1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <asm/atomic.h>
17 /* Free memory management - zoned buddy allocator. */
18 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 struct list_head free_list;
26 unsigned long nr_free;
32 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
33 * So add a wild amount of padding here to ensure that they fall into separate
34 * cachelines. There are very few zone structures in the machine, so space
35 * consumption is not a concern here.
37 #if defined(CONFIG_SMP)
40 } ____cacheline_maxaligned_in_smp;
41 #define ZONE_PADDING(name) struct zone_padding name;
43 #define ZONE_PADDING(name)
46 struct per_cpu_pages {
47 int count; /* number of pages in the list */
48 int low; /* low watermark, refill needed */
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
54 struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
64 } ____cacheline_aligned_in_smp;
67 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
74 #define ZONE_HIGHMEM 2
76 #define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */
77 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
81 * When a memory allocation must conform to specific limitations (such
82 * as being suitable for DMA) the caller will pass in hints to the
83 * allocator in the gfp_mask, in the zone modifier bits. These bits
84 * are used to select a priority ordered list of memory zones which
85 * match the requested limits. GFP_ZONEMASK defines which bits within
86 * the gfp_mask should be considered as zone modifiers. Each valid
87 * combination of the zone modifier bits has a corresponding list
88 * of zones (in node_zonelists). Thus for two zone modifiers there
89 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
90 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
91 * combinations of zone modifiers in "zone modifier space".
93 #define GFP_ZONEMASK 0x03
95 * As an optimisation any zone modifier bits which are only valid when
96 * no other zone modifier bits are set (loners) should be placed in
97 * the highest order bits of this field. This allows us to reduce the
98 * extent of the zonelists thus saving space. For example in the case
99 * of three zone modifier bits, we could require up to eight zonelists.
100 * If the left most zone modifier is a "loner" then the highest valid
101 * zonelist would be four allowing us to allocate only five zonelists.
102 * Use the first form when the left most bit is not a "loner", otherwise
105 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
106 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
109 * On machines where it is needed (eg PCs) we divide physical memory
110 * into multiple physical zones. On a PC we have 3 zones:
112 * ZONE_DMA < 16 MB ISA DMA capable memory
113 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
114 * ZONE_HIGHMEM > 896 MB only page cache and user processes
118 /* Fields commonly accessed by the page allocator */
119 unsigned long free_pages;
120 unsigned long pages_min, pages_low, pages_high;
122 * We don't know if the memory that we're going to allocate will be freeable
123 * or/and it will be released eventually, so to avoid totally wasting several
124 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
125 * to run OOM on the lower zones despite there's tons of freeable ram
126 * on the higher zones). This array is recalculated at runtime if the
127 * sysctl_lowmem_reserve_ratio sysctl changes.
129 unsigned long lowmem_reserve[MAX_NR_ZONES];
132 struct per_cpu_pageset *pageset[NR_CPUS];
134 struct per_cpu_pageset pageset[NR_CPUS];
137 * free areas of different sizes
140 struct free_area free_area[MAX_ORDER];
145 /* Fields commonly accessed by the page reclaim scanner */
147 struct list_head active_list;
148 struct list_head inactive_list;
149 unsigned long nr_scan_active;
150 unsigned long nr_scan_inactive;
151 unsigned long nr_active;
152 unsigned long nr_inactive;
153 unsigned long pages_scanned; /* since last reclaim */
154 int all_unreclaimable; /* All pages pinned */
157 * Does the allocator try to reclaim pages from the zone as soon
158 * as it fails a watermark_ok() in __alloc_pages?
161 /* A count of how many reclaimers are scanning this zone */
162 atomic_t reclaim_in_progress;
165 * prev_priority holds the scanning priority for this zone. It is
166 * defined as the scanning priority at which we achieved our reclaim
167 * target at the previous try_to_free_pages() or balance_pgdat()
170 * We use prev_priority as a measure of how much stress page reclaim is
171 * under - it drives the swappiness decision: whether to unmap mapped
174 * temp_priority is used to remember the scanning priority at which
175 * this zone was successfully refilled to free_pages == pages_high.
177 * Access to both these fields is quite racy even on uniprocessor. But
178 * it is expected to average out OK.
185 /* Rarely used or read-mostly fields */
188 * wait_table -- the array holding the hash table
189 * wait_table_size -- the size of the hash table array
190 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
192 * The purpose of all these is to keep track of the people
193 * waiting for a page to become available and make them
194 * runnable again when possible. The trouble is that this
195 * consumes a lot of space, especially when so few things
196 * wait on pages at a given time. So instead of using
197 * per-page waitqueues, we use a waitqueue hash table.
199 * The bucket discipline is to sleep on the same queue when
200 * colliding and wake all in that wait queue when removing.
201 * When something wakes, it must check to be sure its page is
202 * truly available, a la thundering herd. The cost of a
203 * collision is great, but given the expected load of the
204 * table, they should be so rare as to be outweighed by the
205 * benefits from the saved space.
207 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
208 * primary users of these fields, and in mm/page_alloc.c
209 * free_area_init_core() performs the initialization of them.
211 wait_queue_head_t * wait_table;
212 unsigned long wait_table_size;
213 unsigned long wait_table_bits;
216 * Discontig memory support fields.
218 struct pglist_data *zone_pgdat;
219 struct page *zone_mem_map;
220 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
221 unsigned long zone_start_pfn;
223 unsigned long spanned_pages; /* total size, including holes */
224 unsigned long present_pages; /* amount of memory (excluding holes) */
227 * rarely used fields:
230 } ____cacheline_maxaligned_in_smp;
234 * The "priority" of VM scanning is how much of the queues we will scan in one
235 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
236 * queues ("queue_length >> 12") during an aging round.
238 #define DEF_PRIORITY 12
241 * One allocation request operates on a zonelist. A zonelist
242 * is a list of zones, the first one is the 'goal' of the
243 * allocation, the other zones are fallback zones, in decreasing
246 * Right now a zonelist takes up less than a cacheline. We never
247 * modify it apart from boot-up, and only a few indices are used,
248 * so despite the zonelist table being relatively big, the cache
249 * footprint of this construct is very small.
252 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
257 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
258 * (mostly NUMA machines?) to denote a higher-level memory zone than the
261 * On NUMA machines, each NUMA node would have a pg_data_t to describe
262 * it's memory layout.
264 * Memory statistics and page replacement data structures are maintained on a
268 typedef struct pglist_data {
269 struct zone node_zones[MAX_NR_ZONES];
270 struct zonelist node_zonelists[GFP_ZONETYPES];
272 #ifdef CONFIG_FLAT_NODE_MEM_MAP
273 struct page *node_mem_map;
275 struct bootmem_data *bdata;
276 unsigned long node_start_pfn;
277 unsigned long node_present_pages; /* total number of physical pages */
278 unsigned long node_spanned_pages; /* total size of physical page
279 range, including holes */
281 struct pglist_data *pgdat_next;
282 wait_queue_head_t kswapd_wait;
283 struct task_struct *kswapd;
284 int kswapd_max_order;
287 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
288 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
289 #ifdef CONFIG_FLAT_NODE_MEM_MAP
290 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
292 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
294 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
296 extern struct pglist_data *pgdat_list;
298 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
299 unsigned long *free, struct pglist_data *pgdat);
300 void get_zone_counts(unsigned long *active, unsigned long *inactive,
301 unsigned long *free);
302 void build_all_zonelists(void);
303 void wakeup_kswapd(struct zone *zone, int order);
304 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
305 int alloc_type, int can_try_harder, int gfp_high);
307 #ifdef CONFIG_HAVE_MEMORY_PRESENT
308 void memory_present(int nid, unsigned long start, unsigned long end);
310 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
313 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
314 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
318 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
320 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
323 * for_each_pgdat - helper macro to iterate over all nodes
324 * @pgdat - pointer to a pg_data_t variable
326 * Meant to help with common loops of the form
327 * pgdat = pgdat_list;
330 * pgdat = pgdat->pgdat_next;
333 #define for_each_pgdat(pgdat) \
334 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
337 * next_zone - helper magic for for_each_zone()
338 * Thanks to William Lee Irwin III for this piece of ingenuity.
340 static inline struct zone *next_zone(struct zone *zone)
342 pg_data_t *pgdat = zone->zone_pgdat;
344 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
346 else if (pgdat->pgdat_next) {
347 pgdat = pgdat->pgdat_next;
348 zone = pgdat->node_zones;
356 * for_each_zone - helper macro to iterate over all memory zones
357 * @zone - pointer to struct zone variable
359 * The user only needs to declare the zone variable, for_each_zone
360 * fills it in. This basically means for_each_zone() is an
361 * easier to read version of this piece of code:
363 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
364 * for (i = 0; i < MAX_NR_ZONES; ++i) {
365 * struct zone * z = pgdat->node_zones + i;
370 #define for_each_zone(zone) \
371 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
373 static inline int is_highmem_idx(int idx)
375 return (idx == ZONE_HIGHMEM);
378 static inline int is_normal_idx(int idx)
380 return (idx == ZONE_NORMAL);
383 * is_highmem - helper function to quickly check if a struct zone is a
384 * highmem zone or not. This is an attempt to keep references
385 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
386 * @zone - pointer to struct zone variable
388 static inline int is_highmem(struct zone *zone)
390 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
393 static inline int is_normal(struct zone *zone)
395 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
398 /* These two functions are used to setup the per zone pages min values */
401 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
402 void __user *, size_t *, loff_t *);
403 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
404 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
405 void __user *, size_t *, loff_t *);
407 #include <linux/topology.h>
408 /* Returns the number of the current Node. */
409 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
411 #ifndef CONFIG_NEED_MULTIPLE_NODES
413 extern struct pglist_data contig_page_data;
414 #define NODE_DATA(nid) (&contig_page_data)
415 #define NODE_MEM_MAP(nid) mem_map
416 #define MAX_NODES_SHIFT 1
417 #define pfn_to_nid(pfn) (0)
419 #else /* CONFIG_NEED_MULTIPLE_NODES */
421 #include <asm/mmzone.h>
423 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
425 #ifdef CONFIG_SPARSEMEM
426 #include <asm/sparsemem.h>
429 #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
431 * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
432 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
434 #define FLAGS_RESERVED 8
436 #elif BITS_PER_LONG == 64
438 * with 64 bit flags field, there's plenty of room.
440 #define FLAGS_RESERVED 32
444 #error BITS_PER_LONG not defined
448 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
449 #define early_pfn_to_nid(nid) (0UL)
452 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
453 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
455 #ifdef CONFIG_SPARSEMEM
458 * SECTION_SHIFT #bits space required to store a section #
460 * PA_SECTION_SHIFT physical address to/from section number
461 * PFN_SECTION_SHIFT pfn to/from section number
463 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
465 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
466 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
468 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
470 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
471 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
473 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
474 #error Allocator MAX_ORDER exceeds SECTION_SIZE
480 * This is, logically, a pointer to an array of struct
481 * pages. However, it is stored with some other magic.
482 * (see sparse.c::sparse_init_one_section())
484 * Making it a UL at least makes someone do a cast
485 * before using it wrong.
487 unsigned long section_mem_map;
490 #ifdef CONFIG_SPARSEMEM_EXTREME
491 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
493 #define SECTIONS_PER_ROOT 1
496 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
497 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
498 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
500 #ifdef CONFIG_SPARSEMEM_EXTREME
501 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
503 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
506 static inline struct mem_section *__nr_to_section(unsigned long nr)
508 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
510 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
514 * We use the lower bits of the mem_map pointer to store
515 * a little bit of information. There should be at least
516 * 3 bits here due to 32-bit alignment.
518 #define SECTION_MARKED_PRESENT (1UL<<0)
519 #define SECTION_HAS_MEM_MAP (1UL<<1)
520 #define SECTION_MAP_LAST_BIT (1UL<<2)
521 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
523 static inline struct page *__section_mem_map_addr(struct mem_section *section)
525 unsigned long map = section->section_mem_map;
526 map &= SECTION_MAP_MASK;
527 return (struct page *)map;
530 static inline int valid_section(struct mem_section *section)
532 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
535 static inline int section_has_mem_map(struct mem_section *section)
537 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
540 static inline int valid_section_nr(unsigned long nr)
542 return valid_section(__nr_to_section(nr));
546 * Given a kernel address, find the home node of the underlying memory.
548 #define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT)
550 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
552 return __nr_to_section(pfn_to_section_nr(pfn));
555 #define pfn_to_page(pfn) \
557 unsigned long __pfn = (pfn); \
558 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
560 #define page_to_pfn(page) \
562 page - __section_mem_map_addr(__nr_to_section( \
563 page_to_section(page))); \
566 static inline int pfn_valid(unsigned long pfn)
568 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
570 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
574 * These are _only_ used during initialisation, therefore they
575 * can use __initdata ... They could have names to indicate
579 #define pfn_to_nid early_pfn_to_nid
582 #define pfn_to_pgdat(pfn) \
584 NODE_DATA(pfn_to_nid(pfn)); \
587 #define early_pfn_valid(pfn) pfn_valid(pfn)
588 void sparse_init(void);
590 #define sparse_init() do {} while (0)
591 #define sparse_index_init(_sec, _nid) do {} while (0)
592 #endif /* CONFIG_SPARSEMEM */
594 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
595 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
597 #define early_pfn_in_nid(pfn, nid) (1)
600 #ifndef early_pfn_valid
601 #define early_pfn_valid(pfn) (1)
604 void memory_present(int nid, unsigned long start, unsigned long end);
605 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
607 #endif /* !__ASSEMBLY__ */
608 #endif /* __KERNEL__ */
609 #endif /* _LINUX_MMZONE_H */