2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
52 static inline int notify_page_fault(struct pt_regs *regs)
57 /* kprobe_running() needs smp_processor_id() */
59 if (!user_mode_vm(regs)) {
61 if (!user_mode(regs)) {
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
84 * Opcode checker based on code by Richard Brunner
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
92 unsigned char *max_instr;
95 if (!(__supported_pte_mask & _PAGE_NX))
99 /* If it was a exec fault on NX page, ignore */
100 if (error_code & PF_INSTR)
103 instr = (unsigned char *)convert_ip_to_linear(current, regs);
104 max_instr = instr + 15;
106 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
109 while (scan_more && instr < max_instr) {
110 unsigned char opcode;
111 unsigned char instr_hi;
112 unsigned char instr_lo;
114 if (probe_kernel_address(instr, opcode))
117 instr_hi = opcode & 0xf0;
118 instr_lo = opcode & 0x0f;
125 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
126 * In X86_64 long mode, the CPU will signal invalid
127 * opcode if some of these prefixes are present so
128 * X86_64 will never get here anyway
130 scan_more = ((instr_lo & 7) == 0x6);
135 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
136 * Need to figure out under what instruction mode the
137 * instruction was issued. Could check the LDT for lm,
138 * but for now it's good enough to assume that long
139 * mode only uses well known segments or kernel.
141 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
145 /* 0x64 thru 0x67 are valid prefixes in all modes. */
146 scan_more = (instr_lo & 0xC) == 0x4;
149 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
150 scan_more = !instr_lo || (instr_lo>>1) == 1;
153 /* Prefetch instruction is 0x0F0D or 0x0F18 */
156 if (probe_kernel_address(instr, opcode))
158 prefetch = (instr_lo == 0xF) &&
159 (opcode == 0x0D || opcode == 0x18);
169 static void force_sig_info_fault(int si_signo, int si_code,
170 unsigned long address, struct task_struct *tsk)
174 info.si_signo = si_signo;
176 info.si_code = si_code;
177 info.si_addr = (void __user *)address;
178 force_sig_info(si_signo, &info, tsk);
182 static int bad_address(void *p)
185 return probe_kernel_address((unsigned long *)p, dummy);
189 void dump_pagetable(unsigned long address)
192 __typeof__(pte_val(__pte(0))) page;
195 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
196 #ifdef CONFIG_X86_PAE
197 printk("*pdpt = %016Lx ", page);
198 if ((page >> PAGE_SHIFT) < max_low_pfn
199 && page & _PAGE_PRESENT) {
201 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
202 & (PTRS_PER_PMD - 1)];
203 printk(KERN_CONT "*pde = %016Lx ", page);
207 printk("*pde = %08lx ", page);
211 * We must not directly access the pte in the highpte
212 * case if the page table is located in highmem.
213 * And let's rather not kmap-atomic the pte, just in case
214 * it's allocated already.
216 if ((page >> PAGE_SHIFT) < max_low_pfn
217 && (page & _PAGE_PRESENT)
218 && !(page & _PAGE_PSE)) {
220 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
221 & (PTRS_PER_PTE - 1)];
222 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
226 #else /* CONFIG_X86_64 */
232 pgd = (pgd_t *)read_cr3();
234 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
235 pgd += pgd_index(address);
236 if (bad_address(pgd)) goto bad;
237 printk("PGD %lx ", pgd_val(*pgd));
238 if (!pgd_present(*pgd)) goto ret;
240 pud = pud_offset(pgd, address);
241 if (bad_address(pud)) goto bad;
242 printk("PUD %lx ", pud_val(*pud));
243 if (!pud_present(*pud)) goto ret;
245 pmd = pmd_offset(pud, address);
246 if (bad_address(pmd)) goto bad;
247 printk("PMD %lx ", pmd_val(*pmd));
248 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
250 pte = pte_offset_kernel(pmd, address);
251 if (bad_address(pte)) goto bad;
252 printk("PTE %lx", pte_val(*pte));
262 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
264 unsigned index = pgd_index(address);
270 pgd_k = init_mm.pgd + index;
272 if (!pgd_present(*pgd_k))
276 * set_pgd(pgd, *pgd_k); here would be useless on PAE
277 * and redundant with the set_pmd() on non-PAE. As would
281 pud = pud_offset(pgd, address);
282 pud_k = pud_offset(pgd_k, address);
283 if (!pud_present(*pud_k))
286 pmd = pmd_offset(pud, address);
287 pmd_k = pmd_offset(pud_k, address);
288 if (!pmd_present(*pmd_k))
290 if (!pmd_present(*pmd)) {
291 set_pmd(pmd, *pmd_k);
292 arch_flush_lazy_mmu_mode();
294 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
300 static const char errata93_warning[] =
301 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
302 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
303 KERN_ERR "******* Please consider a BIOS update.\n"
304 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
307 /* Workaround for K8 erratum #93 & buggy BIOS.
308 BIOS SMM functions are required to use a specific workaround
309 to avoid corruption of the 64bit RIP register on C stepping K8.
310 A lot of BIOS that didn't get tested properly miss this.
311 The OS sees this as a page fault with the upper 32bits of RIP cleared.
312 Try to work around it here.
313 Note we only handle faults in kernel here.
314 Does nothing for X86_32
316 static int is_errata93(struct pt_regs *regs, unsigned long address)
320 if (address != regs->ip)
322 if ((address >> 32) != 0)
324 address |= 0xffffffffUL << 32;
325 if ((address >= (u64)_stext && address <= (u64)_etext) ||
326 (address >= MODULES_VADDR && address <= MODULES_END)) {
328 printk(errata93_warning);
339 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
340 * addresses >4GB. We catch this in the page fault handler because these
341 * addresses are not reachable. Just detect this case and return. Any code
342 * segment in LDT is compatibility mode.
344 static int is_errata100(struct pt_regs *regs, unsigned long address)
347 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
354 void do_invalid_op(struct pt_regs *, unsigned long);
356 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
358 #ifdef CONFIG_X86_F00F_BUG
361 * Pentium F0 0F C7 C8 bug workaround.
363 if (boot_cpu_data.f00f_bug) {
364 nr = (address - idt_descr.address) >> 3;
367 do_invalid_op(regs, 0);
375 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
376 unsigned long address)
379 if (!oops_may_print())
383 #ifdef CONFIG_X86_PAE
384 if (error_code & PF_INSTR) {
386 pte_t *pte = lookup_address(address, &level);
388 if (pte && pte_present(*pte) && !pte_exec(*pte))
389 printk(KERN_CRIT "kernel tried to execute "
390 "NX-protected page - exploit attempt? "
391 "(uid: %d)\n", current->uid);
395 printk(KERN_ALERT "BUG: unable to handle kernel ");
396 if (address < PAGE_SIZE)
397 printk(KERN_CONT "NULL pointer dereference");
399 printk(KERN_CONT "paging request");
401 printk(KERN_CONT " at %08lx\n", address);
403 printk(KERN_CONT " at %016lx\n", address);
405 printk(KERN_ALERT "IP:");
406 printk_address(regs->ip, 1);
407 dump_pagetable(address);
411 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
412 unsigned long error_code)
414 unsigned long flags = oops_begin();
415 struct task_struct *tsk;
417 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
418 current->comm, address);
419 dump_pagetable(address);
421 tsk->thread.cr2 = address;
422 tsk->thread.trap_no = 14;
423 tsk->thread.error_code = error_code;
424 if (__die("Bad pagetable", regs, error_code))
426 oops_end(flags, regs, SIGKILL);
431 * Handle a spurious fault caused by a stale TLB entry. This allows
432 * us to lazily refresh the TLB when increasing the permissions of a
433 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
434 * expensive since that implies doing a full cross-processor TLB
435 * flush, even if no stale TLB entries exist on other processors.
436 * There are no security implications to leaving a stale TLB when
437 * increasing the permissions on a page.
439 static int spurious_fault(unsigned long address,
440 unsigned long error_code)
447 /* Reserved-bit violation or user access to kernel space? */
448 if (error_code & (PF_USER | PF_RSVD))
451 pgd = init_mm.pgd + pgd_index(address);
452 if (!pgd_present(*pgd))
455 pud = pud_offset(pgd, address);
456 if (!pud_present(*pud))
459 pmd = pmd_offset(pud, address);
460 if (!pmd_present(*pmd))
463 pte = pte_offset_kernel(pmd, address);
464 if (!pte_present(*pte))
467 if ((error_code & PF_WRITE) && !pte_write(*pte))
469 if ((error_code & PF_INSTR) && !pte_exec(*pte))
477 * Handle a fault on the vmalloc or module mapping area
480 * Handle a fault on the vmalloc area
482 * This assumes no large pages in there.
484 static int vmalloc_fault(unsigned long address)
487 unsigned long pgd_paddr;
491 * Synchronize this task's top level page-table
492 * with the 'reference' page table.
494 * Do _not_ use "current" here. We might be inside
495 * an interrupt in the middle of a task switch..
497 pgd_paddr = read_cr3();
498 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
501 pte_k = pte_offset_kernel(pmd_k, address);
502 if (!pte_present(*pte_k))
506 pgd_t *pgd, *pgd_ref;
507 pud_t *pud, *pud_ref;
508 pmd_t *pmd, *pmd_ref;
509 pte_t *pte, *pte_ref;
511 /* Copy kernel mappings over when needed. This can also
512 happen within a race in page table update. In the later
515 pgd = pgd_offset(current->mm ?: &init_mm, address);
516 pgd_ref = pgd_offset_k(address);
517 if (pgd_none(*pgd_ref))
520 set_pgd(pgd, *pgd_ref);
522 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
524 /* Below here mismatches are bugs because these lower tables
527 pud = pud_offset(pgd, address);
528 pud_ref = pud_offset(pgd_ref, address);
529 if (pud_none(*pud_ref))
531 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
533 pmd = pmd_offset(pud, address);
534 pmd_ref = pmd_offset(pud_ref, address);
535 if (pmd_none(*pmd_ref))
537 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
539 pte_ref = pte_offset_kernel(pmd_ref, address);
540 if (!pte_present(*pte_ref))
542 pte = pte_offset_kernel(pmd, address);
543 /* Don't use pte_page here, because the mappings can point
544 outside mem_map, and the NUMA hash lookup cannot handle
546 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
552 int show_unhandled_signals = 1;
555 * This routine handles page faults. It determines the address,
556 * and the problem, and then passes it off to one of the appropriate
562 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
564 struct task_struct *tsk;
565 struct mm_struct *mm;
566 struct vm_area_struct *vma;
567 unsigned long address;
575 * We can fault from pretty much anywhere, with unknown IRQ state.
577 trace_hardirqs_fixup();
581 prefetchw(&mm->mmap_sem);
583 /* get the address */
584 address = read_cr2();
586 si_code = SEGV_MAPERR;
588 if (notify_page_fault(regs))
592 * We fault-in kernel-space virtual memory on-demand. The
593 * 'reference' page table is init_mm.pgd.
595 * NOTE! We MUST NOT take any locks for this case. We may
596 * be in an interrupt or a critical region, and should
597 * only copy the information from the master page table,
600 * This verifies that the fault happens in kernel space
601 * (error_code & 4) == 0, and that the fault was not a
602 * protection error (error_code & 9) == 0.
605 if (unlikely(address >= TASK_SIZE)) {
606 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
607 vmalloc_fault(address) >= 0)
610 /* Can handle a stale RO->RW TLB */
611 if (spurious_fault(address, error_code))
615 * Don't take the mm semaphore here. If we fixup a prefetch
616 * fault we could otherwise deadlock.
618 goto bad_area_nosemaphore;
621 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
622 fault has been handled. */
623 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
627 * If we're in an interrupt, have no user context or are running in an
628 * atomic region then we must not take the fault.
630 if (in_atomic() || !mm)
631 goto bad_area_nosemaphore;
632 #else /* CONFIG_X86_64 */
633 if (unlikely(address >= TASK_SIZE64)) {
635 * Don't check for the module range here: its PML4
636 * is always initialized because it's shared with the main
637 * kernel text. Only vmalloc may need PML4 syncups.
639 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
640 ((address >= VMALLOC_START && address < VMALLOC_END))) {
641 if (vmalloc_fault(address) >= 0)
645 /* Can handle a stale RO->RW TLB */
646 if (spurious_fault(address, error_code))
650 * Don't take the mm semaphore here. If we fixup a prefetch
651 * fault we could otherwise deadlock.
653 goto bad_area_nosemaphore;
655 if (likely(regs->flags & X86_EFLAGS_IF))
658 if (unlikely(error_code & PF_RSVD))
659 pgtable_bad(address, regs, error_code);
662 * If we're in an interrupt, have no user context or are running in an
663 * atomic region then we must not take the fault.
665 if (unlikely(in_atomic() || !mm))
666 goto bad_area_nosemaphore;
669 * User-mode registers count as a user access even for any
670 * potential system fault or CPU buglet.
672 if (user_mode_vm(regs))
673 error_code |= PF_USER;
676 /* When running in the kernel we expect faults to occur only to
677 * addresses in user space. All other faults represent errors in the
678 * kernel and should generate an OOPS. Unfortunately, in the case of an
679 * erroneous fault occurring in a code path which already holds mmap_sem
680 * we will deadlock attempting to validate the fault against the
681 * address space. Luckily the kernel only validly references user
682 * space from well defined areas of code, which are listed in the
685 * As the vast majority of faults will be valid we will only perform
686 * the source reference check when there is a possibility of a deadlock.
687 * Attempt to lock the address space, if we cannot we then validate the
688 * source. If this is invalid we can skip the address space check,
689 * thus avoiding the deadlock.
691 if (!down_read_trylock(&mm->mmap_sem)) {
692 if ((error_code & PF_USER) == 0 &&
693 !search_exception_tables(regs->ip))
694 goto bad_area_nosemaphore;
695 down_read(&mm->mmap_sem);
698 vma = find_vma(mm, address);
701 if (vma->vm_start <= address)
703 if (!(vma->vm_flags & VM_GROWSDOWN))
705 if (error_code & PF_USER) {
707 * Accessing the stack below %sp is always a bug.
708 * The large cushion allows instructions like enter
709 * and pusha to work. ("enter $65535,$31" pushes
710 * 32 pointers and then decrements %sp by 65535.)
712 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
715 if (expand_stack(vma, address))
718 * Ok, we have a good vm_area for this memory access, so
722 si_code = SEGV_ACCERR;
724 switch (error_code & (PF_PROT|PF_WRITE)) {
725 default: /* 3: write, present */
727 case PF_WRITE: /* write, not present */
728 if (!(vma->vm_flags & VM_WRITE))
732 case PF_PROT: /* read, present */
734 case 0: /* read, not present */
735 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
743 * If for any reason at all we couldn't handle the fault,
744 * make sure we exit gracefully rather than endlessly redo
747 fault = handle_mm_fault(mm, vma, address, write);
748 if (unlikely(fault & VM_FAULT_ERROR)) {
749 if (fault & VM_FAULT_OOM)
751 else if (fault & VM_FAULT_SIGBUS)
755 if (fault & VM_FAULT_MAJOR)
762 * Did it hit the DOS screen memory VA from vm86 mode?
764 if (v8086_mode(regs)) {
765 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
767 tsk->thread.screen_bitmap |= 1 << bit;
770 up_read(&mm->mmap_sem);
774 * Something tried to access memory that isn't in our memory map..
775 * Fix it, but check if it's kernel or user first..
778 up_read(&mm->mmap_sem);
780 bad_area_nosemaphore:
781 /* User mode accesses just cause a SIGSEGV */
782 if (error_code & PF_USER) {
784 * It's possible to have interrupts off here.
789 * Valid to do another page fault here because this one came
792 if (is_prefetch(regs, address, error_code))
795 if (is_errata100(regs, address))
798 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
799 printk_ratelimit()) {
802 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
804 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
806 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
807 tsk->comm, task_pid_nr(tsk), address, regs->ip,
808 regs->sp, error_code);
809 print_vma_addr(" in ", regs->ip);
813 tsk->thread.cr2 = address;
814 /* Kernel addresses are always protection faults */
815 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
816 tsk->thread.trap_no = 14;
817 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
821 if (is_f00f_bug(regs, address))
825 /* Are we prepared to handle this kernel fault? */
826 if (fixup_exception(regs))
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
836 * Hall of shame of CPU/BIOS bugs.
838 if (is_prefetch(regs, address, error_code))
841 if (is_errata93(regs, address))
845 * Oops. The kernel tried to access some bad page. We'll have to
846 * terminate things with extreme prejudice.
851 flags = oops_begin();
854 show_fault_oops(regs, error_code, address);
856 tsk->thread.cr2 = address;
857 tsk->thread.trap_no = 14;
858 tsk->thread.error_code = error_code;
861 die("Oops", regs, error_code);
865 if (__die("Oops", regs, error_code))
867 /* Executive summary in case the body of the oops scrolled away */
868 printk(KERN_EMERG "CR2: %016lx\n", address);
869 oops_end(flags, regs, SIGKILL);
873 * We ran out of memory, or some other thing happened to us that made
874 * us unable to handle the page fault gracefully.
877 up_read(&mm->mmap_sem);
878 if (is_global_init(tsk)) {
881 down_read(&mm->mmap_sem);
888 printk("VM: killing process %s\n", tsk->comm);
889 if (error_code & PF_USER)
890 do_group_exit(SIGKILL);
894 up_read(&mm->mmap_sem);
896 /* Kernel mode? Handle exceptions or die */
897 if (!(error_code & PF_USER))
900 /* User space => ok to do another page fault */
901 if (is_prefetch(regs, address, error_code))
904 tsk->thread.cr2 = address;
905 tsk->thread.error_code = error_code;
906 tsk->thread.trap_no = 14;
907 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
910 DEFINE_SPINLOCK(pgd_lock);
913 void vmalloc_sync_all(void)
917 * Note that races in the updates of insync and start aren't
918 * problematic: insync can only get set bits added, and updates to
919 * start are only improving performance (without affecting correctness
922 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
923 static unsigned long start = TASK_SIZE;
924 unsigned long address;
926 if (SHARED_KERNEL_PMD)
929 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
930 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
931 if (!test_bit(pgd_index(address), insync)) {
935 spin_lock_irqsave(&pgd_lock, flags);
936 list_for_each_entry(page, &pgd_list, lru) {
937 if (!vmalloc_sync_one(page_address(page),
941 spin_unlock_irqrestore(&pgd_lock, flags);
943 set_bit(pgd_index(address), insync);
945 if (address == start && test_bit(pgd_index(address), insync))
946 start = address + PGDIR_SIZE;
948 #else /* CONFIG_X86_64 */
950 * Note that races in the updates of insync and start aren't
951 * problematic: insync can only get set bits added, and updates to
952 * start are only improving performance (without affecting correctness
955 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
956 static unsigned long start = VMALLOC_START & PGDIR_MASK;
957 unsigned long address;
959 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
960 if (!test_bit(pgd_index(address), insync)) {
961 const pgd_t *pgd_ref = pgd_offset_k(address);
964 if (pgd_none(*pgd_ref))
966 spin_lock(&pgd_lock);
967 list_for_each_entry(page, &pgd_list, lru) {
969 pgd = (pgd_t *)page_address(page) + pgd_index(address);
971 set_pgd(pgd, *pgd_ref);
973 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
975 spin_unlock(&pgd_lock);
976 set_bit(pgd_index(address), insync);
978 if (address == start)
979 start = address + PGDIR_SIZE;
981 /* Check that there is no need to do the same for the modules area. */
982 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
983 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
984 (__START_KERNEL & PGDIR_MASK)));