6 * This file contains the definitions for the x86 IO instructions
7 * inb/inw/inl/outb/outw/outl and the "string versions" of the same
8 * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
9 * versions of the single-IO instructions (inb_p/inw_p/..).
11 * This file is not meant to be obfuscating: it's just complicated
12 * to (a) handle it all in a way that makes gcc able to optimize it
13 * as well as possible and (b) trying to avoid writing the same thing
14 * over and over again with slight variations and possibly making a
19 * Thanks to James van Artsdalen for a better timing-fix than
20 * the two short jumps: using outb's to a nonexistent port seems
21 * to guarantee better timings even on fast machines.
23 * On the other hand, I'd like to be sure of a non-existent port:
24 * I feel a bit unsafe about using 0x80 (should be safe, though)
30 * Bit simplified and optimized by Jan Hubicka
31 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
33 * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
34 * isa_read[wl] and isa_write[wl] fixed
35 * - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
38 #define __SLOW_DOWN_IO "\noutb %%al,$0x80"
41 #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO
43 #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
47 * Talk about misusing macros..
50 static inline void out##s(unsigned x value, unsigned short port) {
52 #define __OUT2(s,s1,s2) \
53 __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1"
55 #define __OUT(s,s1,x) \
56 __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \
57 __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} \
60 static inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v;
62 #define __IN2(s,s1,s2) \
63 __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0"
65 #define __IN(s,s1,i...) \
66 __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \
67 __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \
70 static inline void ins##s(unsigned short port, void * addr, unsigned long count) \
71 { __asm__ __volatile__ ("rep ; ins" #s \
72 : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
75 static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \
76 { __asm__ __volatile__ ("rep ; outs" #s \
77 : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
79 #define RETURN_TYPE unsigned char
82 #define RETURN_TYPE unsigned short
85 #define RETURN_TYPE unsigned int
101 #define IO_SPACE_LIMIT 0xffff
103 #if defined(__KERNEL__) && __x86_64__
105 #include <linux/vmalloc.h>
109 * Change virtual addresses to physical addresses and vv.
110 * These are pretty trivial
112 static inline unsigned long virt_to_phys(volatile void * address)
114 return __pa(address);
117 static inline void * phys_to_virt(unsigned long address)
119 return __va(address);
124 * Change "struct page" to physical address.
126 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
128 #include <asm-generic/iomap.h>
130 extern void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags);
132 static inline void __iomem * ioremap (unsigned long offset, unsigned long size)
134 return __ioremap(offset, size, 0);
137 extern void *early_ioremap(unsigned long addr, unsigned long size);
138 extern void early_iounmap(void *addr, unsigned long size);
141 * This one maps high address device memory and turns off caching for that area.
142 * it's useful if some control registers are in such an area and write combining
143 * or read caching is not desirable:
145 extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size);
146 extern void iounmap(volatile void __iomem *addr);
149 * ISA I/O bus memory addresses are 1:1 with the physical address.
151 #define isa_virt_to_bus virt_to_phys
152 #define isa_page_to_bus page_to_phys
153 #define isa_bus_to_virt phys_to_virt
156 * However PCI ones are not necessarily 1:1 and therefore these interfaces
157 * are forbidden in portable PCI drivers.
159 * Allow them on x86 for legacy drivers, though.
161 #define virt_to_bus virt_to_phys
162 #define bus_to_virt phys_to_virt
165 * readX/writeX() are used to access memory mapped devices. On some
166 * architectures the memory mapped IO stuff needs to be accessed
167 * differently. On the x86 architecture, we just read/write the
168 * memory location directly.
171 static inline __u8 __readb(const volatile void __iomem *addr)
173 return *(__force volatile __u8 *)addr;
175 static inline __u16 __readw(const volatile void __iomem *addr)
177 return *(__force volatile __u16 *)addr;
179 static __always_inline __u32 __readl(const volatile void __iomem *addr)
181 return *(__force volatile __u32 *)addr;
183 static inline __u64 __readq(const volatile void __iomem *addr)
185 return *(__force volatile __u64 *)addr;
187 #define readb(x) __readb(x)
188 #define readw(x) __readw(x)
189 #define readl(x) __readl(x)
190 #define readq(x) __readq(x)
191 #define readb_relaxed(a) readb(a)
192 #define readw_relaxed(a) readw(a)
193 #define readl_relaxed(a) readl(a)
194 #define readq_relaxed(a) readq(a)
195 #define __raw_readb readb
196 #define __raw_readw readw
197 #define __raw_readl readl
198 #define __raw_readq readq
202 static inline void __writel(__u32 b, volatile void __iomem *addr)
204 *(__force volatile __u32 *)addr = b;
206 static inline void __writeq(__u64 b, volatile void __iomem *addr)
208 *(__force volatile __u64 *)addr = b;
210 static inline void __writeb(__u8 b, volatile void __iomem *addr)
212 *(__force volatile __u8 *)addr = b;
214 static inline void __writew(__u16 b, volatile void __iomem *addr)
216 *(__force volatile __u16 *)addr = b;
218 #define writeq(val,addr) __writeq((val),(addr))
219 #define writel(val,addr) __writel((val),(addr))
220 #define writew(val,addr) __writew((val),(addr))
221 #define writeb(val,addr) __writeb((val),(addr))
222 #define __raw_writeb writeb
223 #define __raw_writew writew
224 #define __raw_writel writel
225 #define __raw_writeq writeq
227 void __memcpy_fromio(void*,unsigned long,unsigned);
228 void __memcpy_toio(unsigned long,const void*,unsigned);
230 static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len)
232 __memcpy_fromio(to,(unsigned long)from,len);
234 static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len)
236 __memcpy_toio((unsigned long)to,from,len);
239 void memset_io(volatile void __iomem *a, int b, size_t c);
242 * ISA space is 'always mapped' on a typical x86 system, no need to
243 * explicitly ioremap() it. The fact that the ISA IO space is mapped
244 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
245 * are physical addresses. The following constant pointer can be
246 * used as the IO-area pointer (it can be iounmapped as well, so the
247 * analogy with PCI is quite large):
249 #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
252 * Again, x86-64 does not require mem IO specific function.
255 #define eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void *)(b),(c),(d))
259 #define dma_cache_inv(_start,_size) do { } while (0)
260 #define dma_cache_wback(_start,_size) do { } while (0)
261 #define dma_cache_wback_inv(_start,_size) do { } while (0)
263 #define flush_write_buffers()
265 extern int iommu_bio_merge;
266 #define BIO_VMERGE_BOUNDARY iommu_bio_merge
269 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
272 #define xlate_dev_mem_ptr(p) __va(p)
275 * Convert a virtual cached pointer to an uncached pointer
277 #define xlate_dev_kmem_ptr(p) p
279 #endif /* __KERNEL__ */