                             (firmware_revision & 0xffff00))
1367                                 continue;
1368                         if (sbp2_workarounds_table[i].model_id !=
1369                             SBP2_ROM_VALUE_WILDCARD &&
1370                             sbp2_workarounds_table[i].model_id != ud->model_id)
1371                                 continue;
1372                         workarounds |= sbp2_workarounds_table[i].workarounds;
1373                         break;
1374                 }
1375
1376         if (workarounds)
1377                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1378                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1379                           " model_id 0x%06x)",
1380                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1381                           workarounds, firmware_revision,
1382                           ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1383                           ud->model_id);
1384
1385         /* We would need one SCSI host template for each target to adjust
1386          * max_sectors on the fly, therefore warn only. */
1387         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1388             (sbp2_max_sectors * 512) > (128 * 1024))
1389                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1390                           "max transfer size. WARNING: Current max_sectors "
1391                           "setting is larger than 128KB (%d sectors)",
1392                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1393                           sbp2_max_sectors);
1394
1395         /* If this is a logical unit directory entry, process the parent
1396          * to get the values. */
1397         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1398                 struct unit_directory *parent_ud = container_of(
1399                         ud->device.parent, struct unit_directory, device);
1400                 sbp2_parse_unit_directory(lu, parent_ud);
1401         } else {
1402                 lu->management_agent_addr = management_agent_addr;
1403                 lu->workarounds = workarounds;
1404                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1405                         lu->lun = ORB_SET_LUN(ud->lun);
1406         }
1407 }
1408
1409 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1410
1411 /*
1412  * This function is called in order to determine the max speed and packet
1413  * size we can use in our ORBs. Note, that we (the driver and host) only
1414  * initiate the transaction. The SBP-2 device actually transfers the data
1415  * (by reading from the DMA area we tell it). This means that the SBP-2
1416  * device decides the actual maximum data it can transfer. We just tell it
1417  * the speed that it needs to use, and the max_rec the host supports, and
1418  * it takes care of the rest.
1419  */
1420 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1421 {
1422         struct sbp2_fwhost_info *hi = lu->hi;
1423         u8 payload;
1424
1425         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1426
1427         if (lu->speed_code > sbp2_max_speed) {
1428                 lu->speed_code = sbp2_max_speed;
1429                 SBP2_INFO("Reducing speed to %s",
1430                           hpsb_speedto_str[sbp2_max_speed]);
1431         }
1432
1433         /* Payload size is the lesser of what our speed supports and what
1434          * our host supports.  */
1435         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1436                       (u8) (hi->host->csr.max_rec - 1));
1437
1438         /* If physical DMA is off, work around limitation in ohci1394:
1439          * packet size must not exceed PAGE_SIZE */
1440         if (lu->ne->host->low_addr_space < (1ULL << 32))
1441                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1442                        payload)
1443                         payload--;
1444
1445         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1446                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1447                   hpsb_speedto_str[lu->speed_code],
1448                   SBP2_PAYLOAD_TO_BYTES(payload));
1449
1450         lu->max_payload_size = payload;
1451         return 0;
1452 }
1453
1454 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1455 {
1456         quadlet_t data;
1457         u64 addr;
1458         int retval;
1459         unsigned long flags;
1460
1461         /* flush lu->protocol_work */
1462         if (wait)
1463                 flush_scheduled_work();
1464
1465         data = ntohl(SBP2_AGENT_RESET_DATA);
1466         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1467
1468         if (wait)
1469                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1470         else
1471                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1472
1473         if (retval < 0) {
1474                 SBP2_ERR("hpsb_node_write failed.\n");
1475                 return -EIO;
1476         }
1477
1478         /* make sure that the ORB_POINTER is written on next command */
1479         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1480         lu->last_orb = NULL;
1481         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1482
1483         return 0;
1484 }
1485
1486 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1487                                      struct sbp2_fwhost_info *hi,
1488                                      struct sbp2_command_info *cmd,
1489                                      unsigned int scsi_use_sg,
1490                                      struct scatterlist *sg,
1491                                      u32 orb_direction,
1492                                      enum dma_data_direction dma_dir)
1493 {
1494         cmd->dma_dir = dma_dir;
1495         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1496         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1497
1498         /* special case if only one element (and less than 64KB in size) */
1499         if (scsi_use_sg == 1 && sg->length <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1500
1501                 cmd->dma_size = sg->length;
1502                 cmd->dma_type = CMD_DMA_PAGE;
1503                 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1504                                             sg_page(sg), sg->offset,
1505                                             cmd->dma_size, cmd->dma_dir);
1506
1507                 orb->data_descriptor_lo = cmd->cmd_dma;
1508                 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1509
1510         } else {
1511                 struct sbp2_unrestricted_page_table *sg_element =
1512                                                 &cmd->scatter_gather_element[0];
1513                 u32 sg_count, sg_len;
1514                 dma_addr_t sg_addr;
1515                 int i, count = dma_map_sg(hi->host->device.parent, sg,
1516                                           scsi_use_sg, dma_dir);
1517
1518                 cmd->dma_size = scsi_use_sg;
1519                 cmd->sge_buffer = sg;
1520
1521                 /* use page tables (s/g) */
1522                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1523                 orb->data_descriptor_lo = cmd->sge_dma;
1524
1525                 /* loop through and fill out our SBP-2 page tables
1526                  * (and split up anything too large) */
1527                 for (i = 0, sg_count = 0; i < count; i++, sg = sg_next(sg)) {
1528                         sg_len = sg_dma_len(sg);
1529                         sg_addr = sg_dma_address(sg);
1530                         while (sg_len) {
1531                                 sg_element[sg_count].segment_base_lo = sg_addr;
1532                                 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1533                                         sg_element[sg_count].length_segment_base_hi =
1534                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1535                                         sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1536                                         sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1537                                 } else {
1538                                         sg_element[sg_count].length_segment_base_hi =
1539                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1540                                         sg_len = 0;
1541                                 }
1542                                 sg_count++;
1543                         }
1544                 }
1545
1546                 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1547
1548                 sbp2util_cpu_to_be32_buffer(sg_element,
1549                                 (sizeof(struct sbp2_unrestricted_page_table)) *
1550                                 sg_count);
1551         }
1552 }
1553
1554 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1555                                     struct sbp2_command_info *cmd,
1556                                     struct scsi_cmnd *SCpnt)
1557 {
1558         struct sbp2_fwhost_info *hi = lu->hi;
1559         struct sbp2_command_orb *orb = &cmd->command_orb;
1560         u32 orb_direction;
1561         unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1562         enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1563
1564         /*
1565          * Set-up our command ORB.
1566          *
1567          * NOTE: We're doing unrestricted page tables (s/g), as this is
1568          * best performance (at least with the devices I have). This means
1569          * that data_size becomes the number of s/g elements, and
1570          * page_size should be zero (for unrestricted).
1571          */
1572         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1573         orb->next_ORB_lo = 0x0;
1574         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1575         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1576         orb->misc |= ORB_SET_NOTIFY(1);
1577
1578         if (dma_dir == DMA_NONE)
1579                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1580         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1581                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1582         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1583                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1584         else {
1585                 SBP2_INFO("Falling back to DMA_NONE");
1586                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1587         }
1588
1589         /* set up our page table stuff */
1590         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1591                 orb->data_descriptor_hi = 0x0;
1592                 orb->data_descriptor_lo = 0x0;
1593                 orb->misc |= ORB_SET_DIRECTION(1);
1594         } else
1595                 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_sg_count(SCpnt),
1596                                          scsi_sglist(SCpnt),
1597                                          orb_direction, dma_dir);
1598
1599         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1600
1601         memset(orb->cdb, 0, sizeof(orb->cdb));
1602         memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1603 }
1604
1605 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1606                                   struct sbp2_command_info *cmd)
1607 {
1608         struct sbp2_fwhost_info *hi = lu->hi;
1609         struct sbp2_command_orb *last_orb;
1610         dma_addr_t last_orb_dma;
1611         u64 addr = lu->command_block_agent_addr;
1612         quadlet_t data[2];
1613         size_t length;
1614         unsigned long flags;
1615
1616         dma_sync_single_for_device(hi->host->device.parent,
1617                                    cmd->command_orb_dma,
1618                                    sizeof(struct sbp2_command_orb),
1619                                    DMA_TO_DEVICE);
1620         dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1621                                    sizeof(cmd->scatter_gather_element),
1622                                    DMA_TO_DEVICE);
1623
1624         /* check to see if there are any previous orbs to use */
1625         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1626         last_orb = lu->last_orb;
1627         last_orb_dma = lu->last_orb_dma;
1628         if (!last_orb) {
1629                 /*
1630                  * last_orb == NULL means: We know that the target's fetch agent
1631                  * is not active right now.
1632                  */
1633                 addr += SBP2_ORB_POINTER_OFFSET;
1634                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1635                 data[1] = cmd->command_orb_dma;
1636                 sbp2util_cpu_to_be32_buffer(data, 8);
1637                 length = 8;
1638         } else {
1639                 /*
1640                  * last_orb != NULL means: We know that the target's fetch agent
1641                  * is (very probably) not dead or in reset state right now.
1642                  * We have an ORB already sent that we can append a new one to.
1643                  * The target's fetch agent may or may not have read this
1644                  * previous ORB yet.
1645                  */
1646                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1647                                         sizeof(struct sbp2_command_orb),
1648                                         DMA_TO_DEVICE);
1649                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1650                 wmb();
1651                 /* Tells hardware that this pointer is valid */
1652                 last_orb->next_ORB_hi = 0;
1653                 dma_sync_single_for_device(hi->host->device.parent,
1654                                            last_orb_dma,
1655                                            sizeof(struct sbp2_command_orb),
1656                                            DMA_TO_DEVICE);
1657                 addr += SBP2_DOORBELL_OFFSET;
1658                 data[0] = 0;
1659                 length = 4;
1660         }
1661         lu->last_orb = &cmd->command_orb;
1662         lu->last_orb_dma = cmd->command_orb_dma;
1663         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1664
1665         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1666                 /*
1667                  * sbp2util_node_write_no_wait failed. We certainly ran out
1668                  * of transaction labels, perhaps just because there were no
1669                  * context switches which gave khpsbpkt a chance to collect
1670                  * free tlabels. Try again in non-atomic context. If necessary,
1671                  * the workqueue job will sleep to guaranteedly get a tlabel.
1672                  * We do not accept new commands until the job is over.
1673                  */
1674                 scsi_block_requests(lu->shost);
1675                 PREPARE_WORK(&lu->protocol_work,
1676                              last_orb ? sbp2util_write_doorbell:
1677                                         sbp2util_write_orb_pointer);
1678                 schedule_work(&lu->protocol_work);
1679         }
1680 }
1681
1682 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1683                              void (*done)(struct scsi_cmnd *))
1684 {
1685         struct sbp2_command_info *cmd;
1686
1687         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1688         if (!cmd)
1689                 return -EIO;
1690
1691         sbp2_create_command_orb(lu, cmd, SCpnt);
1692         sbp2_link_orb_command(lu, cmd);
1693
1694         return 0;
1695 }
1696
1697 /*
1698  * Translates SBP-2 status into SCSI sense data for check conditions
1699  */
1700 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1701                                               unchar *sense_data)
1702 {
1703         /* OK, it's pretty ugly... ;-) */
1704         sense_data[0] = 0x70;
1705         sense_data[1] = 0x0;
1706         sense_data[2] = sbp2_status[9];
1707         sense_data[3] = sbp2_status[12];
1708         sense_data[4] = sbp2_status[13];
1709         sense_data[5] = sbp2_status[14];
1710         sense_data[6] = sbp2_status[15];
1711         sense_data[7] = 10;
1712         sense_data[8] = sbp2_status[16];
1713         sense_data[9] = sbp2_status[17];
1714         sense_data[10] = sbp2_status[18];
1715         sense_data[11] = sbp2_status[19];
1716         sense_data[12] = sbp2_status[10];
1717         sense_data[13] = sbp2_status[11];
1718         sense_data[14] = sbp2_status[20];
1719         sense_data[15] = sbp2_status[21];
1720
1721         return sbp2_status[8] & 0x3f;
1722 }
1723
1724 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1725                                     int destid, quadlet_t *data, u64 addr,
1726                                     size_t length, u16 fl)
1727 {
1728         struct sbp2_fwhost_info *hi;
1729         struct sbp2_lu *lu = NULL, *lu_tmp;
1730         struct scsi_cmnd *SCpnt = NULL;
1731         struct sbp2_status_block *sb;
1732         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1733         struct sbp2_command_info *cmd;
1734         unsigned long flags;
1735
1736         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1737                 SBP2_ERR("Wrong size of status block");
1738                 return RCODE_ADDRESS_ERROR;
1739         }
1740         if (unlikely(!host)) {
1741                 SBP2_ERR("host is NULL - this is bad!");
1742                 return RCODE_ADDRESS_ERROR;
1743         }
1744         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1745         if (unlikely(!hi)) {
1746                 SBP2_ERR("host info is NULL - this is bad!");
1747                 return RCODE_ADDRESS_ERROR;
1748         }
1749
1750         /* Find the unit which wrote the status. */
1751         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1752         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1753                 if (lu_tmp->ne->nodeid == nodeid &&
1754                     lu_tmp->status_fifo_addr == addr) {
1755                         lu = lu_tmp;
1756                         break;
1757                 }
1758         }
1759         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1760
1761         if (unlikely(!lu)) {
1762                 SBP2_ERR("lu is NULL - device is gone?");
1763                 return RCODE_ADDRESS_ERROR;
1764         }
1765
1766         /* Put response into lu status fifo buffer. The first two bytes
1767          * come in big endian bit order. Often the target writes only a
1768          * truncated status block, minimally the first two quadlets. The rest
1769          * is implied to be zeros. */
1770         sb = &lu->status_block;
1771         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1772         memcpy(sb, data, length);
1773         sbp2util_be32_to_cpu_buffer(sb, 8);
1774
1775         /* Ignore unsolicited status. Handle command ORB status. */
1776         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1777                 cmd = NULL;
1778         else
1779                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1780         if (cmd) {
1781                 dma_sync_single_for_cpu(hi->host->device.parent,
1782                                         cmd->command_orb_dma,
1783                                         sizeof(struct sbp2_command_orb),
1784                                         DMA_TO_DEVICE);
1785                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1786                                         sizeof(cmd->scatter_gather_element),
1787                                         DMA_TO_DEVICE);
1788                 /* Grab SCSI command pointers and check status. */
1789                 /*
1790                  * FIXME: If the src field in the status is 1, the ORB DMA must
1791                  * not be reused until status for a subsequent ORB is received.
1792                  */
1793                 SCpnt = cmd->Current_SCpnt;
1794                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1795                 sbp2util_mark_command_completed(lu, cmd);
1796                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1797
1798                 if (SCpnt) {
1799                         u32 h = sb->ORB_offset_hi_misc;
1800                         u32 r = STATUS_GET_RESP(h);
1801
1802                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1803                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1804                                           r, STATUS_GET_SBP_STATUS(h));
1805                                 scsi_status =
1806                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1807                                         SBP2_SCSI_STATUS_BUSY :
1808                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1809                         }
1810
1811                         if (STATUS_GET_LEN(h) > 1)
1812                                 scsi_status = sbp2_status_to_sense_data(
1813                                         (unchar *)sb, SCpnt->sense_buffer);
1814
1815                         if (STATUS_TEST_DEAD(h))
1816                                 sbp2_agent_reset(lu, 0);
1817                 }
1818
1819                 /* Check here to see if there are no commands in-use. If there
1820                  * are none, we know that the fetch agent left the active state
1821                  * _and_ that we did not reactivate it yet. Therefore clear
1822                  * last_orb so that next time we write directly to the
1823                  * ORB_POINTER register. That way the fetch agent does not need
1824                  * to refetch the next_ORB. */
1825                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1826                 if (list_empty(&lu->cmd_orb_inuse))
1827                         lu->last_orb = NULL;
1828                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1829
1830         } else {
1831                 /* It's probably status after a management request. */
1832                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1833                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1834                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1835                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1836                         lu->access_complete = 1;
1837                         wake_up_interruptible(&sbp2_access_wq);
1838                 }
1839         }
1840
1841         if (SCpnt)
1842                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1843                                           cmd->Current_done);
1844         return RCODE_COMPLETE;
1845 }
1846
1847 /**************************************
1848  * SCSI interface related section
1849  **************************************/
1850
1851 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1852                                  void (*done)(struct scsi_cmnd *))
1853 {
1854         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1855         struct sbp2_fwhost_info *hi;
1856         int result = DID_NO_CONNECT << 16;
1857
1858         if (unlikely(!sbp2util_node_is_available(lu)))
1859                 goto done;
1860
1861         hi = lu->hi;
1862
1863         if (unlikely(!hi)) {
1864                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1865                 goto done;
1866         }
1867
1868         /* Multiple units are currently represented to the SCSI core as separate
1869          * targets, not as one target with multiple LUs. Therefore return
1870          * selection time-out to any IO directed at non-zero LUNs. */
1871         if (unlikely(SCpnt->device->lun))
1872                 goto done;
1873
1874         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1875                 SBP2_ERR("Bus reset in progress - rejecting command");
1876                 result = DID_BUS_BUSY << 16;
1877                 goto done;
1878         }
1879
1880         /* Bidirectional commands are not yet implemented,
1881          * and unknown transfer direction not handled. */
1882         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1883                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1884                 result = DID_ERROR << 16;
1885                 goto done;
1886         }
1887
1888         if (sbp2_send_command(lu, SCpnt, done)) {
1889                 SBP2_ERR("Error sending SCSI command");
1890                 sbp2scsi_complete_command(lu,
1891                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1892                                           SCpnt, done);
1893         }
1894         return 0;
1895
1896 done:
1897         SCpnt->result = result;
1898         done(SCpnt);
1899         return 0;
1900 }
1901
1902 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1903 {
1904         struct sbp2_fwhost_info *hi = lu->hi;
1905         struct list_head *lh;
1906         struct sbp2_command_info *cmd;
1907         unsigned long flags;
1908
1909         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1910         while (!list_empty(&lu->cmd_orb_inuse)) {
1911                 lh = lu->cmd_orb_inuse.next;
1912                 cmd = list_entry(lh, struct sbp2_command_info, list);
1913                 dma_sync_single_for_cpu(hi->host->device.parent,
1914                                         cmd->command_orb_dma,
1915                                         sizeof(struct sbp2_command_orb),
1916                                         DMA_TO_DEVICE);
1917                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1918                                         sizeof(cmd->scatter_gather_element),
1919                                         DMA_TO_DEVICE);
1920                 sbp2util_mark_command_completed(lu, cmd);
1921                 if (cmd->Current_SCpnt) {
1922                         cmd->Current_SCpnt->result = status << 16;
1923                         cmd->Current_done(cmd->Current_SCpnt);
1924                 }
1925         }
1926         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1927
1928         return;
1929 }
1930
1931 /*
1932  * Complete a regular SCSI command. Can be called in atomic context.
1933  */
1934 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1935                                       struct scsi_cmnd *SCpnt,
1936                                       void (*done)(struct scsi_cmnd *))
1937 {
1938         if (!SCpnt) {
1939                 SBP2_ERR("SCpnt is NULL");
1940                 return;
1941         }
1942
1943         switch (scsi_status) {
1944         case SBP2_SCSI_STATUS_GOOD:
1945                 SCpnt->result = DID_OK << 16;
1946                 break;
1947
1948         case SBP2_SCSI_STATUS_BUSY:
1949                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1950                 SCpnt->result = DID_BUS_BUSY << 16;
1951                 break;
1952
1953         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1954                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1955                 break;
1956
1957         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1958                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1959                 SCpnt->result = DID_NO_CONNECT << 16;
1960                 scsi_print_command(SCpnt);
1961                 break;
1962
1963         case SBP2_SCSI_STATUS_CONDITION_MET:
1964         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1965         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1966                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1967                 SCpnt->result = DID_ERROR << 16;
1968                 scsi_print_command(SCpnt);
1969                 break;
1970
1971         default:
1972                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1973                 SCpnt->result = DID_ERROR << 16;
1974         }
1975
1976         /* If a bus reset is in progress and there was an error, complete
1977          * the command as busy so that it will get retried. */
1978         if (!hpsb_node_entry_valid(lu->ne)
1979             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1980                 SBP2_ERR("Completing command with busy (bus reset)");
1981                 SCpnt->result = DID_BUS_BUSY << 16;
1982         }
1983
1984         /* Tell the SCSI stack that we're done with this command. */
1985         done(SCpnt);
1986 }
1987
1988 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1989 {
1990         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1991
1992         if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1993                 return -ENODEV;
1994
1995         lu->sdev = sdev;
1996         sdev->allow_restart = 1;
1997
1998         /* SBP-2 requires quadlet alignment of the data buffers. */
1999         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
2000
2001         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2002                 sdev->inquiry_len = 36;
2003         return 0;
2004 }
2005
2006 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2007 {
2008         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2009
2010         sdev->use_10_for_rw = 1;
2011
2012         if (sbp2_exclusive_login)
2013                 sdev->manage_start_stop = 1;
2014         if (sdev->type == TYPE_ROM)
2015                 sdev->use_10_for_ms = 1;
2016         if (sdev->type == TYPE_DISK &&
2017             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2018                 sdev->skip_ms_page_8 = 1;
2019         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2020                 sdev->fix_capacity = 1;
2021         if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2022                 sdev->start_stop_pwr_cond = 1;
2023         if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2024                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2025         return 0;
2026 }
2027
2028 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2029 {
2030         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2031         return;
2032 }
2033
2034 /*
2035  * Called by scsi stack when something has really gone wrong.
2036  * Usually called when a command has timed-out for some reason.
2037  */
2038 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2039 {
2040         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2041         struct sbp2_fwhost_info *hi = lu->hi;
2042         struct sbp2_command_info *cmd;
2043         unsigned long flags;
2044
2045         SBP2_INFO("aborting sbp2 command");
2046         scsi_print_command(SCpnt);
2047
2048         if (sbp2util_node_is_available(lu)) {
2049                 sbp2_agent_reset(lu, 1);
2050
2051                 /* Return a matching command structure to the free pool. */
2052                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2053                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2054                 if (cmd) {
2055                         dma_sync_single_for_cpu(hi->host->device.parent,
2056                                         cmd->command_orb_dma,
2057                                         sizeof(struct sbp2_command_orb),
2058                                         DMA_TO_DEVICE);
2059                         dma_sync_single_for_cpu(hi->host->device.parent,
2060                                         cmd->sge_dma,
2061                                         sizeof(cmd->scatter_gather_element),
2062                                         DMA_TO_DEVICE);
2063                         sbp2util_mark_command_completed(lu, cmd);
2064                         if (cmd->Current_SCpnt) {
2065                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2066                                 cmd->Current_done(cmd->Current_SCpnt);
2067                         }
2068                 }
2069                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2070
2071                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2072         }
2073
2074         return SUCCESS;
2075 }
2076
2077 /*
2078  * Called by scsi stack when something has really gone wrong.
2079  */
2080 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2081 {
2082         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2083
2084         SBP2_INFO("reset requested");
2085
2086         if (sbp2util_node_is_available(lu)) {
2087                 SBP2_INFO("generating sbp2 fetch agent reset");
2088                 sbp2_agent_reset(lu, 1);
2089         }
2090
2091         return SUCCESS;
2092 }
2093
2094 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2095                                            struct device_attribute *attr,
2096                                            char *buf)
2097 {
2098         struct scsi_device *sdev;
2099         struct sbp2_lu *lu;
2100
2101         if (!(sdev = to_scsi_device(dev)))
2102                 return 0;
2103
2104         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2105                 return 0;
2106
2107         if (sbp2_long_sysfs_ieee1394_id)
2108                 return sprintf(buf, "%016Lx:%06x:%04x\n",
2109                                 (unsigned long long)lu->ne->guid,
2110                                 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2111         else
2112                 return sprintf(buf, "%016Lx:%d:%d\n",
2113                                 (unsigned long long)lu->ne->guid,
2114                                 lu->ud->id, ORB_SET_LUN(lu->lun));
2115 }
2116
2117 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2118 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2119 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2120 MODULE_LICENSE("GPL");
2121
2122 static int sbp2_module_init(void)
2123 {
2124         int ret;
2125
2126         if (sbp2_serialize_io) {
2127                 sbp2_shost_template.can_queue = 1;
2128                 sbp2_shost_template.cmd_per_lun = 1;
2129         }
2130
2131         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2132
2133         hpsb_register_highlevel(&sbp2_highlevel);
2134         ret = hpsb_register_protocol(&sbp2_driver);
2135         if (ret) {
2136                 SBP2_ERR("Failed to register protocol");
2137                 hpsb_unregister_highlevel(&sbp2_highlevel);
2138                 return ret;
2139         }
2140         return 0;
2141 }
2142
2143 static void __exit sbp2_module_exit(void)
2144 {
2145         hpsb_unregister_protocol(&sbp2_driver);
2146         hpsb_unregister_highlevel(&sbp2_highlevel);
2147 }
2148
2149 module_init(sbp2_module_init);
2150 module_exit(sbp2_module_exit);