2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
85 free_huge_pages_node[nid]--;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 struct zonelist *zonelist = huge_zonelist(vma, address,
99 htlb_alloc_mask, &mpol);
103 for_each_zone_zonelist(zone, z, zonelist, MAX_NR_ZONES - 1) {
104 nid = zone_to_nid(zone);
105 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
106 !list_empty(&hugepage_freelists[nid])) {
107 page = list_entry(hugepage_freelists[nid].next,
109 list_del(&page->lru);
111 free_huge_pages_node[nid]--;
112 if (vma && vma->vm_flags & VM_MAYSHARE)
117 mpol_free(mpol); /* unref if mpol !NULL */
121 static void update_and_free_page(struct page *page)
125 nr_huge_pages_node[page_to_nid(page)]--;
126 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
127 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
128 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
129 1 << PG_private | 1<< PG_writeback);
131 set_compound_page_dtor(page, NULL);
132 set_page_refcounted(page);
133 __free_pages(page, HUGETLB_PAGE_ORDER);
136 static void free_huge_page(struct page *page)
138 int nid = page_to_nid(page);
139 struct address_space *mapping;
141 mapping = (struct address_space *) page_private(page);
142 set_page_private(page, 0);
143 BUG_ON(page_count(page));
144 INIT_LIST_HEAD(&page->lru);
146 spin_lock(&hugetlb_lock);
147 if (surplus_huge_pages_node[nid]) {
148 update_and_free_page(page);
149 surplus_huge_pages--;
150 surplus_huge_pages_node[nid]--;
152 enqueue_huge_page(page);
154 spin_unlock(&hugetlb_lock);
156 hugetlb_put_quota(mapping, 1);
160 * Increment or decrement surplus_huge_pages. Keep node-specific counters
161 * balanced by operating on them in a round-robin fashion.
162 * Returns 1 if an adjustment was made.
164 static int adjust_pool_surplus(int delta)
170 VM_BUG_ON(delta != -1 && delta != 1);
172 nid = next_node(nid, node_online_map);
173 if (nid == MAX_NUMNODES)
174 nid = first_node(node_online_map);
176 /* To shrink on this node, there must be a surplus page */
177 if (delta < 0 && !surplus_huge_pages_node[nid])
179 /* Surplus cannot exceed the total number of pages */
180 if (delta > 0 && surplus_huge_pages_node[nid] >=
181 nr_huge_pages_node[nid])
184 surplus_huge_pages += delta;
185 surplus_huge_pages_node[nid] += delta;
188 } while (nid != prev_nid);
194 static struct page *alloc_fresh_huge_page_node(int nid)
198 page = alloc_pages_node(nid,
199 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202 set_compound_page_dtor(page, free_huge_page);
203 spin_lock(&hugetlb_lock);
205 nr_huge_pages_node[nid]++;
206 spin_unlock(&hugetlb_lock);
207 put_page(page); /* free it into the hugepage allocator */
213 static int alloc_fresh_huge_page(void)
220 start_nid = hugetlb_next_nid;
223 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
227 * Use a helper variable to find the next node and then
228 * copy it back to hugetlb_next_nid afterwards:
229 * otherwise there's a window in which a racer might
230 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
231 * But we don't need to use a spin_lock here: it really
232 * doesn't matter if occasionally a racer chooses the
233 * same nid as we do. Move nid forward in the mask even
234 * if we just successfully allocated a hugepage so that
235 * the next caller gets hugepages on the next node.
237 next_nid = next_node(hugetlb_next_nid, node_online_map);
238 if (next_nid == MAX_NUMNODES)
239 next_nid = first_node(node_online_map);
240 hugetlb_next_nid = next_nid;
241 } while (!page && hugetlb_next_nid != start_nid);
246 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
247 unsigned long address)
253 * Assume we will successfully allocate the surplus page to
254 * prevent racing processes from causing the surplus to exceed
257 * This however introduces a different race, where a process B
258 * tries to grow the static hugepage pool while alloc_pages() is
259 * called by process A. B will only examine the per-node
260 * counters in determining if surplus huge pages can be
261 * converted to normal huge pages in adjust_pool_surplus(). A
262 * won't be able to increment the per-node counter, until the
263 * lock is dropped by B, but B doesn't drop hugetlb_lock until
264 * no more huge pages can be converted from surplus to normal
265 * state (and doesn't try to convert again). Thus, we have a
266 * case where a surplus huge page exists, the pool is grown, and
267 * the surplus huge page still exists after, even though it
268 * should just have been converted to a normal huge page. This
269 * does not leak memory, though, as the hugepage will be freed
270 * once it is out of use. It also does not allow the counters to
271 * go out of whack in adjust_pool_surplus() as we don't modify
272 * the node values until we've gotten the hugepage and only the
273 * per-node value is checked there.
275 spin_lock(&hugetlb_lock);
276 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
277 spin_unlock(&hugetlb_lock);
281 surplus_huge_pages++;
283 spin_unlock(&hugetlb_lock);
285 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
288 spin_lock(&hugetlb_lock);
291 * This page is now managed by the hugetlb allocator and has
292 * no users -- drop the buddy allocator's reference.
294 put_page_testzero(page);
295 VM_BUG_ON(page_count(page));
296 nid = page_to_nid(page);
297 set_compound_page_dtor(page, free_huge_page);
299 * We incremented the global counters already
301 nr_huge_pages_node[nid]++;
302 surplus_huge_pages_node[nid]++;
305 surplus_huge_pages--;
307 spin_unlock(&hugetlb_lock);
313 * Increase the hugetlb pool such that it can accomodate a reservation
316 static int gather_surplus_pages(int delta)
318 struct list_head surplus_list;
319 struct page *page, *tmp;
321 int needed, allocated;
323 needed = (resv_huge_pages + delta) - free_huge_pages;
325 resv_huge_pages += delta;
330 INIT_LIST_HEAD(&surplus_list);
334 spin_unlock(&hugetlb_lock);
335 for (i = 0; i < needed; i++) {
336 page = alloc_buddy_huge_page(NULL, 0);
339 * We were not able to allocate enough pages to
340 * satisfy the entire reservation so we free what
341 * we've allocated so far.
343 spin_lock(&hugetlb_lock);
348 list_add(&page->lru, &surplus_list);
353 * After retaking hugetlb_lock, we need to recalculate 'needed'
354 * because either resv_huge_pages or free_huge_pages may have changed.
356 spin_lock(&hugetlb_lock);
357 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
362 * The surplus_list now contains _at_least_ the number of extra pages
363 * needed to accomodate the reservation. Add the appropriate number
364 * of pages to the hugetlb pool and free the extras back to the buddy
365 * allocator. Commit the entire reservation here to prevent another
366 * process from stealing the pages as they are added to the pool but
367 * before they are reserved.
370 resv_huge_pages += delta;
373 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
374 list_del(&page->lru);
376 enqueue_huge_page(page);
379 * The page has a reference count of zero already, so
380 * call free_huge_page directly instead of using
381 * put_page. This must be done with hugetlb_lock
382 * unlocked which is safe because free_huge_page takes
383 * hugetlb_lock before deciding how to free the page.
385 spin_unlock(&hugetlb_lock);
386 free_huge_page(page);
387 spin_lock(&hugetlb_lock);
395 * When releasing a hugetlb pool reservation, any surplus pages that were
396 * allocated to satisfy the reservation must be explicitly freed if they were
399 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
403 unsigned long nr_pages;
406 * We want to release as many surplus pages as possible, spread
407 * evenly across all nodes. Iterate across all nodes until we
408 * can no longer free unreserved surplus pages. This occurs when
409 * the nodes with surplus pages have no free pages.
411 unsigned long remaining_iterations = num_online_nodes();
413 /* Uncommit the reservation */
414 resv_huge_pages -= unused_resv_pages;
416 nr_pages = min(unused_resv_pages, surplus_huge_pages);
418 while (remaining_iterations-- && nr_pages) {
419 nid = next_node(nid, node_online_map);
420 if (nid == MAX_NUMNODES)
421 nid = first_node(node_online_map);
423 if (!surplus_huge_pages_node[nid])
426 if (!list_empty(&hugepage_freelists[nid])) {
427 page = list_entry(hugepage_freelists[nid].next,
429 list_del(&page->lru);
430 update_and_free_page(page);
432 free_huge_pages_node[nid]--;
433 surplus_huge_pages--;
434 surplus_huge_pages_node[nid]--;
436 remaining_iterations = num_online_nodes();
442 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
447 spin_lock(&hugetlb_lock);
448 page = dequeue_huge_page_vma(vma, addr);
449 spin_unlock(&hugetlb_lock);
450 return page ? page : ERR_PTR(-VM_FAULT_OOM);
453 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
456 struct page *page = NULL;
458 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
459 return ERR_PTR(-VM_FAULT_SIGBUS);
461 spin_lock(&hugetlb_lock);
462 if (free_huge_pages > resv_huge_pages)
463 page = dequeue_huge_page_vma(vma, addr);
464 spin_unlock(&hugetlb_lock);
466 page = alloc_buddy_huge_page(vma, addr);
468 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
469 return ERR_PTR(-VM_FAULT_OOM);
475 static struct page *alloc_huge_page(struct vm_area_struct *vma,
479 struct address_space *mapping = vma->vm_file->f_mapping;
481 if (vma->vm_flags & VM_MAYSHARE)
482 page = alloc_huge_page_shared(vma, addr);
484 page = alloc_huge_page_private(vma, addr);
487 set_page_refcounted(page);
488 set_page_private(page, (unsigned long) mapping);
493 static int __init hugetlb_init(void)
497 if (HPAGE_SHIFT == 0)
500 for (i = 0; i < MAX_NUMNODES; ++i)
501 INIT_LIST_HEAD(&hugepage_freelists[i]);
503 hugetlb_next_nid = first_node(node_online_map);
505 for (i = 0; i < max_huge_pages; ++i) {
506 if (!alloc_fresh_huge_page())
509 max_huge_pages = free_huge_pages = nr_huge_pages = i;
510 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
513 module_init(hugetlb_init);
515 static int __init hugetlb_setup(char *s)
517 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
521 __setup("hugepages=", hugetlb_setup);
523 static unsigned int cpuset_mems_nr(unsigned int *array)
528 for_each_node_mask(node, cpuset_current_mems_allowed)
535 #ifdef CONFIG_HIGHMEM
536 static void try_to_free_low(unsigned long count)
540 for (i = 0; i < MAX_NUMNODES; ++i) {
541 struct page *page, *next;
542 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
543 if (count >= nr_huge_pages)
545 if (PageHighMem(page))
547 list_del(&page->lru);
548 update_and_free_page(page);
550 free_huge_pages_node[page_to_nid(page)]--;
555 static inline void try_to_free_low(unsigned long count)
560 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
561 static unsigned long set_max_huge_pages(unsigned long count)
563 unsigned long min_count, ret;
566 * Increase the pool size
567 * First take pages out of surplus state. Then make up the
568 * remaining difference by allocating fresh huge pages.
570 * We might race with alloc_buddy_huge_page() here and be unable
571 * to convert a surplus huge page to a normal huge page. That is
572 * not critical, though, it just means the overall size of the
573 * pool might be one hugepage larger than it needs to be, but
574 * within all the constraints specified by the sysctls.
576 spin_lock(&hugetlb_lock);
577 while (surplus_huge_pages && count > persistent_huge_pages) {
578 if (!adjust_pool_surplus(-1))
582 while (count > persistent_huge_pages) {
585 * If this allocation races such that we no longer need the
586 * page, free_huge_page will handle it by freeing the page
587 * and reducing the surplus.
589 spin_unlock(&hugetlb_lock);
590 ret = alloc_fresh_huge_page();
591 spin_lock(&hugetlb_lock);
598 * Decrease the pool size
599 * First return free pages to the buddy allocator (being careful
600 * to keep enough around to satisfy reservations). Then place
601 * pages into surplus state as needed so the pool will shrink
602 * to the desired size as pages become free.
604 * By placing pages into the surplus state independent of the
605 * overcommit value, we are allowing the surplus pool size to
606 * exceed overcommit. There are few sane options here. Since
607 * alloc_buddy_huge_page() is checking the global counter,
608 * though, we'll note that we're not allowed to exceed surplus
609 * and won't grow the pool anywhere else. Not until one of the
610 * sysctls are changed, or the surplus pages go out of use.
612 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
613 min_count = max(count, min_count);
614 try_to_free_low(min_count);
615 while (min_count < persistent_huge_pages) {
616 struct page *page = dequeue_huge_page();
619 update_and_free_page(page);
621 while (count < persistent_huge_pages) {
622 if (!adjust_pool_surplus(1))
626 ret = persistent_huge_pages;
627 spin_unlock(&hugetlb_lock);
631 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
632 struct file *file, void __user *buffer,
633 size_t *length, loff_t *ppos)
635 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
636 max_huge_pages = set_max_huge_pages(max_huge_pages);
640 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
641 struct file *file, void __user *buffer,
642 size_t *length, loff_t *ppos)
644 proc_dointvec(table, write, file, buffer, length, ppos);
645 if (hugepages_treat_as_movable)
646 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
648 htlb_alloc_mask = GFP_HIGHUSER;
652 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
653 struct file *file, void __user *buffer,
654 size_t *length, loff_t *ppos)
656 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
657 spin_lock(&hugetlb_lock);
658 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
659 spin_unlock(&hugetlb_lock);
663 #endif /* CONFIG_SYSCTL */
665 int hugetlb_report_meminfo(char *buf)
668 "HugePages_Total: %5lu\n"
669 "HugePages_Free: %5lu\n"
670 "HugePages_Rsvd: %5lu\n"
671 "HugePages_Surp: %5lu\n"
672 "Hugepagesize: %5lu kB\n",
680 int hugetlb_report_node_meminfo(int nid, char *buf)
683 "Node %d HugePages_Total: %5u\n"
684 "Node %d HugePages_Free: %5u\n"
685 "Node %d HugePages_Surp: %5u\n",
686 nid, nr_huge_pages_node[nid],
687 nid, free_huge_pages_node[nid],
688 nid, surplus_huge_pages_node[nid]);
691 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
692 unsigned long hugetlb_total_pages(void)
694 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
698 * We cannot handle pagefaults against hugetlb pages at all. They cause
699 * handle_mm_fault() to try to instantiate regular-sized pages in the
700 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
703 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
709 struct vm_operations_struct hugetlb_vm_ops = {
710 .fault = hugetlb_vm_op_fault,
713 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
720 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
722 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
724 entry = pte_mkyoung(entry);
725 entry = pte_mkhuge(entry);
730 static void set_huge_ptep_writable(struct vm_area_struct *vma,
731 unsigned long address, pte_t *ptep)
735 entry = pte_mkwrite(pte_mkdirty(*ptep));
736 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
737 update_mmu_cache(vma, address, entry);
742 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
743 struct vm_area_struct *vma)
745 pte_t *src_pte, *dst_pte, entry;
746 struct page *ptepage;
750 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
752 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
753 src_pte = huge_pte_offset(src, addr);
756 dst_pte = huge_pte_alloc(dst, addr);
760 /* If the pagetables are shared don't copy or take references */
761 if (dst_pte == src_pte)
764 spin_lock(&dst->page_table_lock);
765 spin_lock(&src->page_table_lock);
766 if (!pte_none(*src_pte)) {
768 ptep_set_wrprotect(src, addr, src_pte);
770 ptepage = pte_page(entry);
772 set_huge_pte_at(dst, addr, dst_pte, entry);
774 spin_unlock(&src->page_table_lock);
775 spin_unlock(&dst->page_table_lock);
783 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
786 struct mm_struct *mm = vma->vm_mm;
787 unsigned long address;
793 * A page gathering list, protected by per file i_mmap_lock. The
794 * lock is used to avoid list corruption from multiple unmapping
795 * of the same page since we are using page->lru.
797 LIST_HEAD(page_list);
799 WARN_ON(!is_vm_hugetlb_page(vma));
800 BUG_ON(start & ~HPAGE_MASK);
801 BUG_ON(end & ~HPAGE_MASK);
803 spin_lock(&mm->page_table_lock);
804 for (address = start; address < end; address += HPAGE_SIZE) {
805 ptep = huge_pte_offset(mm, address);
809 if (huge_pmd_unshare(mm, &address, ptep))
812 pte = huge_ptep_get_and_clear(mm, address, ptep);
816 page = pte_page(pte);
818 set_page_dirty(page);
819 list_add(&page->lru, &page_list);
821 spin_unlock(&mm->page_table_lock);
822 flush_tlb_range(vma, start, end);
823 list_for_each_entry_safe(page, tmp, &page_list, lru) {
824 list_del(&page->lru);
829 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
833 * It is undesirable to test vma->vm_file as it should be non-null
834 * for valid hugetlb area. However, vm_file will be NULL in the error
835 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
836 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
837 * to clean up. Since no pte has actually been setup, it is safe to
838 * do nothing in this case.
841 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
842 __unmap_hugepage_range(vma, start, end);
843 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
847 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
848 unsigned long address, pte_t *ptep, pte_t pte)
850 struct page *old_page, *new_page;
853 old_page = pte_page(pte);
855 /* If no-one else is actually using this page, avoid the copy
856 * and just make the page writable */
857 avoidcopy = (page_count(old_page) == 1);
859 set_huge_ptep_writable(vma, address, ptep);
863 page_cache_get(old_page);
864 new_page = alloc_huge_page(vma, address);
866 if (IS_ERR(new_page)) {
867 page_cache_release(old_page);
868 return -PTR_ERR(new_page);
871 spin_unlock(&mm->page_table_lock);
872 copy_huge_page(new_page, old_page, address, vma);
873 __SetPageUptodate(new_page);
874 spin_lock(&mm->page_table_lock);
876 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
877 if (likely(pte_same(*ptep, pte))) {
879 set_huge_pte_at(mm, address, ptep,
880 make_huge_pte(vma, new_page, 1));
881 /* Make the old page be freed below */
884 page_cache_release(new_page);
885 page_cache_release(old_page);
889 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
890 unsigned long address, pte_t *ptep, int write_access)
892 int ret = VM_FAULT_SIGBUS;
896 struct address_space *mapping;
899 mapping = vma->vm_file->f_mapping;
900 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
901 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
904 * Use page lock to guard against racing truncation
905 * before we get page_table_lock.
908 page = find_lock_page(mapping, idx);
910 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
913 page = alloc_huge_page(vma, address);
915 ret = -PTR_ERR(page);
918 clear_huge_page(page, address);
919 __SetPageUptodate(page);
921 if (vma->vm_flags & VM_SHARED) {
923 struct inode *inode = mapping->host;
925 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
933 spin_lock(&inode->i_lock);
934 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
935 spin_unlock(&inode->i_lock);
940 spin_lock(&mm->page_table_lock);
941 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
946 if (!pte_none(*ptep))
949 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
950 && (vma->vm_flags & VM_SHARED)));
951 set_huge_pte_at(mm, address, ptep, new_pte);
953 if (write_access && !(vma->vm_flags & VM_SHARED)) {
954 /* Optimization, do the COW without a second fault */
955 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
958 spin_unlock(&mm->page_table_lock);
964 spin_unlock(&mm->page_table_lock);
970 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
971 unsigned long address, int write_access)
976 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
978 ptep = huge_pte_alloc(mm, address);
983 * Serialize hugepage allocation and instantiation, so that we don't
984 * get spurious allocation failures if two CPUs race to instantiate
985 * the same page in the page cache.
987 mutex_lock(&hugetlb_instantiation_mutex);
989 if (pte_none(entry)) {
990 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
991 mutex_unlock(&hugetlb_instantiation_mutex);
997 spin_lock(&mm->page_table_lock);
998 /* Check for a racing update before calling hugetlb_cow */
999 if (likely(pte_same(entry, *ptep)))
1000 if (write_access && !pte_write(entry))
1001 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1002 spin_unlock(&mm->page_table_lock);
1003 mutex_unlock(&hugetlb_instantiation_mutex);
1008 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1009 struct page **pages, struct vm_area_struct **vmas,
1010 unsigned long *position, int *length, int i,
1013 unsigned long pfn_offset;
1014 unsigned long vaddr = *position;
1015 int remainder = *length;
1017 spin_lock(&mm->page_table_lock);
1018 while (vaddr < vma->vm_end && remainder) {
1023 * Some archs (sparc64, sh*) have multiple pte_ts to
1024 * each hugepage. We have to make * sure we get the
1025 * first, for the page indexing below to work.
1027 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1029 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1032 spin_unlock(&mm->page_table_lock);
1033 ret = hugetlb_fault(mm, vma, vaddr, write);
1034 spin_lock(&mm->page_table_lock);
1035 if (!(ret & VM_FAULT_ERROR))
1044 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1045 page = pte_page(*pte);
1049 pages[i] = page + pfn_offset;
1059 if (vaddr < vma->vm_end && remainder &&
1060 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1062 * We use pfn_offset to avoid touching the pageframes
1063 * of this compound page.
1068 spin_unlock(&mm->page_table_lock);
1069 *length = remainder;
1075 void hugetlb_change_protection(struct vm_area_struct *vma,
1076 unsigned long address, unsigned long end, pgprot_t newprot)
1078 struct mm_struct *mm = vma->vm_mm;
1079 unsigned long start = address;
1083 BUG_ON(address >= end);
1084 flush_cache_range(vma, address, end);
1086 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1087 spin_lock(&mm->page_table_lock);
1088 for (; address < end; address += HPAGE_SIZE) {
1089 ptep = huge_pte_offset(mm, address);
1092 if (huge_pmd_unshare(mm, &address, ptep))
1094 if (!pte_none(*ptep)) {
1095 pte = huge_ptep_get_and_clear(mm, address, ptep);
1096 pte = pte_mkhuge(pte_modify(pte, newprot));
1097 set_huge_pte_at(mm, address, ptep, pte);
1100 spin_unlock(&mm->page_table_lock);
1101 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1103 flush_tlb_range(vma, start, end);
1106 struct file_region {
1107 struct list_head link;
1112 static long region_add(struct list_head *head, long f, long t)
1114 struct file_region *rg, *nrg, *trg;
1116 /* Locate the region we are either in or before. */
1117 list_for_each_entry(rg, head, link)
1121 /* Round our left edge to the current segment if it encloses us. */
1125 /* Check for and consume any regions we now overlap with. */
1127 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1128 if (&rg->link == head)
1133 /* If this area reaches higher then extend our area to
1134 * include it completely. If this is not the first area
1135 * which we intend to reuse, free it. */
1139 list_del(&rg->link);
1148 static long region_chg(struct list_head *head, long f, long t)
1150 struct file_region *rg, *nrg;
1153 /* Locate the region we are before or in. */
1154 list_for_each_entry(rg, head, link)
1158 /* If we are below the current region then a new region is required.
1159 * Subtle, allocate a new region at the position but make it zero
1160 * size such that we can guarantee to record the reservation. */
1161 if (&rg->link == head || t < rg->from) {
1162 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1167 INIT_LIST_HEAD(&nrg->link);
1168 list_add(&nrg->link, rg->link.prev);
1173 /* Round our left edge to the current segment if it encloses us. */
1178 /* Check for and consume any regions we now overlap with. */
1179 list_for_each_entry(rg, rg->link.prev, link) {
1180 if (&rg->link == head)
1185 /* We overlap with this area, if it extends futher than
1186 * us then we must extend ourselves. Account for its
1187 * existing reservation. */
1192 chg -= rg->to - rg->from;
1197 static long region_truncate(struct list_head *head, long end)
1199 struct file_region *rg, *trg;
1202 /* Locate the region we are either in or before. */
1203 list_for_each_entry(rg, head, link)
1206 if (&rg->link == head)
1209 /* If we are in the middle of a region then adjust it. */
1210 if (end > rg->from) {
1213 rg = list_entry(rg->link.next, typeof(*rg), link);
1216 /* Drop any remaining regions. */
1217 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1218 if (&rg->link == head)
1220 chg += rg->to - rg->from;
1221 list_del(&rg->link);
1227 static int hugetlb_acct_memory(long delta)
1231 spin_lock(&hugetlb_lock);
1233 * When cpuset is configured, it breaks the strict hugetlb page
1234 * reservation as the accounting is done on a global variable. Such
1235 * reservation is completely rubbish in the presence of cpuset because
1236 * the reservation is not checked against page availability for the
1237 * current cpuset. Application can still potentially OOM'ed by kernel
1238 * with lack of free htlb page in cpuset that the task is in.
1239 * Attempt to enforce strict accounting with cpuset is almost
1240 * impossible (or too ugly) because cpuset is too fluid that
1241 * task or memory node can be dynamically moved between cpusets.
1243 * The change of semantics for shared hugetlb mapping with cpuset is
1244 * undesirable. However, in order to preserve some of the semantics,
1245 * we fall back to check against current free page availability as
1246 * a best attempt and hopefully to minimize the impact of changing
1247 * semantics that cpuset has.
1250 if (gather_surplus_pages(delta) < 0)
1253 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1254 return_unused_surplus_pages(delta);
1261 return_unused_surplus_pages((unsigned long) -delta);
1264 spin_unlock(&hugetlb_lock);
1268 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1272 chg = region_chg(&inode->i_mapping->private_list, from, to);
1276 if (hugetlb_get_quota(inode->i_mapping, chg))
1278 ret = hugetlb_acct_memory(chg);
1280 hugetlb_put_quota(inode->i_mapping, chg);
1283 region_add(&inode->i_mapping->private_list, from, to);
1287 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1289 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1291 spin_lock(&inode->i_lock);
1292 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1293 spin_unlock(&inode->i_lock);
1295 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1296 hugetlb_acct_memory(-(chg - freed));