perf_counter/x86: Fix the model number of Intel Core2 processors
[linux-2.6] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2  * Performance counter x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *
10  *  For licencing details see kernel-base/COPYING
11  */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
26
27 static u64 perf_counter_mask __read_mostly;
28
29 struct cpu_hw_counters {
30         struct perf_counter     *counters[X86_PMC_IDX_MAX];
31         unsigned long           used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33         unsigned long           interrupts;
34         int                     enabled;
35 };
36
37 /*
38  * struct x86_pmu - generic x86 pmu
39  */
40 struct x86_pmu {
41         const char      *name;
42         int             version;
43         int             (*handle_irq)(struct pt_regs *);
44         void            (*disable_all)(void);
45         void            (*enable_all)(void);
46         void            (*enable)(struct hw_perf_counter *, int);
47         void            (*disable)(struct hw_perf_counter *, int);
48         unsigned        eventsel;
49         unsigned        perfctr;
50         u64             (*event_map)(int);
51         u64             (*raw_event)(u64);
52         int             max_events;
53         int             num_counters;
54         int             num_counters_fixed;
55         int             counter_bits;
56         u64             counter_mask;
57         u64             max_period;
58         u64             intel_ctrl;
59 };
60
61 static struct x86_pmu x86_pmu __read_mostly;
62
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64         .enabled = 1,
65 };
66
67 /*
68  * Intel PerfMon v3. Used on Core2 and later.
69  */
70 static const u64 intel_perfmon_event_map[] =
71 {
72   [PERF_COUNT_CPU_CYCLES]               = 0x003c,
73   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
74   [PERF_COUNT_CACHE_REFERENCES]         = 0x4f2e,
75   [PERF_COUNT_CACHE_MISSES]             = 0x412e,
76   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
77   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
78   [PERF_COUNT_BUS_CYCLES]               = 0x013c,
79 };
80
81 static u64 intel_pmu_event_map(int event)
82 {
83         return intel_perfmon_event_map[event];
84 }
85
86 /*
87  * Generalized hw caching related event table, filled
88  * in on a per model basis. A value of 0 means
89  * 'not supported', -1 means 'event makes no sense on
90  * this CPU', any other value means the raw event
91  * ID.
92  */
93
94 #define C(x) PERF_COUNT_HW_CACHE_##x
95
96 static u64 __read_mostly hw_cache_event_ids
97                                 [PERF_COUNT_HW_CACHE_MAX]
98                                 [PERF_COUNT_HW_CACHE_OP_MAX]
99                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
100
101 static const u64 nehalem_hw_cache_event_ids
102                                 [PERF_COUNT_HW_CACHE_MAX]
103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
105 {
106  [ C(L1D) ] = {
107         [ C(OP_READ) ] = {
108                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI            */
109                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE         */
110         },
111         [ C(OP_WRITE) ] = {
112                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI            */
113                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE         */
114         },
115         [ C(OP_PREFETCH) ] = {
116                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
117                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
118         },
119  },
120  [ C(L1I ) ] = {
121         [ C(OP_READ) ] = {
122                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
123                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
124         },
125         [ C(OP_WRITE) ] = {
126                 [ C(RESULT_ACCESS) ] = -1,
127                 [ C(RESULT_MISS)   ] = -1,
128         },
129         [ C(OP_PREFETCH) ] = {
130                 [ C(RESULT_ACCESS) ] = 0x0,
131                 [ C(RESULT_MISS)   ] = 0x0,
132         },
133  },
134  [ C(L2  ) ] = {
135         [ C(OP_READ) ] = {
136                 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS               */
137                 [ C(RESULT_MISS)   ] = 0x0224, /* L2_RQSTS.LD_MISS             */
138         },
139         [ C(OP_WRITE) ] = {
140                 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS                */
141                 [ C(RESULT_MISS)   ] = 0x0824, /* L2_RQSTS.RFO_MISS            */
142         },
143         [ C(OP_PREFETCH) ] = {
144                 [ C(RESULT_ACCESS) ] = 0xc024, /* L2_RQSTS.PREFETCHES          */
145                 [ C(RESULT_MISS)   ] = 0x8024, /* L2_RQSTS.PREFETCH_MISS       */
146         },
147  },
148  [ C(DTLB) ] = {
149         [ C(OP_READ) ] = {
150                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
151                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
152         },
153         [ C(OP_WRITE) ] = {
154                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
155                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
156         },
157         [ C(OP_PREFETCH) ] = {
158                 [ C(RESULT_ACCESS) ] = 0x0,
159                 [ C(RESULT_MISS)   ] = 0x0,
160         },
161  },
162  [ C(ITLB) ] = {
163         [ C(OP_READ) ] = {
164                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
165                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
166         },
167         [ C(OP_WRITE) ] = {
168                 [ C(RESULT_ACCESS) ] = -1,
169                 [ C(RESULT_MISS)   ] = -1,
170         },
171         [ C(OP_PREFETCH) ] = {
172                 [ C(RESULT_ACCESS) ] = -1,
173                 [ C(RESULT_MISS)   ] = -1,
174         },
175  },
176  [ C(BPU ) ] = {
177         [ C(OP_READ) ] = {
178                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
179                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
180         },
181         [ C(OP_WRITE) ] = {
182                 [ C(RESULT_ACCESS) ] = -1,
183                 [ C(RESULT_MISS)   ] = -1,
184         },
185         [ C(OP_PREFETCH) ] = {
186                 [ C(RESULT_ACCESS) ] = -1,
187                 [ C(RESULT_MISS)   ] = -1,
188         },
189  },
190 };
191
192 static const u64 core2_hw_cache_event_ids
193                                 [PERF_COUNT_HW_CACHE_MAX]
194                                 [PERF_COUNT_HW_CACHE_OP_MAX]
195                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
196 {
197  [ C(L1D) ] = {
198         [ C(OP_READ) ] = {
199                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
200                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
201         },
202         [ C(OP_WRITE) ] = {
203                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
204                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
205         },
206         [ C(OP_PREFETCH) ] = {
207                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
208                 [ C(RESULT_MISS)   ] = 0,
209         },
210  },
211  [ C(L1I ) ] = {
212         [ C(OP_READ) ] = {
213                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
214                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
215         },
216         [ C(OP_WRITE) ] = {
217                 [ C(RESULT_ACCESS) ] = -1,
218                 [ C(RESULT_MISS)   ] = -1,
219         },
220         [ C(OP_PREFETCH) ] = {
221                 [ C(RESULT_ACCESS) ] = 0,
222                 [ C(RESULT_MISS)   ] = 0,
223         },
224  },
225  [ C(L2  ) ] = {
226         [ C(OP_READ) ] = {
227                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
228                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
229         },
230         [ C(OP_WRITE) ] = {
231                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
232                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
233         },
234         [ C(OP_PREFETCH) ] = {
235                 [ C(RESULT_ACCESS) ] = 0,
236                 [ C(RESULT_MISS)   ] = 0,
237         },
238  },
239  [ C(DTLB) ] = {
240         [ C(OP_READ) ] = {
241                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
242                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
243         },
244         [ C(OP_WRITE) ] = {
245                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
246                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
247         },
248         [ C(OP_PREFETCH) ] = {
249                 [ C(RESULT_ACCESS) ] = 0,
250                 [ C(RESULT_MISS)   ] = 0,
251         },
252  },
253  [ C(ITLB) ] = {
254         [ C(OP_READ) ] = {
255                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
256                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
257         },
258         [ C(OP_WRITE) ] = {
259                 [ C(RESULT_ACCESS) ] = -1,
260                 [ C(RESULT_MISS)   ] = -1,
261         },
262         [ C(OP_PREFETCH) ] = {
263                 [ C(RESULT_ACCESS) ] = -1,
264                 [ C(RESULT_MISS)   ] = -1,
265         },
266  },
267  [ C(BPU ) ] = {
268         [ C(OP_READ) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
270                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
271         },
272         [ C(OP_WRITE) ] = {
273                 [ C(RESULT_ACCESS) ] = -1,
274                 [ C(RESULT_MISS)   ] = -1,
275         },
276         [ C(OP_PREFETCH) ] = {
277                 [ C(RESULT_ACCESS) ] = -1,
278                 [ C(RESULT_MISS)   ] = -1,
279         },
280  },
281 };
282
283 static const u64 atom_hw_cache_event_ids
284                                 [PERF_COUNT_HW_CACHE_MAX]
285                                 [PERF_COUNT_HW_CACHE_OP_MAX]
286                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
287 {
288  [ C(L1D) ] = {
289         [ C(OP_READ) ] = {
290                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
291                 [ C(RESULT_MISS)   ] = 0,
292         },
293         [ C(OP_WRITE) ] = {
294                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
295                 [ C(RESULT_MISS)   ] = 0,
296         },
297         [ C(OP_PREFETCH) ] = {
298                 [ C(RESULT_ACCESS) ] = 0x0,
299                 [ C(RESULT_MISS)   ] = 0,
300         },
301  },
302  [ C(L1I ) ] = {
303         [ C(OP_READ) ] = {
304                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
305                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
306         },
307         [ C(OP_WRITE) ] = {
308                 [ C(RESULT_ACCESS) ] = -1,
309                 [ C(RESULT_MISS)   ] = -1,
310         },
311         [ C(OP_PREFETCH) ] = {
312                 [ C(RESULT_ACCESS) ] = 0,
313                 [ C(RESULT_MISS)   ] = 0,
314         },
315  },
316  [ C(L2  ) ] = {
317         [ C(OP_READ) ] = {
318                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
319                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
320         },
321         [ C(OP_WRITE) ] = {
322                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
323                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
324         },
325         [ C(OP_PREFETCH) ] = {
326                 [ C(RESULT_ACCESS) ] = 0,
327                 [ C(RESULT_MISS)   ] = 0,
328         },
329  },
330  [ C(DTLB) ] = {
331         [ C(OP_READ) ] = {
332                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
333                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
334         },
335         [ C(OP_WRITE) ] = {
336                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
337                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
338         },
339         [ C(OP_PREFETCH) ] = {
340                 [ C(RESULT_ACCESS) ] = 0,
341                 [ C(RESULT_MISS)   ] = 0,
342         },
343  },
344  [ C(ITLB) ] = {
345         [ C(OP_READ) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
347                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
348         },
349         [ C(OP_WRITE) ] = {
350                 [ C(RESULT_ACCESS) ] = -1,
351                 [ C(RESULT_MISS)   ] = -1,
352         },
353         [ C(OP_PREFETCH) ] = {
354                 [ C(RESULT_ACCESS) ] = -1,
355                 [ C(RESULT_MISS)   ] = -1,
356         },
357  },
358  [ C(BPU ) ] = {
359         [ C(OP_READ) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
361                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
362         },
363         [ C(OP_WRITE) ] = {
364                 [ C(RESULT_ACCESS) ] = -1,
365                 [ C(RESULT_MISS)   ] = -1,
366         },
367         [ C(OP_PREFETCH) ] = {
368                 [ C(RESULT_ACCESS) ] = -1,
369                 [ C(RESULT_MISS)   ] = -1,
370         },
371  },
372 };
373
374 static u64 intel_pmu_raw_event(u64 event)
375 {
376 #define CORE_EVNTSEL_EVENT_MASK         0x000000FFULL
377 #define CORE_EVNTSEL_UNIT_MASK          0x0000FF00ULL
378 #define CORE_EVNTSEL_EDGE_MASK          0x00040000ULL
379 #define CORE_EVNTSEL_INV_MASK           0x00800000ULL
380 #define CORE_EVNTSEL_COUNTER_MASK       0xFF000000ULL
381
382 #define CORE_EVNTSEL_MASK               \
383         (CORE_EVNTSEL_EVENT_MASK |      \
384          CORE_EVNTSEL_UNIT_MASK  |      \
385          CORE_EVNTSEL_EDGE_MASK  |      \
386          CORE_EVNTSEL_INV_MASK  |       \
387          CORE_EVNTSEL_COUNTER_MASK)
388
389         return event & CORE_EVNTSEL_MASK;
390 }
391
392 static const u64 amd_0f_hw_cache_event_ids
393                                 [PERF_COUNT_HW_CACHE_MAX]
394                                 [PERF_COUNT_HW_CACHE_OP_MAX]
395                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
396 {
397  [ C(L1D) ] = {
398         [ C(OP_READ) ] = {
399                 [ C(RESULT_ACCESS) ] = 0,
400                 [ C(RESULT_MISS)   ] = 0,
401         },
402         [ C(OP_WRITE) ] = {
403                 [ C(RESULT_ACCESS) ] = 0,
404                 [ C(RESULT_MISS)   ] = 0,
405         },
406         [ C(OP_PREFETCH) ] = {
407                 [ C(RESULT_ACCESS) ] = 0,
408                 [ C(RESULT_MISS)   ] = 0,
409         },
410  },
411  [ C(L1I ) ] = {
412         [ C(OP_READ) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
414                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
415         },
416         [ C(OP_WRITE) ] = {
417                 [ C(RESULT_ACCESS) ] = -1,
418                 [ C(RESULT_MISS)   ] = -1,
419         },
420         [ C(OP_PREFETCH) ] = {
421                 [ C(RESULT_ACCESS) ] = 0,
422                 [ C(RESULT_MISS)   ] = 0,
423         },
424  },
425  [ C(L2  ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0,
428                 [ C(RESULT_MISS)   ] = 0,
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0,
432                 [ C(RESULT_MISS)   ] = 0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0,
436                 [ C(RESULT_MISS)   ] = 0,
437         },
438  },
439  [ C(DTLB) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0,
442                 [ C(RESULT_MISS)   ] = 0,
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = 0,
446                 [ C(RESULT_MISS)   ] = 0,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0,
450                 [ C(RESULT_MISS)   ] = 0,
451         },
452  },
453  [ C(ITLB) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
456                 [ C(RESULT_MISS)   ] = 0x0085, /* Instr. fetch ITLB misses   */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = -1,
464                 [ C(RESULT_MISS)   ] = -1,
465         },
466  },
467  [ C(BPU ) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
470                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = -1,
474                 [ C(RESULT_MISS)   ] = -1,
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = -1,
478                 [ C(RESULT_MISS)   ] = -1,
479         },
480  },
481 };
482
483 /*
484  * AMD Performance Monitor K7 and later.
485  */
486 static const u64 amd_perfmon_event_map[] =
487 {
488   [PERF_COUNT_CPU_CYCLES]               = 0x0076,
489   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
490   [PERF_COUNT_CACHE_REFERENCES]         = 0x0080,
491   [PERF_COUNT_CACHE_MISSES]             = 0x0081,
492   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
493   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
494 };
495
496 static u64 amd_pmu_event_map(int event)
497 {
498         return amd_perfmon_event_map[event];
499 }
500
501 static u64 amd_pmu_raw_event(u64 event)
502 {
503 #define K7_EVNTSEL_EVENT_MASK   0x7000000FFULL
504 #define K7_EVNTSEL_UNIT_MASK    0x00000FF00ULL
505 #define K7_EVNTSEL_EDGE_MASK    0x000040000ULL
506 #define K7_EVNTSEL_INV_MASK     0x000800000ULL
507 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
508
509 #define K7_EVNTSEL_MASK                 \
510         (K7_EVNTSEL_EVENT_MASK |        \
511          K7_EVNTSEL_UNIT_MASK  |        \
512          K7_EVNTSEL_EDGE_MASK  |        \
513          K7_EVNTSEL_INV_MASK   |        \
514          K7_EVNTSEL_COUNTER_MASK)
515
516         return event & K7_EVNTSEL_MASK;
517 }
518
519 /*
520  * Propagate counter elapsed time into the generic counter.
521  * Can only be executed on the CPU where the counter is active.
522  * Returns the delta events processed.
523  */
524 static u64
525 x86_perf_counter_update(struct perf_counter *counter,
526                         struct hw_perf_counter *hwc, int idx)
527 {
528         int shift = 64 - x86_pmu.counter_bits;
529         u64 prev_raw_count, new_raw_count;
530         s64 delta;
531
532         /*
533          * Careful: an NMI might modify the previous counter value.
534          *
535          * Our tactic to handle this is to first atomically read and
536          * exchange a new raw count - then add that new-prev delta
537          * count to the generic counter atomically:
538          */
539 again:
540         prev_raw_count = atomic64_read(&hwc->prev_count);
541         rdmsrl(hwc->counter_base + idx, new_raw_count);
542
543         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
544                                         new_raw_count) != prev_raw_count)
545                 goto again;
546
547         /*
548          * Now we have the new raw value and have updated the prev
549          * timestamp already. We can now calculate the elapsed delta
550          * (counter-)time and add that to the generic counter.
551          *
552          * Careful, not all hw sign-extends above the physical width
553          * of the count.
554          */
555         delta = (new_raw_count << shift) - (prev_raw_count << shift);
556         delta >>= shift;
557
558         atomic64_add(delta, &counter->count);
559         atomic64_sub(delta, &hwc->period_left);
560
561         return new_raw_count;
562 }
563
564 static atomic_t active_counters;
565 static DEFINE_MUTEX(pmc_reserve_mutex);
566
567 static bool reserve_pmc_hardware(void)
568 {
569         int i;
570
571         if (nmi_watchdog == NMI_LOCAL_APIC)
572                 disable_lapic_nmi_watchdog();
573
574         for (i = 0; i < x86_pmu.num_counters; i++) {
575                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
576                         goto perfctr_fail;
577         }
578
579         for (i = 0; i < x86_pmu.num_counters; i++) {
580                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
581                         goto eventsel_fail;
582         }
583
584         return true;
585
586 eventsel_fail:
587         for (i--; i >= 0; i--)
588                 release_evntsel_nmi(x86_pmu.eventsel + i);
589
590         i = x86_pmu.num_counters;
591
592 perfctr_fail:
593         for (i--; i >= 0; i--)
594                 release_perfctr_nmi(x86_pmu.perfctr + i);
595
596         if (nmi_watchdog == NMI_LOCAL_APIC)
597                 enable_lapic_nmi_watchdog();
598
599         return false;
600 }
601
602 static void release_pmc_hardware(void)
603 {
604         int i;
605
606         for (i = 0; i < x86_pmu.num_counters; i++) {
607                 release_perfctr_nmi(x86_pmu.perfctr + i);
608                 release_evntsel_nmi(x86_pmu.eventsel + i);
609         }
610
611         if (nmi_watchdog == NMI_LOCAL_APIC)
612                 enable_lapic_nmi_watchdog();
613 }
614
615 static void hw_perf_counter_destroy(struct perf_counter *counter)
616 {
617         if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
618                 release_pmc_hardware();
619                 mutex_unlock(&pmc_reserve_mutex);
620         }
621 }
622
623 static inline int x86_pmu_initialized(void)
624 {
625         return x86_pmu.handle_irq != NULL;
626 }
627
628 static inline int
629 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
630 {
631         unsigned int cache_type, cache_op, cache_result;
632         u64 config, val;
633
634         config = attr->config;
635
636         cache_type = (config >>  0) & 0xff;
637         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
638                 return -EINVAL;
639
640         cache_op = (config >>  8) & 0xff;
641         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
642                 return -EINVAL;
643
644         cache_result = (config >> 16) & 0xff;
645         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
646                 return -EINVAL;
647
648         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
649
650         if (val == 0)
651                 return -ENOENT;
652
653         if (val == -1)
654                 return -EINVAL;
655
656         hwc->config |= val;
657
658         return 0;
659 }
660
661 /*
662  * Setup the hardware configuration for a given attr_type
663  */
664 static int __hw_perf_counter_init(struct perf_counter *counter)
665 {
666         struct perf_counter_attr *attr = &counter->attr;
667         struct hw_perf_counter *hwc = &counter->hw;
668         int err;
669
670         if (!x86_pmu_initialized())
671                 return -ENODEV;
672
673         err = 0;
674         if (!atomic_inc_not_zero(&active_counters)) {
675                 mutex_lock(&pmc_reserve_mutex);
676                 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
677                         err = -EBUSY;
678                 else
679                         atomic_inc(&active_counters);
680                 mutex_unlock(&pmc_reserve_mutex);
681         }
682         if (err)
683                 return err;
684
685         /*
686          * Generate PMC IRQs:
687          * (keep 'enabled' bit clear for now)
688          */
689         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
690
691         /*
692          * Count user and OS events unless requested not to.
693          */
694         if (!attr->exclude_user)
695                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
696         if (!attr->exclude_kernel)
697                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
698
699         if (!hwc->sample_period)
700                 hwc->sample_period = x86_pmu.max_period;
701
702         atomic64_set(&hwc->period_left, hwc->sample_period);
703         counter->destroy = hw_perf_counter_destroy;
704
705         /*
706          * Raw event type provide the config in the event structure
707          */
708         if (attr->type == PERF_TYPE_RAW) {
709                 hwc->config |= x86_pmu.raw_event(attr->config);
710                 return 0;
711         }
712
713         if (attr->type == PERF_TYPE_HW_CACHE)
714                 return set_ext_hw_attr(hwc, attr);
715
716         if (attr->config >= x86_pmu.max_events)
717                 return -EINVAL;
718         /*
719          * The generic map:
720          */
721         hwc->config |= x86_pmu.event_map(attr->config);
722
723         return 0;
724 }
725
726 static void intel_pmu_disable_all(void)
727 {
728         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
729 }
730
731 static void amd_pmu_disable_all(void)
732 {
733         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
734         int idx;
735
736         if (!cpuc->enabled)
737                 return;
738
739         cpuc->enabled = 0;
740         /*
741          * ensure we write the disable before we start disabling the
742          * counters proper, so that amd_pmu_enable_counter() does the
743          * right thing.
744          */
745         barrier();
746
747         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
748                 u64 val;
749
750                 if (!test_bit(idx, cpuc->active_mask))
751                         continue;
752                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
753                 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
754                         continue;
755                 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
756                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
757         }
758 }
759
760 void hw_perf_disable(void)
761 {
762         if (!x86_pmu_initialized())
763                 return;
764         return x86_pmu.disable_all();
765 }
766
767 static void intel_pmu_enable_all(void)
768 {
769         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
770 }
771
772 static void amd_pmu_enable_all(void)
773 {
774         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
775         int idx;
776
777         if (cpuc->enabled)
778                 return;
779
780         cpuc->enabled = 1;
781         barrier();
782
783         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
784                 u64 val;
785
786                 if (!test_bit(idx, cpuc->active_mask))
787                         continue;
788                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
789                 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
790                         continue;
791                 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
792                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
793         }
794 }
795
796 void hw_perf_enable(void)
797 {
798         if (!x86_pmu_initialized())
799                 return;
800         x86_pmu.enable_all();
801 }
802
803 static inline u64 intel_pmu_get_status(void)
804 {
805         u64 status;
806
807         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
808
809         return status;
810 }
811
812 static inline void intel_pmu_ack_status(u64 ack)
813 {
814         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
815 }
816
817 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
818 {
819         int err;
820         err = checking_wrmsrl(hwc->config_base + idx,
821                               hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
822 }
823
824 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
825 {
826         int err;
827         err = checking_wrmsrl(hwc->config_base + idx,
828                               hwc->config);
829 }
830
831 static inline void
832 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
833 {
834         int idx = __idx - X86_PMC_IDX_FIXED;
835         u64 ctrl_val, mask;
836         int err;
837
838         mask = 0xfULL << (idx * 4);
839
840         rdmsrl(hwc->config_base, ctrl_val);
841         ctrl_val &= ~mask;
842         err = checking_wrmsrl(hwc->config_base, ctrl_val);
843 }
844
845 static inline void
846 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
847 {
848         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
849                 intel_pmu_disable_fixed(hwc, idx);
850                 return;
851         }
852
853         x86_pmu_disable_counter(hwc, idx);
854 }
855
856 static inline void
857 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
858 {
859         x86_pmu_disable_counter(hwc, idx);
860 }
861
862 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
863
864 /*
865  * Set the next IRQ period, based on the hwc->period_left value.
866  * To be called with the counter disabled in hw:
867  */
868 static int
869 x86_perf_counter_set_period(struct perf_counter *counter,
870                              struct hw_perf_counter *hwc, int idx)
871 {
872         s64 left = atomic64_read(&hwc->period_left);
873         s64 period = hwc->sample_period;
874         int err, ret = 0;
875
876         /*
877          * If we are way outside a reasoable range then just skip forward:
878          */
879         if (unlikely(left <= -period)) {
880                 left = period;
881                 atomic64_set(&hwc->period_left, left);
882                 ret = 1;
883         }
884
885         if (unlikely(left <= 0)) {
886                 left += period;
887                 atomic64_set(&hwc->period_left, left);
888                 ret = 1;
889         }
890         /*
891          * Quirk: certain CPUs dont like it if just 1 event is left:
892          */
893         if (unlikely(left < 2))
894                 left = 2;
895
896         if (left > x86_pmu.max_period)
897                 left = x86_pmu.max_period;
898
899         per_cpu(prev_left[idx], smp_processor_id()) = left;
900
901         /*
902          * The hw counter starts counting from this counter offset,
903          * mark it to be able to extra future deltas:
904          */
905         atomic64_set(&hwc->prev_count, (u64)-left);
906
907         err = checking_wrmsrl(hwc->counter_base + idx,
908                              (u64)(-left) & x86_pmu.counter_mask);
909
910         return ret;
911 }
912
913 static inline void
914 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
915 {
916         int idx = __idx - X86_PMC_IDX_FIXED;
917         u64 ctrl_val, bits, mask;
918         int err;
919
920         /*
921          * Enable IRQ generation (0x8),
922          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
923          * if requested:
924          */
925         bits = 0x8ULL;
926         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
927                 bits |= 0x2;
928         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
929                 bits |= 0x1;
930         bits <<= (idx * 4);
931         mask = 0xfULL << (idx * 4);
932
933         rdmsrl(hwc->config_base, ctrl_val);
934         ctrl_val &= ~mask;
935         ctrl_val |= bits;
936         err = checking_wrmsrl(hwc->config_base, ctrl_val);
937 }
938
939 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
940 {
941         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
942                 intel_pmu_enable_fixed(hwc, idx);
943                 return;
944         }
945
946         x86_pmu_enable_counter(hwc, idx);
947 }
948
949 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
950 {
951         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
952
953         if (cpuc->enabled)
954                 x86_pmu_enable_counter(hwc, idx);
955         else
956                 x86_pmu_disable_counter(hwc, idx);
957 }
958
959 static int
960 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
961 {
962         unsigned int event;
963
964         if (!x86_pmu.num_counters_fixed)
965                 return -1;
966
967         event = hwc->config & ARCH_PERFMON_EVENT_MASK;
968
969         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
970                 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
971         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
972                 return X86_PMC_IDX_FIXED_CPU_CYCLES;
973         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
974                 return X86_PMC_IDX_FIXED_BUS_CYCLES;
975
976         return -1;
977 }
978
979 /*
980  * Find a PMC slot for the freshly enabled / scheduled in counter:
981  */
982 static int x86_pmu_enable(struct perf_counter *counter)
983 {
984         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
985         struct hw_perf_counter *hwc = &counter->hw;
986         int idx;
987
988         idx = fixed_mode_idx(counter, hwc);
989         if (idx >= 0) {
990                 /*
991                  * Try to get the fixed counter, if that is already taken
992                  * then try to get a generic counter:
993                  */
994                 if (test_and_set_bit(idx, cpuc->used_mask))
995                         goto try_generic;
996
997                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
998                 /*
999                  * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1000                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1001                  */
1002                 hwc->counter_base =
1003                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1004                 hwc->idx = idx;
1005         } else {
1006                 idx = hwc->idx;
1007                 /* Try to get the previous generic counter again */
1008                 if (test_and_set_bit(idx, cpuc->used_mask)) {
1009 try_generic:
1010                         idx = find_first_zero_bit(cpuc->used_mask,
1011                                                   x86_pmu.num_counters);
1012                         if (idx == x86_pmu.num_counters)
1013                                 return -EAGAIN;
1014
1015                         set_bit(idx, cpuc->used_mask);
1016                         hwc->idx = idx;
1017                 }
1018                 hwc->config_base  = x86_pmu.eventsel;
1019                 hwc->counter_base = x86_pmu.perfctr;
1020         }
1021
1022         perf_counters_lapic_init();
1023
1024         x86_pmu.disable(hwc, idx);
1025
1026         cpuc->counters[idx] = counter;
1027         set_bit(idx, cpuc->active_mask);
1028
1029         x86_perf_counter_set_period(counter, hwc, idx);
1030         x86_pmu.enable(hwc, idx);
1031
1032         return 0;
1033 }
1034
1035 static void x86_pmu_unthrottle(struct perf_counter *counter)
1036 {
1037         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1038         struct hw_perf_counter *hwc = &counter->hw;
1039
1040         if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1041                                 cpuc->counters[hwc->idx] != counter))
1042                 return;
1043
1044         x86_pmu.enable(hwc, hwc->idx);
1045 }
1046
1047 void perf_counter_print_debug(void)
1048 {
1049         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1050         struct cpu_hw_counters *cpuc;
1051         unsigned long flags;
1052         int cpu, idx;
1053
1054         if (!x86_pmu.num_counters)
1055                 return;
1056
1057         local_irq_save(flags);
1058
1059         cpu = smp_processor_id();
1060         cpuc = &per_cpu(cpu_hw_counters, cpu);
1061
1062         if (x86_pmu.version >= 2) {
1063                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1064                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1065                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1066                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1067
1068                 pr_info("\n");
1069                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1070                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1071                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1072                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1073         }
1074         pr_info("CPU#%d: used:       %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1075
1076         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1077                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1078                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1079
1080                 prev_left = per_cpu(prev_left[idx], cpu);
1081
1082                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1083                         cpu, idx, pmc_ctrl);
1084                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1085                         cpu, idx, pmc_count);
1086                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1087                         cpu, idx, prev_left);
1088         }
1089         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1090                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1091
1092                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1093                         cpu, idx, pmc_count);
1094         }
1095         local_irq_restore(flags);
1096 }
1097
1098 static void x86_pmu_disable(struct perf_counter *counter)
1099 {
1100         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1101         struct hw_perf_counter *hwc = &counter->hw;
1102         int idx = hwc->idx;
1103
1104         /*
1105          * Must be done before we disable, otherwise the nmi handler
1106          * could reenable again:
1107          */
1108         clear_bit(idx, cpuc->active_mask);
1109         x86_pmu.disable(hwc, idx);
1110
1111         /*
1112          * Make sure the cleared pointer becomes visible before we
1113          * (potentially) free the counter:
1114          */
1115         barrier();
1116
1117         /*
1118          * Drain the remaining delta count out of a counter
1119          * that we are disabling:
1120          */
1121         x86_perf_counter_update(counter, hwc, idx);
1122         cpuc->counters[idx] = NULL;
1123         clear_bit(idx, cpuc->used_mask);
1124 }
1125
1126 /*
1127  * Save and restart an expired counter. Called by NMI contexts,
1128  * so it has to be careful about preempting normal counter ops:
1129  */
1130 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1131 {
1132         struct hw_perf_counter *hwc = &counter->hw;
1133         int idx = hwc->idx;
1134         int ret;
1135
1136         x86_perf_counter_update(counter, hwc, idx);
1137         ret = x86_perf_counter_set_period(counter, hwc, idx);
1138
1139         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1140                 intel_pmu_enable_counter(hwc, idx);
1141
1142         return ret;
1143 }
1144
1145 static void intel_pmu_reset(void)
1146 {
1147         unsigned long flags;
1148         int idx;
1149
1150         if (!x86_pmu.num_counters)
1151                 return;
1152
1153         local_irq_save(flags);
1154
1155         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1156
1157         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1158                 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1159                 checking_wrmsrl(x86_pmu.perfctr  + idx, 0ull);
1160         }
1161         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1162                 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1163         }
1164
1165         local_irq_restore(flags);
1166 }
1167
1168
1169 /*
1170  * This handler is triggered by the local APIC, so the APIC IRQ handling
1171  * rules apply:
1172  */
1173 static int intel_pmu_handle_irq(struct pt_regs *regs)
1174 {
1175         struct cpu_hw_counters *cpuc;
1176         struct cpu_hw_counters;
1177         int bit, cpu, loops;
1178         u64 ack, status;
1179
1180         cpu = smp_processor_id();
1181         cpuc = &per_cpu(cpu_hw_counters, cpu);
1182
1183         perf_disable();
1184         status = intel_pmu_get_status();
1185         if (!status) {
1186                 perf_enable();
1187                 return 0;
1188         }
1189
1190         loops = 0;
1191 again:
1192         if (++loops > 100) {
1193                 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1194                 perf_counter_print_debug();
1195                 intel_pmu_reset();
1196                 perf_enable();
1197                 return 1;
1198         }
1199
1200         inc_irq_stat(apic_perf_irqs);
1201         ack = status;
1202         for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1203                 struct perf_counter *counter = cpuc->counters[bit];
1204
1205                 clear_bit(bit, (unsigned long *) &status);
1206                 if (!test_bit(bit, cpuc->active_mask))
1207                         continue;
1208
1209                 if (!intel_pmu_save_and_restart(counter))
1210                         continue;
1211
1212                 if (perf_counter_overflow(counter, 1, regs, 0))
1213                         intel_pmu_disable_counter(&counter->hw, bit);
1214         }
1215
1216         intel_pmu_ack_status(ack);
1217
1218         /*
1219          * Repeat if there is more work to be done:
1220          */
1221         status = intel_pmu_get_status();
1222         if (status)
1223                 goto again;
1224
1225         perf_enable();
1226
1227         return 1;
1228 }
1229
1230 static int amd_pmu_handle_irq(struct pt_regs *regs)
1231 {
1232         int cpu, idx, handled = 0;
1233         struct cpu_hw_counters *cpuc;
1234         struct perf_counter *counter;
1235         struct hw_perf_counter *hwc;
1236         u64 val;
1237
1238         cpu = smp_processor_id();
1239         cpuc = &per_cpu(cpu_hw_counters, cpu);
1240
1241         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1242                 if (!test_bit(idx, cpuc->active_mask))
1243                         continue;
1244
1245                 counter = cpuc->counters[idx];
1246                 hwc = &counter->hw;
1247
1248                 val = x86_perf_counter_update(counter, hwc, idx);
1249                 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1250                         continue;
1251
1252                 /* counter overflow */
1253                 handled = 1;
1254                 inc_irq_stat(apic_perf_irqs);
1255                 if (!x86_perf_counter_set_period(counter, hwc, idx))
1256                         continue;
1257
1258                 if (perf_counter_overflow(counter, 1, regs, 0))
1259                         amd_pmu_disable_counter(hwc, idx);
1260         }
1261
1262         return handled;
1263 }
1264
1265 void smp_perf_pending_interrupt(struct pt_regs *regs)
1266 {
1267         irq_enter();
1268         ack_APIC_irq();
1269         inc_irq_stat(apic_pending_irqs);
1270         perf_counter_do_pending();
1271         irq_exit();
1272 }
1273
1274 void set_perf_counter_pending(void)
1275 {
1276         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1277 }
1278
1279 void perf_counters_lapic_init(void)
1280 {
1281         if (!x86_pmu_initialized())
1282                 return;
1283
1284         /*
1285          * Always use NMI for PMU
1286          */
1287         apic_write(APIC_LVTPC, APIC_DM_NMI);
1288 }
1289
1290 static int __kprobes
1291 perf_counter_nmi_handler(struct notifier_block *self,
1292                          unsigned long cmd, void *__args)
1293 {
1294         struct die_args *args = __args;
1295         struct pt_regs *regs;
1296
1297         if (!atomic_read(&active_counters))
1298                 return NOTIFY_DONE;
1299
1300         switch (cmd) {
1301         case DIE_NMI:
1302         case DIE_NMI_IPI:
1303                 break;
1304
1305         default:
1306                 return NOTIFY_DONE;
1307         }
1308
1309         regs = args->regs;
1310
1311         apic_write(APIC_LVTPC, APIC_DM_NMI);
1312         /*
1313          * Can't rely on the handled return value to say it was our NMI, two
1314          * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1315          *
1316          * If the first NMI handles both, the latter will be empty and daze
1317          * the CPU.
1318          */
1319         x86_pmu.handle_irq(regs);
1320
1321         return NOTIFY_STOP;
1322 }
1323
1324 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1325         .notifier_call          = perf_counter_nmi_handler,
1326         .next                   = NULL,
1327         .priority               = 1
1328 };
1329
1330 static struct x86_pmu intel_pmu = {
1331         .name                   = "Intel",
1332         .handle_irq             = intel_pmu_handle_irq,
1333         .disable_all            = intel_pmu_disable_all,
1334         .enable_all             = intel_pmu_enable_all,
1335         .enable                 = intel_pmu_enable_counter,
1336         .disable                = intel_pmu_disable_counter,
1337         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1338         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1339         .event_map              = intel_pmu_event_map,
1340         .raw_event              = intel_pmu_raw_event,
1341         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1342         /*
1343          * Intel PMCs cannot be accessed sanely above 32 bit width,
1344          * so we install an artificial 1<<31 period regardless of
1345          * the generic counter period:
1346          */
1347         .max_period             = (1ULL << 31) - 1,
1348 };
1349
1350 static struct x86_pmu amd_pmu = {
1351         .name                   = "AMD",
1352         .handle_irq             = amd_pmu_handle_irq,
1353         .disable_all            = amd_pmu_disable_all,
1354         .enable_all             = amd_pmu_enable_all,
1355         .enable                 = amd_pmu_enable_counter,
1356         .disable                = amd_pmu_disable_counter,
1357         .eventsel               = MSR_K7_EVNTSEL0,
1358         .perfctr                = MSR_K7_PERFCTR0,
1359         .event_map              = amd_pmu_event_map,
1360         .raw_event              = amd_pmu_raw_event,
1361         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1362         .num_counters           = 4,
1363         .counter_bits           = 48,
1364         .counter_mask           = (1ULL << 48) - 1,
1365         /* use highest bit to detect overflow */
1366         .max_period             = (1ULL << 47) - 1,
1367 };
1368
1369 static int intel_pmu_init(void)
1370 {
1371         union cpuid10_edx edx;
1372         union cpuid10_eax eax;
1373         unsigned int unused;
1374         unsigned int ebx;
1375         int version;
1376
1377         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1378                 return -ENODEV;
1379
1380         /*
1381          * Check whether the Architectural PerfMon supports
1382          * Branch Misses Retired Event or not.
1383          */
1384         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1385         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1386                 return -ENODEV;
1387
1388         version = eax.split.version_id;
1389         if (version < 2)
1390                 return -ENODEV;
1391
1392         x86_pmu                         = intel_pmu;
1393         x86_pmu.version                 = version;
1394         x86_pmu.num_counters            = eax.split.num_counters;
1395         x86_pmu.counter_bits            = eax.split.bit_width;
1396         x86_pmu.counter_mask            = (1ULL << eax.split.bit_width) - 1;
1397
1398         /*
1399          * Quirk: v2 perfmon does not report fixed-purpose counters, so
1400          * assume at least 3 counters:
1401          */
1402         x86_pmu.num_counters_fixed      = max((int)edx.split.num_counters_fixed, 3);
1403
1404         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1405
1406         /*
1407          * Install the hw-cache-events table:
1408          */
1409         switch (boot_cpu_data.x86_model) {
1410         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1411         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1412         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1413         case 29: /* six-core 45 nm xeon "Dunnington" */
1414                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1415                        sizeof(hw_cache_event_ids));
1416
1417                 pr_cont("Core2 events, ");
1418                 break;
1419         default:
1420         case 26:
1421                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1422                        sizeof(hw_cache_event_ids));
1423
1424                 pr_cont("Nehalem/Corei7 events, ");
1425                 break;
1426         case 28:
1427                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1428                        sizeof(hw_cache_event_ids));
1429
1430                 pr_cont("Atom events, ");
1431                 break;
1432         }
1433         return 0;
1434 }
1435
1436 static int amd_pmu_init(void)
1437 {
1438         x86_pmu = amd_pmu;
1439
1440         switch (boot_cpu_data.x86) {
1441         case 0x0f:
1442         case 0x10:
1443         case 0x11:
1444                 memcpy(hw_cache_event_ids, amd_0f_hw_cache_event_ids,
1445                        sizeof(hw_cache_event_ids));
1446
1447                 pr_cont("AMD Family 0f/10/11 events, ");
1448                 break;
1449         }
1450         return 0;
1451 }
1452
1453 void __init init_hw_perf_counters(void)
1454 {
1455         int err;
1456
1457         pr_info("Performance Counters: ");
1458
1459         switch (boot_cpu_data.x86_vendor) {
1460         case X86_VENDOR_INTEL:
1461                 err = intel_pmu_init();
1462                 break;
1463         case X86_VENDOR_AMD:
1464                 err = amd_pmu_init();
1465                 break;
1466         default:
1467                 return;
1468         }
1469         if (err != 0) {
1470                 pr_cont("no PMU driver, software counters only.\n");
1471                 return;
1472         }
1473
1474         pr_cont("%s PMU driver.\n", x86_pmu.name);
1475
1476         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1477                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1478                 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1479                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1480         }
1481         perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1482         perf_max_counters = x86_pmu.num_counters;
1483
1484         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1485                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1486                 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1487                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1488         }
1489
1490         perf_counter_mask |=
1491                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1492
1493         perf_counters_lapic_init();
1494         register_die_notifier(&perf_counter_nmi_notifier);
1495
1496         pr_info("... version:                 %d\n",     x86_pmu.version);
1497         pr_info("... bit width:               %d\n",     x86_pmu.counter_bits);
1498         pr_info("... generic counters:        %d\n",     x86_pmu.num_counters);
1499         pr_info("... value mask:              %016Lx\n", x86_pmu.counter_mask);
1500         pr_info("... max period:              %016Lx\n", x86_pmu.max_period);
1501         pr_info("... fixed-purpose counters:  %d\n",     x86_pmu.num_counters_fixed);
1502         pr_info("... counter mask:            %016Lx\n", perf_counter_mask);
1503 }
1504
1505 static inline void x86_pmu_read(struct perf_counter *counter)
1506 {
1507         x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1508 }
1509
1510 static const struct pmu pmu = {
1511         .enable         = x86_pmu_enable,
1512         .disable        = x86_pmu_disable,
1513         .read           = x86_pmu_read,
1514         .unthrottle     = x86_pmu_unthrottle,
1515 };
1516
1517 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1518 {
1519         int err;
1520
1521         err = __hw_perf_counter_init(counter);
1522         if (err)
1523                 return ERR_PTR(err);
1524
1525         return &pmu;
1526 }
1527
1528 /*
1529  * callchain support
1530  */
1531
1532 static inline
1533 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1534 {
1535         if (entry->nr < MAX_STACK_DEPTH)
1536                 entry->ip[entry->nr++] = ip;
1537 }
1538
1539 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1540 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1541
1542
1543 static void
1544 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1545 {
1546         /* Ignore warnings */
1547 }
1548
1549 static void backtrace_warning(void *data, char *msg)
1550 {
1551         /* Ignore warnings */
1552 }
1553
1554 static int backtrace_stack(void *data, char *name)
1555 {
1556         /* Don't bother with IRQ stacks for now */
1557         return -1;
1558 }
1559
1560 static void backtrace_address(void *data, unsigned long addr, int reliable)
1561 {
1562         struct perf_callchain_entry *entry = data;
1563
1564         if (reliable)
1565                 callchain_store(entry, addr);
1566 }
1567
1568 static const struct stacktrace_ops backtrace_ops = {
1569         .warning                = backtrace_warning,
1570         .warning_symbol         = backtrace_warning_symbol,
1571         .stack                  = backtrace_stack,
1572         .address                = backtrace_address,
1573 };
1574
1575 static void
1576 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1577 {
1578         unsigned long bp;
1579         char *stack;
1580         int nr = entry->nr;
1581
1582         callchain_store(entry, instruction_pointer(regs));
1583
1584         stack = ((char *)regs + sizeof(struct pt_regs));
1585 #ifdef CONFIG_FRAME_POINTER
1586         bp = frame_pointer(regs);
1587 #else
1588         bp = 0;
1589 #endif
1590
1591         dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1592
1593         entry->kernel = entry->nr - nr;
1594 }
1595
1596
1597 struct stack_frame {
1598         const void __user       *next_fp;
1599         unsigned long           return_address;
1600 };
1601
1602 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1603 {
1604         int ret;
1605
1606         if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1607                 return 0;
1608
1609         ret = 1;
1610         pagefault_disable();
1611         if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1612                 ret = 0;
1613         pagefault_enable();
1614
1615         return ret;
1616 }
1617
1618 static void
1619 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1620 {
1621         struct stack_frame frame;
1622         const void __user *fp;
1623         int nr = entry->nr;
1624
1625         regs = (struct pt_regs *)current->thread.sp0 - 1;
1626         fp   = (void __user *)regs->bp;
1627
1628         callchain_store(entry, regs->ip);
1629
1630         while (entry->nr < MAX_STACK_DEPTH) {
1631                 frame.next_fp        = NULL;
1632                 frame.return_address = 0;
1633
1634                 if (!copy_stack_frame(fp, &frame))
1635                         break;
1636
1637                 if ((unsigned long)fp < user_stack_pointer(regs))
1638                         break;
1639
1640                 callchain_store(entry, frame.return_address);
1641                 fp = frame.next_fp;
1642         }
1643
1644         entry->user = entry->nr - nr;
1645 }
1646
1647 static void
1648 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1649 {
1650         int is_user;
1651
1652         if (!regs)
1653                 return;
1654
1655         is_user = user_mode(regs);
1656
1657         if (!current || current->pid == 0)
1658                 return;
1659
1660         if (is_user && current->state != TASK_RUNNING)
1661                 return;
1662
1663         if (!is_user)
1664                 perf_callchain_kernel(regs, entry);
1665
1666         if (current->mm)
1667                 perf_callchain_user(regs, entry);
1668 }
1669
1670 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1671 {
1672         struct perf_callchain_entry *entry;
1673
1674         if (in_nmi())
1675                 entry = &__get_cpu_var(nmi_entry);
1676         else
1677                 entry = &__get_cpu_var(irq_entry);
1678
1679         entry->nr = 0;
1680         entry->hv = 0;
1681         entry->kernel = 0;
1682         entry->user = 0;
1683
1684         perf_do_callchain(regs, entry);
1685
1686         return entry;
1687 }