2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/acpi.h>
30 #include <linux/bootmem.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/kernel.h>
34 #include <linux/reboot.h>
35 #include <linux/sched.h>
36 #include <linux/seq_file.h>
37 #include <linux/string.h>
38 #include <linux/threads.h>
39 #include <linux/tty.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/platform.h>
48 #include <asm/machvec.h>
50 #include <asm/meminit.h>
52 #include <asm/patch.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
56 #include <asm/sections.h>
57 #include <asm/serial.h>
58 #include <asm/setup.h>
60 #include <asm/system.h>
61 #include <asm/unistd.h>
63 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
64 # error "struct cpuinfo_ia64 too big!"
68 unsigned long __per_cpu_offset[NR_CPUS];
69 EXPORT_SYMBOL(__per_cpu_offset);
72 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
73 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
74 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
75 unsigned long ia64_cycles_per_usec;
76 struct ia64_boot_param *ia64_boot_param;
77 struct screen_info screen_info;
78 unsigned long vga_console_iobase;
79 unsigned long vga_console_membase;
81 unsigned long ia64_max_cacheline_size;
82 unsigned long ia64_iobase; /* virtual address for I/O accesses */
83 EXPORT_SYMBOL(ia64_iobase);
84 struct io_space io_space[MAX_IO_SPACES];
85 EXPORT_SYMBOL(io_space);
86 unsigned int num_io_spaces;
89 * "flush_icache_range()" needs to know what processor dependent stride size to use
90 * when it makes i-cache(s) coherent with d-caches.
92 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
93 unsigned long ia64_i_cache_stride_shift = ~0;
96 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
97 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
98 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
99 * address of the second buffer must be aligned to (merge_mask+1) in order to be
100 * mergeable). By default, we assume there is no I/O MMU which can merge physically
101 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
104 unsigned long ia64_max_iommu_merge_mask = ~0UL;
105 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
108 * We use a special marker for the end of memory and it uses the extra (+1) slot
110 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1];
111 int num_rsvd_regions;
115 * Filter incoming memory segments based on the primitive map created from the boot
116 * parameters. Segments contained in the map are removed from the memory ranges. A
117 * caller-specified function is called with the memory ranges that remain after filtering.
118 * This routine does not assume the incoming segments are sorted.
121 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
123 unsigned long range_start, range_end, prev_start;
124 void (*func)(unsigned long, unsigned long, int);
128 if (start == PAGE_OFFSET) {
129 printk(KERN_WARNING "warning: skipping physical page 0\n");
131 if (start >= end) return 0;
135 * lowest possible address(walker uses virtual)
137 prev_start = PAGE_OFFSET;
140 for (i = 0; i < num_rsvd_regions; ++i) {
141 range_start = max(start, prev_start);
142 range_end = min(end, rsvd_region[i].start);
144 if (range_start < range_end)
145 call_pernode_memory(__pa(range_start), range_end - range_start, func);
147 /* nothing more available in this segment */
148 if (range_end == end) return 0;
150 prev_start = rsvd_region[i].end;
152 /* end of memory marker allows full processing inside loop body */
157 sort_regions (struct rsvd_region *rsvd_region, int max)
161 /* simple bubble sorting */
163 for (j = 0; j < max; ++j) {
164 if (rsvd_region[j].start > rsvd_region[j+1].start) {
165 struct rsvd_region tmp;
166 tmp = rsvd_region[j];
167 rsvd_region[j] = rsvd_region[j + 1];
168 rsvd_region[j + 1] = tmp;
175 * reserve_memory - setup reserved memory areas
177 * Setup the reserved memory areas set aside for the boot parameters,
178 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
179 * see include/asm-ia64/meminit.h if you need to define more.
182 reserve_memory (void)
187 * none of the entries in this table overlap
189 rsvd_region[n].start = (unsigned long) ia64_boot_param;
190 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
193 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
194 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
197 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
198 rsvd_region[n].end = (rsvd_region[n].start
199 + strlen(__va(ia64_boot_param->command_line)) + 1);
202 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
203 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
206 #ifdef CONFIG_BLK_DEV_INITRD
207 if (ia64_boot_param->initrd_start) {
208 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
209 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
214 /* end of memory marker */
215 rsvd_region[n].start = ~0UL;
216 rsvd_region[n].end = ~0UL;
219 num_rsvd_regions = n;
221 sort_regions(rsvd_region, num_rsvd_regions);
225 * find_initrd - get initrd parameters from the boot parameter structure
227 * Grab the initrd start and end from the boot parameter struct given us by
233 #ifdef CONFIG_BLK_DEV_INITRD
234 if (ia64_boot_param->initrd_start) {
235 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
236 initrd_end = initrd_start+ia64_boot_param->initrd_size;
238 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
239 initrd_start, ia64_boot_param->initrd_size);
247 extern unsigned long ia64_iobase;
248 unsigned long phys_iobase;
251 * Set `iobase' to the appropriate address in region 6 (uncached access range).
253 * The EFI memory map is the "preferred" location to get the I/O port space base,
254 * rather the relying on AR.KR0. This should become more clear in future SAL
255 * specs. We'll fall back to getting it out of AR.KR0 if no appropriate entry is
256 * found in the memory map.
258 phys_iobase = efi_get_iobase();
260 /* set AR.KR0 since this is all we use it for anyway */
261 ia64_set_kr(IA64_KR_IO_BASE, phys_iobase);
263 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
264 printk(KERN_INFO "No I/O port range found in EFI memory map, falling back "
266 printk(KERN_INFO "I/O port base = 0x%lx\n", phys_iobase);
268 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
270 /* setup legacy IO port space */
271 io_space[0].mmio_base = ia64_iobase;
272 io_space[0].sparse = 1;
277 * early_console_setup - setup debugging console
279 * Consoles started here require little enough setup that we can start using
280 * them very early in the boot process, either right after the machine
281 * vector initialization, or even before if the drivers can detect their hw.
283 * Returns non-zero if a console couldn't be setup.
285 static inline int __init
286 early_console_setup (char *cmdline)
290 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
292 extern int sn_serial_console_early_setup(void);
293 if (!sn_serial_console_early_setup())
297 #ifdef CONFIG_EFI_PCDP
298 if (!efi_setup_pcdp_console(cmdline))
301 #ifdef CONFIG_SERIAL_8250_CONSOLE
302 if (!early_serial_console_init(cmdline))
306 return (earlycons) ? 0 : -1;
310 mark_bsp_online (void)
313 /* If we register an early console, allow CPU 0 to printk */
314 cpu_set(smp_processor_id(), cpu_online_map);
320 check_for_logical_procs (void)
322 pal_logical_to_physical_t info;
325 status = ia64_pal_logical_to_phys(0, &info);
327 printk(KERN_INFO "No logical to physical processor mapping "
332 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
337 * Total number of siblings that BSP has. Though not all of them
338 * may have booted successfully. The correct number of siblings
339 * booted is in info.overview_num_log.
341 smp_num_siblings = info.overview_tpc;
342 smp_num_cpucores = info.overview_cpp;
347 setup_arch (char **cmdline_p)
351 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
353 *cmdline_p = __va(ia64_boot_param->command_line);
354 strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
359 #ifdef CONFIG_IA64_GENERIC
361 const char *mvec_name = strstr (*cmdline_p, "machvec=");
369 end = strchr (mvec_name, ' ');
371 len = end - mvec_name;
373 len = strlen (mvec_name);
374 len = min(len, sizeof (str) - 1);
375 strncpy (str, mvec_name, len);
379 mvec_name = acpi_get_sysname();
380 machvec_init(mvec_name);
384 if (early_console_setup(*cmdline_p) == 0)
387 #ifdef CONFIG_ACPI_BOOT
388 /* Initialize the ACPI boot-time table parser */
390 # ifdef CONFIG_ACPI_NUMA
395 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
397 #endif /* CONFIG_APCI_BOOT */
401 /* process SAL system table: */
402 ia64_sal_init(efi.sal_systab);
405 cpu_physical_id(0) = hard_smp_processor_id();
407 cpu_set(0, cpu_sibling_map[0]);
408 cpu_set(0, cpu_core_map[0]);
410 check_for_logical_procs();
411 if (smp_num_cpucores > 1)
413 "cpu package is Multi-Core capable: number of cores=%d\n",
415 if (smp_num_siblings > 1)
417 "cpu package is Multi-Threading capable: number of siblings=%d\n",
421 cpu_init(); /* initialize the bootstrap CPU */
423 #ifdef CONFIG_ACPI_BOOT
429 # if defined(CONFIG_DUMMY_CONSOLE)
430 conswitchp = &dummy_con;
432 # if defined(CONFIG_VGA_CONSOLE)
434 * Non-legacy systems may route legacy VGA MMIO range to system
435 * memory. vga_con probes the MMIO hole, so memory looks like
436 * a VGA device to it. The EFI memory map can tell us if it's
437 * memory so we can avoid this problem.
439 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
440 conswitchp = &vga_con;
445 /* enable IA-64 Machine Check Abort Handling unless disabled */
446 if (!strstr(saved_command_line, "nomca"))
449 platform_setup(cmdline_p);
454 * Display cpu info for all cpu's.
457 show_cpuinfo (struct seq_file *m, void *v)
460 # define lpj c->loops_per_jiffy
461 # define cpunum c->cpu
463 # define lpj loops_per_jiffy
468 const char *feature_name;
470 { 1UL << 0, "branchlong" },
471 { 1UL << 1, "spontaneous deferral"},
472 { 1UL << 2, "16-byte atomic ops" }
474 char family[32], features[128], *cp, sep;
475 struct cpuinfo_ia64 *c = v;
482 case 0x07: memcpy(family, "Itanium", 8); break;
483 case 0x1f: memcpy(family, "Itanium 2", 10); break;
484 default: sprintf(family, "%u", c->family); break;
487 /* build the feature string: */
488 memcpy(features, " standard", 10);
491 for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
492 if (mask & feature_bits[i].mask) {
497 strcpy(cp, feature_bits[i].feature_name);
498 cp += strlen(feature_bits[i].feature_name);
499 mask &= ~feature_bits[i].mask;
503 /* print unknown features as a hex value: */
506 sprintf(cp, " 0x%lx", mask);
517 "features :%s\n" /* don't change this---it _is_ right! */
520 "cpu MHz : %lu.%06lu\n"
521 "itc MHz : %lu.%06lu\n"
522 "BogoMIPS : %lu.%02lu\n",
523 cpunum, c->vendor, family, c->model, c->revision, c->archrev,
524 features, c->ppn, c->number,
525 c->proc_freq / 1000000, c->proc_freq % 1000000,
526 c->itc_freq / 1000000, c->itc_freq % 1000000,
527 lpj*HZ/500000, (lpj*HZ/5000) % 100);
529 seq_printf(m, "siblings : %u\n", c->num_log);
530 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
535 c->socket_id, c->core_id, c->thread_id);
543 c_start (struct seq_file *m, loff_t *pos)
546 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
549 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
553 c_next (struct seq_file *m, void *v, loff_t *pos)
556 return c_start(m, pos);
560 c_stop (struct seq_file *m, void *v)
564 struct seq_operations cpuinfo_op = {
572 identify_cpu (struct cpuinfo_ia64 *c)
575 unsigned long bits[5];
581 u64 ppn; /* processor serial number */
585 unsigned revision : 8;
588 unsigned archrev : 8;
589 unsigned reserved : 24;
595 pal_vm_info_1_u_t vm1;
596 pal_vm_info_2_u_t vm2;
598 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
601 for (i = 0; i < 5; ++i)
602 cpuid.bits[i] = ia64_get_cpuid(i);
604 memcpy(c->vendor, cpuid.field.vendor, 16);
606 c->cpu = smp_processor_id();
608 /* below default values will be overwritten by identify_siblings()
609 * for Multi-Threading/Multi-Core capable cpu's
611 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
614 identify_siblings(c);
616 c->ppn = cpuid.field.ppn;
617 c->number = cpuid.field.number;
618 c->revision = cpuid.field.revision;
619 c->model = cpuid.field.model;
620 c->family = cpuid.field.family;
621 c->archrev = cpuid.field.archrev;
622 c->features = cpuid.field.features;
624 status = ia64_pal_vm_summary(&vm1, &vm2);
625 if (status == PAL_STATUS_SUCCESS) {
626 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
627 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
629 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
630 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
634 setup_per_cpu_areas (void)
636 /* start_kernel() requires this... */
640 * Calculate the max. cache line size.
642 * In addition, the minimum of the i-cache stride sizes is calculated for
643 * "flush_icache_range()".
646 get_max_cacheline_size (void)
648 unsigned long line_size, max = 1;
649 u64 l, levels, unique_caches;
650 pal_cache_config_info_t cci;
653 status = ia64_pal_cache_summary(&levels, &unique_caches);
655 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
656 __FUNCTION__, status);
657 max = SMP_CACHE_BYTES;
658 /* Safest setup for "flush_icache_range()" */
659 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
663 for (l = 0; l < levels; ++l) {
664 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
668 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
669 __FUNCTION__, l, status);
670 max = SMP_CACHE_BYTES;
671 /* The safest setup for "flush_icache_range()" */
672 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
673 cci.pcci_unified = 1;
675 line_size = 1 << cci.pcci_line_size;
678 if (!cci.pcci_unified) {
679 status = ia64_pal_cache_config_info(l,
680 /* cache_type (instruction)= */ 1,
684 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
685 __FUNCTION__, l, status);
686 /* The safest setup for "flush_icache_range()" */
687 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
690 if (cci.pcci_stride < ia64_i_cache_stride_shift)
691 ia64_i_cache_stride_shift = cci.pcci_stride;
694 if (max > ia64_max_cacheline_size)
695 ia64_max_cacheline_size = max;
699 * cpu_init() initializes state that is per-CPU. This function acts
700 * as a 'CPU state barrier', nothing should get across.
705 extern void __devinit ia64_mmu_init (void *);
706 unsigned long num_phys_stacked;
707 pal_vm_info_2_u_t vmi;
708 unsigned int max_ctx;
709 struct cpuinfo_ia64 *cpu_info;
712 cpu_data = per_cpu_init();
715 * We set ar.k3 so that assembly code in MCA handler can compute
716 * physical addresses of per cpu variables with a simple:
717 * phys = ar.k3 + &per_cpu_var
719 ia64_set_kr(IA64_KR_PER_CPU_DATA,
720 ia64_tpa(cpu_data) - (long) __per_cpu_start);
722 get_max_cacheline_size();
725 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
726 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
727 * depends on the data returned by identify_cpu(). We break the dependency by
728 * accessing cpu_data() through the canonical per-CPU address.
730 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
731 identify_cpu(cpu_info);
733 #ifdef CONFIG_MCKINLEY
735 # define FEATURE_SET 16
736 struct ia64_pal_retval iprv;
738 if (cpu_info->family == 0x1f) {
739 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
740 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
741 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
742 (iprv.v1 | 0x80), FEATURE_SET, 0);
747 /* Clear the stack memory reserved for pt_regs: */
748 memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));
750 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
753 * Initialize the page-table base register to a global
754 * directory with all zeroes. This ensure that we can handle
755 * TLB-misses to user address-space even before we created the
756 * first user address-space. This may happen, e.g., due to
757 * aggressive use of lfetch.fault.
759 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
762 * Initialize default control register to defer speculative faults except
763 * for those arising from TLB misses, which are not deferred. The
764 * kernel MUST NOT depend on a particular setting of these bits (in other words,
765 * the kernel must have recovery code for all speculative accesses). Turn on
766 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
767 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
770 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
771 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
772 atomic_inc(&init_mm.mm_count);
773 current->active_mm = &init_mm;
777 ia64_mmu_init(ia64_imva(cpu_data));
778 ia64_mca_cpu_init(ia64_imva(cpu_data));
780 #ifdef CONFIG_IA32_SUPPORT
784 /* Clear ITC to eliminiate sched_clock() overflows in human time. */
787 /* disable all local interrupt sources: */
788 ia64_set_itv(1 << 16);
789 ia64_set_lrr0(1 << 16);
790 ia64_set_lrr1(1 << 16);
791 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
792 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
794 /* clear TPR & XTP to enable all interrupt classes: */
795 ia64_setreg(_IA64_REG_CR_TPR, 0);
800 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
801 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
802 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
804 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
805 max_ctx = (1U << 15) - 1; /* use architected minimum */
807 while (max_ctx < ia64_ctx.max_ctx) {
808 unsigned int old = ia64_ctx.max_ctx;
809 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
813 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
814 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
816 num_phys_stacked = 96;
818 /* size of physical stacked register partition plus 8 bytes: */
819 __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
821 pm_idle = default_idle;
827 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
828 (unsigned long) __end___mckinley_e9_bundles);